1
|
Qiu Y, Tang Q, Liu XQ, Xue YL, Zeng Y, Hu P. Hepatitis B core-related antigen as a promising serological marker for monitoring hepatitis B virus cure. World J Hepatol 2025; 17:98658. [PMID: 39871916 PMCID: PMC11736480 DOI: 10.4254/wjh.v17.i1.98658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/25/2024] [Accepted: 12/13/2024] [Indexed: 01/06/2025] Open
Abstract
Hepatitis B virus (HBV) infection is a global health concern. The current sequential endpoints for the treatment of HBV infection include viral suppression, hepatitis B e antigen (HBeAg) seroconversion, functional cure, and covalently closed circular DNA (cccDNA) clearance. Serum hepatitis B core-related antigen (HBcrAg) is an emerging HBV marker comprising three components: HBeAg, hepatitis B core antigen, and p22cr. It responds well to the transcriptional activity of cccDNA in the patient's liver and is a promising alternative marker for serological testing. There is a strong correlation, and a decrease in its level corresponds to sustained viral suppression. In patients with chronic hepatitis B (CHB), serum HBcrAg levels are good predictors of HBeAg seroconversion (both spontaneous and after antiviral therapy), particularly in HBeAg-positive patients. Both low baseline HBcrAg levels and decreasing levels early in antiviral therapy favored HBsAg seroconversion, which may serve as a good surrogate option for treatment endpoints. In this review, we summarize the role of serum HBcrAg in the treatment of CHB. Therefore, long-term continuous monitoring of serum HBcrAg levels contributes to the clinical management of patients with CHB and optimizes the choice of treatment regimen, making it a promising marker for monitoring HBV cure.
Collapse
Affiliation(s)
- Yue Qiu
- Department of Infectious Diseases, Institute for Viral Hepatitis, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Qiao Tang
- Department of Infectious Diseases, Institute for Viral Hepatitis, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xiao-Qing Liu
- Department of Infectious Diseases, Institute for Viral Hepatitis, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yun-Ling Xue
- Department of Infectious Diseases, Institute for Viral Hepatitis, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yi Zeng
- Department of Infectious Diseases, Institute for Viral Hepatitis, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Peng Hu
- Department of Infectious Diseases, Institute for Viral Hepatitis, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
2
|
Jones CE, Dangas G, Norris AC, Koenig M, Li DY, Shue TM, Athanasiadis A, Barbosa L, Zhou Y, Levenson KC, Zou C, de Jong YP, Michailidis E. Long-term 3D cell culture models for hepatitis B virus studies. Virology 2024; 600:110265. [PMID: 39427481 PMCID: PMC12017837 DOI: 10.1016/j.virol.2024.110265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Primary human hepatocyte (PHH) models have limited longevity and require high inoculum for HBV infection with minimal spread. We aimed to develop 3D cell culture models to overcome the limitations of existing models and to expand their utility for drug-related studies. Here, we report the establishment of two spheroid models utilizing de novo HBV-infected mouse-passaged (mp)PHH and mpPHH isolated from HBV-infected liver chimeric mice (HBV-mpPHH). Our data demonstrates that our models maintain detectable infection and human albumin levels up to 75 days, and therefore have enhanced longevity compared to existing models. As a proof-of-concept we used our de novo HBV-infected model as a drug-testing platform to validate an HBV capsid assembly modulator (CpAM). We report that we have established two HBV-infected 3D cell culture models and have characterized these models as practical and novel approaches with the potential to enhance the relevance and scope of in vitro HBV studies.
Collapse
Affiliation(s)
- Christopher E Jones
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Georgios Dangas
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Adriana C Norris
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Madeleine Koenig
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Dar-Yin Li
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Taylor M Shue
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Antonis Athanasiadis
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Luana Barbosa
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Yichen Zhou
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Kenneth C Levenson
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Chenhui Zou
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Ype P de Jong
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Eleftherios Michailidis
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
3
|
Taverniti V, Meiss-Heydmann L, Gadenne C, Vanrusselt H, Kum DB, Giannone F, Pessaux P, Schuster C, Baumert TF, Debing Y, Verrier ER. CAM-A-dependent HBV core aggregation induces apoptosis through ANXA1. JHEP Rep 2024; 6:101134. [PMID: 39386256 PMCID: PMC11462251 DOI: 10.1016/j.jhepr.2024.101134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 10/12/2024] Open
Abstract
Background & Aims Chronic HBV infection is the leading cause of liver disease and of hepatocellular carcinoma. The improvement of antiviral therapy remains an unmet medical need. Capsid assembly modulators (CAMs) target the HBV core antigen (HBc) and inhibit HBV replication. Although CAM-A compounds are well-known inducers of aberrant viral capsid aggregates, their mechanisms of action in HBV-hepatocyte interactions are poorly understood. Recently, we demonstrated that CAM-A molecules lead to a sustained reduction of HBsAg in the serum of HBV replicating mice and induce HBc aggregation in the nucleus of HBc-expressing cells leading to cell death. Methods The mechanism of action by which CAM-A compounds induce cell death was investigated using an HBV infection model, HBc-overexpressing HepG2-NTCP cells, primary human hepatocytes, and HBV replicating HepAD38 cells. Results We first confirmed the decrease in HBsAg levels associated with CAM-A treatment and the induction of cell toxicity in HBV-infected differentiated HepaRG cells. Next, we showed that CAM-A-mediated nuclear aggregation of HBc was associated with cell death through the activation of apoptosis. Transcriptomic analysis was used to investigate the mechanism of action driving this phenotype. CAM-A-induced HBc nuclear aggregation led to the upregulation of ANXA1 expression, a documented driver of apoptosis. Finally, silencing of ANXA1 expression delayed cell death and apoptosis in CAM-A-treated cells, confirming its direct involvement in CAM-A-induced cell death. Conclusions Our results unravel a previously undiscovered mechanism of action involving CAM-As and open the door to new therapeutic strategies involving CAM to achieve a functional cure in patients with chronic infections. Impact and implications Chronic HBV infection is a global health threat. To date, no treatment achieves viral clearance in chronically infected patients. In this study, we characterized a new mechanism of action of an antiviral molecule targeting the assembly of the viral capsid (CAM). The study demonstrated that a CAM subtype, CAM-A-induced formation of aberrant structures from HBV core protein aggregates in the nucleus leading to cell death by ANXA1-driven apoptosis. Thus, CAM-A treatment may lead to the specific elimination of HBV-infected cells by apoptosis, paving the way to novel therapeutic strategies for viral cure.
Collapse
Affiliation(s)
- Valerio Taverniti
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease (ITM), UMR_S1110, Strasbourg, France
| | - Laura Meiss-Heydmann
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease (ITM), UMR_S1110, Strasbourg, France
| | - Cloé Gadenne
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease (ITM), UMR_S1110, Strasbourg, France
| | | | | | - Fabio Giannone
- Institut Hospitalo-universitaire (IHU). Service d’hépato-gastroentérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Patrick Pessaux
- Institut Hospitalo-universitaire (IHU). Service d’hépato-gastroentérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Catherine Schuster
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease (ITM), UMR_S1110, Strasbourg, France
| | - Thomas F. Baumert
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease (ITM), UMR_S1110, Strasbourg, France
- Institut Hospitalo-universitaire (IHU). Service d’hépato-gastroentérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Institut Universitaire de France, Paris, France
| | | | - Eloi R. Verrier
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease (ITM), UMR_S1110, Strasbourg, France
| |
Collapse
|
4
|
Zhang J, Zhang F, Zhang L, Zhang M, Liu S, Ma Y. Screening and molecular docking verification of feature genes related to phospholipid metabolism in hepatocarcinoma caused by hepatitis B. Lipids Health Dis 2024; 23:268. [PMID: 39182089 PMCID: PMC11344459 DOI: 10.1186/s12944-024-02253-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND The progression of tumours is related to abnormal phospholipid metabolism. This study is anticipated to present a fresh perspective for disease therapy targets of hepatocarcinoma caused by hepatitis B virus in the future by screening feature genes related to phospholipid metabolism. METHODS This study analysed GSE121248 to pinpoint differentially expressed genes (DEGs). By examining the overlap between the metabolism-related genes and DEGs, the research focused on the genes involved in phospholipid metabolism. To find feature genes, functional enrichment studies were carried out and a network diagram was proposed. These findings were validated via data base of The Cancer Genome Atlas (TCGA). Further analyses included immune infiltration studies and metabolomics. Finally, the relationships between differentially abundant metabolites and feature genes were confirmed by molecular docking, providing a thorough comprehension of the molecular mechanisms. RESULTS The seven genes with the highest degree of connection (PTGS2, IGF1, SPP1, BCHE, NR1I2, NAMPT, and FABP1) were identified as feature genes. In the TCGA database, the seven feature genes also had certain diagnostic efficiency. Immune infiltration analysis revealed that feature genes regulate the infiltration of various immune cells. Metabolomics successfully identified the different metabolites of the phospholipid metabolism pathway between patients and normal individuals. The docking study indicated that different metabolites may play essential roles in causing disease by targeting feature genes. CONCLUSIONS In this study, for the first time, it reveals the possible involvement of genes linked to phospholipid metabolism-related genes using bioinformatics analysis. Identifying genes and probable therapeutic targets could provide clues for the further treatment of disease.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Clinical Laboratory, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Fengmei Zhang
- Department of Clinical Laboratory, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, The Third Central Hospital of Tianjin, Tianjin Institute of Hepatobiliary Disease, Tianjin, 300170, China
| | - Lei Zhang
- Department of Clinical Laboratory, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, The Third Central Hospital of Tianjin, Tianjin Institute of Hepatobiliary Disease, Tianjin, 300170, China.
| | - Meiling Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Shuye Liu
- Department of Clinical Laboratory, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, The Third Central Hospital of Tianjin, Tianjin Institute of Hepatobiliary Disease, Tianjin, 300170, China.
| | - Ying Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
5
|
Bach C, Lucifora J, Delphin M, Heydmann L, Heuschkel MJ, Pons C, Goto K, Scheers E, Schuster C, Durantel D, Pauwels F, Baumert TF, Verrier ER. A stable hepatitis D virus-producing cell line for host target and drug discovery. Antiviral Res 2023; 209:105477. [PMID: 36511319 DOI: 10.1016/j.antiviral.2022.105477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022]
Abstract
Chronic hepatitis D is the most aggressive form of chronic viral hepatitis. It is caused by super-infection of hepatitis B virus (HBV)-infected hepatocytes with hepatitis D virus (HDV). While the recent conditional approval of bulevirtide for HDV treatment offers a new therapeutic modality in Europe, there is an unmet medical need to further improve therapy. A more detailed characterization of virus-host interactions is needed for the identification of novel therapeutic targets. Addressing this need, we engineered a new stably-transformed cell line, named HuH7-2C8D, producing high titer recombinant HDV and allowing the study of viral particles morphogenesis and infectivity. Using this culture system, where viral propagation by re-infection is limited, we observed an increased accumulation of edited version of the viral genomes within secreted HDV viral particles over time that is accompanied with a decrease in viral particle infectivity. We confirmed the interaction of HDV proteins with a previously described host factor in HuH7-2C8D cells and additionally showed that these cells are suitable for co-culture assays with other cell types such as macrophages. Finally, the use of HuH7-2C8D cells allowed to confirm the dual antiviral activity of farnesyl transferase inhibitors, including the clinical candidate lonafarnib, against HDV. In conclusion, we have established an easy-to-handle cell culture model to investigate HDV replication, morphogenesis, and host interactions. HuH7-2C8D cells are also suitable for high-throughput antiviral screening assays for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Charlotte Bach
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - Julie Lucifora
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, F-69007, Lyon, France
| | - Marion Delphin
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, F-69007, Lyon, France
| | - Laura Heydmann
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - Margaux J Heuschkel
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - Caroline Pons
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, F-69007, Lyon, France
| | - Kaku Goto
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - Els Scheers
- Janssen Research & Development, Janssen Pharmaceutical Companies, Beerse, Belgium
| | - Catherine Schuster
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - David Durantel
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, F-69007, Lyon, France
| | - Frederik Pauwels
- Janssen Research & Development, Janssen Pharmaceutical Companies, Beerse, Belgium
| | - Thomas F Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France; Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Eloi R Verrier
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France.
| |
Collapse
|
6
|
Verrier ER, Ligat G, Heydmann L, Doernbrack K, Miller J, Maglott-Roth A, Jühling F, El Saghire H, Heuschkel MJ, Fujiwara N, Hsieh SY, Hoshida Y, Root DE, Felli E, Pessaux P, Mukherji A, Mailly L, Schuster C, Brino L, Nassal M, Baumert TF. Cell-based cccDNA reporter assay combined with functional genomics identifies YBX1 as HBV cccDNA host factor and antiviral candidate target. Gut 2022; 72:gutjnl-2020-323665. [PMID: 36591611 PMCID: PMC10423543 DOI: 10.1136/gutjnl-2020-323665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 11/24/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Chronic hepatitis B virus (HBV) infection is a leading cause of liver disease and hepatocellular carcinoma. A key feature of HBV replication is the synthesis of the covalently close circular (ccc)DNA, not targeted by current treatments and whose elimination would be crucial for viral cure. To date, little is known about cccDNA formation. One major challenge to address this urgent question is the absence of robust models for the study of cccDNA biology. DESIGN We established a cell-based HBV cccDNA reporter assay and performed a loss-of-function screen targeting 239 genes encoding the human DNA damage response machinery. RESULTS Overcoming the limitations of current models, the reporter assay enables to quantity cccDNA levels using a robust ELISA as a readout. A loss-of-function screen identified 27 candidate cccDNA host factors, including Y box binding protein 1 (YBX1), a DNA binding protein regulating transcription and translation. Validation studies in authentic infection models revealed a robust decrease in HBV cccDNA levels following silencing, providing proof-of-concept for the importance of YBX1 in the early steps of the HBV life cycle. In patients, YBX1 expression robustly correlates with both HBV load and liver disease progression. CONCLUSION Our cell-based reporter assay enables the discovery of HBV cccDNA host factors including YBX1 and is suitable for the characterisation of cccDNA-related host factors, antiviral targets and compounds.
Collapse
Affiliation(s)
- Eloi R Verrier
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, Strasbourg, France
| | - Gaëtan Ligat
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, Strasbourg, France
| | - Laura Heydmann
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, Strasbourg, France
| | - Katharina Doernbrack
- Department of Internal Medicine II/Molecular Biology, University Hospital Freiburg, Freiburg, Germany
| | - Julija Miller
- Department of Internal Medicine II/Molecular Biology, University Hospital Freiburg, Freiburg, Germany
| | | | - Frank Jühling
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, Strasbourg, France
| | - Houssein El Saghire
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, Strasbourg, France
| | - Margaux J Heuschkel
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, Strasbourg, France
| | - Naoto Fujiwara
- Department of Internal Medicine, Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sen-Yung Hsieh
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yujin Hoshida
- Department of Internal Medicine, Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - David E Root
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Emanuele Felli
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Patrick Pessaux
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Atish Mukherji
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, Strasbourg, France
| | - Laurent Mailly
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, Strasbourg, France
| | - Catherine Schuster
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, Strasbourg, France
| | - Laurent Brino
- IGBMC, Plateforme de Criblage Haut-débit, Illkirch, France
| | - Michael Nassal
- Department of Internal Medicine II/Molecular Biology, University Hospital Freiburg, Freiburg, Germany
| | - Thomas F Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| |
Collapse
|
7
|
Zahoor MA, Kuipery A, Mosa AI, Gehring AJ, Feld JJ. HepG2-NTCP Subclones Exhibiting High Susceptibility to Hepatitis B Virus Infection. Viruses 2022; 14:v14081800. [PMID: 36016422 PMCID: PMC9412438 DOI: 10.3390/v14081800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 12/01/2022] Open
Abstract
HepG2 cells reconstituted with Hepatitis B virus (HBV) entry receptor sodium taurocholate co-transporting polypeptide (NTCP) are widely used as a convenient in vitro cell culture infection model for HBV replication studies. As such, it is pertinent that HBV infectivity is maintained at steady-state levels for an accurate interpretation of in vitro data. However, variations in the HBV infection efficiency due to imbalanced NTCP expression levels in the HepG2 cell line may affect experimental results. In this study, we performed single cell-cloning of HepG2-NTCP-A3 parental cells via limiting dilution and obtained multiple subclones with increased permissiveness to HBV. Specifically, one subclone (HepG2-NTCP-A3/C2) yielded more than four-fold higher HBV infection compared to the HepG2-NTCP-A3 parental clone. In addition, though HBV infectivity was universally reduced in the absence of polyethylene glycol (PEG), subclone C2 maintained relatively greater permissiveness under PEG-free conditions, suggesting the functional heterogeneity within parental HepG2-NTCP-A3 may be exploitable in developing a PEG-free HBV infection model. The increased viral production correlated with increased intracellular viral antigen expression as evidenced through HBcAg immunofluorescence staining. Further, these subclones were found to express different levels of NTCP, albeit with no remarkable morphology or cell growth differences. In conclusion, we isolated the subclones of HepG2-NTCP-A3 which support efficient HBV production and thus provide an improved in vitro HBV infection model.
Collapse
Affiliation(s)
- Muhammad Atif Zahoor
- Toronto Center for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Adrian Kuipery
- Toronto Center for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Alexander I. Mosa
- Toronto Center for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Adam J. Gehring
- Toronto Center for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jordan J. Feld
- Toronto Center for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Correspondence:
| |
Collapse
|
8
|
Zai W, Hu K, Ye J, Ding J, Huang C, Li Y, Fang Z, Wu M, Wang C, Chen J, Yuan Z. Long-Term Hepatitis B Virus Infection Induces Cytopathic Effects in Primary Human Hepatocytes, and Can Be Partially Reversed by Antiviral Therapy. Microbiol Spectr 2022; 10:e0132821. [PMID: 35171034 PMCID: PMC8849052 DOI: 10.1128/spectrum.01328-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/21/2022] [Indexed: 01/05/2023] Open
Abstract
Chronic infection of hepatitis B virus (HBV) remains a major health burden worldwide. While the immune response has been recognized to play crucial roles in HBV pathogenesis, the direct cytopathic effects of HBV infection and replication on host hepatocytes and the HBV-host interactions are only partially defined due to limited culture systems. Here, based on our recently developed 5 chemical-cultured primary human hepatocytes (5C-PHHs) model that supports long-term HBV infection, we performed multiplexed quantitative analysis of temporal changes of host proteome and transcriptome on PHHs infected by HBV for up to 4 weeks. We showed that metabolic-, complement-, cytoskeleton-, mitochondrial-, and oxidation-related pathways were modulated at transcriptional or posttranscriptional levels during long-term HBV infection, which led to cytopathic effects and could be partially rescued by early, rather than late, nucleot(s)ide analog (NA) administration and could be significantly relieved by blocking viral antigens with RNA interference (RNAi). Overexpression screening of the dysregulated proteins identified a series of host factors that may contribute to pro- or anti-HBV responses of the infected hepatocytes. In conclusion, our results suggest that long-term HBV infection in primary human hepatocytes leads to cytopathic effects through remodeling the proteome and transcriptome and early antiviral treatment may reduce the extent of such effects, indicating a role of virological factors in HBV pathogenesis and a potential benefit of early administration of antiviral treatment. IMPORTANCE Global temporal quantitative proteomic and transcriptomic analysis using long-term hepatitis B virus (HBV)-infected primary human hepatocytes uncovered extensive remodeling of the host proteome and transcriptome and revealed cytopathic effects of long-term viral replication. Metabolic-, complement-, cytoskeleton-, mitochondrial-, and oxidation-related pathways were modulated at transcriptional or posttranscriptional levels, which could be partially rescued by early, rather than late, NA therapy and could be relieved by blocking viral antigens with RNAi. Overexpression screening identified a series of pro- or anti-HBV host factors. These data have deepened the understanding of the mechanisms of viral pathogenesis and HBV-host interactions in hepatocytes, with implications for therapeutic intervention.
Collapse
Affiliation(s)
- Wenjing Zai
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kongying Hu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianyu Ye
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiahui Ding
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chao Huang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yaming Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhong Fang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Min Wu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Cong Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jieliang Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Research Unit of Cure of Chronic Hepatitis B Virus Infection, Chinese Academy of Medical Sciences, Shanghai, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Research Unit of Cure of Chronic Hepatitis B Virus Infection, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
9
|
Rahman N, Sun J, Li Z, Pattnaik A, Mohallem R, Wang M, Kazemian M, Aryal UK, Andrisani O. The cytoplasmic LSm1-7 and nuclear LSm2-8 complexes exert opposite effects on Hepatitis B virus biosynthesis and interferon responses. Front Immunol 2022; 13:970130. [PMID: 36016928 PMCID: PMC9396650 DOI: 10.3389/fimmu.2022.970130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/15/2022] [Indexed: 12/12/2022] Open
Abstract
Despite many studies on host or viral gene expression, how the cellular proteome responds to internal or external cues during the infection process remains unclear. In this study, we used a Hepatitis B Virus (HBV) replication model and performed proteomic analyses to understand how HBV evades innate immunity as a function of cell cycle progression. Specifically, we performed proteomic analyses of HBV-replicating cells in G1/S and G2/M phases, as a function of IFN-α treatment. We identified that the conserved LSm (Like-Sm1-8) proteins were differentially regulated in HBV replicating cells treated with IFN-α. Specifically, in G2/M phase, IFN-α increased protein level of LSm1, the unique subunit of cytoplasmic LSm1-7 complex involved in mRNA decay. By contrast, IFN-α decreased LSm8, the unique subunit of nuclear LSm2-8 complex, a chaperone of U6 spliceosomal RNA, suggesting the cytoplasmic LSm1-7 complex is antiviral, whereas the nuclear LSm2-8 complex is pro-viral. In HBV replication and infection models, siRNA-mediated knockdown of LSm1 increased all viral RNAs. Conversely, LSm8 knockdown reduced viral RNA levels, dependent on N6-adenosine methylation (m6A) of the epsilon stem-loop at the 5' end of pre-Core/pregenomic (preC/pg) RNA. Methylated RNA immunoprecipitation (MeRIP) assays demonstrated reduced viral RNA methylation by LSm8 knockdown, dependent on the 5' m6A modification, suggesting the LSm2-8 complex has a role in mediating this modification. Interestingly, splicing inhibitor Cp028 acting upstream of the LSm2-8 complex suppressed viral RNA levels without reducing the 5' m6A modification. This observation suggests Cp028 has novel antiviral effects, likely potentiating IFN-α-mediated suppression of HBV biosynthesis.
Collapse
Affiliation(s)
- Naimur Rahman
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, United States.,Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Jiazeng Sun
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, United States.,Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Zhili Li
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, United States.,Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Aryamav Pattnaik
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, United States.,Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Rodrigo Mohallem
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN, United States.,Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| | - Mengbo Wang
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, United States.,Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Majid Kazemian
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, United States.,Department of Biochemistry, Purdue University, West Lafayette, IN, United States.,Department of Computer Science, Purdue University, West Lafayette, IN, United States
| | - Uma K Aryal
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN, United States.,Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| | - Ourania Andrisani
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, United States.,Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
10
|
Ligat G, Verrier ER, Nassal M, Baumert TF. Hepatitis B virus-host interactions and novel targets for viral cure. Curr Opin Virol 2021; 49:41-51. [PMID: 34029994 PMCID: PMC7613419 DOI: 10.1016/j.coviro.2021.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023]
Abstract
Chronic infection with HBV is a major cause of advanced liver disease and hepatocellular carcinoma. Nucleos(t)ide analogues effectively control HBV replication but viral cure is rare. Hence treatment has often to be administered for an indefinite duration, increasing the risk for selection of drug resistant virus variants. PEG-interferon-α-based therapies can sometimes cure infection but suffer from a low response rate and severe side-effects. CHB is characterized by the persistence of a nuclear covalently closed circular DNA (cccDNA), which is not targeted by approved drugs. Targeting host factors which contribute to the viral life cycle provides new opportunities for the development of innovative therapeutic strategies aiming at HBV cure. An improved understanding of the host immune system has resulted in new potentially curative candidate approaches. Here, we review the recent advances in understanding HBV-host interactions and highlight how this knowledge contributes to exploiting host-targeting strategies for a viral cure.
Collapse
Affiliation(s)
- Gaëtan Ligat
- Université de Strasbourg, F-67000 Strasbourg, France; Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, F-67000 Strasbourg, France.
| | - Eloi R Verrier
- Université de Strasbourg, F-67000 Strasbourg, France; Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, F-67000 Strasbourg, France.
| | - Michael Nassal
- University Hospital Freiburg, Dept. of Internal Medicine 2/Molecular Biology, D79106 Freiburg, Germany.
| | - Thomas F Baumert
- Université de Strasbourg, F-67000 Strasbourg, France; Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, F-67000 Strasbourg, France; Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, 67000 Strasbourg, France.
| |
Collapse
|
11
|
Li X, Xu Z, Mitra B, Wang M, Guo H, Feng Z. Elevated NTCP expression by an iPSC-derived human hepatocyte maintenance medium enhances HBV infection in NTCP-reconstituted HepG2 cells. Cell Biosci 2021; 11:123. [PMID: 34225786 PMCID: PMC8256212 DOI: 10.1186/s13578-021-00641-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/28/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The sodium taurocholate cotransporting polypeptide (NTCP) is a functional receptor for hepatitis B virus (HBV). NTCP-reconstituted human hepatoma cells support HBV infection, but the infection is suboptimal and no apparent HBV spread has been observed in this system. RESULTS We found that NTCP-reconstituted HepG2 cells were highly susceptible to HBV infection after cells were cultured in a commercial human inducible pluripotent stem cell (iPSC)-derived hepatocyte maintenance medium (HMM). The enhanced HBV infection coincided with increased NTCP expression, and was observed in six different clones of HepG2-NTCP cells. Promoter assays indicated that HMM activated the cytomegalovirus immediate-early (IE) promoter that drives the NTCP expression in the HepG2-NTCP cells. RNA-Seq analysis revealed that HMM upregulated multiple metabolic pathways. Despite highly upregulated NTCP expression by HMM, no obvious HBV spread was observed even in the presence of PEG 8000. CONCLUSIONS Our data suggest that this particular medium could be used to enhance HBV infection in NTCP-reconstituted hepatocytes in vitro.
Collapse
Affiliation(s)
- Xinlei Li
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Zhaohui Xu
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Bidisha Mitra
- Department of Microbiology and Molecular Genetics and UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Minghang Wang
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Haitao Guo
- Department of Microbiology and Molecular Genetics and UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zongdi Feng
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA.
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
12
|
Downregulation of HBx Restrains Proliferation, Migration, and Invasion of HepG2 Cells. ACTA ACUST UNITED AC 2021; 2021:6615979. [PMID: 34094815 PMCID: PMC8140855 DOI: 10.1155/2021/6615979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/20/2021] [Accepted: 05/03/2021] [Indexed: 12/30/2022]
Abstract
Liver cancer is a major contributor to cancer-related death with poor survival for sufferers. Meanwhile, Hepatic B virus X protein (HBx) and XB130 are likely to participate in the pathogenesis of liver cancer. However, the detailed mechanism of HBx/XB130 in liver cancer remains to be further investigated. Our study explored the effects of HBx/XB130 on liver cancer progression. HBx and XB130 expression was detected by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blot. Overexpression of HBx and XB130 was found in liver cancer tissues and cells. Mechanistic study revealed that HBx could bind to and positively regulate XB130 in HepG2 cells. Subsequently, HBx expression was knocked down, while XB130 was overexpressed in HepG2 cells in order to observe the specific role of HBx/XB130 in liver cancer in vitro. Results of CCK-8, Transwell, wound healing, and colony formation assays suggested that HBx could mediate biological function of HepG2 cells by activating the XB130-mediated PI3K/AKT pathway. In summary, our data illustrate that inhibition of HBx effectively suppressed proliferation and metastasis and induced apoptosis of liver cancer cells, which might be partially reversed by XB130. HBx and XB130 may be potential targets for liver cancer pathogenesis.
Collapse
|
13
|
Chen DV, Suzuki T, Itoh Y, Maeda Y, Hirano J, Haga S, Zhang H, Ito D, Matsuura Y, Okamoto T. Deneddylation by SENP8 restricts hepatitis B virus propagation. Microbiol Immunol 2021; 65:125-135. [PMID: 33433029 DOI: 10.1111/1348-0421.12874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/15/2022]
Abstract
Proteins newly synthesized from messenger RNA undergo Posttranslational modifications (PTMs) such as phosphorylation, glycosylation, methylation, and ubiquitination. These PTMs have important roles in protein stability, localization, and conformation and have been reported to be involved in hepatitis B virus (HBV) propagation. Although ubiquitination plays an essential role in HBV life cycles, the involvement of ubiquitin-like proteins (UBLs) in HBV life cycles has been understudied. Through comprehensive gain- and loss-of-function screening of UBLs, we observed that neddylation, a PTM in which neural precursor cell, expressed developmentally downregulated 8 (NEDD8) is conjugated to substrate proteins, was required for efficient HBV propagation. We also found that overexpression of sentrin-specific protease 8 (SENP8), which cleaves conjugated NEDD8, suppressed HBV propagation. Further, the catalytic activity of SENP8 was required for the suppression of HBV propagation. These results indicated that the reduction of neddylation negatively regulated HBV propagation. In addition, we demonstrated that suppression of HBV propagation via SENP8 overexpression was independent of hepatitis B protein X (HBx) and HBV promoter activity. Therefore, our data suggested that neddylation plays an important role in the late stages of HBV life cycles.
Collapse
Affiliation(s)
- David Virya Chen
- Institute for Advanced Co-Creation Studies, Research, Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Tatsuya Suzuki
- Institute for Advanced Co-Creation Studies, Research, Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yumi Itoh
- Institute for Advanced Co-Creation Studies, Research, Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yusuke Maeda
- Department of Molecular Virology, Research, Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Junki Hirano
- Institute for Advanced Co-Creation Studies, Research, Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Saori Haga
- Institute for Advanced Co-Creation Studies, Research, Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - He Zhang
- Institute for Advanced Co-Creation Studies, Research, Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Daiki Ito
- Institute for Advanced Co-Creation Studies, Research, Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research, Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Toru Okamoto
- Institute for Advanced Co-Creation Studies, Research, Institute for Microbial Diseases, Osaka University, Suita, Japan
| |
Collapse
|
14
|
Guan G, Zheng L, Xi J, Yang X, Chen X, Lu F. Cell Cycle Arrest Protein CDKN2C Is Not an HBV Host Factor. Virol Sin 2021; 36:810-813. [PMID: 33400093 DOI: 10.1007/s12250-020-00337-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022] Open
Affiliation(s)
- Guiwen Guan
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, 100044, China.,Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Liwei Zheng
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jingyuan Xi
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xingwen Yang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xiangmei Chen
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Fengmin Lu
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, 100044, China. .,Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
15
|
Lucifora J, Michelet M, Salvetti A, Durantel D. Fast Differentiation of HepaRG Cells Allowing Hepatitis B and Delta Virus Infections. Cells 2020; 9:cells9102288. [PMID: 33066405 PMCID: PMC7602217 DOI: 10.3390/cells9102288] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 12/21/2022] Open
Abstract
HepaRG cells are liver bipotent progenitors acquiring hepatocytes features when differentiated in the presence of dimethylsulfoxide (DMSO). Differentiated HepaRG (dHepaRG) are considered the best surrogate model to primary human hepatocytes (PHH) and are susceptible to several hepatotropic viruses, including Hepatitis B Virus (HBV) and Hepatitis Delta Virus (HDV) infection. Despite these advantages, HepaRG cells are not widely used for the study of these two viruses because of their long differentiation process and their rather low and variable infection rates. Here, we tested the use of a cocktail of five chemicals (5C) combined or not with DMSO to accelerate the cells’ differentiation process. We found that NTCP-mediated HDV entry and replication are similar in HepaRG cells cultivated for only 1 week with 5C and DMSO or differentiated with the regular 4-week protocol. However, even though the NTCP-mediated HBV entry process seemed similar, cccDNA and subsequent HBV replication markers were lower in HepaRG cells cultivated for 1 week with 5C and DMSO compared to the regular differentiation protocol. In conclusion, we set up a new procedure allowing fast differentiation and efficient HDV-infection of HepaRG cells and identified differential culture conditions that may allow to decipher the mechanism behind the establishment of the HBV minichromosome.
Collapse
|