1
|
Amereh M, Seyfoori A, Shojaei S, Lane S, Zhao T, Shokrollahi Barough M, Lum JJ, Walter P, Akbari M. Tumoroid Model Reveals Synergistic Impairment of Metabolism by Iron Chelators and Temozolomide in Chemo-Resistant Patient-derived Glioblastoma Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412505. [PMID: 40285641 PMCID: PMC12120723 DOI: 10.1002/advs.202412505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/18/2025] [Indexed: 04/29/2025]
Abstract
Chemoresistance poses a significant clinical challenge in managing glioblastoma (GBM), limiting the long-term success of traditional treatments. Here, a 3D tumoroid model is used to investigate the metabolic sensitivity of temozolomide (TMZ)-resistant GBM cells to iron chelation by deferoxamine (DFO) and deferiprone (DFP). This work shows that TMZ-resistant GBM cells acquire stem-like characteristics, higher intracellular iron levels, higher expression of aconitase, and elevated reliance on oxidative phosphorylation and proteins associated with iron metabolism. Using a microphysiological model of GBM-on-a-chip consisting of extracellular matrix (ECM)-incorporated tumoroids, this work demonstrates that the combination of iron chelators with TMZ induces a synergistic effect on an in vitro tumoroid model of newly diagnosed and recurrent chemo-resistant patient-derived GBM and reduced their size and invasion. Investigating downstream metabolic variations reveal reduced intracellular iron, increased reactive oxygen species (ROS), upregulated hypoxia-inducible factor-1α, reduced viability, increased autophagy, upregulated ribonucleotide reductase (RRM2), arrested proliferation, and induced cell death in normoxic TMZ-resistant cells. Hypoxic cells, while showing similar results, display reduced responses to iron deficiency, less blebbing, and an induced autophagic flux, suggesting an adaptive mechanism associated with hypoxia. These findings show that co-treatment with iron chelators and TMZ induces a synergistic effect, making this combination a promising GBM therapy.
Collapse
Affiliation(s)
- Meitham Amereh
- Laboratory for Innovations in Micro Engineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBCV8P 5C2Canada
| | - Amir Seyfoori
- Laboratory for Innovations in Micro Engineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBCV8P 5C2Canada
| | - Shahla Shojaei
- Department of Human Anatomy and Cell ScienceMax Rady College of MedicineRady Faculty of Health SciencesUniversity of ManitobaWinnipegMBR3T 2N2Canada
| | - Sarah Lane
- Department of BiologyUniversity of VictoriaBCCanada
| | - Tian Zhao
- Trev and Joyce Deeley Research CentreBC CancerVictoriaBCV8R 6V5Canada
| | - Mahdieh Shokrollahi Barough
- Laboratory for Innovations in Micro Engineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBCV8P 5C2Canada
| | - Julian J. Lum
- Trev and Joyce Deeley Research CentreBC CancerVictoriaBCV8R 6V5Canada
- Department of Biochemistry and MicrobiologyUniversity of VictoriaVictoriaBCV8W 2Y2Canada
| | | | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBCV8P 5C2Canada
- Terasaki Institute for Biomedical InnovationsLos AngelesCA91367USA
| |
Collapse
|
2
|
Hu Q, Han L, Wang J, Li F, Pu H, Shi Y. CLDN9 and hsa-miR-4496 as non-invasive biomarkers for gastric cancer detection. Discov Oncol 2025; 16:486. [PMID: 40198459 PMCID: PMC11978559 DOI: 10.1007/s12672-025-02153-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/17/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Gastric cancer is a leading cause of cancer deaths globally due to its often late diagnosis and poor survival rates. There's an urgent need for reliable non-invasive biomarkers for early detection. Claudin-9 (CLDN9), a protein implicated in epithelial-mesenchymal transition (EMT), has shown elevated expression in various cancers. This study investigates CLDN9's potential as a diagnostic marker for GC, with particular focus on mitochondrial pathway involvement. METHODS The analysis of CLDN9 expression in gastric cancer was conducted and validated through immunohistochemistry using data from The Cancer Genome Atlas (TCGA) database. The identification of microRNAs regulating CLDN9 utilized machine learning techniques, such as LASSO regression and random forest algorithms. The diagnostic potential of hsa-miR-4496, a primary regulatory miRNA, was evaluated in plasma and saliva samples, with diagnostic accuracy assessed using ROC curve analysis. RESULTS CLDN9 is significantly overexpressed in GC tissues and is associated with advanced stages and reduced survival rates. Immunohistochemical analysis confirmed the increased expression of CLDN9 protein in tumor tissues. Machine learning algorithms identified hsa-miR-4496 as the primary regulatory factor of CLDN9, with miRNA-regulated mRNA pathway analysis emphasizing that miRNA could exert its effects through the regulation of mitochondrial pathways. Pathway enrichment analysis highlighted mitochondrial processes as key regulatory pathways. Diagnostic evaluation of CLDN9 in plasma and saliva showed an AUC of 0.823, indicating strong diagnostic potential. CONCLUSIONS The results underscore the potential of CLDN9 and hsa-miR-4496 as promising non-invasive biomarkers for gastric cancer, with mitochondrial pathways being integral to their regulatory mechanisms. These biomarkers present potential for incorporation into clinical protocols, thereby facilitating early intervention and personalized treatment strategies for gastric cancer (GC).
Collapse
Affiliation(s)
- Qiongxia Hu
- Department of Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Lu Han
- Department of Comprehensive Ward, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Jinglin Wang
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, China
| | - Fei Li
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, China
| | - Hongfei Pu
- Department of Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, China
| | - Yue Shi
- School of Clinical Medicine, Changchun University of Chinese Medicine, No.1035, Boshuo Road, Jingyue National Hi-Tech Industrial Development Zone, Changchun, 130117, Jilin Province, China.
| |
Collapse
|
3
|
Zhang J, Liu T, Wu H, Wei J, Qu Q. Target oxidative stress-induced disulfidptosis: novel therapeutic avenues in Parkinson's disease. Mol Brain 2025; 18:29. [PMID: 40186271 PMCID: PMC11971801 DOI: 10.1186/s13041-025-01200-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/26/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Parkinson's disease (PD), a globally prevalent neurodegenerative disorder, has been implicated with oxidative stress (OS) as a central pathomechanism. Excessive reactive oxygen species (ROS) trigger neuronal damage and may induce disulfidptosis-a novel cell death modality not yet characterized in PD pathogenesis. METHOD Integrated bioinformatics analyses were conducted using GEO datasets to identify PD-associated differentially expressed genes (DEGs). These datasets were subjected to: immune infiltration analysis, gene set enrichment analysis (GSEA), weighted gene co-expression network analysis (WGCNA), intersection analysis of oxidative stress-related genes (ORGs) and disulfidptosis-related genes (DRGs) for functional enrichment annotation. Following hub gene identification, diagnostic performance was validated using independent cohorts. LASSO regression was applied for feature selection, with subsequent experimental validation in MPTP-induced PD mouse models. Single-cell transcriptomic profiling and molecular docking studies were performed to map target gene expression and assess drug-target interactions. RESULT A total of 1615 PD DEGs and 200 WGCNA DEGs were obtained, and the intersection with ORGs and DRGs resulted in 202 DEORGs, 11 DEDRGs, and 5 DED-ORGs (NDUFS2, LRPPRC, NDUFS1, GLUD1, and MYH6). These genes are mainly associated with oxidative stress, the respiratory electron transport chain, the ATP metabolic process, oxidative phosphorylation, mitochondrial respiration, and the TCA cycle. 10 hub genes have good diagnostic value, including in the validation dataset (AUC ≥ 0.507). LASSO analysis of hub genes yielded a total of 6 target genes, ACO2, CYCS, HSPA9, SNCA, SDHA, and VDAC1. In the MPTP-induced PD mice model, the expression of ACO2, HSPA9, and SDHA was decreased while the expression of CYCS, SNCA, and VDAC1 was increased, and the expression of the 5 DED-ORGs was decreased. Additionally, it was discovered that N-Acetylcysteine (NAC) could inhibit the occurrence of disulfidptosis in the MPTP-induced PD model. Subsequently, the distribution of target genes with AUC > 0.7 in different cell types of the brain was analyzed. Finally, molecular docking was performed between the anti-PD drugs entering clinical phase IV and the target genes. LRPPRC has low binding energy and strong affinity with duloxetine and donepezil, with binding energies of -7.6 kcal/mol and - 8.7 kcal/mol, respectively. CONCLUSION This study elucidates the pathogenic role of OS-induced disulfidptosis in PD progression. By identifying novel diagnostic biomarkers (e.g., DED-ORGs) and therapeutic targets (e.g., LRPPRC), our findings provide a mechanistic framework for PD management and lay the groundwork for future therapeutic development.
Collapse
Affiliation(s)
- Junshi Zhang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Department of Neurology, Huaihe Hospital of Henan Universtiy, Kaifeng, 475004, China
| | - Tingting Liu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Haojie Wu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Jianshe Wei
- Department of Neurology, Huaihe Hospital of Henan Universtiy, Kaifeng, 475004, China.
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| | - Qiumin Qu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
4
|
Noruzi S, Mohammadi R, Jamialahmadi K. CRISPR/Cas9 system: a novel approach to overcome chemotherapy and radiotherapy resistance in cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3373-3408. [PMID: 39560750 DOI: 10.1007/s00210-024-03480-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/21/2024] [Indexed: 11/20/2024]
Abstract
Cancer presents a global health challenge with rising incidence and mortality. Despite treatment advances in cancer therapy, radiotherapy and chemotherapy remained the most common treatments for all types of cancers. However, resistance phenotype in cancer cells leads to unsatisfactory results in the efficiency of therapeutic strategies. Therefore, researchers strive to propose effective solutions to overcome treatment failure, which requires a deep knowledge of treatment-resistant mechanisms. The progression and occurrence of tumors can be attributed to gene mutation. Over the past decade, the emergence of clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9) genome editing has revolutionized cancer research. This versatile technology enables cancer modeling, manipulation of specific DNA sequences, and genome-wide screening. CRISPR/Cas9 is an effective tool for identifying radio- and chemoresistance genes and offering potential adjunctive treatments to overcome tumor recurrence after chemo- and radiotherapy. This article aims to explain the potential of the CRISPR/Cas9 system in improving the effectiveness of chemo- and radiotherapy and ultimately overcoming treatment failure.
Collapse
Affiliation(s)
- Somaye Noruzi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rezvan Mohammadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khadijeh Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Tian J, Zhao J, Xu Z, Liu B, Pu J, Li H, Lei Q, Zhao Y, Zhou W, Li X, Huang X. Bioinformatics analysis to identify key invasion related genes and construct a prognostic model for glioblastoma. Sci Rep 2025; 15:10773. [PMID: 40155506 PMCID: PMC11953321 DOI: 10.1038/s41598-025-95067-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/18/2025] [Indexed: 04/01/2025] Open
Abstract
Glioblastoma (GBM) is the most common and lethal brain tumor with limited therapeutic strategies and incomplete studies on its progression and mechanisms. This study aims to reveal potential prognostic marker genes associated with GBM cell invasion, and establish an effective prognostic model for GBM patients. Differentially expressed genes (DEGs) were screened from The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA), differentially invasive-related genes was obtained, qRT-PCR was used to verify gene expression. The risk scores of individual patients, univariate and multivariate Cox regression were analyzed to investigate the correlation between risk values and glioblastoma, Finally, the risk scores with the prognostic clinical characteristics of the patients, such as PFS, OS were used to build a comprehensive GBM prognostic model. Five DEGs (GZMB, COL22A1, MSTN, CRYGN and OSMR) were significantly associated with GBM prognosis. Pseudotemporal analysis, risk scores (PFS, OS) based on tumor cells revealed that prognostic genes were associated with tumor proliferation and progression. The final prognostic model was developed and validated with good performance with higher accuracy(C-index: 0.675), and it was found that the risk value can serve as an independent prognostic factor for patients with glioblastoma (p < 0.05). We constructed a comprehensive prognostic model related to invasion in GBM patients using genetic profiles, survival curves, immune infiltration, and radiotherapy face susceptibility. The model has good predictive ability.
Collapse
Affiliation(s)
- Jintao Tian
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Jinxi Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Zhixing Xu
- Department of Neurosurgery, The Pu'er People's Hospital, Puer, 665000, China
| | - Bohu Liu
- Department of Neurosurgery, The Kunming First People's Hospital, Kunming, 650011, China
| | - Jun Pu
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Hongwen Li
- Department of Neurosurgery, The Dali People's Hospital, Dali, 671000, China
| | - Qingchun Lei
- Department of Neurosurgery, The Pu'er People's Hospital, Puer, 665000, China
| | - Yu Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Weilin Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Xuhui Li
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China.
| | - Xiaobin Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China.
| |
Collapse
|
6
|
Burban A, Tessier C, Larroquette M, Guyon J, Lubiato C, Pinglaut M, Toujas M, Galvis J, Dartigues B, Georget E, Luchman HA, Weiss S, Cappellen D, Nicot N, Klink B, Nikolski M, Brisson L, Mathivet T, Bikfalvi A, Daubon T, Sharanek A. Exploiting metabolic vulnerability in glioblastoma using a brain-penetrant drug with a safe profile. EMBO Mol Med 2025; 17:469-503. [PMID: 39901019 PMCID: PMC11903783 DOI: 10.1038/s44321-025-00195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 02/05/2025] Open
Abstract
Glioblastoma is one of the most treatment-resistant and lethal cancers, with a subset of self-renewing brain tumour stem cells (BTSCs), driving therapy resistance and relapse. Here, we report that mubritinib effectively impairs BTSC stemness and growth. Mechanistically, bioenergetic assays and rescue experiments showed that mubritinib targets complex I of the electron transport chain, thereby impairing BTSC self-renewal and proliferation. Gene expression profiling and Western blot analysis revealed that mubritinib disrupts the AMPK/p27Kip1 pathway, leading to cell-cycle impairment. By employing in vivo pharmacokinetic assays, we established that mubritinib crosses the blood-brain barrier. Using preclinical patient-derived and syngeneic models, we demonstrated that mubritinib delays glioblastoma progression and extends animal survival. Moreover, combining mubritinib with radiotherapy or chemotherapy offers survival advantage to animals. Notably, we showed that mubritinib alleviates hypoxia, thereby enhancing ROS generation, DNA damage, and apoptosis in tumours when combined with radiotherapy. Encouragingly, toxicological and behavioural studies revealed that mubritinib is well tolerated and spares normal cells. Our findings underscore the promising therapeutic potential of mubritinib, warranting its further exploration in clinic for glioblastoma therapy.
Collapse
Affiliation(s)
- Audrey Burban
- University of Bordeaux, CNRS, IBGC, UMR5095, Bordeaux, France
| | - Cloe Tessier
- University of Bordeaux, INSERM, UMR1312, BRIC, BoRdeaux Institute of onCology, Bordeaux, France
| | | | - Joris Guyon
- CHU of Bordeaux, Service de Pharmacologie Médicale, Bordeaux, France
- University of Bordeaux, INSERM, BPH, U1219, Bordeaux, France
| | - Cloe Lubiato
- University of Bordeaux, INSERM, UMR1312, BRIC, BoRdeaux Institute of onCology, Bordeaux, France
| | - Mathis Pinglaut
- University of Bordeaux, CNRS, IBGC, UMR5095, Bordeaux, France
| | - Maxime Toujas
- University of Bordeaux, INSERM, UMR1312, BRIC, BoRdeaux Institute of onCology, Bordeaux, France
| | - Johanna Galvis
- University of Bordeaux, CNRS, IBGC, UMR5095, Bordeaux, France
| | - Benjamin Dartigues
- Bordeaux Bioinformatic Center CBiB, University of Bordeaux, Bordeaux, France
| | - Emmanuelle Georget
- University of Bordeaux, INSERM, UMR1312, BRIC, BoRdeaux Institute of onCology, Bordeaux, France
| | - H Artee Luchman
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Samuel Weiss
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - David Cappellen
- University of Bordeaux, INSERM, UMR1312, BRIC, BoRdeaux Institute of onCology, Bordeaux, France
| | - Nathalie Nicot
- LuxGen Genome Center, Luxembourg Institute of Health, Laboratoire national de santé, Dudelange, Luxembourg
| | - Barbara Klink
- LuxGen Genome Center, Luxembourg Institute of Health, Laboratoire national de santé, Dudelange, Luxembourg
- National Center of Genetics (NCG), Laboratoire National de Santé (LNS), Dudelange, Luxembourg
- Department of Cancer Research (DoCR), Luxembourg Institute of Health (LIH), Luxembourg, 1526, Luxembourg
- Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Macha Nikolski
- University of Bordeaux, CNRS, IBGC, UMR5095, Bordeaux, France
- Bordeaux Bioinformatic Center CBiB, University of Bordeaux, Bordeaux, France
| | - Lucie Brisson
- University of Bordeaux, INSERM, UMR1312, BRIC, BoRdeaux Institute of onCology, Bordeaux, France
| | - Thomas Mathivet
- University of Bordeaux, INSERM, UMR1312, BRIC, BoRdeaux Institute of onCology, Bordeaux, France
| | - Andreas Bikfalvi
- University of Bordeaux, INSERM, UMR1312, BRIC, BoRdeaux Institute of onCology, Bordeaux, France.
| | - Thomas Daubon
- University of Bordeaux, CNRS, IBGC, UMR5095, Bordeaux, France.
| | - Ahmad Sharanek
- University of Bordeaux, INSERM, UMR1312, BRIC, BoRdeaux Institute of onCology, Bordeaux, France.
| |
Collapse
|
7
|
Mascharak S, Griffin M, Talbott HE, Guo JL, Parker J, Morgan AG, Valencia C, Kuhnert MM, Li DJ, Liang NE, Kratofil RM, Daccache JA, Sidhu I, Davitt MF, Guardino N, Lu JM, Abbas DB, Deleon NMD, Lavin CV, Adem S, Khan A, Chen K, Henn D, Spielman A, Cotterell A, Akras D, Downer M, Tevlin R, Lorenz HP, Gurtner GC, Januszyk M, Naik S, Wan DC, Longaker MT. Inhibiting mechanotransduction prevents scarring and yields regeneration in a large animal model. Sci Transl Med 2025; 17:eadt6387. [PMID: 39970235 DOI: 10.1126/scitranslmed.adt6387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/29/2025] [Indexed: 02/21/2025]
Abstract
Modulating mechanotransduction by inhibiting yes-associated protein (YAP) in mice yields wound regeneration without scarring. However, rodents are loose-skinned and fail to recapitulate key aspects of human wound repair. We sought to elucidate the effects of YAP inhibition in red Duroc pig wounds, the most human-like model of scarring. We show that one-time treatment with verteporfin, a YAP inhibitor, immediately after wounding is sufficient to prevent scarring and to drive wound regeneration in pigs. By performing single-cell RNA sequencing (scRNA-seq) on porcine wounds in conjunction with spatial proteomic analysis, we found perturbations in fibroblast dynamics with verteporfin treatment and the presence of putative pro-regenerative/profibrotic fibroblasts enriched in regenerating/scarring pig wounds, respectively. We also identified differences in enriched myeloid cell subpopulations after treatment and linked this observation to increased elaboration of interleukin-33 (IL-33) in regenerating wounds. Finally, we validated our findings in a xenograft wound model containing human neonatal foreskin engrafted onto nude mice and used scRNA-seq of human wound cells to draw parallels with fibroblast subpopulation dynamics in porcine wounds. Collectively, our findings provide support for the clinical translation of local mechanotransduction inhibitors to prevent human skin scarring, and they clarify a YAP/IL-33 signaling axis in large animal wound regeneration.
Collapse
Affiliation(s)
- Shamik Mascharak
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle Griffin
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Heather E Talbott
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jason L Guo
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jennifer Parker
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Annah Grace Morgan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Caleb Valencia
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Maxwell Michael Kuhnert
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dayan J Li
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Norah E Liang
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rachel M Kratofil
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joseph A Daccache
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ikjot Sidhu
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Applied Bioinformatics Laboratories, NYU Langone Health, New York, NY 10016, USA
| | - Michael F Davitt
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nicholas Guardino
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John M Lu
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Darren B Abbas
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nestor M D Deleon
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christopher V Lavin
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sandeep Adem
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anum Khan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kellen Chen
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dominic Henn
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amanda Spielman
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Asha Cotterell
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Deena Akras
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mauricio Downer
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ruth Tevlin
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - H Peter Lorenz
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Geoffrey C Gurtner
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Januszyk
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shruti Naik
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Ronald O. Perelman Department of Dermatology, NYU Langone Health, New York, NY 10016, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Derrick C Wan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael T Longaker
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
8
|
Gatto L, Di Nunno V, Ghelardini A, Tosoni A, Bartolini S, Asioli S, Ratti S, Di Stefano AL, Franceschi E. Targeting Mitochondria in Glioma: New Hopes for a Cure. Biomedicines 2024; 12:2730. [PMID: 39767637 PMCID: PMC11727304 DOI: 10.3390/biomedicines12122730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
Drugs targeting mitochondrial energy metabolism are emerging as promising antitumor therapeutics. Glioma treatment is extremely challenging due to the high complexity of the tumor and the high cellular heterogeneity. From a metabolic perspective, glioma cancer cells can be classified into the oxidative metabolic phenotype (mainly depending on mitochondrial respiration for energy production) and glycolytic phenotype or "Warburg effect" (mainly depending on glycolysis). Herein, we reviewed the function of novel bio-active molecules targeting oxidative phosphorylation (OXPHOS), mitochondrial membrane potential and mitochondrial dynamics. These molecules exhibit intriguing preclinical and clinical results and have been proven to be promising candidates to be further developed for glioma therapy. However, despite these initial encouraging results, it is imperative to rigorously assess the side effects of these metabolic drugs, which have a non-negligible toxicity profile.
Collapse
Affiliation(s)
- Lidia Gatto
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.D.N.); (A.T.); (S.B.); (E.F.)
| | - Vincenzo Di Nunno
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.D.N.); (A.T.); (S.B.); (E.F.)
| | - Anna Ghelardini
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Alicia Tosoni
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.D.N.); (A.T.); (S.B.); (E.F.)
| | - Stefania Bartolini
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.D.N.); (A.T.); (S.B.); (E.F.)
| | - Sofia Asioli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy;
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
| | - Stefano Ratti
- Cellular Signalling Laboratory, Anatomy Center, Department of Biomedical Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy;
| | - Anna Luisa Di Stefano
- Division of Neurosurgery, Azienda USL Toscana Nord Ovest, Spedali Riuniti di Livorno, 56121 Livorno, Italy;
- Department of Neurology, Foch Hospital, 92150 Suresnes, France
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.D.N.); (A.T.); (S.B.); (E.F.)
| |
Collapse
|
9
|
Shi P, Sha Y, Wang X, Yang T, Wu J, Zhou J, Liu K, Guan X, Wang S, Liu Y, Gao J, Sun H, Ban T, Cao Y. Targeted Delivery and ROS-Responsive Release of Lutein Nanoassemblies Inhibit Myocardial Ischemia-Reperfusion Injury by Improving Mitochondrial Function. Int J Nanomedicine 2024; 19:11973-11996. [PMID: 39583319 PMCID: PMC11585303 DOI: 10.2147/ijn.s488532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
Purpose Myocardial ischemia-reperfusion injury (MI/RI) is associated with increased oxidative damage and mitochondrial dysfunction, resulting in an elevated risk of mortality. MI/RI may be alleviated by protecting cardiomyocytes from oxidative stress. Lutein, which belongs to a class of carotenoids, has proven to be effective in cardiovascular disease treatment due to its remarkable antioxidant properties, but its application is limited due to its poor stability and low bioavailability in vivo. Methods In this study, a delivery system was developed based on distearoyl phosphatidyl ethanolamine (DSPE)-thiol-ketone (TK)-PEG2K (polyethylene glycol 2000) (abbreviated as DTP) and PCM-SH (CWLSEAGPVVTVRALRGTGSW) to deliver lutein (abbreviated as lutein@DTPP) to damaged myocardium. First, lutein, lutein@DTP, or lutein@DTPP were injected through the tail vein once a day for 3 days and then MI/RI model rats were established by exposing rats to ischemia for 45 min and reperfusion for 6 h. We employed a range of experimental techniques including qRT-PCR, Western blotting, transmission electron microscopy, immunohistochemistry, immunofluorescence, flow cytometry, immunoprecipitation, molecular docking, and molecular dynamics simulations. Results Lutein@DTPP exhibited good myocardial targeting and ROS-responsive release. Our data suggested that lutein@DTPP effectively suppresses ferroptosis in cardiomyocytes. Mechanistically, we observed an upregulation of mouse double minute-2 (MDM2) in the hearts of MI/RI models and cardiomyocytes exposed to hypoxia/reoxygenation (H/R) conditions. In addition, NADH-ubiquinone oxidoreductase 75 kDa Fe-S protein 1 (NDUFS1) translocation from the cytosol to the mitochondria was inhibited by MDM2 upregulation. Notably, no significant variation in the total NDUFS1 expression was observed in H/R-exposed cardiomyocytes following treatment with siMDM2. Further study indicated that lutein facilitates the translocation of NDUFS1 from the cytosol to mitochondria by directly binding and sequestering MDM2, thereby improving mitochondrial function and inhibiting ferroptosis. Conclusion Lutein@DTPP promoted the mitochondrial translocation of NDUFS1 to restore mitochondrial function and inhibited the ferroptosis of cardiomyocytes by directly binding and sequestering MDM2.
Collapse
Affiliation(s)
- Pilong Shi
- Department of Pharmacology, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| | - Yuetong Sha
- Department of Pharmacology, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| | - Xinran Wang
- Department of Pharmacology, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| | - Tao Yang
- Department of Pharmacology, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| | - Jiawei Wu
- Department of Pharmacology, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| | - Jiajun Zhou
- Department of Pharmacology, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| | - Kai Liu
- Department of Pharmacology, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| | - Xue Guan
- Morphological Experiment Center, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| | - Song Wang
- Department of Pharmacology, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| | - Yongsheng Liu
- Department of Pharmacology, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| | - Jingquan Gao
- Department of Nursing, School of Medicine, Lishui University, Lishui, People’s Republic of China
| | - Hongli Sun
- Department of Pharmacology, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| | - Tao Ban
- Department of Pharmacology, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| | - Yonggang Cao
- Department of Pharmacology, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| |
Collapse
|
10
|
Burban A, Sharanek A, Hernandez-Corchado A, Najafabadi HS, Soleimani VD, Jahani-Asl A. Targeting glioblastoma with a brain-penetrant drug that impairs brain tumor stem cells via NLE1-Notch1 complex. Stem Cell Reports 2024; 19:1534-1547. [PMID: 39423824 PMCID: PMC11589194 DOI: 10.1016/j.stemcr.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/21/2024] Open
Abstract
Brain tumor stem cells (BTSCs) are a population of self-renewing malignant stem cells that play an important role in glioblastoma tumor hierarchy and contribute to tumor growth, therapeutic resistance, and tumor relapse. Thus, targeting of BTSCs within the bulk of tumors represents a crucial therapeutic strategy. Here, we report that edaravone is a potent drug that impairs BTSCs in glioblastoma. We show that edaravone inhibits the self-renewal and growth of BTSCs harboring a diverse range of oncogenic mutations without affecting non-oncogenic neural stem cells. Global gene expression analysis revealed that edaravone significantly alters BTSC transcriptome and attenuates the expression of a large panel of genes involved in cell cycle progression, stemness, and DNA repair mechanisms. Mechanistically, we discovered that edaravone directly targets Notchless homolog 1 (NLE1) and impairs Notch signaling pathway, alters the expression of stem cell markers, and sensitizes BTSC response to ionizing radiation (IR)-induced cell death. Importantly, we show that edaravone treatment in preclinical models delays glioblastoma tumorigenesis, sensitizes their response to IR, and prolongs the lifespan of animals. Our data suggest that repurposing of edaravone is a promising therapeutic strategy for patients with glioblastoma.
Collapse
Affiliation(s)
- Audrey Burban
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada; Gerald Bronfman Department of Oncology, McGill University, 5100 de Maisonneuve Boulevard West, Montréal, QC H4A 3T2, Canada
| | - Ahmad Sharanek
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada; Gerald Bronfman Department of Oncology, McGill University, 5100 de Maisonneuve Boulevard West, Montréal, QC H4A 3T2, Canada
| | - Aldo Hernandez-Corchado
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montréal, QC H4A 3J1, Canada; Department of Human Genetics, McGill University, 3640 Rue University, Montréal, QC H3A OC7, Canada
| | - Hamed S Najafabadi
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montréal, QC H4A 3J1, Canada; Department of Human Genetics, McGill University, 3640 Rue University, Montréal, QC H3A OC7, Canada
| | - Vahab D Soleimani
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada; Department of Human Genetics, McGill University, 3640 Rue University, Montréal, QC H3A OC7, Canada; Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Arezu Jahani-Asl
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada; Gerald Bronfman Department of Oncology, McGill University, 5100 de Maisonneuve Boulevard West, Montréal, QC H4A 3T2, Canada; Cancer Therapeutic and Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
11
|
Xing Z, Jiang X, Chen Y, Wang T, Li X, Wei X, Fan Q, Yang J, Wu H, Cheng J, Cai R. Glutamine deprivation in glioblastoma stem cells triggers autophagic SIRT3 degradation to epigenetically restrict CD133 expression and stemness. Apoptosis 2024; 29:1619-1631. [PMID: 39068621 DOI: 10.1007/s10495-024-02003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2024] [Indexed: 07/30/2024]
Abstract
Glioblastoma multiforme (GBM) is a highly malignant brain tumor, and glioblastoma stem cells (GSCs) are the primary cause of GBM heterogeneity, invasiveness, and resistance to therapy. Sirtuin 3 (SIRT3) is mainly localized in the mitochondrial matrix and plays an important role in maintaining GSC stemness through cooperative interaction with the chaperone protein tumor necrosis factor receptor-associated protein 1 (TRAP1) to modulate mitochondrial respiration and oxidative stress. The present study aimed to further elucidate the specific mechanisms by which SIRT3 influences GSC stemness, including whether SIRT3 serves as an autophagy substrate and the mechanism of SIRT3 degradation. We first found that SIRT3 is enriched in CD133+ GSCs. Further experiments revealed that in addition to promoting mitochondrial respiration and reducing oxidative stress, SIRT3 maintains GSC stemness by epigenetically regulating CD133 expression via succinate. More importantly, we found that SIRT3 is degraded through the autophagy-lysosome pathway during GSC differentiation into GBM bulk tumor cells. GSCs are highly dependent on glutamine for survival, and in these cells, we found that glutamine deprivation triggers autophagic SIRT3 degradation to restrict CD133 expression, thereby disrupting the stemness of GSCs. Together our results reveal a novel mechanism by which SIRT3 regulates GSC stemness. We propose that glutamine restriction to trigger autophagic SIRT3 degradation offers a strategy to eliminate GSCs, which combined with other treatment methods may overcome GBM resistance to therapy as well as relapse.
Collapse
Affiliation(s)
- Zhengcao Xing
- Department of Biochemistry & Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xianguo Jiang
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yalan Chen
- Department of Biochemistry & Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiange Wang
- Department of Biochemistry & Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohe Li
- Department of Biochemistry & Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangyun Wei
- Department of Biochemistry & Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiuju Fan
- Department of Biochemistry & Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Yang
- Department of Biochemistry & Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongmei Wu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| | - Jinke Cheng
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Rong Cai
- Department of Biochemistry & Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
12
|
Zhang N, Wu P, Mu M, Niu C, Hu S. Exosomal circZNF800 Derived from Glioma Stem-like Cells Regulates Glioblastoma Tumorigenicity via the PIEZO1/Akt Axis. Mol Neurobiol 2024; 61:6556-6571. [PMID: 38324181 PMCID: PMC11338982 DOI: 10.1007/s12035-024-04002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 01/30/2024] [Indexed: 02/08/2024]
Abstract
Exosomes play a crucial role in regulating crosstalk between tumor and tumor stem-like cells through their cargo molecules. Circular RNAs (circRNAs) have recently been demonstrated to be critical factors in tumorigenesis. This study focuses on the molecular mechanism by which circRNAs from glioma stem-like cell (GSLC) exosomes regulate glioblastoma (GBM) tumorigenicity. In this study, we validated that GSLC exosomes accelerated the malignant phenotype of GBM. Subsequently, we found that circZNF800 was highly expressed in GSLC exosomes and was negatively associated with GBM patients. CircZNF800 promoted GBM cell proliferation and migration and inhibited GBM cell apoptosis in vitro. Silencing circZNF800 could improve the GBM xenograft model survival rate. Mechanistic studies revealed that circZNF800 activated the PIEZO1/Akt signaling pathway by sponging miR-139-5p. CircZNF800 derived from GSLC exosomes promoted GBM cell tumorigenicity and predicted poor prognosis in GBM patients. CircZNF800 has the potential to serve as a promising target for further therapeutic exploration.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Neurosurgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, People's Republic of China
| | - Pengfei Wu
- Department of Neurosurgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, People's Republic of China
| | - Maolin Mu
- Department of Neurosurgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, People's Republic of China
| | - Chaoshi Niu
- Department of Neurosurgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China.
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, People's Republic of China.
- Anhui Provincial Stereotactic Neurosurgical Institute, Hefei, Anhui, 230001, People's Republic of China.
- Anhui Provincial Clinical Research Center for Neurosurgical Disease, Hefei, Anhui, 230001, People's Republic of China.
| | - Shanshan Hu
- Department of Neurosurgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China.
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, People's Republic of China.
- Anhui Provincial Stereotactic Neurosurgical Institute, Hefei, Anhui, 230001, People's Republic of China.
- Anhui Provincial Clinical Research Center for Neurosurgical Disease, Hefei, Anhui, 230001, People's Republic of China.
| |
Collapse
|
13
|
He Z, Liu Z, Wang Q, Sima X, Zhao W, He C, Yang W, Chen H, Gong B, Song S, Wang Y. Single-cell and spatial transcriptome assays reveal heterogeneity in gliomas through stress responses and pathway alterations. Front Immunol 2024; 15:1452172. [PMID: 39257581 PMCID: PMC11385306 DOI: 10.3389/fimmu.2024.1452172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/31/2024] [Indexed: 09/12/2024] Open
Abstract
Background Glioma is a highly heterogeneous malignancy of the central nervous system. This heterogeneity is driven by various molecular processes, including neoplastic transformation, cell cycle dysregulation, and angiogenesis. Among these biomolecular events, inflammation and stress pathways in the development and driving factors of glioma heterogeneity have been reported. However, the mechanisms of glioma heterogeneity under stress response remain unclear, especially from a spatial aspect. Methods This study employed single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) to explore the impact of oxidative stress response genes in oligodendrocyte precursor cells (OPCs). Our analysis identified distinct pathways activated by oxidative stress in two different types of gliomas: high- and low- grade (HG and LG) gliomas. Results In HG gliomas, oxidative stress induced a metabolic shift from oxidative phosphorylation to glycolysis, promoting cell survival by preventing apoptosis. This metabolic reprogramming was accompanied by epithelial-to-mesenchymal transition (EMT) and an upregulation of stress response genes. Furthermore, SCENIC (Single-Cell rEgulatory Network Inference and Clustering) analysis revealed that oxidative stress activated the AP1 transcription factor in HG gliomas, thereby enhancing tumor cell survival and proliferation. Conclusion Our findings provide a novel perspective on the mechanisms of oxidative stress responses across various grades of gliomas. This insight enhances our comprehension of the evolutionary processes and heterogeneity within gliomas, potentially guiding future research and therapeutic strategies.
Collapse
Affiliation(s)
- Zongze He
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Zheng Liu
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Qi Wang
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xingjian Sima
- Medical School, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhao
- Center of Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chunmei He
- Department of Otolaryngology, Chongqing General Hospital of the Chinese People's Armed Police Force, Chongqing, China
| | - Wenjie Yang
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Han Chen
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Gong
- Department of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Yi Wang
- Center of Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
14
|
Kathad U, Biyani N, Peru y Colón De Portugal RL, Zhou J, Kochat H, Bhatia K. Expanding the repertoire of Antibody Drug Conjugate (ADC) targets with improved tumor selectivity and range of potent payloads through in-silico analysis. PLoS One 2024; 19:e0308604. [PMID: 39186767 PMCID: PMC11346940 DOI: 10.1371/journal.pone.0308604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/28/2024] [Indexed: 08/28/2024] Open
Abstract
Antibody-Drug Conjugates (ADCs) have emerged as a promising class of targeted cancer therapeutics. Further refinements are essential to unlock their full potential, which is currently limited by a lack of validated targets and payloads. Essential aspects of developing effective ADCs involve the identification of surface antigens, ideally distinguishing target tumor cells from healthy types, uniformly expressed, accompanied by a high potency payload capable of selective targeting. In this study, we integrated transcriptomics, proteomics, immunohistochemistry and cell surface membrane datasets from Human Protein Atlas, Xenabrowser and Gene Expression Omnibus utilizing Lantern Pharma's proprietary AI platform Response Algorithm for Drug positioning and Rescue (RADR®). We used this in combination with evidence based filtering to identify ADC targets with improved tumor selectivity. Our analysis identified a set of 82 targets and a total of 290 target indication combinations for effective tumor targeting. We evaluated the impact of tumor mutations on target expression levels by querying 416 genes in the TCGA mutation database against 22 tumor subtypes. Additionally, we assembled a catalog of compounds to identify potential payloads using the NCI-Developmental Therapeutics Program. Our payload mining strategy classified 729 compounds into three subclasses based on GI50 values spanning from pM to 10 nM range, in combination with sensitivity patterns across 9 different cancer indications. Our results identified a diverse range of both targets and payloads, that can serve to facilitate multiple choices for precise ADC targeting. We propose an initial approach to identify suitable target-indication-payload combinations, serving as a valuable starting point for development of future ADC candidates.
Collapse
Affiliation(s)
- Umesh Kathad
- Lantern Pharma Inc., Dallas, TX, United States of America
| | - Neha Biyani
- Lantern Pharma Inc., Dallas, TX, United States of America
| | | | - Jianli Zhou
- Lantern Pharma Inc., Dallas, TX, United States of America
| | - Harry Kochat
- The University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Kishor Bhatia
- Lantern Pharma Inc., Dallas, TX, United States of America
| |
Collapse
|
15
|
Chu X, Tian W, Ning J, Xiao G, Zhou Y, Wang Z, Zhai Z, Tanzhu G, Yang J, Zhou R. Cancer stem cells: advances in knowledge and implications for cancer therapy. Signal Transduct Target Ther 2024; 9:170. [PMID: 38965243 PMCID: PMC11224386 DOI: 10.1038/s41392-024-01851-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/27/2024] [Accepted: 04/28/2024] [Indexed: 07/06/2024] Open
Abstract
Cancer stem cells (CSCs), a small subset of cells in tumors that are characterized by self-renewal and continuous proliferation, lead to tumorigenesis, metastasis, and maintain tumor heterogeneity. Cancer continues to be a significant global disease burden. In the past, surgery, radiotherapy, and chemotherapy were the main cancer treatments. The technology of cancer treatments continues to develop and advance, and the emergence of targeted therapy, and immunotherapy provides more options for patients to a certain extent. However, the limitations of efficacy and treatment resistance are still inevitable. Our review begins with a brief introduction of the historical discoveries, original hypotheses, and pathways that regulate CSCs, such as WNT/β-Catenin, hedgehog, Notch, NF-κB, JAK/STAT, TGF-β, PI3K/AKT, PPAR pathway, and their crosstalk. We focus on the role of CSCs in various therapeutic outcomes and resistance, including how the treatments affect the content of CSCs and the alteration of related molecules, CSCs-mediated therapeutic resistance, and the clinical value of targeting CSCs in patients with refractory, progressed or advanced tumors. In summary, CSCs affect therapeutic efficacy, and the treatment method of targeting CSCs is still difficult to determine. Clarifying regulatory mechanisms and targeting biomarkers of CSCs is currently the mainstream idea.
Collapse
Affiliation(s)
- Xianjing Chu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wentao Tian
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yunqi Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ziqi Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhuofan Zhai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jie Yang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
16
|
Wang D, Wang S, Jin M, Zuo Y, Wang J, Niu Y, Zhou Q, Chen J, Tang X, Tang W, Liu X, Yu H, Yan W, Wei H, Huang G, Song S, Tang S. Hypoxic Exosomal circPLEKHM1-Mediated Crosstalk between Tumor Cells and Macrophages Drives Lung Cancer Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309857. [PMID: 38509870 PMCID: PMC11165461 DOI: 10.1002/advs.202309857] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/09/2024] [Indexed: 03/22/2024]
Abstract
Intercellular communication often relies on exosomes as messengers and is critical for cancer metastasis in hypoxic tumor microenvironment. Some circular RNAs (circRNAs) are enriched in cancer cell-derived exosomes, but little is known about their ability to regulate intercellular communication and cancer metastasis. Here, by systematically analyzing exosomes secreted by non-small cell lung cancer (NSCLC) cells, a hypoxia-induced exosomal circPLEKHM1 is identified that drives NSCLC metastasis through polarizing macrophages toward to M2 type. Mechanistically, exosomal circPLEKHM1 promoted PABPC1-eIF4G interaction to facilitate the translation of the oncostatin M receptor (OSMR), thereby promoting macrophage polarization for cancer metastasis. Importantly, circPLEKHM1-targeted therapy significantly reduces NSCLC metastasis in vivo. circPLEKHM1 serves as a prognostic biomarker for metastasis and poor survival in NSCLC patients. This study unveils a new circRNA-mediated mechanism underlying how cancer cells crosstalk with macrophages within the hypoxic tumor microenvironment to promote metastasis, highlighting the importance of exosomal circPLEKHM1 as a prognostic biomarker and therapeutic target for lung cancer metastasis.
Collapse
|
17
|
Yang XL, Zeng Z, Wang C, Sheng YL, Wang GY, Zhang FQ, Lian X. Predictive Model to Identify the Long Time Survivor in Patients with Glioblastoma: A Cohort Study Integrating Machine Learning Algorithms. J Mol Neurosci 2024; 74:48. [PMID: 38662286 DOI: 10.1007/s12031-024-02218-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/31/2024] [Indexed: 04/26/2024]
Abstract
We aimed to develop and validate a predictive model for identifying long-term survivors (LTS) among glioblastoma (GB) patients, defined as those with an overall survival (OS) of more than 3 years. A total of 293 GB patients from CGGA and 169 from TCGA database were assigned to training and validation cohort, respectively. The differences in expression of immune checkpoint genes (ICGs) and immune infiltration landscape were compared between LTS and short time survivor (STS) (OS<1.5 years). The differentially expressed genes (DEGs) and weighted gene co-expression network analysis (WGCNA) were used to identify the genes differentially expressed between LTS and STS. Three different machine learning algorithms were employed to select the predictive genes from the overlapping region of DEGs and WGCNA to construct the nomogram. The comparison between LTS and STS revealed that STS exhibited an immune-resistant status, with higher expression of ICGs (P<0.05) and greater infiltration of immune suppression cells compared to LTS (P<0.05). Four genes, namely, OSMR, FMOD, CXCL14, and TIMP1, were identified and incorporated into the nomogram, which possessed good potential in predicting LTS probability among GB patients both in the training (C-index, 0.791; 0.772-0.817) and validation cohort (C-index, 0.770; 0.751-0.806). STS was found to be more likely to exhibit an immune-cold phenotype. The identified predictive genes were used to construct the nomogram with potential to identify LTS among GB patients.
Collapse
Affiliation(s)
- Xi-Lin Yang
- Department of Radiation Oncology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Zheng Zeng
- Department of Radiation Oncology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Chen Wang
- Department of Radiation Oncology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Yun-Long Sheng
- Department of Radiation Oncology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), Beijing, People's Republic of China
| | - Guang-Yu Wang
- Department of Radiation Oncology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Fu-Quan Zhang
- Department of Radiation Oncology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.
| | - Xin Lian
- Department of Radiation Oncology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.
| |
Collapse
|
18
|
Uslu C, Kapan E, Lyakhovich A. Cancer resistance and metastasis are maintained through oxidative phosphorylation. Cancer Lett 2024; 587:216705. [PMID: 38373691 DOI: 10.1016/j.canlet.2024.216705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/21/2024]
Abstract
Malignant tumors have increased energy requirements due to growth, differentiation or response to stress. A significant number of studies in recent years have described upregulation of mitochondrial genes responsible for oxidative phosphorylation (OXPHOS) in some tumors. Although OXPHOS is replaced by glycolysis in some tumors (Warburg effect), both processes can occur simultaneously during the evolution of the same malignancies. In particular, chemoresistant and/or cancer stem cells appear to find a way to activate OXPHOS and metastasize. In this paper, we discuss recent work showing upregulation of OXPHOS in chemoresistant tumors and cell models. In addition, we show an inverse correlation of OXPHOS gene expression with the survival time of cancer patients after chemotherapy and discuss combination therapies for resistant tumors.
Collapse
Affiliation(s)
- Cemile Uslu
- Sabanci University, Molecular Biology, Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Turkey
| | - Eda Kapan
- Sabanci University, Molecular Biology, Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Turkey
| | - Alex Lyakhovich
- Sabanci University, Molecular Biology, Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Turkey.
| |
Collapse
|
19
|
Liu T, You Z, Shen F, Yang P, Chen J, Meng S, Wang C, Xiong D, You C, Wang Z, Shi Y, Ye L. Tricarboxylic Acid Cycle Metabolite-Coordinated Biohydrogels Augment Cranial Bone Regeneration Through Neutrophil-Stimulated Mesenchymal Stem Cell Recruitment and Histone Acetylation-Mediated Osteogenesis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5486-5503. [PMID: 38284176 DOI: 10.1021/acsami.3c15473] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Cranial bone defects remain a major clinical challenge, increasing patients' life burdens. Tricarboxylic acid (TCA) cycle metabolites play crucial roles in facilitating bone tissue regeneration. However, the development of TCA cycle metabolite-modified biomimetic grafts for skull bone regeneration still needs to be improved. The mechanism underlying the release of TCA cycle metabolites from biomaterials in regulating immune responses and mesenchymal stem cell (MSC) fate (migration and differentiation) remains unknown. Herein, this work constructs biomimetic hydrogels composed of gelatin and chitosan networks covalently cross-linked by genipin (CGG hydrogels). A series of TCA cycle metabolite-coordinated CGG hydrogels with strong mechanical and antiswelling performances are subsequently developed. Remarkably, the citrate (Na3Cit, Cit)-coordinated CGG hydrogels (CGG-Cit hydrogels) with the highest mechanical modulus and strength significantly promote skull bone regeneration in rat and murine cranial defects. Mechanistically, using a transgenic mouse model, bulk RNA sequencing, and single-cell RNA sequencing, this work demonstrates that CGG-Cit hydrogels promote Gli1+ MSC migration via neutrophil-secreted oncostatin M. Results also indicate that citrate improves osteogenesis via enhanced histone H3K9 acetylation on osteogenic master genes. Taken together, the immune microenvironment- and MSC fate-regulated CGG-Cit hydrogels represent a highly efficient and facile approach toward skull bone tissue regeneration with great potential for bench-to-bedside translation.
Collapse
Affiliation(s)
- Tingjun Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ziying You
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Fangyuan Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Puying Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Junyu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuhuai Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ding Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chengjia You
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhenming Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
20
|
Zhang S, Yang R, Ouyang Y, Shen Y, Hu L, Xu C. Cancer stem cells: a target for overcoming therapeutic resistance and relapse. Cancer Biol Med 2023; 20:j.issn.2095-3941.2023.0333. [PMID: 38164743 PMCID: PMC10845928 DOI: 10.20892/j.issn.2095-3941.2023.0333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Cancer stem cells (CSCs) are a small subset of cells in cancers that are thought to initiate tumorous transformation and promote metastasis, recurrence, and resistance to treatment. Growing evidence has revealed the existence of CSCs in various types of cancers and suggested that CSCs differentiate into diverse lineage cells that contribute to tumor progression. We may be able to overcome the limitations of cancer treatment with a comprehensive understanding of the biological features and mechanisms underlying therapeutic resistance in CSCs. This review provides an overview of the properties, biomarkers, and mechanisms of resistance shown by CSCs. Recent findings on metabolic features, especially fatty acid metabolism and ferroptosis in CSCs, are highlighted, along with promising targeting strategies. Targeting CSCs is a potential treatment plan to conquer cancer and prevent resistance and relapse in cancer treatment.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610042, China
| | - Rui Yang
- Department of Ultrasound in Medicine, Chengdu Wenjiang District People’s Hospital, Chengdu 611130, China
| | - Yujie Ouyang
- Acupuncture and Massage College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yang Shen
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- School of Pharmacy, Macau University of Science and Technology, Macau SAR 999078, China
| | - Lanlin Hu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Yu-Yue Pathology Scientific Research Center, Chongqing 400039, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Chuan Xu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Yu-Yue Pathology Scientific Research Center, Chongqing 400039, China
- Jinfeng Laboratory, Chongqing 401329, China
| |
Collapse
|
21
|
Zhang X, Ren Q, Li Z, Xia X, Zhang W, Qin Y, Wu D, Ren C. Exploration of the radiosensitivity-related prognostic risk signature in patients with glioma: evidence from microarray data. J Transl Med 2023; 21:618. [PMID: 37700319 PMCID: PMC10496232 DOI: 10.1186/s12967-023-04388-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/24/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Gene expression signatures can be used as prognostic biomarkers in various types of cancers. We aim to develop a gene signature for predicting the response to radiotherapy in glioma patients. METHODS Radio-sensitive and radio-resistant glioma cell lines (M059J and M059K) were subjected to microarray analysis to screen for differentially expressed mRNAs. Additionally, we obtained 169 glioblastomas (GBM) samples and 5 normal samples from The Cancer Genome Atlas (TCGA) database, as well as 80 GBM samples and 4 normal samples from the GSE7696 set. The "DESeq2" R package was employed to identify differentially expressed genes (DEGs) between the normal brain samples and GBM samples. Combining the prognostic-related molecules identified from the TCGA, we developed a radiosensitivity-related prognostic risk signature (RRPRS) in the training set, which includes 152 patients with glioblastoma. Subsequently, we validated the reliability of the RRPRS in a validation set containing 616 patients with glioma from the TCGA database, as well as an internal validation set consisting of 31 glioblastoma patients from the Nanfang Hospital, Southern Medical University. RESULTS Based on the microarray and LASSO COX regression analysis, we developed a nine-gene radiosensitivity-related prognostic risk signature. Patients with glioma were divided into high- or low-risk groups based on the median risk score. The Kaplan-Meier survival analysis showed that the progression-free survival (PFS) of the high-risk group was significantly shorter. The signature accurately predicted PFS as assessed by time-dependent receiver operating characteristic curve (ROC) analyses. Stratified analysis demonstrated that the signature is specific to predict the outcome of patients who were treated using radiotherapy. Univariate and multivariate Cox regression analysis revealed that the predictor was an independent predictor for the prognosis of patients with glioma. The prognostic nomograms accompanied by calibration curves displayed the 1-, 2-, and 3-year PFS and OS in patients with glioma. CONCLUSION Our study established a new nine-gene radiosensitivity-related prognostic risk signature that can predict the prognosis of patients with glioma who received radiotherapy. The nomogram showed great potential to predict the prognosis of patients with glioma treated using radiotherapy.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Department of Radiation Oncology, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Qiannan Ren
- Department of Radiation Oncology, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Zhiyong Li
- Department of Neurosurgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Xiaolin Xia
- Department of Radiation Oncology, Yunfu People's Hospital, Yunfu, Guangdong, China
| | - Wan Zhang
- Department of Radiation Oncology, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Yue Qin
- Department of Radiation Oncology, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Dehua Wu
- Department of Radiation Oncology, Nanfang Hospital of Southern Medical University, Guangzhou, China.
| | - Chen Ren
- Department of Radiation Oncology, Nanfang Hospital of Southern Medical University, Guangzhou, China.
| |
Collapse
|
22
|
Polak KL, Tamagno I, Parameswaran N, Smigiel J, Chan ER, Yuan X, Rios B, Jackson MW. Oncostatin-M and OSM-Receptor Feed-Forward Activation of MAPK Induces Separable Stem-like and Mesenchymal Programs. Mol Cancer Res 2023; 21:975-990. [PMID: 37310811 PMCID: PMC10527478 DOI: 10.1158/1541-7786.mcr-22-0715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/19/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023]
Abstract
Patients diagnosed with pancreatic ductal adenocarcinoma (PDAC) frequently present with advanced metastatic disease and exhibit a poor response to therapy, resulting in poor outcomes. The tumor microenvironment cytokine Oncostatin-M (OSM) initiates PDAC plasticity, inducing the reprogramming to a stem-like/mesenchymal state, which enhances metastasis and therapy resistance. Using a panel of PDAC cells driven through epithelial-mesenchymal transition (EMT) by OSM or the transcription factors ZEB1 or SNAI1, we find that OSM uniquely induces tumor initiation and gemcitabine resistance independently of its ability to induce a CD44HI/mesenchymal phenotype. In contrast, while ZEB1 and SNAI1 induce a CD44HI/mesenchymal phenotype and migration comparable with OSM, they are unable to promote tumor initiation or robust gemcitabine resistance. Transcriptomic analysis identified that OSM-mediated stemness requires MAPK activation and sustained, feed-forward transcription of OSMR. MEK and ERK inhibitors prevented OSM-driven transcription of select target genes and stem-like/mesenchymal reprogramming, resulting in reduced tumor growth and resensitization to gemcitabine. We propose that the unique properties of OSMR, which hyperactivates MAPK signaling when compared with other IL6 family receptors, make it an attractive therapeutic target, and that disrupting the OSM-OSMR-MAPK feed-forward loop may be a novel way to therapeutically target the stem-like behaviors common to aggressive PDAC. IMPLICATIONS Small-molecule MAPK inhibitors may effectively target the OSM/OSMR-axis that leads to EMT and tumor initiating properties that promote aggressive PDAC.
Collapse
Affiliation(s)
- Kelsey L Polak
- Department of Pathology and Case Comprehensive Cancer Center, Case Western Reserve University Cleveland, OH, USA
| | - Ilaria Tamagno
- Department of Pathology and Case Comprehensive Cancer Center, Case Western Reserve University Cleveland, OH, USA
| | - Neetha Parameswaran
- Department of Pathology and Case Comprehensive Cancer Center, Case Western Reserve University Cleveland, OH, USA
| | - Jacob Smigiel
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - E. Ricky Chan
- Department of Pathology and Case Comprehensive Cancer Center, Case Western Reserve University Cleveland, OH, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Xueer Yuan
- Department of Pathology and Case Comprehensive Cancer Center, Case Western Reserve University Cleveland, OH, USA
| | - Brenda Rios
- Cancer Biology Program, Vanderbilt School of Medicine, Nashville, Tennessee, USA
| | - Mark W. Jackson
- Department of Pathology and Case Comprehensive Cancer Center, Case Western Reserve University Cleveland, OH, USA
| |
Collapse
|
23
|
Wu D, He L, Xu Z, Tian RF, Fan XY, Fan J, Ai J, Bian HJ, Qin WJ, Qin J, Li L. The combination of NDUFS1 with CD4 + T cell infiltration predicts favorable prognosis in kidney renal clear cell carcinoma. Front Cell Dev Biol 2023; 11:1168462. [PMID: 37469574 PMCID: PMC10352660 DOI: 10.3389/fcell.2023.1168462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023] Open
Abstract
Background: Kidney renal clear cell carcinoma (KIRC) is an immunogenic tumor, and immune infiltrates are relevant to patients' therapeutic response and prognosis. NDUFS1, the core subunit of mitochondrial complex I, has been reported to be associated with KIRC patients' prognosis. However, the upstream regulator for NDUFS1 and their correlations with immune infiltration remain unclear. Methods: The expression of NDUFS genes in KIRC and their influences on patients' survival were investigated by UALCAN, ENCORI, Oncomine, TIMER as well as Kaplan-Meier Plotter. miRNAs regulating NDUFS1 were predicted and analyzed by TargetScan and ENCORI. The correlations between NDUFS1 expression and immune cell infiltration or gene marker sets of immune infiltrates were analyzed via TIMER. The overall survival in high/low NDUFS1 or hsa-miR-320b expressed KIRC patients with or without immune infiltrates were analyzed via Kaplan-Meier Plotter. The combined NDUFS1 expression and/or CD4+ T cell infiltration on KIRC patients' overall survival were validated by multiplexed immunofluorescence (mIF) staining in tissue microarray (TMA). Furthermore, the influences of NDUFS1 expression on the chemotaxis of CD4+ T cells to KIRC cells were performed by transwell migration assays. Results: We found that the low expression of NDUFS1 mRNA and protein in KIRC was correlated with unfavorable patients' survival and poor infiltration of CD4+ T cells. In patients with decreased CD4+ T cell infiltration whose pathological grade less than III, TMA mIF staining showed that low expression of NDUFS1 had significantly poor OS than that with high expression of NDUFS1 did. Furthermore, hsa-miR-320b, a possible negative regulator of NDUFS1, was highly expressed in KIRC. And, low NDUFS1 or high hsa-miR-320b consistently correlated to unfavorable outcomes in KIRC patients with decreased CD4+ T cell infiltration. In vitro, NDUFS1 overexpression significantly increased the chemotaxis of CD4+ T cell to KIRC cells. Conclusion: Together, NDUFS1, upregulated by decreased hsa-miR-320b expression in KIRC patients, might act as a biomarker for CD4+ T cell infiltration. And, the combination of NDUFS1 with CD4+ T cell infiltration predicts favorable prognosis in KIRC.
Collapse
Affiliation(s)
- Dong Wu
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, School of Basic Medicine, The Fourth Military Medical University, Xi’an, China
| | - Lin He
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, School of Basic Medicine, The Fourth Military Medical University, Xi’an, China
- Department of Oncology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Zhe Xu
- Unit 94710 of the PLA, Wuxi, China
| | - Ruo-Fei Tian
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, School of Basic Medicine, The Fourth Military Medical University, Xi’an, China
| | - Xin-Yu Fan
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, School of Basic Medicine, The Fourth Military Medical University, Xi’an, China
| | - Jing Fan
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, School of Basic Medicine, The Fourth Military Medical University, Xi’an, China
| | - Jie Ai
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, School of Basic Medicine, The Fourth Military Medical University, Xi’an, China
| | - Hui-Jie Bian
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, School of Basic Medicine, The Fourth Military Medical University, Xi’an, China
| | - Wei-Jun Qin
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Jun Qin
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Ling Li
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, School of Basic Medicine, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
24
|
Knowles T, Huang T, Qi J, An S, Burket N, Cooper S, Nazarian J, Saratsis AM. LIN28B and Let-7 in Diffuse Midline Glioma: A Review. Cancers (Basel) 2023; 15:3241. [PMID: 37370851 DOI: 10.3390/cancers15123241] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Diffuse midline glioma (DMG) is the most lethal of all childhood cancers. DMGs are driven by histone-tail-mutation-mediated epigenetic dysregulation and partner mutations in genes controlling proliferation and migration. One result of this epigenetic and genetic landscape is the overexpression of LIN28B RNA binding protein. In other systems, LIN28B has been shown to prevent let-7 microRNA biogenesis; however, let-7, when available, faithfully suppresses tumorigenic pathways and induces cellular maturation by preventing the translation of numerous oncogenes. Here, we review the current literature on LIN28A/B and the let-7 family and describe their role in gliomagenesis. Future research is then recommended, with a focus on the mechanisms of LIN28B overexpression and localization in DMG.
Collapse
Affiliation(s)
- Truman Knowles
- W.M. Keck Science Department, Scripps, Pitzer, and Claremont McKenna Colleges, Claremont, CA 91711, USA
| | - Tina Huang
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jin Qi
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shejuan An
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Noah Burket
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Scott Cooper
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Javad Nazarian
- Department of Pediatrics, Children's National Hospital, Washington, DC 20010, USA
- Department of Pediatrics, Zurich Children's Hospital, 8032 Zurich, Switzerland
| | - Amanda M Saratsis
- Department of Neurosurgery, Lutheran General Hospital, Park Ridge, IL 60068, USA
| |
Collapse
|
25
|
Cloning, expression, purification, and immunoblotting analysis of recombinant type III fibronectin domains of human oncostatin M receptor. Mol Biol Rep 2023; 50:4735-4741. [PMID: 36929287 DOI: 10.1007/s11033-023-08366-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/01/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND The human oncostatin M receptor subunit , commonly known as the oncostatin M receptor (OSMR), is a cell surface protein and belongs to the family of type I cytokine receptors. It is highly expressed in several cancers and is a potential therapeutic target. Structurally, OSMR consists of three major domains: the extracellular, transmembrane, and cytoplasmic domains. The extracellular domain further comprises four Type III fibronectin subdomains. The functional relevance of these type III fibronectin domains is not known yet, and it is of great interest to us to understand their role in OSMR-mediated interactions with other oncogenic proteins. METHODS & RESULTS The four type III fibronectin domains of hOSMR were amplified by PCR using the pUNO1-hOSMR construct as a template. The molecular size of the amplified products was confirmed by agarose gel electrophoresis. The amplicons were then cloned into a pGEX4T3 vector containing GST as an N-terminal tag. Positive clones with domain inserts were identified by restriction digestion and overexpressed in E. coli Rosetta (DE3) cells. The optimum conditions for overexpression were found to be 1 mM IPTG and an incubation temperature of 37 °C. The overexpression of the fibronectin domains was confirmed by SDS-PAGE, and they are affinity purified by using glutathione agarose beads in three repetitive steps. The purity of the isolated domains analyzed by SDS-PAGE and western blotting showed that they were exactly at their corresponding molecular weights as a single distinct band. CONCLUSION In this study, we have successfully cloned, expressed, and purified four Type III fibronectin subdomains of hOSMR.
Collapse
|
26
|
Wu JC, Huang CC, Wang PW, Chen TY, Hsu WM, Chuang JH, Chuang HC. ONC201 Suppresses Neuroblastoma Growth by Interrupting Mitochondrial Function and Reactivating Nuclear ATRX Expression While Decreasing MYCN. Int J Mol Sci 2023; 24:ijms24021649. [PMID: 36675163 PMCID: PMC9867473 DOI: 10.3390/ijms24021649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/03/2023] [Accepted: 01/07/2023] [Indexed: 01/18/2023] Open
Abstract
Neuroblastoma (NB) is characterized by several malignant phenotypes that are difficult to treat effectively without combination therapy. The therapeutic implication of mitochondrial ClpXP protease ClpP and ClpX has been verified in several malignancies, but is unknown in NB. Firstly, we observed a significant increase in ClpP and ClpX expression in immature and mature ganglion cells as compared to more malignant neuroblasts and less malignant Schwannian-stroma-dominant cell types in human neuroblastoma tissues. We used ONC201 targeting ClpXP to treat NB cells, and found a significant suppression of mitochondrial protease, i.e., ClpP and ClpX, expression and downregulation of mitochondrial respiratory chain subunits SDHB and NDUFS1. The latter was associated with a state of energy depletion, increased reactive oxygen species, and decreased mitochondrial membrane potential, consequently promoting apoptosis and suppressing cell growth of NB. Treatment of NB cells with ONC201 as well as the genetic attenuation of ClpP and ClpX through specific short interfering RNA (siRNA) resulted in the significant upregulation of the tumor suppressor alpha thalassemia/mental retardation X-linked (ATRX) and promotion of neurite outgrowth, implicating mitochondrial ClpXP proteases in MYCN-amplified NB cell differentiation. Furthermore, ONC201 treatment significantly decreased MYCN protein expression and suppressed tumor formation with the reactivation of ATRX expression in MYCN-amplified NB-cell-derived xenograft tumors. Taken together, ONC201 could be the potential agent to provide diversified therapeutic application in NB, particularly in NB with MYCN amplification.
Collapse
Affiliation(s)
- Jian-Ching Wu
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Chao-Cheng Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Biobank and Tissue Bank, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Pei-Wen Wang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Ting-Ya Chen
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Wen-Ming Hsu
- Department of Surgery, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10617, Taiwan
| | - Jiin-Haur Chuang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Pediatric Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Hui-Ching Chuang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Correspondence: ; Tel.: +886-7-7317123 (ext. 8896); Fax: +886-7-7311696
| |
Collapse
|
27
|
Chen D, Liu Z, Wang J, Yang C, Pan C, Tang Y, Zhang P, Liu N, Li G, Li Y, Wu Z, Xia F, Zhang C, Nie H, Tang Z. Integrative genomic analysis facilitates precision strategies for glioblastoma treatment. iScience 2022; 25:105276. [PMID: 36300002 PMCID: PMC9589211 DOI: 10.1016/j.isci.2022.105276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/29/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common form of malignant primary brain tumor with a dismal prognosis. Currently, the standard treatments for GBM rarely achieve satisfactory results, which means that current treatments are not individualized and precise enough. In this study, a multiomics-based GBM classification was established and three subclasses (GPA, GPB, and GPC) were identified, which have different molecular features both in bulk samples and at single-cell resolution. A robust GBM poor prognostic signature (GPS) score model was then developed using machine learning method, manifesting an excellent ability to predict the survival of GBM. NVP−BEZ235, GDC−0980, dasatinib and XL765 were ultimately identified to have subclass-specific efficacy targeting patients with a high risk of poor prognosis. Furthermore, the GBM classification and GPS score model could be considered as potential biomarkers for immunotherapy response. In summary, an integrative genomic analysis was conducted to advance individual-based therapies in GBM. A multiomics-based classification of GBM was established Single-cell transcriptomic profiling of GBM subclasses was revealed using Scissor A robust prognostic risk model was developed for GBM by machine learning method Prediction of potential agents based on molecular and prognostic risk stratification
Collapse
Affiliation(s)
- Danyang Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhicheng Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingxuan Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chen Yang
- State Key Laboratory of Oncogenes and Related Genes, Department of Liver Surgery and Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Chao Pan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yingxin Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ping Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Na Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Gaigai Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Li
- State Key Laboratory of Oncogenes and Related Genes, Department of Liver Surgery and Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China,Department of Immunology, Sun Yat-Sen University, Zhongshan School of Medicine, Guangzhou, Guangdong 510080, China
| | - Zhuojin Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Feng Xia
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hao Nie
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,Corresponding author
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,Corresponding author
| |
Collapse
|
28
|
Muacevic A, Adler JR. GammaTile: Comprehensive Review of a Novel Radioactive Intraoperative Seed-Loading Device for the Treatment of Brain Tumors. Cureus 2022; 14:e29970. [PMID: 36225241 PMCID: PMC9541893 DOI: 10.7759/cureus.29970] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
GammaTile is a Food and Drug Administration (FDA)-licensed device consisting of four cesium-131 (Cs-131) radiation-emitting seeds in the collagen tile about the postage stamp size. The tiles are utilized to line the brain cavity immediately after tumor resection. GammaTile therapy is a surgically targeted radiation therapy (STaRT) that helps provide instant, dose-intense treatment after the completion of resection. The objective of this study is to explore the safety and efficacy of GammaTile surgically targeted radiation therapy for brain tumors. This study also reviews the differences between GammaTile surgically targeted radiation therapy (STaRT) and other traditional treatment options for brain tumors. The electronic database searches utilized in this study include PubMed, Google Scholar, and ScienceDirect. A total of 4,150 articles were identified based on the search strategy. Out of these articles, 900 articles were retrieved. A total of 650 articles were excluded for various reasons, thus retrieving 250 citations. We applied the exclusion and inclusion criteria to these retrieved articles by screening their full text and excluding 180 articles. Therefore, 70 citations were retrieved and included in this comprehensive literature review, as outlined in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) diagram. Based on the findings of this study, GammaTile surgically targeted radiation therapy (STaRT) is safe and effective for treating brain tumors. Similarly, the findings have also shown that the efficacy of GammaTile therapy can be enhanced by combining it with other standard-of-care treatment options/external beam radiation therapy (EBRT). Also, the results show that patients diagnosed with recurrent glioblastoma (GBM) exhibit poor median overall survival because of the possibility of the tumor returning. Therefore, combining STaRT with other standard-of-care treatment options/EBRT can improve the patient's overall survival (OS). GammaTile therapy enhances access to care, guarantees 100% compliance, and eliminates patients' need to travel regularly to hospitals for radiation treatments. Its implementation requires collaboration from various specialties, such as radiation oncology, medical physics, and neurosurgery.
Collapse
|
29
|
Immunoglobulin Superfamily Containing Leucine-Rich Repeat (Islr) Participates in IL-6-Mediated Crosstalk between Muscle and Brown Adipose Tissue to Regulate Energy Homeostasis. Int J Mol Sci 2022; 23:ijms231710008. [PMID: 36077405 PMCID: PMC9455994 DOI: 10.3390/ijms231710008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/20/2022] [Accepted: 08/27/2022] [Indexed: 12/01/2022] Open
Abstract
Brown adipose tissue (BAT) is functionally linked to skeletal muscle because both tissues originate from a common progenitor cell, but the precise mechanism controlling muscle-to-brown-fat communication is insufficiently understood. This report demonstrates that the immunoglobulin superfamily containing leucine-rich repeat (Islr), a marker of mesenchymal stromal/stem cells, is critical for the control of BAT mitochondrial function and whole-body energy homeostasis. The mice loss of Islr in BAT after cardiotoxin injury resulted in improved mitochondrial function, increased energy expenditure, and enhanced thermogenesis. Importantly, it was found that interleukin-6 (IL-6), as a myokine, participates in this process. Mechanistically, Islr interacts with NADH: Ubiquinone Oxidoreductase Core Subunit S2 (Ndufs2) to regulate IL-6 signaling; consequently, Islr functions as a brake that prevents IL-6 from promoting BAT activity. Together, these findings reveal a previously unrecognized mechanism for muscle-BAT cross talk driven by Islr, Ndufs2, and IL-6 to regulate energy homeostasis, which may be used as a potential therapeutic target in obesity.
Collapse
|
30
|
Sharanek A, Raco L, Soleimani VD, Jahani-Asl A. In situ detection of protein-protein interaction by proximity ligation assay in patient derived brain tumor stem cells. STAR Protoc 2022; 3:101554. [PMID: 35880130 PMCID: PMC9307678 DOI: 10.1016/j.xpro.2022.101554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Improper or aberrant protein-protein interactions can lead to severe human diseases including cancer. Here, we describe an adapted proximity ligation assay (PLA) protocol for the assessment of galectin-1-HOXA5 interaction in brain tumor stem cells (BTSCs). We detail the steps for culturing and preparation of BTSCs followed by PLA and detection of protein interactions in situ using fluorescent microscopy. This PLA protocol is optimized specifically for BTSCs and includes key controls for effective result analysis. For complete details on the use and execution of this protocol, please refer to Sharanek et al. (2021). Proximity ligation assay to detect protein-protein interaction in BTSCs Optimized plating conditions for BTSC preparation using minute starting material Inclusion of appropriate controls for the PLA to ensure specificity and precision Alternative reagents and buffers to allow user to adapt the protocol to their needs
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
|
31
|
Lu Z, Zheng X, Ding C, Zou Z, Liang Y, Zhou Y, Li X. Deciphering the Biological Effects of Radiotherapy in Cancer Cells. Biomolecules 2022; 12:biom12091167. [PMID: 36139006 PMCID: PMC9496570 DOI: 10.3390/biom12091167] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy remains an effective conventional method of treatment for patients with cancer. However, the clinical efficacy of radiotherapy is compromised by the development of radioresistance of the tumor cells during the treatment. Consequently, there is need for a comprehensive understanding of the regulatory mechanisms of tumor cells in response to radiation to improve radiotherapy efficacy. The current study aims to highlight new developments that illustrate various forms of cancer cell death after exposure to radiation. A summary of the cellular pathways and important target proteins that are responsible for tumor radioresistance and metastasis is also provided. Further, the study outlines several mechanistic descriptions of the interaction between ionizing radiation and the host immune system. Therefore, the current review provides a reference for future research studies on the biological effects of new radiotherapy technologies, such as ultra-high-dose-rate (FLASH) radiotherapy, proton therapy, and heavy-ion therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Zhou
- Correspondence: (Y.Z.); (X.L.); Tel.: +86-0816-225-2295 (Y.Z.); +86-0816-220-6272 (X.L.)
| | - Xiaoan Li
- Correspondence: (Y.Z.); (X.L.); Tel.: +86-0816-225-2295 (Y.Z.); +86-0816-220-6272 (X.L.)
| |
Collapse
|
32
|
Identification of Prognostic Genes in Gliomas Based on Increased Microenvironment Stiffness. Cancers (Basel) 2022; 14:cancers14153659. [PMID: 35954323 PMCID: PMC9367320 DOI: 10.3390/cancers14153659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
With a median survival time of 15 months, glioblastoma multiforme is one of the most aggressive primary brain cancers. The crucial roles played by the extracellular matrix (ECM) stiffness in glioma progression and treatment resistance have been reported in numerous studies. However, the association between ECM-stiffness-regulated genes and the prognosis of glioma patients remains to be explored. Thus, using bioinformatics analysis, we first identified 180 stiffness-dependent genes from an RNA-Seq dataset, and then evaluated their prognosis in The Cancer Genome Atlas (TCGA) glioma dataset. Our results showed that 11 stiffness-dependent genes common between low- and high-grade gliomas were prognostic. After validation using the Chinese Glioma Genome Atlas (CGGA) database, we further identified four stiffness-dependent prognostic genes: FN1, ITGA5, OSMR, and NGFR. In addition to high-grade glioma, overexpression of the four-gene signature also showed poor prognosis in low-grade glioma patients. Moreover, our analysis confirmed that the expression levels of stiffness-dependent prognostic genes in high-grade glioma were significantly higher than in low-grade glioma, suggesting that these genes were associated with glioma progression. Based on a pathophysiology-inspired approach, our findings illuminate the link between ECM stiffness and the prognosis of glioma patients and suggest a signature of four stiffness-dependent genes as potential therapeutic targets.
Collapse
|
33
|
Liu S, Dong L, Shi W, Zheng Z, Liu Z, Meng L, Xin Y, Jiang X. Potential targets and treatments affect oxidative stress in gliomas: An overview of molecular mechanisms. Front Pharmacol 2022; 13:921070. [PMID: 35935861 PMCID: PMC9355528 DOI: 10.3389/fphar.2022.921070] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022] Open
Abstract
Oxidative stress refers to the imbalance between oxidation and antioxidant activity in the body. Oxygen is reduced by electrons as part of normal metabolism leading to the formation of various reactive oxygen species (ROS). ROS are the main cause of oxidative stress and can be assessed through direct detection. Oxidative stress is a double-edged phenomenon in that it has protective mechanisms that help to destroy bacteria and pathogens, however, increased ROS accumulation can lead to host cell apoptosis and damage. Glioma is one of the most common malignant tumors of the central nervous system and is characterized by changes in the redox state. Therapeutic regimens still encounter multiple obstacles and challenges. Glioma occurrence is related to increased free radical levels and decreased antioxidant defense responses. Oxidative stress is particularly important in the pathogenesis of gliomas, indicating that antioxidant therapy may be a means of treating tumors. This review evaluates oxidative stress and its effects on gliomas, describes the potential targets and therapeutic drugs in detail, and clarifies the effects of radiotherapy and chemotherapy on oxidative stress. These data may provide a reference for the development of precise therapeutic regimes of gliomas based on oxidative stress.
Collapse
Affiliation(s)
- Shiyu Liu
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Lihua Dong
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Weiyan Shi
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Zhuangzhuang Zheng
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Zijing Liu
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Lingbin Meng
- Department of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL, United States
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
- *Correspondence: Ying Xin, ; Xin Jiang,
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
- *Correspondence: Ying Xin, ; Xin Jiang,
| |
Collapse
|
34
|
Wang X, Liang J, Sun H. The Network of Tumor Microtubes: An Improperly Reactivated Neural Cell Network With Stemness Feature for Resistance and Recurrence in Gliomas. Front Oncol 2022; 12:921975. [PMID: 35847909 PMCID: PMC9277150 DOI: 10.3389/fonc.2022.921975] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Gliomas are known as an incurable brain tumor for the poor prognosis and robust recurrence. In recent years, a cellular subpopulation with tumor microtubes (TMs) was identified in brain tumors, which may provide a new angle to explain the invasion, resistance, recurrence, and heterogeneity of gliomas. Recently, it was demonstrated that the cell subpopulation also expresses neural stem cell markers and shares a lot of features with both immature neurons and cancer stem cells and may be seen as an improperly reactivated neural cell network with a stemness feature at later time points of life. TMs may also provide a new angle to understand the resistance and recurrence mechanisms of glioma stem cells. In this review, we innovatively focus on the common features between TMs and sprouting axons in morphology, formation, and function. Additionally, we summarized the recent progress in the resistance and recurrence mechanisms of gliomas with TMs and explained the incurability and heterogeneity in gliomas with TMs. Moreover, we discussed the recently discovered overlap between cancer stem cells and TM-positive glioma cells, which may contribute to the understanding of resistant glioma cell subpopulation and the exploration of the new potential therapeutic target for gliomas.
Collapse
Affiliation(s)
- Xinyue Wang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jianhao Liang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| |
Collapse
|
35
|
Qi B, Song L, Hu L, Guo D, Ren G, Peng T, Liu M, Fang Y, Li C, Zhang M, Li Y. Cardiac-specific overexpression of Ndufs1 ameliorates cardiac dysfunction after myocardial infarction by alleviating mitochondrial dysfunction and apoptosis. Exp Mol Med 2022; 54:946-960. [PMID: 35817848 PMCID: PMC9355970 DOI: 10.1038/s12276-022-00800-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/20/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023] Open
Abstract
Myocardial infarction (MI) is the leading cause of premature death among adults. Cardiomyocyte death and dysfunction of the remaining viable cardiomyocytes are the main pathological factors of heart failure after MI. Mitochondrial complexes are emerging as critical mediators for the regulation of cardiomyocyte function. However, the precise roles of mitochondrial complex subunits in heart failure after MI remain unclear. Here, we show that NADH:ubiquinone oxidoreductase core subunit S1 (Ndufs1) expression is decreased in the hearts of heart failure patients and mice with myocardial infarction. Furthermore, we found that cardiac-specific Ndufs1 overexpression alleviates cardiac dysfunction and myocardial fibrosis in the healing phase of MI. Our results demonstrated that Ndufs1 overexpression alleviates MI/hypoxia-induced ROS production and ROS-related apoptosis. Moreover, upregulation of Ndufs1 expression improved the reduced activity of complex I and impaired mitochondrial respiratory function caused by MI/hypoxia. Given that mitochondrial function and cardiomyocyte apoptosis are closely related to heart failure after MI, the results of this study suggest that targeting Ndufs1 may be a potential therapeutic strategy to improve cardiac function in patients with heart failure.
Collapse
Affiliation(s)
- Bingchao Qi
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Liqiang Song
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Lang Hu
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Dong Guo
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Gaotong Ren
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Tingwei Peng
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Mingchuan Liu
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Yexian Fang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Chunyu Li
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Mingming Zhang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China.
| | - Yan Li
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China.
| |
Collapse
|
36
|
Lai W, Li D, Kuang J, Deng L, Lu Q. Integrated analysis of single-cell RNA-seq dataset and bulk RNA-seq dataset constructs a prognostic model for predicting survival in human glioblastoma. Brain Behav 2022; 12:e2575. [PMID: 35429411 PMCID: PMC9120724 DOI: 10.1002/brb3.2575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/20/2022] [Accepted: 03/20/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common primary malignant brain tumor in adults. For patients with GBM, the median overall survival (OS) is 14.6 months and the 5-year survival rate is 7.2%. It is imperative to develop a reliable model to predict the survival probability in new GBM patients. To date, most prognostic models for predicting survival in GBM were constructed based on bulk RNA-seq dataset, which failed to accurately reflect the difference between tumor cores and peripheral regions, and thus show low predictive capability. An effective prognostic model is desperately needed in clinical practice. METHODS We studied single-cell RNA-seq dataset and The Cancer Genome Atlas-glioblastoma multiforme (TCGA-GBM) dataset to identify differentially expressed genes (DEGs) that impact the OS of GBM patients. We then applied the least absolute shrinkage and selection operator (LASSO) Cox penalized regression analysis to determine the optimal genes to be included in our risk score prognostic model. Then, we used another dataset to test the accuracy of our risk score prognostic model. RESULTS We identified 2128 DEGs from the single-cell RNA-seq dataset and 6461 DEGs from the bulk RNA-seq dataset. In addition, 896 DEGs associated with the OS of GBM patients were obtained. Five of these genes (LITAF, MTHFD2, NRXN3, OSMR, and RUFY2) were selected to generate a risk score prognostic model. Using training and validation datasets, we found that patients in the low-risk group showed better OS than those in the high-risk group. We validated our risk score model with the training and validating datasets and demonstrated that it can effectively predict the OS of GBM patients. CONCLUSION We constructed a novel prognostic model to predict survival in GBM patients by integrating a scRNA-seq dataset and a bulk RNA-seq dataset. Our findings may advance the development of new therapeutic targets and improve clinical outcomes for GBM patients.
Collapse
Affiliation(s)
- Wenwen Lai
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China.,Department of Biostatistics and Epidemiology, School of Public Health, Nanchang University, Nanchang, China
| | - Defu Li
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China.,Department of Biostatistics and Epidemiology, School of Public Health, Nanchang University, Nanchang, China
| | - Jie Kuang
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Libin Deng
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China.,Department of Biostatistics and Epidemiology, School of Public Health, Nanchang University, Nanchang, China
| | - Quqin Lu
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China.,Department of Biostatistics and Epidemiology, School of Public Health, Nanchang University, Nanchang, China
| |
Collapse
|
37
|
Song S, Ma D, Xu L, Wang Q, Liu L, Tong X, Yan H. Low-intensity pulsed ultrasound-generated singlet oxygen induces telomere damage leading to glioma stem cell awakening from quiescence. iScience 2022; 25:103558. [PMID: 34988401 PMCID: PMC8693467 DOI: 10.1016/j.isci.2021.103558] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/09/2021] [Accepted: 12/01/2021] [Indexed: 12/27/2022] Open
Abstract
Cancer stem cells, quiescent and drug resistant, have become a therapeutic target. Unlike high-intensity focused ultrasound directly killing tumor, low-intensity pulsed ultrasound (LIPUS), a new noninvasive physical device, promotes pluripotent stem cell differentiation and is primarily applied in tissue engineering but rarely in oncotherapy. We explored the effect and mechanism of LIPUS on glioma stem cell (GSC) expulsion from quiescence. Here, we observed that LIPUS led to attenuated expression of GSC biomarkers, promoted GSC escape from G0 quiescence, and significantly weakened the Wnt and Hh pathways. Of note, LIPUS transferred sonomechanical energy into cytochrome c and B5 proteins, which converted oxygen molecules into singlet oxygen, triggering telomere crisis. The in vivo and in vitro results confirmed that LIPUS enhanced the GSC sensitivity to temozolomide. These results demonstrated that LIPUS "waked up" GSCs to improve their sensitivity to chemotherapy, and importantly, we confirmed the direct targeted proteins of LIPUS in GSCs.
Collapse
Affiliation(s)
- Sirong Song
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300070, China
| | - Dongbin Ma
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300070, China
| | - Lixia Xu
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin 300350, P.R.China
| | - Qiong Wang
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin 300350, P.R.China
| | - Lanxiang Liu
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, No. 258 Wenhua Road, Qinhuangdao 066000, Hebei Province, P.R. China
| | - Xiaoguang Tong
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin 300350, P.R.China
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350, P.R. China
- Corresponding author
| | - Hua Yan
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin 300350, P.R.China
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350, P.R. China
- Corresponding author
| |
Collapse
|
38
|
Sharanek A, Jahani-Asl A. Monitoring Mitochondrial Respiration in Mouse Cerebellar Granule Neurons. Methods Mol Biol 2022; 2515:1-15. [PMID: 35776342 DOI: 10.1007/978-1-0716-2409-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Defects in mitochondrial oxidative phosphorylation have been observed in numerous neurodegenerative disorders and are linked to bioenergetic crises leading to neuronal death. The distinct metabolic profile of neurons is predominantly oxidative, which is characterized by the oxidation of glucose or its metabolites in the mitochondria to produce ATP. This process involves the tricarboxylic acid cycle, electron transfer in the respiratory chain, and oxygen consumption. Therefore, measurement of oxygen consumption rates (OCR) can be accurately applied to assess the rate of mitochondrial respiration. In this chapter, we describe our optimized protocol for the assessment of OCR specifically in primary mouse cerebellar granule neurons (CGN). The protocol includes isolation and manipulation of mouse CGNs followed by real-time assessment of mitochondrial OCR using a Seahorse XFe96 extracellular flux analyzer.
Collapse
Affiliation(s)
- Ahmad Sharanek
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Arezu Jahani-Asl
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
- University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada.
- Division of Experimental Medicine , McGill University, Montreal, QC, Canada.
| |
Collapse
|
39
|
Furst L, Atkins RJ, Dinevska M, Stylli SS, Corcoran NM, Hovens CM, Mantamadiotis T. Identification and isolation of slow-cycling glioma stem cells. Methods Cell Biol 2022; 170:21-30. [DOI: 10.1016/bs.mcb.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
van Noorden CJ, Breznik B, Novak M, van Dijck AJ, Tanan S, Vittori M, Bogataj U, Bakker N, Khoury JD, Molenaar RJ, Hira VV. Cell Biology Meets Cell Metabolism: Energy Production Is Similar in Stem Cells and in Cancer Stem Cells in Brain and Bone Marrow. J Histochem Cytochem 2022; 70:29-51. [PMID: 34714696 PMCID: PMC8721571 DOI: 10.1369/00221554211054585] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Energy production by means of ATP synthesis in cancer cells has been investigated frequently as a potential therapeutic target in this century. Both (an)aerobic glycolysis and oxidative phosphorylation (OXPHOS) have been studied. Here, we review recent literature on energy production in glioblastoma stem cells (GSCs) and leukemic stem cells (LSCs) versus their normal counterparts, neural stem cells (NSCs) and hematopoietic stem cells (HSCs), respectively. These two cancer stem cell types were compared because their niches in glioblastoma tumors and in bone marrow are similar. In this study, it became apparent that (1) ATP is produced in NSCs and HSCs by anaerobic glycolysis, whereas fatty acid oxidation (FAO) is essential for their stem cell fate and (2) ATP is produced in GSCs and LSCs by OXPHOS despite the hypoxic conditions in their niches with FAO and amino acids providing its substrate. These metabolic processes appeared to be under tight control of cellular regulation mechanisms which are discussed in depth. However, our conclusion is that systemic therapeutic targeting of ATP production via glycolysis or OXPHOS is not an attractive option because of its unwanted side effects in cancer patients.
Collapse
Affiliation(s)
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Metka Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | | | | | - Miloš Vittori
- Amsterdam UMC Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Urban Bogataj
- Amsterdam UMC Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - Joseph D. Khoury
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Remco J. Molenaar
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia,Department of Medical Oncology
| | - Vashendriya V.V. Hira
- Vashendriya V.V. Hira, Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia. E-mail:
| |
Collapse
|
41
|
Sharanek A, Raco L, Soleimani VD, Jahani-Asl A. Subcellular fractionation of brain tumor stem cells. Methods Cell Biol 2022; 170:47-58. [DOI: 10.1016/bs.mcb.2022.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Gessler DJ, Neil EC, Shah R, Levine J, Shanks J, Wilke C, Reynolds M, Zhang S, Özütemiz C, Gencturk M, Folkertsma M, Bell WR, Chen L, Ferreira C, Dusenbery K, Chen CC. GammaTile® brachytherapy in the treatment of recurrent glioblastomas. Neurooncol Adv 2021; 4:vdab185. [PMID: 35088050 PMCID: PMC8788013 DOI: 10.1093/noajnl/vdab185] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background GammaTile® (GT) is a recent U.S. Food and Drug Administration (FDA) cleared brachytherapy platform. Here, we report clinical outcomes for recurrent glioblastoma patients after GT treatment following maximal safe resection. Methods We prospectively followed twenty-two consecutive Isocitrate Dehydrogenase (IDH) wild-type glioblastoma patients (6 O6-Methylguanine-DNA methyltransferase methylated (MGMTm); sixteen MGMT unmethylated (MGMTu)) who underwent maximal safe resection of recurrent tumor followed by GT placement. Results The cohort consisted of 14 second and eight third recurrences. In terms of procedural safety, there was one 30-day re-admission (4.5%) for an incisional cerebrospinal fluid leak, which resolved with lumbar drainage. No other wound complications were observed. Six patients (27.2%) declined in Karnofsky Performance Score (KPS) after surgery due to worsening existing deficits. One patient suffered a new-onset seizure postsurgery (4.5%). There was one (4.5%) 30-day mortality from intracranial hemorrhage secondary to heparinization for an ischemic limb. The mean follow-up was 733 days (range 279–1775) from the time of initial diagnosis. Six-month local control (LC6) and twelve-month local control (LC12) were 86 and 81%, respectively. Median progression-free survival (PFS) was comparable for MGMTu and MGMTm patients (~8.0 months). Median overall survival (OS) was 20.0 months for the MGMTu patients and 37.4 months for MGMTm patients. These outcomes compared favorably to data in the published literature and an independent glioblastoma cohort of comparable patients without GT treatment. Conclusions This clinical experience supports GT brachytherapy as a treatment option in a multi-modality treatment strategy for recurrent glioblastomas.
Collapse
Affiliation(s)
- Dominic J Gessler
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Elizabeth C Neil
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Rena Shah
- Department of Oncology, North Memorial Health, Robbinsdale, Minnesota, USA
| | - Joseph Levine
- Department of Oncology, North Memorial Health, Robbinsdale, Minnesota, USA
| | - James Shanks
- Department of Oncology, Fairview Cancer Care, Minneapolis, Minnesota, USA
| | - Christopher Wilke
- Department of Radiation Oncology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Margaret Reynolds
- Department of Radiation Oncology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Shunqing Zhang
- Department of Radiation Oncology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Can Özütemiz
- Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mehmet Gencturk
- Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mark Folkertsma
- Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - W Robert Bell
- Department of Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Liam Chen
- Department of Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Clara Ferreira
- Department of Radiation Oncology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kathryn Dusenbery
- Department of Radiation Oncology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
43
|
Yang Q, Wei B, Peng C, Wang L, Li C. Identification of serum exosomal miR-98-5p, miR-183-5p, miR-323-3p and miR-19b-3p as potential biomarkers for glioblastoma patients and investigation of their mechanisms. Curr Res Transl Med 2021; 70:103315. [PMID: 34837760 DOI: 10.1016/j.retram.2021.103315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Exosomal miRNAs have attracted increasing interest as potential biomarkers and treatment targets for cancers, however, glioblastoma (GBM)-related exosomal miRNAs remain rarely reported. The study aimed to screen crucial serum exosomal miRNAs in GBM patients and explored their possible mechanisms. METHODS Serum exosomal miRNA profile datasets of GBM patients and normal controls were downloaded from the Gene Expression Omnibus database (GSE112462 and GSE122488). The differentially expressed miRNAs (DEMs) were identified using the limma method. Their diagnostic values were assessed by receiver operating characteristic (ROC) curve analysis. The target genes of DEMs were predicted by the miRwalk 2.0 database. Function enrichment analysis was performed using the DAVID database. The expression and prognosis of target genes were validated using TCGA sequencing data and immunohistochemistry. RESULTS Seven DEMs were shared in two datasets, among which hsa-miR-183-5p and hsa-miR-98-5p as well as has-miR-323-3p or has-miR-19b-3p constituted a diagnostic signature to distinguish GBM from controls, with the area under the ROC curve nearly approximate to 1. MAPK8IP1/FAM175B, OSMR/CASP3, PTPN2 and FBXO32 may be underlying targets for hsa-miR-183-5p, hsa-miR-98-5p, has-miR-323-3p and has-miR-19b-3p, respectively. Function analysis showed all of these target genes were involved in cell proliferation and related signaling pathways [positive regulation of cell proliferation (OSMR), negative regulation of transcription from RNA polymerase II promoter (PTPN2), cell division (FAM175B), regulation of transcription, DNA-templated (MAPK8IP1), hsa05200:Pathways in cancer (CASP3) and hsa04068:FoxO signaling pathway (FBXO32)]. The protein and (or mRNA) expression levels of OSMR, CASP3, PTPN2 and FBXO32 were validated to be upregulated, while MAPK8IP1 and FAM175B were downregulated in GBM tissues. Also, OSMR, CASP3, PTPN2 and FBXO32 were associated with patients' prognosis. CONCLUSION These findings suggest these four exosomal miRNAs may represent potential diagnostic biomarkers and therapeutic targets for GBM.
Collapse
Affiliation(s)
- Qi Yang
- Department of Gynecology and Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Bo Wei
- Departments of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Chuangang Peng
- Orthopaedic Medical Center, The 2nd Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Le Wang
- Ophthalmology, the First Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, China
| | - Chang Li
- Departments of VIP Unit, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China.
| |
Collapse
|
44
|
Chen M, Ren R, Lin W, Xiang L, Zhao Z, Shao B. Exploring the oncostatin M (OSM) feed-forward signaling of glioblastoma via STAT3 in pan-cancer analysis. Cancer Cell Int 2021; 21:565. [PMID: 34702277 PMCID: PMC8549168 DOI: 10.1186/s12935-021-02260-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/11/2021] [Indexed: 02/08/2023] Open
Abstract
Background Oncostatin M (OSM) has been reported to be a key regulating factor in the process of tumor development. Previous studies have demonstrated both the promotion and inhibition effects of OSM in tumors, therefore inspiring controversies. However, no systematic assessment of OSM across various cancers is available, and the mechanisms behind OSM-related cancer progression remain to be elucidated. Methods Based on The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases, we conducted a pan-cancer analysis on OSM to explore its tumor-related functions across cancers as well as its correlations with specific molecules, cells in the tumor microenvironment. Considering the results of pan-cancer analysis, we chose the specific tumor glioblastoma multiforme (GBM) to screen out the OSM-induced signaling pathways and intercellular communications in tumor progression. Wound scratch assay, invasion assay and qRT-PCR were performed to verify the biological effects of OSM on glioblastoma cells. Results Higher OSM level was found in most tumor tissues compared with corresponding normal tissues, and the enhanced OSM expression was observed to be strongly related to patients’ poor prognosis in several cancers. Moreover, the expression of OSM was associated with stromal and immune cell infiltration in the tumor microenvironment, and OSM-related immune checkpoint and chemokine co-expression were also observed. Our results suggested that OSM could communicate extensively with the tumor microenvironment. Taking GBM as an example, our study found that two critical signaling pathways in OSM-related tumor progression by KEGG enrichment analysis: Jak-STAT and NF-κB pathways. Single-cell RNA sequencing data analysis of GBM revealed that OSM was mainly secreted by microglia, and cell–cell interaction analysis proved that OSM-OSMR is an important pathway for OSM to stimulate malignant cells. In vitro, OSM treatment could facilitate the migration and invasion of glioblastoma cells, meanwhile promote the proneural-mesenchymal transition. The administration of STAT3 inhibitors effectively suppressed the OSM-mediated biological effects, which proved the key role of STAT3 in OSM signaling. Conclusion Taken together, our study provides a comprehensive understanding with regard to the tumor progression under the regulation of OSM. OSM seems to be closely related to chronic inflammation and tumor development in the tumor microenvironment. As an important inflammatory factor in the tumor microenvironment, OSM may serve as a potential immunotherapeutic target for cancer treatment, especially for GBM. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02260-9.
Collapse
Affiliation(s)
- Miao Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ruiyang Ren
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weimin Lin
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lisha Xiang
- Clinical Trial Center (CTC), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bin Shao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
45
|
Sharanek A, Burban A, Hernandez-Corchado A, Madrigal A, Fatakdawala I, Najafabadi HS, Soleimani VD, Jahani-Asl A. Transcriptional control of brain tumor stem cells by a carbohydrate binding protein. Cell Rep 2021; 36:109647. [PMID: 34469737 DOI: 10.1016/j.celrep.2021.109647] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/29/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Brain tumor stem cells (BTSCs) and intratumoral heterogeneity represent major challenges in glioblastoma therapy. Here, we report that the LGALS1 gene, encoding the carbohydrate binding protein, galectin1, is a key regulator of BTSCs and glioblastoma resistance to therapy. Genetic deletion of LGALS1 alters BTSC gene expression profiles and results in downregulation of gene sets associated with the mesenchymal subtype of glioblastoma. Using a combination of pharmacological and genetic approaches, we establish that inhibition of LGALS1 signaling in BTSCs impairs self-renewal, suppresses tumorigenesis, prolongs lifespan, and improves glioblastoma response to ionizing radiation in preclinical animal models. Mechanistically, we show that LGALS1 is a direct transcriptional target of STAT3 with its expression robustly regulated by the ligand OSM. Importantly, we establish that galectin1 forms a complex with the transcription factor HOXA5 to reprogram the BTSC transcriptional landscape. Our data unravel an oncogenic signaling pathway by which the galectin1/HOXA5 complex maintains BTSCs and promotes glioblastoma.
Collapse
Affiliation(s)
- Ahmad Sharanek
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Gerald Bronfman Department of Oncology and Division of Experimental Medicine, McGill University, Montréal, QC H4A 3T2, Canada
| | - Audrey Burban
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Gerald Bronfman Department of Oncology and Division of Experimental Medicine, McGill University, Montréal, QC H4A 3T2, Canada
| | - Aldo Hernandez-Corchado
- Department of Human Genetics, McGill University, Montréal, QC H3A OC7, Canada; McGill Genome Centre, Montréal, QC H3A 0G1, Canada
| | - Ariel Madrigal
- Department of Human Genetics, McGill University, Montréal, QC H3A OC7, Canada; McGill Genome Centre, Montréal, QC H3A 0G1, Canada
| | - Idris Fatakdawala
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada
| | - Hamed S Najafabadi
- Department of Human Genetics, McGill University, Montréal, QC H3A OC7, Canada; McGill Genome Centre, Montréal, QC H3A 0G1, Canada
| | - Vahab D Soleimani
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Department of Human Genetics, McGill University, Montréal, QC H3A OC7, Canada
| | - Arezu Jahani-Asl
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Gerald Bronfman Department of Oncology and Division of Experimental Medicine, McGill University, Montréal, QC H4A 3T2, Canada; Integrated program in Neuroscience, Montréal Neurological Institute, Montréal, QC H3A 2B4, Canada.
| |
Collapse
|
46
|
Roig-Carles D, Jackson H, Loveson KF, Mackay A, Mather RL, Waters E, Manzo M, Alborelli I, Golding J, Jones C, Fillmore HL, Crea F. The Long Non-Coding RNA H19 Drives the Proliferation of Diffuse Intrinsic Pontine Glioma with H3K27 Mutation. Int J Mol Sci 2021; 22:ijms22179165. [PMID: 34502082 PMCID: PMC8431314 DOI: 10.3390/ijms22179165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/21/2022] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is an incurable paediatric malignancy. Identifying the molecular drivers of DIPG progression is of the utmost importance. Long non-coding RNAs (lncRNAs) represent a large family of disease- and tissue-specific transcripts, whose functions have not yet been elucidated in DIPG. Herein, we studied the oncogenic role of the development-associated H19 lncRNA in DIPG. Bioinformatic analyses of clinical datasets were used to measure the expression of H19 lncRNA in paediatric high-grade gliomas (pedHGGs). The expression and sub-cellular location of H19 lncRNA were validated in DIPG cell lines. Locked nucleic acid antisense oligonucleotides were designed to test the function of H19 in DIPG cells. We found that H19 expression was higher in DIPG vs. normal brain tissue and other pedHGGs. H19 knockdown resulted in decreased cell proliferation and survival in DIPG cells. Mechanistically, H19 buffers let-7 microRNAs, resulting in the up-regulation of oncogenic let-7 target (e.g., SULF2 and OSMR). H19 is the first functionally characterized lncRNA in DIPG and a promising therapeutic candidate for treating this incurable cancer.
Collapse
Affiliation(s)
- David Roig-Carles
- Cancer Research Group, School of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK; (D.R.-C.); (H.J.); (R.L.M.); (E.W.); (J.G.)
| | - Holly Jackson
- Cancer Research Group, School of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK; (D.R.-C.); (H.J.); (R.L.M.); (E.W.); (J.G.)
| | - Katie F. Loveson
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2UP, UK; (K.F.L.); (H.L.F.)
| | - Alan Mackay
- Division of Molecular Pathology, The Institute of Cancer Research, London SW7 3RP, UK; (A.M.); (C.J.)
| | - Rebecca L. Mather
- Cancer Research Group, School of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK; (D.R.-C.); (H.J.); (R.L.M.); (E.W.); (J.G.)
| | - Ella Waters
- Cancer Research Group, School of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK; (D.R.-C.); (H.J.); (R.L.M.); (E.W.); (J.G.)
| | - Massimiliano Manzo
- Institute of Pathology, University Hospital Basel, 4031 Basel, Switzerland; (M.M.); (I.A.)
| | - Ilaria Alborelli
- Institute of Pathology, University Hospital Basel, 4031 Basel, Switzerland; (M.M.); (I.A.)
| | - Jon Golding
- Cancer Research Group, School of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK; (D.R.-C.); (H.J.); (R.L.M.); (E.W.); (J.G.)
| | - Chris Jones
- Division of Molecular Pathology, The Institute of Cancer Research, London SW7 3RP, UK; (A.M.); (C.J.)
| | - Helen L. Fillmore
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2UP, UK; (K.F.L.); (H.L.F.)
| | - Francesco Crea
- Cancer Research Group, School of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK; (D.R.-C.); (H.J.); (R.L.M.); (E.W.); (J.G.)
- Correspondence:
| |
Collapse
|
47
|
lncRNA MSTRG.29039.1 Promotes Proliferation by Sponging hsa-miR-12119 via JAK2/STAT3 Pathway in Multiple Myeloma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9969449. [PMID: 34422217 PMCID: PMC8376436 DOI: 10.1155/2021/9969449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/12/2021] [Indexed: 12/27/2022]
Abstract
Noncoding RNA (ncRNA) is involved in the occurrence, development, metastasis, and drug resistance of tumors and involves a variety of biological functions. In addition, miRNA can regulate proliferation and migration and even regulate epigenetics to promote the development of multiple myeloma (MM). However, the mechanism of ncRNA involved in MM is still unclear, and there are many unknown ncRNAs to be explored. This research is aimed at discovering the unknown lncRNA in MM through high-throughput sequencing and to study the mechanism and role of competitive endogenous RNA (ceRNA) involved in the pathogenesis of MM for the development of novel molecular markers and potential new targeted drugs. We screened out 262 new lncRNAs with statistical differences by RNA sequencing and selected the lncRNA MSTRG.29039.1 according to the expression and function of lncRNAs and their target genes in MM. We verified that MSTRG.29039.1 and its target gene OSMR were highly expressed in MM. After knockdown of MSTRG.29039.1 in MM cell lines, the expression of OSMR was decreased, and the expression of hsa-miR-12119 was upregulated which can also promote cell apoptosis and inhibit proliferation. Then, we knocked down hsa-miR-12119 and MSTRG.29039.1, we found that apoptosis of MM cells was reduced, and cell proliferation was increased compared with just knocking down hsa-miR-12119. We further verified the direct binding relationship between MSTRG.29039.1 and OSMR by the dual-luciferase reporter assay system. Thus, MSTRG.29039.1 can competitively bind with miRNA to counteract the inhibitory effect of miRNA on OSMR, which regulates cell proliferation and apoptosis through the JAK2/STAT3 pathway. In a conclusion, lncRNA MSTRG.29039.1 could promote proliferation by sponging hsa-miR-12119 via the JAK2/STAT3 pathway in multiple myeloma. This may be a molecular marker and a potential therapeutic target for MM.
Collapse
|
48
|
van Gisbergen MW, Zwilling E, Dubois LJ. Metabolic Rewiring in Radiation Oncology Toward Improving the Therapeutic Ratio. Front Oncol 2021; 11:653621. [PMID: 34041023 PMCID: PMC8143268 DOI: 10.3389/fonc.2021.653621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
To meet the anabolic demands of the proliferative potential of tumor cells, malignant cells tend to rewire their metabolic pathways. Although different types of malignant cells share this phenomenon, there is a large intracellular variability how these metabolic patterns are altered. Fortunately, differences in metabolic patterns between normal tissue and malignant cells can be exploited to increase the therapeutic ratio. Modulation of cellular metabolism to improve treatment outcome is an emerging field proposing a variety of promising strategies in primary tumor and metastatic lesion treatment. These strategies, capable of either sensitizing or protecting tissues, target either tumor or normal tissue and are often focused on modulating of tissue oxygenation, hypoxia-inducible factor (HIF) stabilization, glucose metabolism, mitochondrial function and the redox balance. Several compounds or therapies are still in under (pre-)clinical development, while others are already used in clinical practice. Here, we describe different strategies from bench to bedside to optimize the therapeutic ratio through modulation of the cellular metabolism. This review gives an overview of the current state on development and the mechanism of action of modulators affecting cellular metabolism with the aim to improve the radiotherapy response on tumors or to protect the normal tissue and therefore contribute to an improved therapeutic ratio.
Collapse
Affiliation(s)
- Marike W van Gisbergen
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands.,Department of Dermatology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Emma Zwilling
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
49
|
Development and Validation of a Robust Immune-Related Prognostic Signature for Gastric Cancer. J Immunol Res 2021; 2021:5554342. [PMID: 34007851 PMCID: PMC8110424 DOI: 10.1155/2021/5554342] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
Background An increasing number of reports have found that immune-related genes (IRGs) have a significant impact on the prognosis of a variety of cancers, but the prognostic value of IRGs in gastric cancer (GC) has not been fully elucidated. Methods Univariate Cox regression analysis was adopted for the identification of prognostic IRGs in three independent cohorts (GSE62254, n = 300; GSE15459, n = 191; and GSE26901, n = 109). After obtaining the intersecting prognostic genes, the three independent cohorts were merged into a training cohort (n = 600) to establish a prognostic model. The risk score was determined using multivariate Cox and LASSO regression analyses. Patients were classified into low-risk and high-risk groups according to the median risk score. The risk score performance was validated externally in the three independent cohorts (GSE26253, n = 432; GSE84437, n = 431; and TCGA, n = 336). Immune cell infiltration (ICI) was quantified by the CIBERSORT method. Results A risk score comprising nine genes showed high accuracy for the prediction of the overall survival (OS) of patients with GC in the training cohort (AUC > 0.7). The risk of death was found to have a positive correlation with the risk score. The univariate and multivariate Cox regression analyses revealed that the risk score was an independent indicator of the prognosis of patients with GC (p < 0.001). External validation confirmed the universal applicability of the risk score. The low-risk group presented a lower infiltration level of M2 macrophages than the high-risk group (p < 0.001), and the prognosis of patients with GC with a higher infiltration level of M2 macrophages was poor (p = 0.011). According to clinical correlation analysis, compared with patients with the diffuse and mixed type of GC, those with the Lauren classification intestinal GC type had a significantly lower risk score (p = 0.00085). The patients' risk score increased with the progression of the clinicopathological stage. Conclusion In this study, we constructed and validated a robust prognostic signature for GC, which may help improve the prognostic assessment system and treatment strategy for GC.
Collapse
|
50
|
Wang S, Xu X. An Immune-Related Gene Pairs Signature for Predicting Survival in Glioblastoma. Front Oncol 2021; 11:564960. [PMID: 33859933 PMCID: PMC8042321 DOI: 10.3389/fonc.2021.564960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 02/12/2021] [Indexed: 01/06/2023] Open
Abstract
Background: Glioblastoma (GBM) is the frequently occurring and most aggressive form of brain tumors. In the study, we constructed an immune-related gene pairs (IRGPs) signature to predict overall survival (OS) in patients with GBM. Methods: We established IRGPs with immune-related gene (IRG) matrix from The Cancer Genome Atlas (TCGA) database (Training cohort). After screened by the univariate regression analysis and least absolute shrinkage and selection operator (LASSO) regression analysis, IRGPs were subjected to the multivariable Cox regression to develop an IRGP signature. Then, the predicting accuracy of the signature was assessed with the area under the receiver operating characteristic curve (AUC) and validated the result using the Chinese Glioma Genome Atlas (CGGA) database (Validation cohorts 1 and 2). Results: A 10-IRGP signature was established for predicting the OS of patients with GBM. The AUC for predicting 1-, 3-, and 5-year OS in Training cohort was 0.801, 0.901, and 0.964, respectively, in line with the AUC of Validation cohorts 1 and 2 [Validation cohort 1 (1 year: 0.763; 3 years: 0.786; and 5 years: 0.884); Validation cohort 2 (1 year: 0.745; 3 years: 0.989; and 5 years: 0.987)]. Moreover, survival analysis in three cohorts suggested that patients with low-risk GBM had better clinical outcomes than patients with high-risk GBM. The univariate and multivariable Cox regression demonstrated that the IRGPs signature was an independent prognostic factor. Conclusions: We developed a novel IRGPs signature for predicting OS in patients with GBM.
Collapse
Affiliation(s)
- Sheng Wang
- Zhejiang Jinhua Guangfu Hospital, Jinhua, China
| | - Xia Xu
- Department of General Medicine, Xiangya Hospital, Central South University, Changsha, China.,Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|