1
|
Yi G, Li Z, Sun Y, Ma X, Wang Z, Chen J, Cai D, Zhang Z, Chen Z, Wu F, Cao M, Fu M. Integration of multi-omics transcriptome-wide analysis for the identification of novel therapeutic drug targets in diabetic retinopathy. J Transl Med 2024; 22:1146. [PMID: 39719581 DOI: 10.1186/s12967-024-05856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/02/2024] [Indexed: 12/26/2024] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is the most important complication of Type 2 Diabetes (T2D) in eyes. Despite its prevalence, the early detection and management of DR continue to pose considerable challenges. Our research aims to elucidate potent drug targets that could facilitate the identification of DR and propel advancements in its therapeutic strategies. METHODS A broad multi-omics exploration of DR was presented to decipher the drug targets of DR and proliferative diabetic retinopathy (PDR). Transcriptome-Wide Association Studies (TWAS), fine-mapping and conditional analysis were applied to unearth potential tissue-specific gene associations with DR. Summary Data-based Mendelian Randomization (SMR) provided secondary analysis of high confidence genes. Cis-instrument of druggable genes were extracted from the eQTLGen Consortium and PsychENCODE, facilitating drug-target MR supported by colocalization analysis. Phenome-Wide Association Studies (PheWAS) was conducted on the high confidence genes. Metabolomic and immunomic MR-profiling further augmented our research as complement. RESULTS TWAS identified multiple robust genetic loci in both DR and PDR (WFS1, RPS26, and SRPK1) through genetic associations across different tissues. Meanwhile, we have delineated both the commonalities and discrepancies between DR and PDR at the transcriptomic level, represented by DCLRE1B as the hub gene that DR progressed into PDR. SMR revealed 92 key DR-related genes and 55 PDR-related genes. HLA-DQ family genes have a frequent occurrence, while RPS26, WFS1 and SRPK1 were validated as the genetic network's linchpins. Drug-target MR casted ERBB3 and SRPK1 as candidate effector genes for DR and PDR susceptibility. In addition, metabolomics and immunomics analyses also revealed multifaceted pathogenic factors for DR. CONCLUSIONS Our research offers targeted therapeutic insights for early-stage DR and facilitates multi-omic comparisons of it and PDR.
Collapse
Affiliation(s)
- Guoguo Yi
- Department of Ophthalmology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, China
- The Department of Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhengran Li
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, China
- The Second Clinical Medicine School, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuxin Sun
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, China
- The Second Clinical Medicine School, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinyu Ma
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, China
| | - Zijin Wang
- The Second Clinical Medicine School, Southern Medical University, Guangzhou, Guangdong, China
| | - Jinken Chen
- School of Architecture, South China University of Technology, Guangzhou, Guangdong, China
| | - Dong Cai
- School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Ziran Zhang
- The Second Clinical Medicine School, Southern Medical University, Guangzhou, Guangdong, China
| | - Zejun Chen
- The Second Clinical Medicine School, Southern Medical University, Guangzhou, Guangdong, China
| | - Fanye Wu
- The Second Clinical Medicine School, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingzhe Cao
- Department of Ophthalmology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong Province, China
| | - Min Fu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, China.
| |
Collapse
|
2
|
Uvarova AN, Tkachenko EA, Stasevich EM, Zheremyan EA, Korneev KV, Kuprash DV. Methods for Functional Characterization of Genetic Polymorphisms of Non-Coding Regulatory Regions of the Human Genome. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1002-1013. [PMID: 38981696 DOI: 10.1134/s0006297924060026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 07/11/2024]
Abstract
Currently, numerous associations between genetic polymorphisms and various diseases have been characterized through the Genome-Wide Association Studies. Majority of the clinically significant polymorphisms are localized in non-coding regions of the genome. While modern bioinformatic resources make it possible to predict molecular mechanisms that explain influence of the non-coding polymorphisms on gene expression, such hypotheses require experimental verification. This review discusses the methods for elucidating molecular mechanisms underlying dependence of the disease pathogenesis on specific genetic variants within the non-coding sequences. A particular focus is on the methods for identification of transcription factors with binding efficiency dependent on polymorphic variations. Despite remarkable progress in bioinformatic resources enabling prediction of the impact of polymorphisms on the disease pathogenesis, there is still the need for experimental approaches to investigate this issue.
Collapse
Affiliation(s)
- Aksinya N Uvarova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Elena A Tkachenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ekaterina M Stasevich
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141700, Russia
| | - Elina A Zheremyan
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Kirill V Korneev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Dmitry V Kuprash
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
3
|
Tai YY, Yu Q, Tang Y, Sun W, Kelly NJ, Okawa S, Zhao J, Schwantes-An TH, Lacoux C, Torrino S, Aaraj YA, Khoury WE, Negi V, Liu M, Corey CG, Belmonte F, Vargas SO, Schwartz B, Bhat B, Chau BN, Karnes JH, Satoh T, Barndt RJ, Wu H, Parikh VN, Wang J, Zhang Y, McNamara D, Li G, Speyer G, Wang B, Shiva S, Kaufman B, Kim S, Gomez D, Mari B, Cho MH, Boueiz A, Pauciulo MW, Southgate L, Trembath RC, Sitbon O, Humbert M, Graf S, Morrell NW, Rhodes CJ, Wilkins MR, Nouraie M, Nichols WC, Desai AA, Bertero T, Chan SY. Allele-specific control of rodent and human lncRNA KMT2E-AS1 promotes hypoxic endothelial pathology in pulmonary hypertension. Sci Transl Med 2024; 16:eadd2029. [PMID: 38198571 PMCID: PMC10947529 DOI: 10.1126/scitranslmed.add2029] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
Hypoxic reprogramming of vasculature relies on genetic, epigenetic, and metabolic circuitry, but the control points are unknown. In pulmonary arterial hypertension (PAH), a disease driven by hypoxia inducible factor (HIF)-dependent vascular dysfunction, HIF-2α promoted expression of neighboring genes, long noncoding RNA (lncRNA) histone lysine N-methyltransferase 2E-antisense 1 (KMT2E-AS1) and histone lysine N-methyltransferase 2E (KMT2E). KMT2E-AS1 stabilized KMT2E protein to increase epigenetic histone 3 lysine 4 trimethylation (H3K4me3), driving HIF-2α-dependent metabolic and pathogenic endothelial activity. This lncRNA axis also increased HIF-2α expression across epigenetic, transcriptional, and posttranscriptional contexts, thus promoting a positive feedback loop to further augment HIF-2α activity. We identified a genetic association between rs73184087, a single-nucleotide variant (SNV) within a KMT2E intron, and disease risk in PAH discovery and replication patient cohorts and in a global meta-analysis. This SNV displayed allele (G)-specific association with HIF-2α, engaged in long-range chromatin interactions, and induced the lncRNA-KMT2E tandem in hypoxic (G/G) cells. In vivo, KMT2E-AS1 deficiency protected against PAH in mice, as did pharmacologic inhibition of histone methylation in rats. Conversely, forced lncRNA expression promoted more severe PH. Thus, the KMT2E-AS1/KMT2E pair orchestrates across convergent multi-ome landscapes to mediate HIF-2α pathobiology and represents a key clinical target in pulmonary hypertension.
Collapse
Affiliation(s)
- Yi Yin Tai
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Qiujun Yu
- Cardiovascular Division, Department Of Internal Medicine, Washington University School of Medicine, St. louis, Mo 63110, USA
| | - Ying Tang
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Wei Sun
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Neil J. Kelly
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Va Medical Center, Pittsburgh, PA 15240, USA
| | - Satoshi Okawa
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA
| | - Jingsi Zhao
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Tae-Hwi Schwantes-An
- Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, In 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, In 46202, USA
| | - Caroline Lacoux
- Université côte d’Azur, CNRS, IPMC, IHU RespiERA, Sophia-Antipolis, 06903, France
| | - Stephanie Torrino
- Université côte d’Azur, CNRS, IPMC, IHU RespiERA, Sophia-Antipolis, 06903, France
| | - Yassmin Al Aaraj
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Wadih El Khoury
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Vinny Negi
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Mingjun Liu
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Catherine G. Corey
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Pediatrics, University of Pittsburgh Medical center children’s hospital, Pittsburgh, PA 15224, USA
| | - Frances Belmonte
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Sara O. Vargas
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
| | | | - Bal Bhat
- Translate Bio, Lexington, MA 02421, USA
| | | | - Jason H. Karnes
- Division of Pharmacogenomics, College of Pharmacy, University of Arizona College of Medicine, Tucson, AZ 85721, USA
| | - Taijyu Satoh
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980–8575, Japan
| | - Robert J. Barndt
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Haodi Wu
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Victoria N. Parikh
- Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jianrong Wang
- Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Yingze Zhang
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Dennis McNamara
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Gang Li
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Aging Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Gil Speyer
- Research Computing, Arizona State University, Tempe, AZ 85281, USA
| | - Bing Wang
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Sruti Shiva
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Brett Kaufman
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Seungchan Kim
- Center for Computational Systems Biology, Department of Electrical and Computer Engineering, Roy G. Perry college of Engineering, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Delphine Gomez
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Bernard Mari
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, In 46202, USA
| | - Michael H. Cho
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Adel Boueiz
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Michael W. Pauciulo
- Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Laura Southgate
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London, WC2R 2lS, UK
- Molecular and Clinical Sciences Research Institute, St George’s University of London, London, SW17 0RE, UK
| | - Richard C. Trembath
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London, WC2R 2lS, UK
| | - Olivier Sitbon
- Université Paris–Saclay, INSERM, Assistance Publique Hôpitaux de Paris, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin Bicêtre, 94270, France
| | - Marc Humbert
- Université Paris–Saclay, INSERM, Assistance Publique Hôpitaux de Paris, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin Bicêtre, 94270, France
| | - Stefan Graf
- Department of Medicine, University of Cambridge, Cambridge, CB2 1TN, UK
- NIHR Bioresource for Translational Research, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
- Department of Haematology, University of Cambridge, NHS Blood and Transplant, Long Road, Cambridge, CB2 2PT, UK
| | - Nicholas W. Morrell
- Department of Medicine, University of Cambridge, Cambridge, CB2 1TN, UK
- Centessa Pharmaceuticals, Altrincham, Cheshire, WA14 2DT, UK
| | | | - Martin R. Wilkins
- National Heart and Lung Institute, Imperial College London, London, SW3 6lY, UK
| | - Mehdi Nouraie
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - William C. Nichols
- Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Ankit A. Desai
- Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, In 46202, USA
| | - Thomas Bertero
- Université côte d’Azur, CNRS, IPMC, IHU RespiERA, Sophia-Antipolis, 06903, France
| | - Stephen Y. Chan
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
4
|
Li J, Xie S, Zhang B, He W, Zhang Y, Wang J, Yang L. UTP23 Is a Promising Prognostic Biomarker and Is Associated with Immune Infiltration in Breast Cancer. Crit Rev Eukaryot Gene Expr 2024; 34:1-15. [PMID: 38305284 DOI: 10.1615/critreveukaryotgeneexpr.2023048311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Breast cancer is one of the malignant tumors with a high incidence and mortality rate among women worldwide, and its prevalence is increasing year by year, posing a serious health risk to women. UTP23 (UTP23 Small Subunit Processome Component) is a nucleolar protein that is essential for ribosome production. As we all know, disruption of ribosome structure and function results in improper protein function, affecting the body's normal physiological processes and promoting cancer growth. However, little research has shown a connection between UTP23 and cancer. We analyzed the mRNA expression of UTP23 in normal tissue and breast cancer using The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database, and the protein expression of UTP23 using The Human Protein Atlas (HPA) database. Next, we examined the relationship between UTP23 high expression and Overall Survival (OS) using Kaplan-Meier Plotters and enriched 980 differentially expressed genes in UTP23 high and low expression samples using GO/KEGG and GSEA to identify potential biological functions of UTP23 and signaling pathways that it might influence. Finally, we also investigated the relationship between UTP23 and immune infiltration and examined the effect of UTP23 on the proliferation of human breast cancer cell lines by knocking down UTP23. We found that UTP23 levels in breast cancer patient samples were noticeably greater than those in healthy individuals and that high UTP23 levels were strongly linked with poor prognoses (P = 0.008). Functional enrichment analysis revealed that UTP23 expression was connected to the humoral immune response. Besides, UTP23 expression was found to be positively correlated with immune cell infiltration. Furthermore, UTP23 knockdown has been shown to inhibit the proliferation of human breast cancer cells MDA-MB-231 and HCC-1806. Taken together, our study demonstrated that UTP23 is a promising target in detecting and treating breast cancer and is intimately linked to immune infiltration.
Collapse
Affiliation(s)
- Jindong Li
- Department of Pharmacy, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu Province, China
| | - Siman Xie
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Benteng Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Weiping He
- Department of Pharmacy, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu Province, China
| | - Yan Zhang
- Department of Pharmacy, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu Province, China
| | - Jun Wang
- Taizhou People's Hospital Affiliated to Nanjing Medical University
| | - Li Yang
- Department of Oncology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu Province, China
| |
Collapse
|
5
|
Antontseva EV, Degtyareva AO, Korbolina EE, Damarov IS, Merkulova TI. Human-genome single nucleotide polymorphisms affecting transcription factor binding and their role in pathogenesis. Vavilovskii Zhurnal Genet Selektsii 2023; 27:662-675. [PMID: 37965371 PMCID: PMC10641029 DOI: 10.18699/vjgb-23-77] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 11/16/2023] Open
Abstract
Single nucleotide polymorphisms (SNPs) are the most common type of variation in the human genome. The vast majority of SNPs identified in the human genome do not have any effect on the phenotype; however, some can lead to changes in the function of a gene or the level of its expression. Most SNPs associated with certain traits or pathologies are mapped to regulatory regions of the genome and affect gene expression by changing transcription factor binding sites. In recent decades, substantial effort has been invested in searching for such regulatory SNPs (rSNPs) and understanding the mechanisms by which they lead to phenotypic differences, primarily to individual differences in susceptibility to diseases and in sensitivity to drugs. The development of the NGS (next-generation sequencing) technology has contributed not only to the identification of a huge number of SNPs and to the search for their association (genome-wide association studies, GWASs) with certain diseases or phenotypic manifestations, but also to the development of more productive approaches to their functional annotation. It should be noted that the presence of an association does not allow one to identify a functional, truly disease-associated DNA sequence variant among multiple marker SNPs that are detected due to linkage disequilibrium. Moreover, determination of associations of genetic variants with a disease does not provide information about the functionality of these variants, which is necessary to elucidate the molecular mechanisms of the development of pathology and to design effective methods for its treatment and prevention. In this regard, the functional analysis of SNPs annotated in the GWAS catalog, both at the genome-wide level and at the level of individual SNPs, became especially relevant in recent years. A genome-wide search for potential rSNPs is possible without any prior knowledge of their association with a trait. Thus, mapping expression quantitative trait loci (eQTLs) makes it possible to identify an SNP for which - among transcriptomes of homozygotes and heterozygotes for its various alleles - there are differences in the expression level of certain genes, which can be located at various distances from the SNP. To predict rSNPs, approaches based on searches for allele-specific events in RNA-seq, ChIP-seq, DNase-seq, ATAC-seq, MPRA, and other data are also used. Nonetheless, for a more complete functional annotation of such rSNPs, it is necessary to establish their association with a trait, in particular, with a predisposition to a certain pathology or sensitivity to drugs. Thus, approaches to finding SNPs important for the development of a trait can be categorized into two groups: (1) starting from data on an association of SNPs with a certain trait, (2) starting from the determination of allele-specific changes at the molecular level (in a transcriptome or regulome). Only comprehensive use of strategically different approaches can considerably enrich our knowledge about the role of genetic determinants in the molecular mechanisms of trait formation, including predisposition to multifactorial diseases.
Collapse
Affiliation(s)
- E V Antontseva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A O Degtyareva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E E Korbolina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - I S Damarov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - T I Merkulova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
6
|
Fabo T, Khavari P. Functional characterization of human genomic variation linked to polygenic diseases. Trends Genet 2023; 39:462-490. [PMID: 36997428 PMCID: PMC11025698 DOI: 10.1016/j.tig.2023.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/30/2023]
Abstract
The burden of human disease lies predominantly in polygenic diseases. Since the early 2000s, genome-wide association studies (GWAS) have identified genetic variants and loci associated with complex traits. These have ranged from variants in coding sequences to mutations in regulatory regions, such as promoters and enhancers, as well as mutations affecting mediators of mRNA stability and other downstream regulators, such as 5' and 3'-untranslated regions (UTRs), long noncoding RNA (lncRNA), and miRNA. Recent research advances in genetics have utilized a combination of computational techniques, high-throughput in vitro and in vivo screening modalities, and precise genome editing to impute the function of diverse classes of genetic variants identified through GWAS. In this review, we highlight the vastness of genomic variants associated with polygenic disease risk and address recent advances in how genetic tools can be used to functionally characterize them.
Collapse
Affiliation(s)
- Tania Fabo
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA; Stanford Cancer Institute, Stanford University, Stanford, CA, USA; Graduate Program in Genetics, Stanford University, Stanford, CA, USA; Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Paul Khavari
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA; Stanford Cancer Institute, Stanford University, Stanford, CA, USA; Graduate Program in Genetics, Stanford University, Stanford, CA, USA; Stanford University School of Medicine, Stanford University, Stanford, CA, USA; Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA.
| |
Collapse
|
7
|
Hafeez N, Kirillova A, Yue Y, Rao RJ, Kelly NJ, El Khoury W, Al Aaraj Y, Tai Y, Handen A, Tang Y, Jiang D, Wu T, Zhang Y, McNamara D, Kudryashova TV, Goncharova EA, Goncharov D, Bertero T, Nouraie M, Li G, Sun W, Chan SY. Single Nucleotide Polymorphism rs9277336 Controls the Nuclear Alpha Actinin 4-Human Leukocyte Antigen-DPA1 Axis and Pulmonary Endothelial Pathophenotypes in Pulmonary Arterial Hypertension. J Am Heart Assoc 2023; 12:e027894. [PMID: 36974749 PMCID: PMC10122886 DOI: 10.1161/jaha.122.027894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/06/2023] [Indexed: 03/29/2023]
Abstract
Background Pulmonary arterial hypertension (PAH) is a complex, fatal disease where disease severity has been associated with the single nucleotide polymorphism (SNP) rs2856830, located near the human leukocyte antigen DPA1 (HLA-DPA1) gene. We aimed to define the genetic architecture of functional variants associated with PAH disease severity by identifying allele-specific binding transcription factors and downstream targets that control endothelial pathophenotypes and PAH. Methods and Results Electrophoretic mobility shift assays of oligonucleotides containing SNP rs2856830 and 8 SNPs in linkage disequilibrium revealed functional SNPs via allele-imbalanced binding to human pulmonary arterial endothelial cell nuclear proteins. DNA pulldown proteomics identified SNP-binding proteins. SNP genotyping and clinical correlation analysis were performed in 84 patients with PAH at University of Pittsburgh Medical Center and in 679 patients with PAH in the All of Us database. SNP rs9277336 was identified as a functional SNP in linkage disequilibrium (r2>0.8) defined by rs2856830, and the minor allele was associated with decreased hospitalizations and improved cardiac output in patients with PAH, an index of disease severity. SNP pulldown proteomics showed allele-specific binding of nuclear ACTN4 (alpha actinin 4) protein to rs9277336 minor allele. Both ACTN4 and HLA-DPA1 were downregulated in pulmonary endothelium in human patients and rodent models of PAH. Via transcriptomic and phenotypic analyses, knockdown of HLA-DPA1 phenocopied knockdown of ACTN4, both similarly controlling cell structure pathways, immune pathways, and endothelial dysfunction. Conclusions We defined the pathogenic activity of functional SNP rs9277336, entailing the allele-specific binding of ACTN4 and controlling expression of the neighboring HLA-DPA1 gene. Through inflammatory or genetic means, downregulation of this ACTN4-HLA-DPA1 regulatory axis promotes endothelial pathophenotypes, providing a mechanistic explanation for the association between this SNP and PAH outcomes.
Collapse
Affiliation(s)
- Neha Hafeez
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of MedicineUniversity of Pittsburgh School of Medicine and University of Pittsburgh Medical CenterPittsburghPA
| | - Anna Kirillova
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of MedicineUniversity of Pittsburgh School of Medicine and University of Pittsburgh Medical CenterPittsburghPA
| | - Yunshan Yue
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of MedicineUniversity of Pittsburgh School of Medicine and University of Pittsburgh Medical CenterPittsburghPA
- School of MedicineTsinghua UniversityBeijingChina
| | - Rashmi J. Rao
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of MedicineUniversity of Pittsburgh School of Medicine and University of Pittsburgh Medical CenterPittsburghPA
| | - Neil J. Kelly
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of MedicineUniversity of Pittsburgh School of Medicine and University of Pittsburgh Medical CenterPittsburghPA
| | - Wadih El Khoury
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of MedicineUniversity of Pittsburgh School of Medicine and University of Pittsburgh Medical CenterPittsburghPA
| | - Yassmin Al Aaraj
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of MedicineUniversity of Pittsburgh School of Medicine and University of Pittsburgh Medical CenterPittsburghPA
| | - Yi‐Yin Tai
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of MedicineUniversity of Pittsburgh School of Medicine and University of Pittsburgh Medical CenterPittsburghPA
| | - Adam Handen
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of MedicineUniversity of Pittsburgh School of Medicine and University of Pittsburgh Medical CenterPittsburghPA
| | - Ying Tang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of MedicineUniversity of Pittsburgh School of Medicine and University of Pittsburgh Medical CenterPittsburghPA
| | - Danli Jiang
- The Aging InstituteUniversity of Pittsburgh School of MedicinePittsburghPA
| | - Ting Wu
- The Aging InstituteUniversity of Pittsburgh School of MedicinePittsburghPA
| | - Yingze Zhang
- Division of Pulmonary Allergy and Critical Care Medicine, Department of MedicineUniversity of Pittsburgh Medical CenterPittsburghPA
| | - Dennis McNamara
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of MedicineUniversity of Pittsburgh School of Medicine and University of Pittsburgh Medical CenterPittsburghPA
| | - Tatiana V. Kudryashova
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal MedicineUniversity of California DavisDavisCA
| | - Elena A. Goncharova
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal MedicineUniversity of California DavisDavisCA
| | - Dmitry Goncharov
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal MedicineUniversity of California DavisDavisCA
| | - Thomas Bertero
- Université Côte d’Azur, CNRS, UMR7275, IPMCValbonneFrance
| | - Mehdi Nouraie
- Division of Pulmonary Allergy and Critical Care Medicine, Department of MedicineUniversity of Pittsburgh Medical CenterPittsburghPA
| | - Gang Li
- The Aging InstituteUniversity of Pittsburgh School of MedicinePittsburghPA
| | - Wei Sun
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of MedicineUniversity of Pittsburgh School of Medicine and University of Pittsburgh Medical CenterPittsburghPA
| | - Stephen Y. Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of MedicineUniversity of Pittsburgh School of Medicine and University of Pittsburgh Medical CenterPittsburghPA
| |
Collapse
|
8
|
Cooper YA, Guo Q, Geschwind DH. Multiplexed functional genomic assays to decipher the noncoding genome. Hum Mol Genet 2022; 31:R84-R96. [PMID: 36057282 PMCID: PMC9585676 DOI: 10.1093/hmg/ddac194] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/14/2022] Open
Abstract
Linkage disequilibrium and the incomplete regulatory annotation of the noncoding genome complicates the identification of functional noncoding genetic variants and their causal association with disease. Current computational methods for variant prioritization have limited predictive value, necessitating the application of highly parallelized experimental assays to efficiently identify functional noncoding variation. Here, we summarize two distinct approaches, massively parallel reporter assays and CRISPR-based pooled screens and describe their flexible implementation to characterize human noncoding genetic variation at unprecedented scale. Each approach provides unique advantages and limitations, highlighting the importance of multimodal methodological integration. These multiplexed assays of variant effects are undoubtedly poised to play a key role in the experimental characterization of noncoding genetic risk, informing our understanding of the underlying mechanisms of disease-associated loci and the development of more robust predictive classification algorithms.
Collapse
Affiliation(s)
- Yonatan A Cooper
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Medical Scientist Training Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Qiuyu Guo
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Daniel H Geschwind
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Program in Neurogenetics, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
- Center for Autism Research and Treatment, Semel Institute, University of California Los Angeles, Los Angeles, CA, USA
- Institute of Precision Health, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
9
|
Zhong W, Kollipara A, Liu Y, Wang Y, O’Connell CM, Poston TB, Yount K, Wiesenfeld HC, Hillier SL, Li Y, Darville T, Zheng X. Genetic susceptibility loci for Chlamydia trachomatis endometrial infection influence expression of genes involved in T cell function, tryptophan metabolism and epithelial integrity. Front Immunol 2022; 13:1001255. [PMID: 36248887 PMCID: PMC9562917 DOI: 10.3389/fimmu.2022.1001255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives Identify genetic loci of enhanced susceptibility to Chlamydial trachomatis (Ct) upper genital tract infection in women. Methods We performed an integrated analysis of DNA genotypes and blood-derived mRNA profiles from 200 Ct-exposed women to identify expression quantitative trait loci (eQTL) and determine their association with endometrial chlamydial infection using a mediation test. We further evaluated the effect of a lead eQTL on the expression of CD151 by immune cells from women with genotypes associated with low and high whole blood expression of CD151, respectively. Results We identified cis-eQTLs modulating mRNA expression of 81 genes (eGenes) associated with altered risk of ascending infection. In women with endometrial infection, eGenes involved in proinflammatory signaling were upregulated. Downregulated eGenes included genes involved in T cell functions pivotal for chlamydial control. eGenes encoding molecules linked to metabolism of tryptophan, an essential chlamydial nutrient, and formation of epithelial tight junctions were also downregulated in women with endometrial infection. A lead eSNP rs10902226 was identified regulating CD151, a tetrospanin molecule important for immune cell adhesion and migration and T cell proliferation. Further in vitro experiments showed that women with a CC genotype at rs10902226 had reduced rates of endometrial infection with increased CD151 expression in whole blood and T cells when compared to women with a GG genotype. Conclusions We discovered genetic variants associated with altered risk for Ct ascension. A lead eSNP for CD151 is a candidate genetic marker for enhanced CD4 T cell function and reduced susceptibility.
Collapse
Affiliation(s)
- Wujuan Zhong
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Avinash Kollipara
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Yutong Liu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Yuhan Wang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Catherine M. O’Connell
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Taylor B. Poston
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kacy Yount
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Harold C. Wiesenfeld
- The University of Pittsburgh School of Medicine and the Magee-Womens Research Institute, Pittsburgh, PA, United States
| | - Sharon L. Hillier
- The University of Pittsburgh School of Medicine and the Magee-Womens Research Institute, Pittsburgh, PA, United States
| | - Yun Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Toni Darville
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Xiaojing Zheng
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
10
|
Chan ASL, Narita M. A role for CUX1 in the regulation of p16 and senescence. NATURE AGING 2022; 2:100-101. [PMID: 37117762 DOI: 10.1038/s43587-022-00173-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
- Adelyne Sue Li Chan
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK.
| |
Collapse
|
11
|
Jiang D, Sun W, Wu T, Zou M, Vasamsetti SB, Zhang X, Zhao Y, Phillippi JA, Sawalha AH, Tavakoli S, Dutta P, Florentin J, Chan SY, Tollison TS, Di Wu, Cui J, Huntress I, Peng X, Finkel T, Li G. Post-GWAS functional analysis identifies CUX1 as a regulator of p16 INK4a and cellular senescence. NATURE AGING 2022; 2:140-154. [PMID: 37117763 PMCID: PMC10154215 DOI: 10.1038/s43587-022-00177-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 12/21/2021] [Indexed: 04/30/2023]
Abstract
Accumulation of senescent cells with age is an important driver of aging and age-related diseases. However, the mechanisms and signaling pathways that regulate senescence remain elusive. In this report, we performed post-genome-wide association studies (GWAS) functional studies on the CDKN2A/B locus, a locus known to be associated with multiple age-related diseases and overall human lifespan. We demonstrate that transcription factor CUX1 (Cut-Like Homeobox 1) specifically binds to an atherosclerosis-associated functional single-nucleotide polymorphism (fSNP) (rs1537371) within the locus and regulates the CDKN2A/B-encoded proteins p14ARF, p15INK4b and p16INK4a and the antisense noncoding RNA in the CDK4 (INK4) locus (ANRIL) in endothelial cells (ECs). Endothelial CUX1 expression correlates with telomeric length and is induced by both DNA-damaging agents and oxidative stress. Moreover, induction of CUX1 expression triggers both replicative and stress-induced senescence via activation of p16INK4a expression. Thus, our studies identify CUX1 as a regulator of p16INK4a-dependent endothelial senescence and a potential therapeutic target for atherosclerosis and other age-related diseases.
Collapse
Affiliation(s)
- Danli Jiang
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wei Sun
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Ting Wu
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Medicine, Xiangya School of Medicine, Central South University, Changsha, China
| | - Meijuan Zou
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Sathish Babu Vasamsetti
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Xiaoyu Zhang
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yihan Zhao
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Julie A Phillippi
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amr H Sawalha
- Departments of Pediatrics Medicine, and Immunology & Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sina Tavakoli
- Departments of Radiology and Medicine, University of Pittsburgh, UPMC Presbyterian Hospital, Pittsburg, PA, USA
| | - Partha Dutta
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jonathan Florentin
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Medicine, Division of Cardiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Tammy S Tollison
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, USA
| | - Di Wu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Oral and Craniofacial Health Sciences, Adam School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jing Cui
- Department of Medicine, Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
| | - Ian Huntress
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, USA
- Bioinformatics Graduate Program, North Carolina State University, Raleigh, NC, USA
| | - Xinxia Peng
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Toren Finkel
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Medicine, Division of Cardiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Gang Li
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Medicine, Division of Cardiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
12
|
Wu T, Jiang D, Zou M, Sun W, Wu D, Cui J, Huntress I, Peng X, Li G. Coupling high-throughput mapping with proteomics analysis delineates cis-regulatory elements at high resolution. Nucleic Acids Res 2022; 50:e5. [PMID: 34634809 PMCID: PMC8754656 DOI: 10.1093/nar/gkab890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/20/2021] [Accepted: 09/17/2021] [Indexed: 12/30/2022] Open
Abstract
Growing evidence suggests that functional cis-regulatory elements (cis-REs) not only exist in epigenetically marked but also in unmarked sites of the human genome. While it is already difficult to identify cis-REs in the epigenetically marked sites, interrogating cis-REs residing within the unmarked sites is even more challenging. Here, we report adapting Reel-seq, an in vitro high-throughput (HTP) technique, to fine-map cis-REs at high resolution over a large region of the human genome in a systematic and continuous manner. Using Reel-seq, as a proof-of-principle, we identified 408 candidate cis-REs by mapping a 58 kb core region on the aging-related CDKN2A/B locus that harbors p16INK4a. By coupling Reel-seq with FREP-MS, a proteomics analysis technique, we characterized two cis-REs, one in an epigenetically marked site and the other in an epigenetically unmarked site. These elements are shown to regulate the p16INK4a expression over an ∼100 kb distance by recruiting the poly(A) binding protein PABPC1 and the transcription factor FOXC2. Downregulation of either PABPC1 or FOXC2 in human endothelial cells (ECs) can induce the p16INK4a-dependent cellular senescence. Thus, we confirmed the utility of Reel-seq and FREP-MS analyses for the systematic identification of cis-REs at high resolution over a large region of the human genome.
Collapse
Affiliation(s)
- Ting Wu
- Aging Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Medicine, Xiangya School of Medicine, Central South University, Changsha 410083, China
| | - Danli Jiang
- Aging Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Meijuan Zou
- Aging Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Wei Sun
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Di Wu
- Division of Oral Craniofacial Health Science, Adams School of Dentistry, Department of Biostatistics, UNC Gillings School of Global Public Health, University of North Carolina, NC 27599, USA
| | - Jing Cui
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ian Huntress
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607, USA
- Bioinformatics Graduate Program, North Carolina State University, Raleigh, NC 27695, USA
| | - Xinxia Peng
- Bioinformatics Graduate Program, North Carolina State University, Raleigh, NC 27695, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
| | - Gang Li
- Aging Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Medicine, Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15223, USA
| |
Collapse
|
13
|
Zhang X, Zou M, Wu Y, Jiang D, Wu T, Zhao Y, Wu D, Cui J, Li G. Regulation of the Late Onset alzheimer's Disease Associated HLA-DQA1/DRB1 Expression. Am J Alzheimers Dis Other Demen 2022; 37:15333175221085066. [PMID: 35341343 PMCID: PMC10581112 DOI: 10.1177/15333175221085066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
(Genome-wide Association Studies) GWAS have identified ∼42 late-onset Alzheimer's disease (LOAD)-associated loci, each of which contains multiple single nucleotide polymorphisms (SNPs) in linkage disequilibrium (LD) and most of these SNPs are in the non-coding region of human genome. However, how these SNPs regulate risk gene expression remains unknown. In this work, by using a set of novel techniques, we identified 6 functional SNPs (fSNPs) rs9271198, rs9271200, rs9281945, rs9271243, and rs9271247 on the LOAD-associated HLA-DRB1/DQA1 locus and 42 proteins specifically binding to five of these 6 fSNPs. As a proof of evidence, we verified the allele-specific binding of GATA2 and GATA3, ELAVL1 and HNRNPA0, ILF2 and ILF3, NFIB and NFIC, as well as CUX1 to these five fSNPs, respectively. Moreover, we demonstrate that all these nine proteins regulate the expression of both HLA-DQA1 and HLA-DRB1 in human microglial cells. The contribution of HLA class II to the susceptibility of LOAD is discussed.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Meijaun Zou
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Yuwei Wu
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Medicine, Xiangya School of Medicine, Central South University, Changsha, China
| | - Danli Jiang
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ting Wu
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Medicine, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yihan Zhao
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Di Wu
- Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, USA
- Department of Periodontology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jing Cui
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Gang Li
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Korbolina EE, Bryzgalov LO, Ustrokhanova DZ, Postovalov SN, Poverin DV, Damarov IS, Merkulova TI. A Panel of rSNPs Demonstrating Allelic Asymmetry in Both ChIP-seq and RNA-seq Data and the Search for Their Phenotypic Outcomes through Analysis of DEGs. Int J Mol Sci 2021; 22:ijms22147240. [PMID: 34298860 PMCID: PMC8303726 DOI: 10.3390/ijms22147240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Currently, the detection of the allele asymmetry of gene expression from RNA-seq data or the transcription factor binding from ChIP-seq data is one of the approaches used to identify the functional genetic variants that can affect gene expression (regulatory SNPs or rSNPs). In this study, we searched for rSNPs using the data for human pulmonary arterial endothelial cells (PAECs) available from the Sequence Read Archive (SRA). Allele-asymmetric binding and expression events are analyzed in paired ChIP-seq data for H3K4me3 mark and RNA-seq data obtained for 19 individuals. Two statistical approaches, weighted z-scores and predicted probabilities, were used to improve the efficiency of finding rSNPs. In total, we identified 14,266 rSNPs associated with both allele-specific binding and expression. Among them, 645 rSNPs were associated with GWAS phenotypes; 4746 rSNPs were reported as eQTLs by GTEx, and 11,536 rSNPs were located in 374 candidate transcription factor binding motifs. Additionally, we searched for the rSNPs associated with gene expression using an SRA RNA-seq dataset for 281 clinically annotated human postmortem brain samples and detected eQTLs for 2505 rSNPs. Based on these results, we conducted Gene Ontology (GO), Disease Ontology (DO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses and constructed the protein-protein interaction networks to represent the top-ranked biological processes with a possible contribution to the phenotypic outcome.
Collapse
Affiliation(s)
- Elena E. Korbolina
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Science, 10 LavrentyevaProspekt, 630090 Novosibirsk, Russia; (L.O.B.); (I.S.D.); (T.I.M.)
- Correspondence:
| | - Leonid O. Bryzgalov
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Science, 10 LavrentyevaProspekt, 630090 Novosibirsk, Russia; (L.O.B.); (I.S.D.); (T.I.M.)
- VECTOR-BEST, PO BOX 492, 630117 Novosibirsk, Russia
| | - Diana Z. Ustrokhanova
- Department of Information Biology, The Novosibirsk State University, 1 Pirogovast, 630090 Novosibirsk, Russia;
| | - Sergey N. Postovalov
- Department of Theoretical and Applied Informatics, The Novosibirsk State Technical University, 630073 Novosibirsk, Russia; (S.N.P.); (D.V.P.)
| | - Dmitry V. Poverin
- Department of Theoretical and Applied Informatics, The Novosibirsk State Technical University, 630073 Novosibirsk, Russia; (S.N.P.); (D.V.P.)
| | - Igor S. Damarov
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Science, 10 LavrentyevaProspekt, 630090 Novosibirsk, Russia; (L.O.B.); (I.S.D.); (T.I.M.)
| | - Tatiana I. Merkulova
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Science, 10 LavrentyevaProspekt, 630090 Novosibirsk, Russia; (L.O.B.); (I.S.D.); (T.I.M.)
- Department of Information Biology, The Novosibirsk State University, 1 Pirogovast, 630090 Novosibirsk, Russia;
| |
Collapse
|
15
|
Zhang Y, Zhang X, Liu N, Ren S, Xia C, Yang X, Lou Y, Wang H, Zhang N, Yan X, Zhang Z, Zhang Y, Wang Z, Chen N. Comparative Proteomic Characterization of Ventral Hippocampus in Susceptible and Resilient Rats Subjected to Chronic Unpredictable Stress. Front Neurosci 2021; 15:675430. [PMID: 34220431 PMCID: PMC8249003 DOI: 10.3389/fnins.2021.675430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/10/2021] [Indexed: 12/19/2022] Open
Abstract
Chronic stress is an essential factor leading to depression. However, there exist individual differences in people exposed to the same stressful stimuli. Some people display negative psychology and behavior, while others are normal. Given the importance of individual difference, finding differentially expressed proteins in stress-resistant and stress-susceptible groups has great significance for the study of pathogenesis and treatment of depression. In this study, stress-susceptible rats and stress-resilient rats were first distinguished by sucrose preference test. These stress-susceptible rats also displayed depression-like behaviors in forced swimming test and open field test. Then, we employed label-free quantitative proteomics to analyze proteins in the ventral hippocampus. There were 4,848 proteins totally identified. Based on statistical analysis, we found 276 differentially expressed proteins. Bioinformatics analysis revealed that the biological processes of these differential proteins were related to mitochondrion organization, protein localization, coenzyme metabolic process, cerebral cortex tangential migration, vesicle-mediated transport, and so on. The KEGG pathways were mainly involved in metabolic pathways, axon guidance, autophagy, and tight junction. Furthermore, we ultimately found 20 stress-susceptible proteins and two stress-resilient proteins. These stress-related proteins could not only be potential biomarkers for depression diagnosis but also contribute to finding new therapeutic targets and providing personalized medicine.
Collapse
Affiliation(s)
- Yani Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy Medical Sciences and Peking Union Medical College, Beijing, China.,Institute of Clinical Pharmacology and Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoling Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nuo Liu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy Medical Sciences and Peking Union Medical College, Beijing, China
| | - Siyu Ren
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy Medical Sciences and Peking Union Medical College, Beijing, China
| | - Congyuan Xia
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiong Yang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuxia Lou
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huiqin Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ningning Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu Yan
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhenzhen Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy Medical Sciences and Peking Union Medical College, Beijing, China
| | - Naihong Chen
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy Medical Sciences and Peking Union Medical College, Beijing, China.,Institute of Clinical Pharmacology and Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
16
|
Degtyareva AO, Antontseva EV, Merkulova TI. Regulatory SNPs: Altered Transcription Factor Binding Sites Implicated in Complex Traits and Diseases. Int J Mol Sci 2021; 22:6454. [PMID: 34208629 PMCID: PMC8235176 DOI: 10.3390/ijms22126454] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 12/19/2022] Open
Abstract
The vast majority of the genetic variants (mainly SNPs) associated with various human traits and diseases map to a noncoding part of the genome and are enriched in its regulatory compartment, suggesting that many causal variants may affect gene expression. The leading mechanism of action of these SNPs consists in the alterations in the transcription factor binding via creation or disruption of transcription factor binding sites (TFBSs) or some change in the affinity of these regulatory proteins to their cognate sites. In this review, we first focus on the history of the discovery of regulatory SNPs (rSNPs) and systematized description of the existing methodical approaches to their study. Then, we brief the recent comprehensive examples of rSNPs studied from the discovery of the changes in the TFBS sequence as a result of a nucleotide substitution to identification of its effect on the target gene expression and, eventually, to phenotype. We also describe state-of-the-art genome-wide approaches to identification of regulatory variants, including both making molecular sense of genome-wide association studies (GWAS) and the alternative approaches the primary goal of which is to determine the functionality of genetic variants. Among these approaches, special attention is paid to expression quantitative trait loci (eQTLs) analysis and the search for allele-specific events in RNA-seq (ASE events) as well as in ChIP-seq, DNase-seq, and ATAC-seq (ASB events) data.
Collapse
Affiliation(s)
- Arina O. Degtyareva
- Department of Molecular Genetic, Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (A.O.D.); (E.V.A.)
| | - Elena V. Antontseva
- Department of Molecular Genetic, Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (A.O.D.); (E.V.A.)
| | - Tatiana I. Merkulova
- Department of Molecular Genetic, Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (A.O.D.); (E.V.A.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
17
|
Zou M, Jiang D, Wu T, Zhang X, Zhao Y, Wu D, Sun W, Cui J, Moreland L, Li G. Post-GWAS functional studies reveal an RA-associated CD40-induced NF-kB signal transduction and transcriptional regulation network targeted by class II HDAC inhibitors. Hum Mol Genet 2021; 30:823-835. [PMID: 33517445 PMCID: PMC8161515 DOI: 10.1093/hmg/ddab032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/08/2021] [Accepted: 01/20/2021] [Indexed: 01/17/2023] Open
Abstract
Currently, it remains difficult to identify which single nucleotide polymorphisms (SNPs) identified by genome-wide association studies (GWAS) are functional and how various functional SNPs (fSNPs) interact and contribute to disease susceptibility. GWAS have identified a CD40 locus that is associated with rheumatoid arthritis (RA). We previously used two techniques developed in our laboratory, single nucleotide polymorphism-next-generation sequencing (SNP-seq) and flanking restriction enhanced DNA pulldown-mass spectrometry (FREP-MS), to determine that the RA risk gene RBPJ regulates CD40 expression via a fSNP at the RA-associated CD40 locus. In the present work, by applying the same approach, we report the identification of six proteins that regulate RBPJ expression via binding to two fSNPs on the RA-associated RBPJ locus. Using these findings, together with the published data, we constructed an RA-associated signal transduction and transcriptional regulation network (STTRN) that functionally connects multiple RA-associated risk genes via transcriptional regulation networks (TRNs) linked by CD40-induced nuclear factor kappa B (NF-kB) signaling. Remarkably, this STTRN provides insight into the potential mechanism of action for the histone deacetylase inhibitor givinostat, an approved therapy for systemic juvenile idiopathic arthritis. Thus, the generation of disease-associated STTRNs based on post-GWAS functional studies is demonstrated as a novel and effective approach to apply GWAS for mechanistic studies and target identification.
Collapse
Affiliation(s)
- Meijuan Zou
- Aging Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Pharmacology, Nanjing Medical University, Nanjing 211166, China
| | - Danli Jiang
- Aging Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Ting Wu
- Aging Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Medicine, Xiangya School of Medicine, Central South University, Changsha 410083, China
| | - Xiaoyu Zhang
- Aging Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Yihan Zhao
- Aging Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Di Wu
- Department of Periodontology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wei Sun
- Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Jing Cui
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Larry Moreland
- Department of Medicine, Division of Rheumatology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Gang Li
- Aging Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Medicine, Division of Cardiology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| |
Collapse
|
18
|
Transcriptional Regulation of CD40 Expression by 4 Ribosomal Proteins via a Functional SNP on a Disease-Associated CD40 Locus. Genes (Basel) 2020; 11:genes11121526. [PMID: 33371207 PMCID: PMC7767238 DOI: 10.3390/genes11121526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 01/02/2023] Open
Abstract
Previously, using FREP-MS, we identified a protein complex including eight proteins that specifically bind to the functional SNP (fSNP) rs6032664 at a CD40 locus associated with autoimmune diseases. Among these eight proteins, four are ribosomal proteins RPL26, RPL4, RPL8, and RPS9 that normally make up the ribosomal subunits involved in the cellular process of protein translation. So far, no publication has shown these ribosomal proteins function as transcriptional regulators. In this work, we demonstrate that four ribosomal proteins: RPL26, RPL4, RPL8, and RPS9 are bona fide CD40 transcriptional regulators via binding to rs6032664. In addition, we show that suppression of CD40 expression by RPL26 RNAi knockdown inactivates NF-κB p65 by dephosphorylation via NF-κB signaling pathway in fibroblast-like synoviocytes (FLS), which further reduces the transcription of disease-associated risk genes such as STAT4, CD86, TRAF1 and ICAM1 as the direct targets of NF-κB p65. Based on these findings, a disease-associated risk gene transcriptional regulation network (TRN) is generated, in which decreased expression of, at least, RPL26 results in the downregulation of risk genes: STAT4, CD86, TRAF1 and ICAM1, as well as the two proinflammatory cytokines: IL1β and IL6 via CD40-induced NF-κB signaling. We believe that further characterization of this disease-associated TRN in the CD40-induced NF-κB signaling by identifying both the upstream and downstream regulators will potentially enable us to identify the best targets for drug development.
Collapse
|