1
|
Wang H, Zhang W, Sun Y, Xu X, Chen X, Zhao K, Yang Z, Liu H. Nanotherapeutic strategies exploiting biological traits of cancer stem cells. Bioact Mater 2025; 50:61-94. [PMID: 40242505 PMCID: PMC12002948 DOI: 10.1016/j.bioactmat.2025.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/08/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Cancer stem cells (CSCs) represent a distinct subpopulation of cancer cells that orchestrate cancer initiation, progression, metastasis, and therapeutic resistance. Despite advances in conventional therapies, the persistence of CSCs remains a major obstacle to achieving cancer eradication. Nanomedicine-based approaches have emerged for precise CSC targeting and elimination, offering unique advantages in overcoming the limitations of traditional treatments. This review systematically analyzes recent developments in nanomedicine for CSC-targeted therapy, emphasizing innovative nanomaterial designs addressing CSC-specific challenges. We first provide a detailed examination of CSC biology, focusing on their surface markers, signaling networks, microenvironmental interactions, and metabolic signatures. On this basis, we critically evaluate cutting-edge nanomaterial engineering designed to exploit these CSC traits, including stimuli-responsive nanodrugs, nanocarriers for drug delivery, and multifunctional nanoplatforms capable of generating localized hyperthermia or reactive oxygen species. These sophisticated nanotherapeutic approaches enhance selectivity and efficacy in CSC elimination, potentially circumventing drug resistance and cancer recurrence. Finally, we present an in-depth analysis of current challenges in translating nanomedicine-based CSC-targeted therapies from bench to bedside, offering critical insights into future research directions and clinical implementation. This review aims to provide a comprehensive framework for understanding the intersection of nanomedicine and CSC biology, contributing to more effective cancer treatment modalities.
Collapse
Affiliation(s)
- Hongyu Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Wenjing Zhang
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Yun Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Xican Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Xiaoyang Chen
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Kexu Zhao
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Zhao Yang
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Huiyu Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| |
Collapse
|
2
|
Li L, Xing Z, Wang J, Guo Y, Wu X, Ma Y, Xu Z, Kuang Y, Liao T, Li C. Hyaluronic acid-mediated targeted nano-modulators for activation of pyroptosis for cancer therapy through multichannel regulation of Ca 2+ overload. Int J Biol Macromol 2025; 299:140116. [PMID: 39842602 DOI: 10.1016/j.ijbiomac.2025.140116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/05/2025] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
Calcium-based nanomaterials-mediated Ca2+ overload-induced pyroptosis and its application in tumor therapy have received considerable attention. However, the calcium buffering capacity of tumor cells can maintain mitochondrial calcium homeostasis, so it is important to effectively disrupt this homeostasis to activate pyroptosis. Here, a nano-modulator CUR@CaCO3-PArg@HA (CCAH) was developed to regulate calcium overload in multiple channels and activate pyroptosis. Hyaluronic acid (HA)-coated nano-modulators achieve tumor targeting, and under the weakly acidic conditions of the tumor microenvironment (TME), CaCO3 nanoparticles rapidly release curcumin (CUR), inhibit the outflow of intracellular Ca2+, and release exogenous Ca2+. Meanwhile, poly-L-arginine (PArg) reacts with reactive oxygen species (ROS) generated by mitochondrial imbalance, releasing nitric oxide (NO) and stimulating the endoplasmic reticulum to release endogenous Ca2+. The combined action of endogenous and exogenous Ca2+ effectively activates caspase-1, which cleaves gasdermin-D (GSDMD) to produce the active N-terminus (GSDMD-N), effectively activating pyroptosis. Notably, the generated ROS and NO can also generate more oxidizing ONOO-, further exacerbating the imbalance in mitochondrial homeostasis. This work demonstrates that simultaneous modulation of exogenous and endogenous Ca2+ can disrupt mitochondrial Ca2+ homeostasis and effectively activate pyroptosis to treat tumors, which is expected to promote the progression of cancer treatment in the future.
Collapse
Affiliation(s)
- Linwei Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Zihan Xing
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Jinyu Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Yuhao Guo
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Xiaomei Wu
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Yiming Ma
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Ziqiang Xu
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Ying Kuang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China.
| | - Tao Liao
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China.
| | - Cao Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
3
|
Zhang L, Wang Y, Li Y, Chen ZS, Hu C. Advanced materials for cancer treatment and beyond. Front Pharmacol 2025; 16:1557155. [PMID: 40110134 PMCID: PMC11920709 DOI: 10.3389/fphar.2025.1557155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/13/2025] [Indexed: 03/22/2025] Open
Abstract
Conservative anti-cancer treatment represented by chemotherapy and surgery lacks tumor-specificity and could hardly resolve the problems associated with multidrug resistance (MDR) in cancers. Novel therapeutic materials in cancer treatment, such as those with anti-MDR or controllable treatment features, represent a significant trend due to their advantages of high and specific efficacy and timely intervention of cancer progress. In addition to their excellent biocompatibility and specificity, they can be utilized in therapies that require ease of operation, provided they are designed with high detection sensitivity. In this review, we summarize a series of recently developed materials that exhibit these advantages, including immune-enhancing and tumor microenvironment (TME)- responsive materials, and those with integrated therapeutic and imaging capabilities. We also introduce advanced modification approaches that can impart essential targeting functionalities to these materials.
Collapse
Affiliation(s)
- Lei Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Yanan Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yangjia Li
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Chaohua Hu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
4
|
Zhang W, Xiang Y, Guo Q, Wang X, Zhang L, Guo J, Cong R, Yu W, Liang XJ, Zhang J, Liu D. Multi-phoretic nanomotor with consistent motion direction for enhanced cancer therapy. Acta Biomater 2025; 191:352-368. [PMID: 39586348 DOI: 10.1016/j.actbio.2024.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024]
Abstract
Nanomotors have emerged as promising candidates for the deep penetration of loaded drugs into cancer stem cells (CSCs) located within the core of tumor tissues. A crucial factor in maximizing the clinical potential of nanomotors lies in their ability to respond dynamically to various stimuli in the tumor microenvironment. By adjusting their propulsion mechanisms in response to various stimuli, nanomotors can maintain directional movement, thus improving drug distribution and therapeutic efficacy. In this study, we present the design of a pH-responsive multi-phoretic propelled Janus nanomotor, comprising a SiO2@Pt core@shell nanosphere and half-wrapped acrylic acid polymers (PAA)-conjugated gold (Au) nanoparticles (JMSNs@Pt@P-Au). The JMSNs@Pt@P-Au catalyze endogenous H2O2 into O2, propelling the nanomotors into solid tumors. Within the tumor microenvironment, the contraction of PAA triggers contact between the Au and Pt layers, facilitating self-electrophoresis propulsion. Simultaneously, a local thermal gradient is generated on the Au layer under near-infrared light irradiation, propelling the nanomotor through thermophoresis. Exploiting the unique structure of JMSNs@Pt@P-Au, the driving forces generated by H2O2 catalysis, self-electrophoresis, and thermophoresis exhibit consistent motion directions. This consistency not only provides thrust for deep penetration but also enhances their targeted therapeutic efficiency against CSCs in vivo. This combination of nanomotor-driven power sources holds significant potential for designing intelligent, active drug delivery systems for effective CSC-targeted cancer therapy. STATEMENT OF SIGNIFICANCE: Deep penetration of nanomedicine in solid tumor tissue and cells is still an important challenge that restricts the therapeutic effect. Multiple-propelled nanomotors have been confirmed to be self-propulsive that overcome the limited penetration in solid tumor. However, their effective translation toward clinical applications is limited due to the inability to alter their propelled mechanisms in response to the actual physiological environment, resulting in speed and inconsistent movement directions. In this work, we designed a multi-phoretic propelled Janus nanomotor (JMSNs@Pt@P-Au) that exhibited three propelled mechanisms in response to the changes of pH value. Noteworthy is their heightened speed and remarkable tumor tissue penetration observed in vitro and in vivo without adverse effects. Such multi-phoretic propulsion offers considerable promise for developing advanced nanomachines with a stimuli-responsive switch of propulsion modes in biomedical applications.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province & College of Chemistry and Materials Science, Hebei University, Baoding, 071002, PR China
| | - Yangyang Xiang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province & College of Chemistry and Materials Science, Hebei University, Baoding, 071002, PR China
| | - Qi Guo
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province & College of Chemistry and Materials Science, Hebei University, Baoding, 071002, PR China
| | - Xiaotong Wang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province & College of Chemistry and Materials Science, Hebei University, Baoding, 071002, PR China
| | - Lukai Zhang
- College of Physics Science & Technology, Hebei University, Baoding, 071002, PR China
| | - Jiaxin Guo
- College of Physics Science & Technology, Hebei University, Baoding, 071002, PR China
| | - Ridong Cong
- College of Physics Science & Technology, Hebei University, Baoding, 071002, PR China
| | - Wei Yu
- College of Physics Science & Technology, Hebei University, Baoding, 071002, PR China
| | - Xing-Jie Liang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, PR China
| | - Jinchao Zhang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province & College of Chemistry and Materials Science, Hebei University, Baoding, 071002, PR China.
| | - Dandan Liu
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province & College of Chemistry and Materials Science, Hebei University, Baoding, 071002, PR China.
| |
Collapse
|
5
|
Wu Y, Tian Z, Wang Z, Chen Z, Shao F, Liu S. Site-Specific Location of Black Phosphorus Quantum Dot Cluster-Based Nanocomplexes for Synergistic Ion Channel Therapy and Hypoxic Microenvironment Activated Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52059-52067. [PMID: 39307971 DOI: 10.1021/acsami.4c11480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The spatiotemporal regulation of ion transport in living cell membrane channels has immense potential for providing novel therapeutic approaches for the treatment of currently intractable diseases. So far, most strategies suffer from uncontrolled ion transport and limited tumor therapy effects. On the premise of low toxicity to healthy tissues, enhancing the degree of ion overloading and the effect of tumor treatment still remains a challenging concern. Herein, an innovative strategy for synergistic ion channel therapy and hypoxic microenvironment activated chemotherapy is proposed. Biocompatible AQ4N/black phosphorus quantum dot clusters@liposomes (AQ4N/BPCs@Lip) nanocomplexes are site-specifically immobilized on the living cell membrane by a metabolic labeling strategy, eliminating the need for modifying or genetically encoding channel structures. Ascribing to the localized temperature increase of BPCs under NIR light irradiation, Ca2+ overinflux can be remotely controlled and the overloading degree was increased; moreover, the local released AQ4N can only be activated in the tumor cell, while it has no toxicity to normal cells. Compared with single intracellular Ca2+ overloading, the tumor cell viabilities decrease 2-fold with synergetic Ca2+ overloading-induced ion channel therapy and hypoxic microenvironment activated chemotherapeutics. Our study demonstrates the example of a remote-controlled ion influx and drug delivery system for tumor therapy.
Collapse
Affiliation(s)
- Yafeng Wu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Zhaoyan Tian
- State Key Laboratory for Macromolecule Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
| | - Zhi Wang
- Wuxi Institute of Inspection, Testing and Certification, Wuxi 214125, China
| | - Zixuan Chen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Fengying Shao
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
6
|
Pistonesi DB, Belén F, Ruso JM, Centurión ME, Sica MG, Pistonesi MF, Messina PV. NIR-responsive nano-holed titanium alloy surfaces: a photothermally activated antimicrobial biointerface. J Mater Chem B 2024; 12:8993-9004. [PMID: 39145426 DOI: 10.1039/d4tb01307g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Among external stimuli-responsive therapy approaches, those using near infrared (NIR) light irradiation have attracted significant attention to treat bone-related diseases and bone tissue regeneration. Therefore, the development of metallic biomaterials sensitive to NIR stimuli is an important area of research in orthopaedics. In this study, we have generated in situ prism-shaped silver nanoparticles (p-AgNPs) in a biomorphic nano-holed TiO2 coating on a Ti6Al4V alloy (a-Ti6Al4V). Insertion of p-AgNPs does not disturb the periodically arranged sub-wavelength-sized unit cell on the a-Ti6Al4V dielectric structure, while they exacerbate its peculiar optical response, which results in a higher NIR reflectivity and high efficiency of NIR photothermal energy conversion suitable to bacterial annihilation. Together, these results open a promising path toward strategic bone therapeutic procedures, providing novel insights into precision medicine.
Collapse
Affiliation(s)
- Denise B Pistonesi
- Department of Chemistry, Universidad Nacional del Sur, INQUISUR - CONICET, B8000CPB, Bahía Blanca, Argentina.
| | - Federico Belén
- Department of Chemistry, Universidad Nacional del Sur, INQUISUR - CONICET, B8000CPB, Bahía Blanca, Argentina.
| | - Juan M Ruso
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics and iMATUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M Eugenia Centurión
- Department of Chemistry, Universidad Nacional del Sur, INQUISUR - CONICET, B8000CPB, Bahía Blanca, Argentina.
| | - M Gabriela Sica
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, B8000CPB, Bahía Blanca, Argentina
- Department of Health Sciences, Universidad Nacional del Sur, B8000CPB, Bahía Blanca, Argentina
| | - Marcelo F Pistonesi
- Department of Chemistry, Universidad Nacional del Sur, INQUISUR - CONICET, B8000CPB, Bahía Blanca, Argentina.
| | - Paula V Messina
- Department of Chemistry, Universidad Nacional del Sur, INQUISUR - CONICET, B8000CPB, Bahía Blanca, Argentina.
| |
Collapse
|
7
|
Olov N, Nour S, Harris AR, Li D, Cook M, Williams RJ, Cheeseman S, Nisbet DR. Using Nanoscale Passports To Understand and Unlock Ion Channels as Gatekeepers of the Cell. ACS NANO 2024; 18:22709-22733. [PMID: 39136685 DOI: 10.1021/acsnano.4c05654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Natural ion channels are proteins embedded in the cell membrane that control many aspects of cell and human physiology by acting as gatekeepers, regulating the flow of ions in and out of cells. Advances in nanotechnology have influenced the methods for studying ion channels in vitro, as well as ways to unlock the delivery of therapeutics by modulating them in vivo. This review provides an overview of nanotechnology-enabled approaches for ion channel research with a focus on the synthesis and applications of synthetic ion channels. Further, the uses of nanotechnology for therapeutic applications are critically analyzed. Finally, we provide an outlook on the opportunities and challenges at the intersection of nanotechnology and ion channels. This work highlights the key role of nanoscale interactions in the operation and modulation of ion channels, which may prompt insights into nanotechnology-enabled mechanisms to study and exploit these systems in the near future.
Collapse
Affiliation(s)
- Nafiseh Olov
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
| | - Shirin Nour
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- Polymer Science Group, Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Alexander R Harris
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
| | - Dan Li
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mark Cook
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- Department of Medicine, St Vincent's Hospital, Melbourne, Fitzroy, VIC 3065, Australia
| | - Richard J Williams
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, VIC 3217, Australia
- IMPACT, School of Medicine, Deakin University, Waurn Ponds, VIC 3217, Australia
| | - Samuel Cheeseman
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
| | - David R Nisbet
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
| |
Collapse
|
8
|
He W, Li Y, Liu SB, Chang Y, Han S, Han X, Ma Z, Amin HM, Song YH, Zhou J. From mitochondria to tumor suppression: ACAT1's crucial role in gastric cancer. Front Immunol 2024; 15:1449525. [PMID: 39247186 PMCID: PMC11377227 DOI: 10.3389/fimmu.2024.1449525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024] Open
Abstract
Acetyl CoA acetyltransferase 1 (ACAT1), a mitochondrial enzyme, is mainly involved in the formation and decomposition of ketones, isoleucine, and fatty acids. Previous clinical studies showed that mutations in the ACAT1 gene lead to ketoacidosis, Notably the role of ACAT1 in human cancer' pathogenesis varies depending on cancer type, and its specific role in gastric cancer remains largely unknown. In the current study, we found that the expression of ACAT1 in primary late-stage gastric cancer tumor tissues was significantly lower than in early-stage tumors. This observation was further confirmed in high-grade gastric cancer cell line MKN45. The expression of CD44 and OCT4 was decreased, while CD24 expression was increased by overexpressing ACAT1 in MKN45 gastric cancer cells. Moreover, the ability of gastric cancer cells to form colonies on soft agar was also reduced by ACAT1 overexpression. Likewise, overexpression of ACAT1 inhibited epithelial mesenchymal transition (EMT) in gastric cancer cells evidenced by increased expression of the epithelial marker E-Cadherin, decreased expression of mesenchymal marker vimentin, and decreased expression levels of SNAI 1/3. In addition, ACAT1 overexpression inhibited cell migration and invasion, improved the response to 5-Fluorouracil (5-FU) and etoposide. In contrast, inhibition of ACAT1 activity promoted the proliferation of gastric cancer cells. The xenotransplantation results in nude mice showed that overexpression of ACAT1 in gastric cancer cells inhibited tumor growth in vivo. In addition, the low expression of ACAT1 in gastric cancer was further validated by searching public databases and conducting bioinformatic analyses. Mechanistically, bioinformatic analysis found that the inhibitory effect of ACAT1 in gastric cancer may be related to the Adipocytokine Signaling Pathway, Ppar Signaling Pathway, Propanoate Metabolism and P53 Signaling Pathway. Correlation analysis indicated ACAT1 mRNA expression was correlated with immune infiltrates. Collectively, our data show that ACAT1 induces pronounced inhibitory effects on gastric cancer initiation and development, which may impact future strategies to treat this aggressive cancer.
Collapse
Affiliation(s)
- Wei He
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Yanfang Li
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Song-Bai Liu
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| | - Ying Chang
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Shiyuan Han
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Xingyu Han
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Zixin Ma
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Hesham M Amin
- Department of Hematopathology, the University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yao-Hua Song
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Jin Zhou
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
9
|
Li M, Li S, Guo Y, Hu P, Shi J. Magnetothermal-activated gene editing strategy for enhanced tumor cell apoptosis. J Nanobiotechnology 2024; 22:450. [PMID: 39080645 PMCID: PMC11287911 DOI: 10.1186/s12951-024-02734-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024] Open
Abstract
Precise and effective initiation of the apoptotic mechanism in tumor cells is one of the most promising approaches for the treatment of solid tumors. However, current techniques such as high-temperature ablation or gene editing suffer from the risk of damage to adjacent normal tissues. This study proposes a magnetothermal-induced CRISPR-Cas9 gene editing system for the targeted knockout of HSP70 and BCL2 genes, thereby enhancing tumor cell apoptosis. The magnetothermal nanoparticulate platform is composed of superparamagnetic ZnCoFe2O4@ZnMnFe2O4 nanoparticles and the modified polyethyleneimine (PEI) and hyaluronic acid (HA) on the surface, on which plasmid DNA can be effectively loaded. Under the induction of a controllable alternating magnetic field, the mild magnetothermal effect (42℃) not only triggers dual-genome editing to disrupt the apoptosis resistance mechanism of tumor cells but also sensitizes tumor cells to apoptosis through the heat effect itself, achieving a synergistic therapeutic effect. This strategy can precisely regulate the activation of the CRISPR-Cas9 system for tumor cell apoptosis without inducing significant damage to healthy tissues, thus providing a new avenue for cancer treatment.
Collapse
Affiliation(s)
- Mingyuan Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Siqian Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - YueDong Guo
- Shanghai Tenth People's Hospital, Medical School of Tongji University, 38 Yun-xin Road, Shanghai, 200435, P.R. China
| | - Ping Hu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.
- Shanghai Tenth People's Hospital, Medical School of Tongji University, 38 Yun-xin Road, Shanghai, 200435, P.R. China.
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| |
Collapse
|
10
|
Xie C, Zhang T, Qin Z. Plasmonic-Driven Regulation of Biomolecular Activity In Situ. Annu Rev Biomed Eng 2024; 26:475-501. [PMID: 38594921 DOI: 10.1146/annurev-bioeng-110222-105043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Selective and remote manipulation of activity for biomolecules, including protein, DNA, and lipids, is crucial to elucidate their molecular function and to develop biomedical applications. While advances in tool development, such as optogenetics, have significantly impacted these directions, the requirement for genetic modification significantly limits their therapeutic applications. Plasmonic nanoparticle heating has brought new opportunities to the field, as hot nanoparticles are unique point heat sources at the nanoscale. In this review, we summarize fundamental engineering problems such as plasmonic heating and the resulting biomolecular responses. We highlight the biological responses and applications of manipulating biomolecules and provide perspectives for future directions in the field.
Collapse
Affiliation(s)
- Chen Xie
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas, USA
| | - Tingting Zhang
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas, USA
| | - Zhenpeng Qin
- Department of Biomedical Engineering, University of Texas at Southwestern Medical Center, Richardson, Texas, USA
- Department of Bioengineering, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas, USA;
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
11
|
Wang D, Jia H, Cao H, Hou X, Wang Q, Lin J, Liu J, Yang L, Liu J. A Dual-Channel Ca 2+ Nanomodulator Induces Intracellular Ca 2+ Disorders via Endogenous Ca 2+ Redistribution for Tumor Radiosensitization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401222. [PMID: 38690593 DOI: 10.1002/adma.202401222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/21/2024] [Indexed: 05/02/2024]
Abstract
Tumor cells harness Ca2+ to maintain cellular homeostasis and withstand external stresses from various treatments. Here, a dual-channel Ca2+ nanomodulator (CAP-P-NO) is constructed that can induce irreversible intracellular Ca2+ disorders via the redistribution of tumor-inherent Ca2+ for disrupting cellular homeostasis and thus improving tumor radiosensitivity. Stimulated by tumor-overexpressed acid and glutathione, capsaicin and nitric oxide are successively escaped from CAP-P-NO to activate the transient receptor potential cation channel subfamily V member 1 and the ryanodine receptor for the influx of extracellular Ca2+ and the release of Ca2+ in the endoplasmic reticulum, respectively. The overwhelming level of Ca2+ in tumor cells not only impairs the function of organelles but also induces widespread changes in the gene transcriptome, including the downregulation of a set of radioresistance-associated genes. Combining CAP-P-NO treatment with radiotherapy achieves a significant suppression against both pancreatic and patient-derived hepatic tumors with negligible side effects. Together, the study provides a feasible approach for inducing tumor-specific intracellular Ca2+ overload via endogenous Ca2+ redistribution and demonstrates the great potential of Ca2+ disorder therapy in enhancing the sensitivity for tumor radiotherapy.
Collapse
Affiliation(s)
- Dianyu Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Haixue Jia
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Hongmei Cao
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Xiaoxue Hou
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Qian Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Jia Lin
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Jinjian Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Lijun Yang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Jianfeng Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| |
Collapse
|
12
|
Zhang L, Ren C, Liu J, Huang S, Wu C, Zhang J. Development and therapeutic implications of small molecular inhibitors that target calcium-related channels in tumor treatment. Drug Discov Today 2024; 29:103995. [PMID: 38670255 DOI: 10.1016/j.drudis.2024.103995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Calcium ion dysregulation exerts profound effects on various physiological activities such as tumor proliferation, migration, and drug resistance. Calcium-related channels play a regulatory role in maintaining calcium ion homeostasis, with most channels being highly expressed in tumor cells. Additionally, these channels serve as potential drug targets for the development of antitumor medications. In this review, we first discuss the current research status of these pathways, examining how they modulate various tumor functions such as epithelial-mesenchymal transition (EMT), metabolism, and drug resistance. Simultaneously, we summarize the recent progress in the study of novel small-molecule drugs over the past 5 years and their current status.
Collapse
Affiliation(s)
- Linxi Zhang
- China Medical University-Queen's University of Belfast Joint College, China Medical University, Shenyang 110000, Liaoning, China
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu 611130, China
| | - Jiao Liu
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu 611130, China
| | - Shuai Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Chengyong Wu
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
13
|
Wang WD, Guo YY, Yang ZL, Su GL, Sun ZJ. Sniping Cancer Stem Cells with Nanomaterials. ACS NANO 2023; 17:23262-23298. [PMID: 38010076 DOI: 10.1021/acsnano.3c07828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Cancer stem cells (CSCs) drive tumor initiation, progression, and therapeutic resistance due to their self-renewal and differentiation capabilities. Despite encouraging progress in cancer treatment, conventional approaches often fail to eliminate CSCs, necessitating the development of precise targeted strategies. Recent advances in materials science and nanotechnology have enabled promising CSC-targeted approaches, harnessing the power of tailoring nanomaterials in diverse therapeutic applications. This review provides an update on the current landscape of nanobased precision targeting approaches against CSCs. We elucidate the nuanced application of organic, inorganic, and bioinspired nanomaterials across a spectrum of therapeutic paradigms, encompassing targeted therapy, immunotherapy, and multimodal synergistic therapies. By examining the accomplishments and challenges in this potential field, we aim to inform future efforts to advance nanomaterial-based therapies toward more effective "sniping" of CSCs and tumor clearance.
Collapse
Affiliation(s)
- Wen-Da Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Yan-Yu Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Zhong-Lu Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Guang-Liang Su
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
14
|
Wang C, Xu YH, Xu HZ, Li K, Zhang Q, Shi L, Zhao L, Chen X. PD-L1 blockade TAM-dependently potentiates mild photothermal therapy against triple-negative breast cancer. J Nanobiotechnology 2023; 21:476. [PMID: 38082443 PMCID: PMC10712197 DOI: 10.1186/s12951-023-02240-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023] Open
Abstract
The present work was an endeavor to shed light on how mild photothermia possibly synergizes with immune checkpoint inhibition for tumor therapy. We established mild photothermal heating protocols to generate temperatures of 43 °C and 45 °C in both in vitro and in vivo mouse 4T1 triple-negative breast cancer (TNBC) models using polyglycerol-coated carbon nanohorns (CNH-PG) and 808 nm laser irradiation. Next, we found that 1) CNH-PG-mediated mild photothermia (CNH-PG-mPT) significantly increased expression of the immune checkpoint PD-L1 and type-1 macrophage (M1) markers in the TNBC tumors; 2) CNH-PG-mPT had a lower level of anti-tumor efficacy which was markedly potentiated by BMS-1, a PD-L1 blocker. These observations prompted us to explore the synergetic mechanisms of CNH-PG-mPT and BMS-1 in the context of tumor cell-macrophage interactions mediated by PD-L1 since tumor-associated macrophages (TAMs) are a major source of PD-L1 expression in tumors. In vitro, the study then identified two dimensions where BMS-1 potentiated CNH-PG-mPT. First, CNH-PG-mPT induced PD-L1 upregulation in the tumor cells and showed a low level of cytotoxicity which was potentiated by BMS-1. Second, CNH-PG-mPT skewed TAMs towards an M1-like anti-tumor phenotype with upregulated PD-L1, and BMS-1 bolstered the M1-like phenotype. The synergistic effects of BMS-1 and CNH-PG-mPT both on the tumor cells and TAMs were more pronounced when the two cell populations were in co-culture. Further in vivo study confirmed PD-L1 upregulation both in tumor cells and TAMs in the TNBC tumors following treatment of CNH-PG-mPT. Significantly, TAMs depletion largely abolished the anti-TNBC efficacy of CNH-PG-mPT alone and in synergy with BMS-1. Collectively, our findings reveal PD-L1 upregulation to be a key response of TNBC to mild photothermal stress, which plays a pro-survival role in the tumor cells while also acting as a brake on the M1-like activation of the TAMs. Blockade of mPT‑induced PD‑L1 achieves synergistic anti-TNBC efficacy by taking the intrinsic survival edge off the tumor cells on one hand and taking the brakes off the M1-like TAMs on the other. Our findings reveal a novel way (i.e. mild thermia plus PD-L1 blockade) to modulate the TAMs-tumor cell interaction to instigate a mutiny of the TAMs against their host tumor cells.
Collapse
Affiliation(s)
- Chao Wang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No. 185, Wuhan, 430072, China
- Grand Pharma (China) Co., Ltd, Hubei, China
| | - Yong-Hong Xu
- Department of Ophthalmology, Institute of Ophthalmological Research, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hua-Zhen Xu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No. 185, Wuhan, 430072, China
| | - Ke Li
- Center for Lab Teaching, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No. 185, Wuhan, 430072, China
| | - Quan Zhang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No. 185, Wuhan, 430072, China
| | - Lin Shi
- Grand Pharma (China) Co., Ltd, Hubei, China
| | - Li Zhao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Xiao Chen
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No. 185, Wuhan, 430072, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430072, China.
| |
Collapse
|
15
|
Li N, Li C, Li B, Li C, Zhao Q, Huang Z, Shu Y, Qu X, Wang B, Li S, Xing C. Dual Activation of Calcium Channels Using Near-Infrared Responsive Conjugated Oligomer Nanoparticles for Precise Regulation of Blood Glucose Homeostasis. NANO LETTERS 2023; 23:10608-10616. [PMID: 37948661 DOI: 10.1021/acs.nanolett.3c03701] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The rarity of efficient tools with spatiotemporal resolution and biocompatibility capabilities remains a major challenge for further progress and application of signaling manipulation. Herein, biomimetic conjugated oligomeric nanoparticles (CM-CONs) were developed to precisely modulate blood glucose homeostasis via the two-pronged activation of calcium channels. Under near-infrared (NIR) laser irradiation, CM-CONs efficiently generate local heat and reactive oxygen species (ROS), thereby simultaneously activating thermosensitive transient receptor potential V1 (TRPV1) and ROS-sensitive transient receptor potential A1 (TRPA1) calcium channels in small intestinal endocrine cells. The activation of the channels mediates inward calcium flow and then promotes glucagon-like peptide (GLP-1) secretion. Both in vitro and in vivo studies indicate that CM-CONs effectively regulate glucose homeostasis in diabetic model mice upon NIR light irradiation. This work develops a two-pronged attack strategy for accurately controlling blood glucose homeostasis, holding great prospects in the treatment for diabetes.
Collapse
Affiliation(s)
- Ning Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215000, P. R. China
| | - Chen Li
- School of Public Health, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Boying Li
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Chaoqun Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Qi Zhao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215000, P. R. China
| | - Zhongming Huang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215000, P. R. China
| | - Yue Shu
- School of Public Health, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Xiongwei Qu
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Baiqi Wang
- School of Public Health, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215000, P. R. China
| | - Chengfen Xing
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|
16
|
Chao B, Jiao J, Yang L, Wang Y, Jiang W, Yu T, Wang L, Liu H, Zhang H, Wang Z, Wu M. Application of advanced biomaterials in photothermal therapy for malignant bone tumors. Biomater Res 2023; 27:116. [PMID: 37968707 PMCID: PMC10652612 DOI: 10.1186/s40824-023-00453-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/21/2023] [Indexed: 11/17/2023] Open
Abstract
Malignant bone tumors are characterized by severe disability rate, mortality rate, and heavy recurrence rate owing to the complex pathogenesis and insidious disease progression, which seriously affect the terminal quality of patients' lives. Photothermal therapy (PTT) has emerged as an attractive adjunctive treatment offering prominent hyperthermal therapeutic effects to enhance the effectiveness of surgical treatment and avoid recurrence. Simultaneously, various advanced biomaterials with photothermal capacity are currently created to address malignant bone tumors, performing distinctive biological functions, including nanomaterials, bioceramics (BC), polymers, and hydrogels et al. Furthermore, PTT-related combination therapeutic strategies can provide more significant curative benefits by reducing drug toxicity, improving tumor-killing efficiency, stimulating anti-cancer immunity, and improving immune sensitivity relative to monotherapy, even in complex tumor microenvironments (TME). This review summarizes the current advanced biomaterials applicable in PTT and relevant combination therapies on malignant bone tumors for the first time. The multiple choices of advanced biomaterials, treatment methods, and new prospects for future research in treating malignant bone tumors with PTT are generalized to provide guidance. Malignant bone tumors seriously affect the terminal quality of patients' lives. Photothermal therapy (PTT) has emerged as an attractive adjunctive treatment enhancing the effectiveness of surgical treatment and avoiding recurrence. In this review, advanced biomaterials applicable in the PTT of malignant bone tumors and their distinctive biological functions are comprehensively summarized for the first time. Simultaneously, multiple PTT-related combination therapeutic strategies are classified to optimize practical clinical issues, contributing to the selection of biomaterials, therapeutic alternatives, and research perspectives for the adjuvant treatment of malignant bone tumors with PTT in the future.
Collapse
Affiliation(s)
- Bo Chao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Jianhang Jiao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Lili Yang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Yang Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Weibo Jiang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Tong Yu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Linfeng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Han Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China.
| | - Minfei Wu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China.
| |
Collapse
|
17
|
Ansari JA, Malik JA, Ahmed S, Bhat FA, Khanam A, Mir SA, Abouzied AS, Ahemad N, Anwar S. Targeting Breast Cancer Signaling via Phytomedicine and Nanomedicine. Pharmacology 2023; 108:504-520. [PMID: 37748454 DOI: 10.1159/000531802] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/28/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND The development of breast cancer (BC) and how it responds to treatment have both been linked to the involvement of inflammation. Chronic inflammation is critical in carcinogenesis, leading to elevated DNA damage, impaired DNA repair machinery, cell growth, apoptosis, angiogenesis, and invasion. Studies have found several targets that selectively modulate inflammation in cancer, limit BC's growth, and boost treatment effectiveness. Drug resistance and the absence of efficient therapeutics for metastatic and triple-negative BC contribute to the poor outlook of BC patients. SUMMARY To treat BC, small-molecule inhibitors, phytomedicines, and nanoparticles are conjugated to attenuate BC signaling pathways. Due to their numerous target mechanisms and strong safety records, phytomedicines and nanomedicines have received much attention in studies examining their prospects as anti-BC agents by such unfulfilled demands. KEY MESSAGES The processes involved in the affiliation across the progression of tumors and the spread of inflammation are highlighted in this review. Furthermore, we included many drugs now undergoing clinical trials that target cancer-mediated inflammatory pathways, cutting-edge nanotechnology-derived delivery systems, and a variety of phytomedicines that presently address BC.
Collapse
Affiliation(s)
- Jeba Ajgar Ansari
- Department of Pharmaceutics, Government College of Pharmacy, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | - Jonaid Ahmad Malik
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Sakeel Ahmed
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | | | - Afreen Khanam
- Department of Pharmacology, Jamia Hamdard, New Delhi, India
| | - Suhail Ahmad Mir
- Department of Pharmacy, University of Kashmir, Jammu and Kashmir, India
| | - Amr S Abouzied
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Saudi Arabia
- Department of Pharmaceutical Chemistry, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Nafees Ahemad
- School of Pharmacy, MONASH University Malaysia, Bandar Sunway, Malaysia
| | - Sirajudheen Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
18
|
Zhang Z, You Y, Ge M, Lin H, Shi J. Functional nanoparticle-enabled non-genetic neuromodulation. J Nanobiotechnology 2023; 21:319. [PMID: 37674191 PMCID: PMC10483742 DOI: 10.1186/s12951-023-02084-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023] Open
Abstract
Stimulating ion channels targeting in neuromodulation by external signals with the help of functionalized nanoparticles, which integrates the pioneering achievements in the fields of neurosciences and nanomaterials, has involved into a novel interdisciplinary field. The emerging technique developed in this field enable simple, remote, non-invasive, and spatiotemporally precise nerve regulations and disease therapeutics, beyond traditional treatment methods. In this paper, we define this emerging field as nano-neuromodulation and summarize the most recent developments of non-genetic nano-neuromodulation (non-genetic NNM) over the past decade based on the innovative design concepts of neuromodulation nanoparticle systems. These nanosystems, which feature diverse compositions, structures and synthesis approaches, could absorb certain exogenous stimuli like light, sound, electric or magnetic signals, and subsequently mediate mutual transformations between above signals, or chemical reactions, to regulate stimuli-sensitive ion channels and ion migrations which play vital roles in the nervous system. We will also discuss the obstacles and challenges in the future development of non-genetic NNM, and propose its future developments, to add the further progress of this promising field.
Collapse
Affiliation(s)
- Zhimin Zhang
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yanling You
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Min Ge
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Han Lin
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, People's Republic of China.
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200331, People's Republic of China.
| | - Jianlin Shi
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, People's Republic of China
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200331, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| |
Collapse
|
19
|
Zhang Z, You Y, Ge M, Lin H, Shi J. Functional nanoparticle-enabled non-genetic neuromodulation. J Nanobiotechnology 2023; 21:319. [DOI: doi.org/10.1186/s12951-023-02084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023] Open
Abstract
AbstractStimulating ion channels targeting in neuromodulation by external signals with the help of functionalized nanoparticles, which integrates the pioneering achievements in the fields of neurosciences and nanomaterials, has involved into a novel interdisciplinary field. The emerging technique developed in this field enable simple, remote, non-invasive, and spatiotemporally precise nerve regulations and disease therapeutics, beyond traditional treatment methods. In this paper, we define this emerging field as nano-neuromodulation and summarize the most recent developments of non-genetic nano-neuromodulation (non-genetic NNM) over the past decade based on the innovative design concepts of neuromodulation nanoparticle systems. These nanosystems, which feature diverse compositions, structures and synthesis approaches, could absorb certain exogenous stimuli like light, sound, electric or magnetic signals, and subsequently mediate mutual transformations between above signals, or chemical reactions, to regulate stimuli-sensitive ion channels and ion migrations which play vital roles in the nervous system. We will also discuss the obstacles and challenges in the future development of non-genetic NNM, and propose its future developments, to add the further progress of this promising field.
Graphical Abstract
Collapse
|
20
|
Li K, Sun S, Xiao L, Zhang Z. Bioactivity-guided fractionation of Helicteres angustifolia L. extract and its molecular evidence for tumor suppression. Front Cell Dev Biol 2023; 11:1157172. [PMID: 37427379 PMCID: PMC10323433 DOI: 10.3389/fcell.2023.1157172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/30/2023] [Indexed: 07/11/2023] Open
Abstract
Helicteres angustifolia L. (Helicteres angustifolia) has been commonly used in folk medicine to treat cancer; however, its mechanisms of action remain obscure. In our earlier work, we reported that aqueous extract of H. angustifolia root (AQHAR) possesses attractive anticancer properties. In the present study, we isolated five ethanol fractions from AQHAR and investigated their therapeutic efficacy in human non-small cell lung cancer (NSCLC) cells. The results showed that among the five fractions, the 40% ethanol fraction (EF40) containing multiple bioactive compounds exhibited the best selective killing effect on NSCLC cells with no obvious toxicity to normal human fibroblasts. Mechanistically, EF40 reduced the expression of nuclear factor-E2-related factor 2 (Nrf2), which is constitutively expressed at high levels in many types of cancers. As a result, Nrf2-dependent cellular defense responses are suppressed, leading to the intracellular accumulation of reactive oxygen species (ROS). Extensive biochemical analyses revealed that EF40 caused cell cycle arrest and apoptosis through activation of the ROS-mediated DNA damage response. Furthermore, treatment with EF40 compromised NSCLC cell migration, as evidenced by the downregulation of matrix metalloproteinases (MMPs) and heterogeneous nuclear ribonucleoprotein K (hnRNP-K). In vivo studies using A549 xenografts in nude mice also revealed significant suppression of tumor growth and lung metastasis in the treated group. We propose that EF40 may serve as a potential natural anti-NSCLC drug that warrants further mechanistic and clinical attention.
Collapse
Affiliation(s)
- Kejuan Li
- College of Life Science, Sichuan Normal University, Chengdu, China
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Shuang Sun
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Long Xiao
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
21
|
Das S, Kundu M, Hassan A, Parekh A, Jena BC, Mundre S, Banerjee I, Yetirajam R, Das CK, Pradhan AK, Das SK, Emdad L, Mitra P, Fisher PB, Mandal M. A novel computational predictive biological approach distinguishes Integrin β1 as a salient biomarker for breast cancer chemoresistance. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166702. [PMID: 37044238 DOI: 10.1016/j.bbadis.2023.166702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/11/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023]
Abstract
Chemoresistance is a primary cause of breast cancer treatment failure, and protein-protein interactions significantly contribute to chemoresistance during different stages of breast cancer progression. In pursuit of novel biomarkers and relevant protein-protein interactions occurring during the emergence of breast cancer chemoresistance, we used a computational predictive biological (CPB) approach. CPB identified associations of adhesion molecules with proteins connected with different breast cancer proteins associated with chemoresistance. This approach identified an association of Integrin β1 (ITGB1) with chemoresistance and breast cancer stem cell markers. ITGB1 activated the Focal Adhesion Kinase (FAK) pathway promoting invasion, migration, and chemoresistance in breast cancer by upregulating Erk phosphorylation. FAK also activated Wnt/Sox2 signaling, which enhanced self-renewal in breast cancer. Activation of the FAK pathway by ITGB1 represents a novel mechanism linked to breast cancer chemoresistance, which may lead to novel therapies capable of blocking breast cancer progression by intervening in ITGB1-regulated signaling pathways.
Collapse
Affiliation(s)
- Subhayan Das
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Moumita Kundu
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Atif Hassan
- Department of Computer Science & Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Aditya Parekh
- Anant National University, Ahmedabad, Gujarat, India
| | - Bikash Ch Jena
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Swati Mundre
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Indranil Banerjee
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, India; School of Pharmacy, Sister Nivedita University (Techno India Group), Kolkata, West Bengal, India
| | - Rajesh Yetirajam
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Chandan K Das
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Anjan K Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Pralay Mitra
- Department of Computer Science & Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Mahitosh Mandal
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
22
|
Huang Q, Zhu W, Gao X, Liu X, Zhang Z, Xing B. Nanoparticles-mediated ion channels manipulation: From their membrane interactions to bioapplications. Adv Drug Deliv Rev 2023; 195:114763. [PMID: 36841331 DOI: 10.1016/j.addr.2023.114763] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/26/2023]
Abstract
Ion channels are transmembrane proteins ubiquitously expressed in all cells that control various ions (e.g. Na+, K+, Ca2+ and Cl- etc) crossing cellular plasma membrane, which play critical roles in physiological processes including regulating signal transduction, cell proliferation as well as excitatory cell excitation and conduction. Abnormal ion channel function is usually associated with dysfunctions and many diseases, such as neurodegenerative disorders, ophthalmic diseases, pulmonary diseases and even cancers. The precise regulation of ion channels not only helps to decipher physiological and pathological processes, but also is expected to become cutting-edge means for disease treatment. Recently, nanoparticles-mediated ion channel manipulation emerges as a highly promising way to meet the increasing requirements with respect to their simple, efficient, precise, spatiotemporally controllable and non-invasive regulation in biomedicine and other research frontiers. Thanks the advantages of their unique properties, nanoparticles can not only directly block the pore sites or kinetics of ion channels through their tiny size effect, and perturb active voltage-gated ion channel by their charged surface, but they can also act as antennas to conduct or enhance external physical stimuli to achieve spatiotemporal, precise and efficient regulation of various ion channel activities (e.g. light-, mechanical-, and temperature-gated ion channels etc). So far, nanoparticles-mediated ion channel regulation has shown potential prospects in many biomedical fields at the interfaces of neuro- and cardiovascular modulation, physiological function regeneration and tumor therapy et al. Towards such important fields, in this typical review, we specifically outline the latest studies of different types of ion channels and their activities relevant to the diseases. In addition, the different types of stimulation responsive nanoparticles, their interaction modes and targeting strategies towards the plasma membrane ion channels will be systematically summarized. More importantly, the ion channel regulatory methods mediated by functional nanoparticles and their bioapplications associated with physiological modulation and therapeutic development will be discussed. Last but not least, current challenges and future perspectives in this field will be covered as well.
Collapse
Affiliation(s)
- Qiwen Huang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Weisheng Zhu
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiaoyin Gao
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xinping Liu
- School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Zhijun Zhang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Bengang Xing
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore.
| |
Collapse
|
23
|
Liu J, Smith S, Wang C. Photothermal Attenuation of Cancer Cell Stemness, Chemoresistance, and Migration Using CD44-Targeted MoS 2 Nanosheets. NANO LETTERS 2023; 23:1989-1999. [PMID: 36827209 PMCID: PMC10497231 DOI: 10.1021/acs.nanolett.3c00089] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cancer stem-like cells (CSCs) play key roles in chemoresistance, tumor metastasis, and clinical relapse. However, current CSC inhibitors lack specificity, efficacy, and applicability to different cancers. Herein, we introduce a nanomaterial-based approach to photothermally induce the differentiation of CSCs, termed "photothermal differentiation", leading to the attenuation of cancer cell stemness, chemoresistance, and metastasis. MoS2 nanosheets and a moderate photothermal treatment were applied to target a CSC surface receptor (i.e., CD44) and modulate its downstream signaling pathway. This treatment forces the more stem-like cancer cells to lose the mesenchymal phenotype and adopt an epithelial, less stem-like state, which shows attenuated self-renewal capacity, more response to anticancer drugs, and less invasiveness. This approach could be applicable to various cancers due to the broad availability of the CD44 biomarker. The concept of using photothermal nanomaterials to regulate specific cellular activities driving the differentiation of CSCs offers a new avenue for treating refractory cancers.
Collapse
Affiliation(s)
- Jinyuan Liu
- Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, 501 E St Joseph Street, Rapid City, South Dakota, 57701, United States
- BioSystems Networks & Translational Research (BioSNTR), 501 E St Joseph Street, Rapid City, South Dakota, 57701, United States
| | - Steve Smith
- Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, 501 E St Joseph Street, Rapid City, South Dakota, 57701, United States
- BioSystems Networks & Translational Research (BioSNTR), 501 E St Joseph Street, Rapid City, South Dakota, 57701, United States
| | - Congzhou Wang
- Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, 501 E St Joseph Street, Rapid City, South Dakota, 57701, United States
- BioSystems Networks & Translational Research (BioSNTR), 501 E St Joseph Street, Rapid City, South Dakota, 57701, United States
| |
Collapse
|
24
|
Photothermal effect of albumin-modified gold nanorods diminished neuroblastoma cancer stem cells dynamic growth by modulating autophagy. Sci Rep 2022; 12:11774. [PMID: 35821262 PMCID: PMC9276769 DOI: 10.1038/s41598-022-15660-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/27/2022] [Indexed: 11/08/2022] Open
Abstract
Here, we investigated the photothermal effect of gold nanorods (GNRs) on human neuroblastoma CD133+ cancer stem cells (CSCs) via autophagic cell death. GNRs were synthesized using Cetyltrimethylammonium bromide (CTAB), covered with bovine serum albumin (BSA). CD133+ CSCs were enriched from human neuroblastoma using the magnetic-activated cell sorting (MACS) technique. Cells were incubated with GNRs coated with BSA and exposed to 808-nm near-infrared laser irradiation for 8 min to yield low (43 °C), medium (46 °C), and high (49 °C) temperatures. After 24 h, the survival rate and the percent of apoptotic and necrotic CSCs were measured using MTT assay and flow cytometry. The expression of different autophagy-related genes was measured using polymerase chain reaction (PCR) array analysis. Protein levels of P62 and LC3 were detected using an enzyme-linked immunosorbent assay (ELISA). The viability of CSC was reduced in GNR-exposed cells compared to the control group (p < 0.05). At higher temperatures (49 °C), the percent of apoptotic CSCs, but not necrotic cells, increased compared to the lower temperatures. Levels of intracellular LC3 and P62 were reduced and increased respectively when the temperature increased to 49 °C (p < 0.05). These effects were non-significant at low and medium temperatures (43 and 46 °C) related to the control CSCs (p > 0.05). The clonogenic capacity of CSC was also inhibited after photothermal therapy (p < 0.05). Despite these changes, no statistically significant differences were found in terms of CSC colony number at different temperatures regardless of the presence or absence of HCQ. Based on the data, the combination of photothermal therapy with HCQ at 49 °C can significantly abort the CSC clonogenic capacity compared to the control-matched group without HCQ (p < 0.0001). PCR array showed photothermal modulation of CSCs led to alteration of autophagy-related genes and promotion of co-regulator of apoptosis and autophagy signaling pathways. Factors related to autophagic vacuole formation and intracellular transport were significantly induced at a temperature of 49 °C (p < 0.05). We also note the expression of common genes belonging to autophagy and apoptosis signaling pathways at higher temperatures. Data showed tumoricidal effects of laser-irradiated GNRs by the alteration of autophagic response and apoptosis.
Collapse
|
25
|
Li K, You F, Zhang Q, Yuan R, Yuan Q, Fu X, Ren Y, Wang Q, Li X, Zhang Z, Shichiri M, Yu Y. Chemical and Biological Evidence of the Efficacy of Shengxian Decoction for Treating Human Lung Adenocarcinoma. Front Oncol 2022; 12:849579. [PMID: 35372052 PMCID: PMC8975620 DOI: 10.3389/fonc.2022.849579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/24/2022] [Indexed: 11/23/2022] Open
Abstract
Shengxian Decoction (SXT) is a traditional Chinese medicine prescription comprising several anti-cancer medicinal herbs. However, the anti-cancer effect of SXT has rarely been reported. Herein, we explored the therapeutic potential of SXT for the treatment of lung adenocarcinoma (LUAD). High-performance liquid chromatography analysis of crude SXT extract revealed the abundance of mangiferin, an established anti-cancer compound. The serum pharmacological evaluation revealed that serum SXT suppressed A549 lung cancer cell proliferation in vitro. The tumor-inhibitory activity of SXT was confirmed in vivo via tumor formation assays in nude mice. We applied biochemical, histopathological and imaging approaches to investigate the cellular targets of SXT. The results indicated that the treatment with SXT induced tumor necrosis, and downregulated hypoxia-inducible factor 1 alpha in the serum. In vivo biosafety assessment of SXT revealed low levels of toxicity in mouse models. Our study provides the first scientific evidence that SXT effectively represses cancer cell growth and, thus, may serve as a safe anti-cancer agent for LUAD treatment.
Collapse
Affiliation(s)
- Kejuan Li
- College of Life Science, Sichuan Normal University, Chengdu, China
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Fengming You
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qin Zhang
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Ruijiao Yuan
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Qianghua Yuan
- Oncology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xi Fu
- Oncology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yifeng Ren
- Oncology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Wang
- Oncology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohong Li
- Oncology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Mototada Shichiri
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Japan
- DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), AIST, Tsukuba, Japan
| | - Yue Yu
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Japan
- DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), AIST, Tsukuba, Japan
- *Correspondence: Yue Yu,
| |
Collapse
|
26
|
Reghu S, Miyako E. Nanoengineered Bifidobacterium bifidum with Optical Activity for Photothermal Cancer Immunotheranostics. NANO LETTERS 2022; 22:1880-1888. [PMID: 35179380 DOI: 10.1021/acs.nanolett.1c04037] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
There is substantial interest regarding the understanding and designing of nanoengineered bacteria to combat various fatal diseases. Here, we report the nanoengineering of Bifidobacterium bifidum using Cremophor EL to encapsulate organic dye molecules by simple incubation and washing processes while maintaining the bacterial morphology and viability. The prepared functional bacteria exhibit characteristics such as optical absorbance, unique fluorescence, powerful photothermal conversion, low toxicity, excellent tumor targeting, and anticancer efficacy. They also displayed significant in vivo fluorescent expression in implanted colorectal cancerous tumors. Moreover, the powerful photothermal conversion of the functional bacteria could be spatiotemporally evoked by biologically penetrable near-infrared laser for effective tumor regression in mice, with the help of immunological responses. Our study demonstrates that a nanoengineering approach can provide the strong physicochemical traits and attenuation of living bacterial cells for cancer immunotheranostics.
Collapse
Affiliation(s)
- Sheethal Reghu
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Eijiro Miyako
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| |
Collapse
|
27
|
Chen WH, Onoe T, Kamimura M. Noninvasive near-infrared light triggers the remote activation of thermo-responsive TRPV1 channels in neurons based on biodegradable/photothermal polymer micelles. NANOSCALE 2022; 14:2210-2220. [PMID: 35084002 DOI: 10.1039/d1nr07242k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, we developed a novel biodegradable/photothermal polymer micelle-based remote-activation method for a temperature-sensitive ion channel, namely transient receptor potential cation channel subfamily V member 1 (TRPV1). Biodegradable/photothermal polymer micelles containing indocyanine green (ICG-micelles) were prepared using a simple one-pod mixing method. The obtained ICG-micelles showed biocompatibility and biodegradability. Furthermore, under tissue-penetrable near-infrared (NIR) laser irradiation, the ICG-micelles exhibited excellent photothermal effects and NIR emission. Moreover, NIR light-induced remote activation of neurons was successfully performed. ICG-micelles loaded with anti-TRPV1 antibodies effectively bound TRPV1 on cell membranes, and accelerated Ca2+ ion influx into neuronal cells was induced under NIR irradiation. Based on these findings, it is anticipated that the ICG-micelles can serve as a novel noninvasive remote-activation tool for neuronal cells.
Collapse
Affiliation(s)
- Wei-Hsu Chen
- Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan.
| | - Taiki Onoe
- Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan.
| | - Masao Kamimura
- Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan.
| |
Collapse
|
28
|
Liang C, Huang M, Li T, Li L, Sussman H, Dai Y, Siemann DW, Xie M, Tang X. Towards an integrative understanding of cancer mechanobiology: calcium, YAP, and microRNA under biophysical forces. SOFT MATTER 2022; 18:1112-1148. [PMID: 35089300 DOI: 10.1039/d1sm01618k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An increasing number of studies have demonstrated the significant roles of the interplay between microenvironmental mechanics in tissues and biochemical-genetic activities in resident tumor cells at different stages of tumor progression. Mediated by molecular mechano-sensors or -transducers, biomechanical cues in tissue microenvironments are transmitted into the tumor cells and regulate biochemical responses and gene expression through mechanotransduction processes. However, the molecular interplay between the mechanotransduction processes and intracellular biochemical signaling pathways remains elusive. This paper reviews the recent advances in understanding the crosstalk between biomechanical cues and three critical biochemical effectors during tumor progression: calcium ions (Ca2+), yes-associated protein (YAP), and microRNAs (miRNAs). We address the molecular mechanisms underpinning the interplay between the mechanotransduction pathways and each of the three effectors. Furthermore, we discuss the functional interactions among the three effectors in the context of soft matter and mechanobiology. We conclude by proposing future directions on studying the tumor mechanobiology that can employ Ca2+, YAP, and miRNAs as novel strategies for cancer mechanotheraputics. This framework has the potential to bring insights into the development of novel next-generation cancer therapies to suppress and treat tumors.
Collapse
Affiliation(s)
- Chenyu Liang
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering (HWCOE), Gainesville, FL, 32611, USA.
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
| | - Miao Huang
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering (HWCOE), Gainesville, FL, 32611, USA.
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
| | - Tianqi Li
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- Department of Biochemistry and Molecular Biology, College of Medicine (COM), Gainesville, FL, 32611, USA.
| | - Lu Li
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- Department of Biochemistry and Molecular Biology, College of Medicine (COM), Gainesville, FL, 32611, USA.
| | - Hayley Sussman
- Department of Radiation Oncology, COM, Gainesville, FL, 32611, USA
| | - Yao Dai
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- UF Genetics Institute (UFGI), University of Florida (UF), Gainesville, FL, 32611, USA
| | - Dietmar W Siemann
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- UF Genetics Institute (UFGI), University of Florida (UF), Gainesville, FL, 32611, USA
| | - Mingyi Xie
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- Department of Biochemistry and Molecular Biology, College of Medicine (COM), Gainesville, FL, 32611, USA.
- Department of Biomedical Engineering, College of Engineering (COE), University of Delaware (UD), Newark, DE, 19716, USA
| | - Xin Tang
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering (HWCOE), Gainesville, FL, 32611, USA.
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
| |
Collapse
|
29
|
Kumar N, Fazal S, Miyako E, Matsumura K, Rajan R. Avengers against cancer: A new era of nano-biomaterial-based therapeutics. MATERIALS TODAY 2021; 51:317-349. [DOI: 10.1016/j.mattod.2021.09.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
30
|
Kemp JA, Kwon YJ. Cancer nanotechnology: current status and perspectives. NANO CONVERGENCE 2021; 8:34. [PMID: 34727233 PMCID: PMC8560887 DOI: 10.1186/s40580-021-00282-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/05/2021] [Indexed: 05/09/2023]
Abstract
Modern medicine has been waging a war on cancer for nearly a century with no tangible end in sight. Cancer treatments have significantly progressed, but the need to increase specificity and decrease systemic toxicities remains. Early diagnosis holds a key to improving prognostic outlook and patient quality of life, and diagnostic tools are on the cusp of a technological revolution. Nanotechnology has steadily expanded into the reaches of cancer chemotherapy, radiotherapy, diagnostics, and imaging, demonstrating the capacity to augment each and advance patient care. Nanomaterials provide an abundance of versatility, functionality, and applications to engineer specifically targeted cancer medicine, accurate early-detection devices, robust imaging modalities, and enhanced radiotherapy adjuvants. This review provides insights into the current clinical and pre-clinical nanotechnological applications for cancer drug therapy, diagnostics, imaging, and radiation therapy.
Collapse
Affiliation(s)
- Jessica A Kemp
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA.
- Department of Chemical and Biomolecular Engineering, School of Engineering, University of California, Irvine, CA, 92697, USA.
- Department of Biomedical Engineering, School of Engineering, University of California, Irvine, CA, 92697, USA.
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
31
|
Ang MJY, Chan SY, Goh YY, Luo Z, Lau JW, Liu X. Emerging strategies in developing multifunctional nanomaterials for cancer nanotheranostics. Adv Drug Deliv Rev 2021; 178:113907. [PMID: 34371084 DOI: 10.1016/j.addr.2021.113907] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/09/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022]
Abstract
Cancer involves a collection of diseases with a common trait - dysregulation in cell proliferation. At present, traditional therapeutic strategies against cancer have limitations in tackling various tumors in clinical settings. These include chemotherapeutic resistance and the inability to overcome intrinsic physiological barriers to drug delivery. Nanomaterials have presented promising strategies for tumor treatment in recent years. Nanotheranostics combine therapeutic and bioimaging functionalities at the single nanoparticle level and have experienced tremendous growth over the past few years. This review highlights recent developments of advanced nanomaterials and nanotheranostics in three main directions: stimulus-responsive nanomaterials, nanocarriers targeting the tumor microenvironment, and emerging nanomaterials that integrate with phototherapies and immunotherapies. We also discuss the cytotoxicity and outlook of next-generation nanomaterials towards clinical implementation.
Collapse
Affiliation(s)
- Melgious Jin Yan Ang
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore; NUS Graduate School (ISEP), National University of Singapore, Singapore 119077, Singapore
| | - Siew Yin Chan
- Institute of Materials Research and Engineering, Agency for Science, Technology, and Research, Singapore 138634, Singapore
| | - Yi-Yiing Goh
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore; NUS Graduate School (ISEP), National University of Singapore, Singapore 119077, Singapore
| | - Zichao Luo
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Jun Wei Lau
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore; NUS Graduate School (ISEP), National University of Singapore, Singapore 119077, Singapore.
| |
Collapse
|
32
|
Yu W, Hu C, Gao H. Advances of nanomedicines in breast cancer metastasis treatment targeting different metastatic stages. Adv Drug Deliv Rev 2021; 178:113909. [PMID: 34352354 DOI: 10.1016/j.addr.2021.113909] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most common tumor in women, and the metastasis further increases the malignancy with extremely high mortality. However, there is almost no effective method in the clinic to completely inhibit breast cancer metastasis due to the dynamic multistep process with complex pathways and scattered occurring site. Nowadays, nanomedicines have been evidenced with great potential in treating cancer metastasis. In this review, we summarize the latest research advances of nanomedicines in anti-metastasis treatment. Strategies are categorized according to the metastasis dynamics, including primary tumor, circulating tumor cells, pre-metastatic niches and secondary tumor. In each different stage of metastasis process, nanomedicines are designed specifically with different functions. At the end of the review, we give our perspectives on current limitations and future directions in anti-metastasis therapy. We expect the review provides comprehensive understandings of anti-metastasis therapy for breast cancer, and boosts the clinical translation in the future to improve women's health.
Collapse
|
33
|
Kim G, Choi D, Eom SY, Song H, Jeong KS. Extended Short-Wavelength Infrared Photoluminescence and Photocurrent of Nonstoichiometric Silver Telluride Colloidal Nanocrystals. NANO LETTERS 2021; 21:8073-8079. [PMID: 34524828 DOI: 10.1021/acs.nanolett.1c02407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Demands on nontoxic nanomaterials in the short-wavelength infrared (SWIR) have rapidly grown over the past decade. Here, we present the nonstoichiometric silver chalcogenide nanocrystals of AgxTe (x > 2) and Ag2Te/Ag2S CQDs with a tunable bandgap across the SWIR region. When the atomic percent of the metal and chalcogenide elements are varied, the emission frequency of the excitonic peak is successfully extended to 2.7 μm. Surprisingly, the AgxTe CQD film responds to the SWIR light with a responsivity of 2.1 A/W at 78 K. Also, the Ag2S shell growth over the Ag2Te core enhances not only the emission intensity but also the structural rigidity, preventing crystal morphology deformation under the electron beam. The origin of the enhancement in the emission intensity and air stability of AgxTe and Ag2Te/Ag2S CQDs is carefully investigated by X-ray photoelectron spectroscopy (XPS). The optical properties and infrared photocurrent of AgxTe CQDs will provide new opportunities for solution-based SWIR applications.
Collapse
Affiliation(s)
- Gahyeon Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Dongsun Choi
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - So Young Eom
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Haemin Song
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Kwang Seob Jeong
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
34
|
Hong Z, Sun X, Sun X, Cao J, Yang Z, Pan Z, Yu T, Dong J, Zhou B, Bai J. Enzyme-induced morphological transformation of drug carriers: Implications for cytotoxicity and the retention time of antitumor agents. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112389. [PMID: 34579908 DOI: 10.1016/j.msec.2021.112389] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 02/09/2023]
Abstract
Nanocarriers have been widely employed to deliver chemotherapeutic drugs for cancer treatment. However, the insufficient accumulation of nanoparticles in tumors is an important reason for the poor efficacy of nanodrugs. In this study, a novel drug delivery system with a self-assembled amphiphilic peptide was designed to respond specifically to alkaline phosphatase (ALP), a protease overexpressed in cancer cells. The amphiphilic peptide self-assembled into spherical and fibrous nanostructures, and it easily assembled into spherical drug-loaded peptide nanoparticles after loading of a hydrophobic chemotherapeutic drug. The cytotoxicity of the drug carriers was enhanced against tumor cells over time. These spherical nanoparticles transformed into nanofibers under the induction of ALP, leading to efficient release of the encapsulated drug. This drug delivery strategy relying on responsiveness to an enzyme present in the tumor microenvironment can enhance local drug accumulation at the tumor site. The results of live animal imaging showed that the residence time of the morphologically transformable drug-loaded peptide nanoparticles at the tumor site was prolonged in vivo, confirming their potential use in antitumor therapy. These findings can contribute to a better understanding of the influence of drug carrier morphology on intracellular retention.
Collapse
Affiliation(s)
- Zexin Hong
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China
| | - Xirui Sun
- Department of Oncology, Weifang Medical University, Weifang 261053, China
| | - Xiumei Sun
- Department of Oncology, Weifang Medical University, Weifang 261053, China
| | - Juanjuan Cao
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China
| | - Zhengqiang Yang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Zhifang Pan
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China
| | - Tao Yu
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China
| | - Jinhua Dong
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China
| | - Baolong Zhou
- School of Pharmacy, Weifang Medical University, Weifang 261053, China.
| | - Jingkun Bai
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
35
|
Xu X, Han C, Zhang C, Yan D, Ren C, Kong L. Intelligent phototriggered nanoparticles induce a domino effect for multimodal tumor therapy. Theranostics 2021; 11:6477-6490. [PMID: 33995669 PMCID: PMC8120229 DOI: 10.7150/thno.55708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/31/2021] [Indexed: 12/16/2022] Open
Abstract
Rationale: Integration of several monotherapies into a single nanosystem can produce remarkable synergistic antitumor effects compared with separate delivery of combination therapies. We developed near-infrared (NIR) light-triggered nanoparticles that induce a domino effect for multimodal tumor therapy. Methods: The designed intelligent phototriggered nanoparticles (IPNs) were composed of a copper sulfide-loaded upconversion nanoparticle core, a thermosensitive and photosensitive enaminitrile molecule (EM) organogel shell loaded with anticancer drugs, and a cancer cell membrane coating. Irradiation with an NIR laser activated a domino effect beginning with photothermal generation by copper sulfide for photothermal therapy that also resulted in phase transformation of the EM gel to release the anticancer drug. Meanwhile, the NIR light energy was converted to ultraviolet light by the upconversion core to excite the EM, which generated reactive oxygen species for photodynamic therapy. Results: IPNs achieved excellent antitumor effects in vitro and in vivo with little systemic toxicity, indicating that IPNs could serve as a safe and high-performance instrument for synergetic antitumor therapy. Conclusion: This intelligent drug delivery system induced a chain reaction generating multiple antitumor therapies after a single stimulus.
Collapse
Affiliation(s)
- Xiao Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Chao Han
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Can Zhang
- State Key Laboratory of Natural Medicines, Center of Drug Discovery and Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Dan Yan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Chunling Ren
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| |
Collapse
|