1
|
Terauchi A, Johnson-Venkatesh EM, Umemori H. Establishing functionally segregated dopaminergic circuits. Trends Neurosci 2025; 48:156-170. [PMID: 39863490 PMCID: PMC11951916 DOI: 10.1016/j.tins.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/04/2024] [Accepted: 12/09/2024] [Indexed: 01/27/2025]
Abstract
Despite accounting for only ~0.001% of all neurons in the human brain, midbrain dopaminergic neurons control numerous behaviors and are associated with many neuropsychiatric disorders that affect our physical and mental health. Dopaminergic neurons form various anatomically and functionally segregated pathways. Having such defined dopaminergic pathways is key to controlling varied sets of brain functions; therefore, segregated dopaminergic pathways must be properly and uniquely formed during development. How are these segregated pathways established? The three key developmental stages that dopaminergic neurons go through are cell migration, axon guidance, and synapse formation. In each stage, dopaminergic neurons and their processes receive unique molecular cues to guide the formation of specific dopaminergic pathways. Here, we outline the molecular mechanisms underlying the establishment of segregated dopaminergic pathways during each developmental stage in the mouse brain, focusing on the formation of the three major dopaminergic pathways: the nigrostriatal, mesolimbic, and mesocortical pathways. We propose that multiple stage-specific molecular gradients cooperate to establish functionally segregated dopaminergic circuits.
Collapse
Affiliation(s)
- Akiko Terauchi
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Erin M Johnson-Venkatesh
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hisashi Umemori
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Abstract
The midbrain dopamine (mDA) system is composed of molecularly and functionally distinct neuron subtypes that mediate specific behaviours and are linked to various brain diseases. Considerable progress has been made in identifying mDA neuron subtypes, and recent work has begun to unveil how these neuronal subtypes develop and organize into functional brain structures. This progress is important for further understanding the disparate physiological functions of mDA neurons and their selective vulnerability in disease, and will ultimately accelerate therapy development. This Review discusses recent advances in our understanding of molecularly defined mDA neuron subtypes and their circuits, ranging from early developmental events, such as neuron migration and axon guidance, to their wiring and function, and future implications for therapeutic strategies.
Collapse
|
3
|
Boobalan E, Thompson AH, Alur RP, McGaughey DM, Dong L, Shih G, Vieta-Ferrer ER, Onojafe IF, Kalaskar VK, Arno G, Lotery AJ, Guan B, Bender C, Memon O, Brinster L, Soleilhavoup C, Panman L, Badea TC, Minella A, Lopez AJ, Thomasy SM, Moshiri A, Blain D, Hufnagel RB, Cogliati T, Bharti K, Brooks BP. Zfp503/Nlz2 Is Required for RPE Differentiation and Optic Fissure Closure. Invest Ophthalmol Vis Sci 2022; 63:5. [PMID: 36326727 PMCID: PMC9645360 DOI: 10.1167/iovs.63.12.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/02/2022] [Indexed: 11/06/2022] Open
Abstract
Purpose Uveal coloboma is a congenital eye malformation caused by failure of the optic fissure to close in early human development. Despite significant progress in identifying genes whose regulation is important for executing this closure, mutations are detected in a minority of cases using known gene panels, implying additional genetic complexity. We have previously shown knockdown of znf503 (the ortholog of mouse Zfp503) in zebrafish causes coloboma. Here we characterize Zfp503 knockout (KO) mice and evaluate transcriptomic profiling of mutant versus wild-type (WT) retinal pigment epithelium (RPE)/choroid. Methods Zfp503 KO mice were generated by gene targeting using homologous recombination. Embryos were characterized grossly and histologically. Patterns and level of developmentally relevant proteins/genes were examined with immunostaining/in situ hybridization. The transcriptomic profile of E11.5 KO RPE/choroid was compared to that of WT. Results Zfp503 is dynamically expressed in developing mouse eyes, and loss of its expression results in uveal coloboma. KO embryos exhibit altered mRNA levels and expression patterns of several key transcription factors involved in eye development, including Otx2, Mitf, Pax6, Pax2, Vax1, and Vax2, resulting in a failure to maintain the presumptive RPE, as evidenced by reduced melanin pigmentation and its differentiation into a neural retina-like lineage. Comparison of RNA sequencing data from WT and KO E11.5 embryos demonstrated reduced expression of melanin-related genes and significant overlap with genes known to be dynamically regulated at the optic fissure. Conclusions These results demonstrate a critical role of Zfp503 in maintaining RPE fate and optic fissure closure.
Collapse
Affiliation(s)
- Elangovan Boobalan
- Pediatric, Developmental & Genetic Ophthalmology Section, Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Amy H. Thompson
- Pediatric, Developmental & Genetic Ophthalmology Section, Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Ramakrishna P. Alur
- Pediatric, Developmental & Genetic Ophthalmology Section, Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - David M. McGaughey
- Pediatric, Developmental & Genetic Ophthalmology Section, Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Lijin Dong
- Mouse Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Grace Shih
- Pediatric, Developmental & Genetic Ophthalmology Section, Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Emile R. Vieta-Ferrer
- Pediatric, Developmental & Genetic Ophthalmology Section, Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Ighovie F. Onojafe
- Pediatric, Developmental & Genetic Ophthalmology Section, Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Vijay K. Kalaskar
- Pediatric, Developmental & Genetic Ophthalmology Section, Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Gavin Arno
- University College London Institute of Ophthalmology, London, United Kingdom
- Moorfields Eye Hospital, London, United Kingdom
| | - Andrew J. Lotery
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Bin Guan
- Ophthalmic Genetics Laboratory, Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Chelsea Bender
- Ophthalmic Genetics Laboratory, Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Omar Memon
- Ocular and Stem Cell Translational Research Section, Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Lauren Brinster
- Division of Veterinary Resources, Office of Research Services, National Institutes of Health, Bethesda, Maryland, United States
| | | | - Lia Panman
- MRC Toxicology Unit, University of Cambridge, Leicester, United Kingdom
| | - Tudor C. Badea
- Retinal Circuit Development and Genetics Unit, Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
- Research and Development Institute, Transilvania University of Brașov, Brașov, Romania
- National Center for Brain Research, ICIA, Romanian Academy, Bucharest, România
| | - Andrea Minella
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California–Davis, Davis, California, United States
| | - Antonio Jacobo Lopez
- Department of Ophthalmology and Vision Science, School of Medicine, University of California–Davis, Davis, California, United States
| | - Sara M. Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California–Davis, Davis, California, United States
- Department of Ophthalmology and Vision Science, School of Medicine, University of California–Davis, Davis, California, United States
| | - Ala Moshiri
- Department of Ophthalmology and Vision Science, School of Medicine, University of California–Davis, Davis, California, United States
| | - Delphine Blain
- Pediatric, Developmental & Genetic Ophthalmology Section, Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Robert B. Hufnagel
- Ophthalmic Genetics Laboratory, Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Tiziana Cogliati
- Pediatric, Developmental & Genetic Ophthalmology Section, Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Kapil Bharti
- Ocular and Stem Cell Translational Research Section, Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Brian P. Brooks
- Pediatric, Developmental & Genetic Ophthalmology Section, Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
4
|
Shang Z, Yang L, Wang Z, Tian Y, Gao Y, Su Z, Guo R, Li W, Liu G, Li X, Yang Z, Li Z, Zhang Z. The transcription factor Zfp503 promotes the D1 MSN identity and represses the D2 MSN identity. Front Cell Dev Biol 2022; 10:948331. [PMID: 36081908 PMCID: PMC9445169 DOI: 10.3389/fcell.2022.948331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
The striatum is primarily composed of two types of medium spiny neurons (MSNs) expressing either D1- or D2-type dopamine receptors. However, the fate determination of these two types of neurons is not fully understood. Here, we found that D1 MSNs undergo fate switching to D2 MSNs in the absence of Zfp503. Furthermore, scRNA-seq revealed that the transcription factor Zfp503 affects the differentiation of these progenitor cells in the lateral ganglionic eminence (LGE). More importantly, we found that the transcription factors Sp8/9, which are required for the differentiation of D2 MSNs, are repressed by Zfp503. Finally, sustained Zfp503 expression in LGE progenitor cells promoted the D1 MSN identity and repressed the D2 MSN identity. Overall, our findings indicated that Zfp503 promotes the D1 MSN identity and represses the D2 MSN identity by regulating Sp8/9 expression during striatal MSN development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Zhenmeiyu Li
- *Correspondence: Zhenmeiyu Li, ; Zhuangzhi Zhang,
| | | |
Collapse
|
5
|
Li Z, Shang Z, Sun M, Jiang X, Tian Y, Yang L, Wang Z, Su Z, Liu G, Li X, You Y, Yang Z, Xu Z, Zhang Z. Transcription factor Sp9 is a negative regulator of D1-type MSN development. Cell Death Dis 2022; 8:301. [PMID: 35773249 PMCID: PMC9247084 DOI: 10.1038/s41420-022-01088-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 11/09/2022]
Abstract
The striatum is the main input structure of the basal ganglia, receiving information from the cortex and the thalamus and consisting of D1- and D2- medium spiny neurons (MSNs). D1-MSNs and D2-MSNs are essential for motor control and cognitive behaviors and have implications in Parkinson’s Disease. In the present study, we demonstrated that Sp9-positive progenitors produced both D1-MSNs and D2-MSNs and that Sp9 expression was rapidly downregulated in postmitotic D1-MSNs. Furthermore, we found that sustained Sp9 expression in lateral ganglionic eminence (LGE) progenitor cells and their descendants led to promoting D2-MSN identity and repressing D1-MSN identity during striatal development. As a result, sustained Sp9 expression resulted in an imbalance between D1-MSNs and D2-MSNs in the mouse striatum. In addition, the fate-changed D2-like MSNs survived normally in adulthood. Taken together, our findings supported that Sp9 was sufficient to promote D2-MSN identity and repress D1-MSN identity, and Sp9 was a negative regulator of D1-MSN fate.
Collapse
Affiliation(s)
- Zhenmeiyu Li
- Institute of Pediatrics, Children's Hospital of Fudan University, state Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 200032, Shanghai, China
| | - Zicong Shang
- Institute of Pediatrics, Children's Hospital of Fudan University, state Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 200032, Shanghai, China
| | - Mengge Sun
- Institute of Pediatrics, Children's Hospital of Fudan University, state Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 200032, Shanghai, China
| | - Xin Jiang
- Institute of Pediatrics, Children's Hospital of Fudan University, state Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 200032, Shanghai, China
| | - Yu Tian
- Institute of Pediatrics, Children's Hospital of Fudan University, state Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 200032, Shanghai, China
| | - Lin Yang
- Institute of Pediatrics, Children's Hospital of Fudan University, state Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 200032, Shanghai, China
| | - Ziwu Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, state Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 200032, Shanghai, China
| | - Zihao Su
- Institute of Pediatrics, Children's Hospital of Fudan University, state Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 200032, Shanghai, China
| | - Guoping Liu
- Institute of Pediatrics, Children's Hospital of Fudan University, state Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 200032, Shanghai, China
| | - Xiaosu Li
- Institute of Pediatrics, Children's Hospital of Fudan University, state Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 200032, Shanghai, China
| | - Yan You
- Institute of Pediatrics, Children's Hospital of Fudan University, state Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 200032, Shanghai, China
| | - Zhengang Yang
- Institute of Pediatrics, Children's Hospital of Fudan University, state Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 200032, Shanghai, China
| | - Zhejun Xu
- Institute of Pediatrics, Children's Hospital of Fudan University, state Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 200032, Shanghai, China.
| | - Zhuangzhi Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University, state Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 200032, Shanghai, China.
| |
Collapse
|
6
|
Qi Z, Wang S, Li J, Wen Y, Cui R, Zhang K, Liu Y, Yang X, Zhang L, Xu B, Liu W, Xu Z, Deng Y. Protective role of mRNA demethylase FTO on axon guidance molecules of nigro-striatal projection system in manganese-induced parkinsonism. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128099. [PMID: 34954437 DOI: 10.1016/j.jhazmat.2021.128099] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/02/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
One of the major environmental factors that induce PD is Manganese (Mn). Cellular and molecular mechanism of parkinsonism caused by Mn has not been explored clearly. The results of in vivo and in vitro experiments showed that Mn exposure caused abnormal projection of dopaminergic neurons and decreased mRNA expression and protein levels of FTO. This is due to Mn-induced the upregulation of Foxo3a. Using the cell model of overexpression of FTO, we found that FTO could antagonize Mn-induced the down-regulation of axon guidance molecule ephrin-B2 through RNA-seq, MeRIP-qPCR, and RT-qPCR experiments. Through RIP-seq and actinomycin D experiments, it was found that FTO can up-regulate the mRNA m6A level of ephrin-B2, which can be recognized by YTHDF2 and degraded. Finally, it is proved that Mn induces dopaminergic neurons projection injury and motor dysfunction through Foxo3a/FTO/m6A/ephrin-B2/YTHDF2 signal pathway.
Collapse
Affiliation(s)
- Zhipeng Qi
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Shuang Wang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Jiashuo Li
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Yi Wen
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Rong Cui
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Ke Zhang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.
| | - Yanan Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China; Department of Preventive Health, Zhuhai People's Hospital, Zhuhai, Guangdong, China.
| | - Xinxin Yang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China; School of Public Health, Xuzhou Medical University, Xuzhou 221004, China.
| | - Lei Zhang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Zhaofa Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China.
| |
Collapse
|
7
|
Lee DR, Rhodes C, Mitra A, Zhang Y, Maric D, Dale RK, Petros TJ. Transcriptional heterogeneity of ventricular zone cells in the ganglionic eminences of the mouse forebrain. eLife 2022; 11:71864. [PMID: 35175194 PMCID: PMC8887903 DOI: 10.7554/elife.71864] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
The ventricular zone (VZ) of the nervous system contains radial glia cells that were originally considered relatively homogenous in their gene expression, but a detailed characterization of transcriptional diversity in these VZ cells has not been reported. Here, we performed single-cell RNA sequencing to characterize transcriptional heterogeneity of neural progenitors within the VZ and subventricular zone (SVZ) of the ganglionic eminences (GEs), the source of all forebrain GABAergic neurons. By using a transgenic mouse line to enrich for VZ cells, we characterize significant transcriptional heterogeneity, both between GEs and within spatial subdomains of specific GEs. Additionally, we observe differential gene expression between E12.5 and E14.5 VZ cells, which could provide insights into temporal changes in cell fate. Together, our results reveal a previously unknown spatial and temporal genetic diversity of VZ cells in the ventral forebrain that will aid our understanding of initial fate decisions in the forebrain.
Collapse
Affiliation(s)
- Dongjin R Lee
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
| | - Christopher Rhodes
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
| | - Apratim Mitra
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
| | - Yajun Zhang
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
| | - Dragan Maric
- Flow and Imaging Cytometry Core, National Institute of Neurological Disease and Stroke, Bethesda, United States
| | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
| | - Timothy J Petros
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
| |
Collapse
|
8
|
Su Z, Wang Z, Lindtner S, Yang L, Shang Z, Tian Y, Guo R, You Y, Zhou W, Rubenstein JL, Yang Z, Zhang Z. Dlx1/2-dependent expression of Meis2 promotes neuronal fate determination in the mammalian striatum. Development 2022; 149:dev200035. [PMID: 35156680 PMCID: PMC8918808 DOI: 10.1242/dev.200035] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/04/2022] [Indexed: 12/16/2022]
Abstract
The striatum is a central regulator of behavior and motor function through the actions of D1 and D2 medium-sized spiny neurons (MSNs), which arise from a common lateral ganglionic eminence (LGE) progenitor. The molecular mechanisms of cell fate specification of these two neuronal subtypes are incompletely understood. Here, we found that deletion of murine Meis2, which is highly expressed in the LGE and derivatives, led to a large reduction in striatal MSNs due to a block in their differentiation. Meis2 directly binds to the Zfp503 and Six3 promoters and is required for their expression and specification of D1 and D2 MSNs, respectively. Finally, Meis2 expression is regulated by Dlx1/2 at least partially through the enhancer hs599 in the LGE subventricular zone. Overall, our findings define a pathway in the LGE whereby Dlx1/2 drives expression of Meis2, which subsequently promotes the fate determination of striatal D1 and D2 MSNs via Zfp503 and Six3.
Collapse
Affiliation(s)
- Zihao Su
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Ziwu Wang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Susan Lindtner
- Department of Psychiatry, Nina Ireland Laboratory of Developmental Neurobiology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Lin Yang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Zicong Shang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Yu Tian
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Rongliang Guo
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Yan You
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Wenhao Zhou
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - John L. Rubenstein
- Department of Psychiatry, Nina Ireland Laboratory of Developmental Neurobiology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Zhengang Yang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Zhuangzhi Zhang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| |
Collapse
|