1
|
Ma YN, Xia Y, Karako K, Song P, Tang W, Hu X. Decoding Alzheimer's Disease: Single-Cell Sequencing Uncovers Brain Cell Heterogeneity and Pathogenesis. Mol Neurobiol 2025:10.1007/s12035-025-04997-0. [PMID: 40304967 DOI: 10.1007/s12035-025-04997-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 04/23/2025] [Indexed: 05/02/2025]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder marked by progressive cognitive decline and diverse neuropathological features. Recent advances in single-cell sequencing technologies have provided unprecedented insights into the cellular and molecular heterogeneity of the AD brain. This review systematically summarizes the applications of single-cell transcriptomic and epigenomic approaches in AD research, with a focus on the characterization of cell type- and subtype-specific transcriptomic alterations. This review highlights key discoveries related to selectively vulnerable neuronal and glial subpopulations, as well as transcriptional dysregulation associated with genetic risk loci such as APOE and TREM2. This review also discusses how the integration of single-cell RNA sequencing (scRNA-seq), assays for transposase-accessible chromatin using sequencing (ATAC-seq), and spatial transcriptomics elucidates disease trajectories and cellular communication networks across pathological stages. These insights not only enhance the understanding of the pathogenesis of AD but also pave the way for precision medicine through the identification of novel therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Ya-Nan Ma
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Ying Xia
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
- Integrated Neuroscience Center, Geriatric Hospital of Hainan, Haikou, 571100, China
| | - Kenji Karako
- Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Peipei Song
- Division of Global Health & Medicine, National Center for Global Health and Medicine, Tokyo, Japan.
- National College of Nursing, Tokyo, Japan.
| | - Wei Tang
- Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Global Health & Medicine, National Center for Global Health and Medicine, Tokyo, Japan
| | - Xiqi Hu
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China.
- Integrated Neuroscience Center, Geriatric Hospital of Hainan, Haikou, 571100, China.
| |
Collapse
|
2
|
Katdare KA, Kjar A, O’Brown NM, Neal EH, Sorets AG, Shostak A, Romero-Fernandez W, Kwiatkowski AJ, Mlouk K, Kim H, Cowell RP, Schwensen KR, Carvajal Tapia CO, Venslovaite G, Horner KB, Wilson JT, Schrag MS, Megason SG, Lippmann ES. IQGAP2 regulates blood-brain barrier immune dynamics. iScience 2025; 28:111994. [PMID: 40071147 PMCID: PMC11894336 DOI: 10.1016/j.isci.2025.111994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/03/2024] [Accepted: 02/06/2025] [Indexed: 03/14/2025] Open
Abstract
Brain endothelial cells (BECs) play an important role in maintaining central nervous system (CNS) homeostasis through blood-brain barrier (BBB) functions. BECs express low baseline levels of adhesion receptors, which limits entry of leukocytes. However, the molecular mediators governing this phenotype remain mostly unclear. Here, we explored how infiltration of immune cells across the BBB is influenced by the scaffold protein IQ motif containing GTPase-activating protein 2 (IQGAP2). In mice and zebrafish, we demonstrate that loss of Iqgap2 increases infiltration of peripheral leukocytes into the CNS under homeostatic and inflammatory conditions. Using single-cell RNA sequencing and immunohistology, we further show that BECs from mice lacking Iqgap2 exhibit a profound inflammatory signature, including extensive upregulation of adhesion receptors and antigen-processing machinery. Human tissue analyses also reveal that Alzheimer's disease is associated with reduced hippocampal IQGAP2. Overall, our results implicate IQGAP2 as an essential regulator of BBB immune privilege and immune cell entry into the CNS.
Collapse
Affiliation(s)
- Ketaki A. Katdare
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Andrew Kjar
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | | | - Emma H. Neal
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Alexander G. Sorets
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Alena Shostak
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | - Kate Mlouk
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Hyosung Kim
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Rebecca P. Cowell
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Katrina R. Schwensen
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | | | - Guste Venslovaite
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Kensley B. Horner
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - John T. Wilson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Matthew S. Schrag
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sean G. Megason
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Ethan S. Lippmann
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
3
|
Dou X, Zhao L, Li J, Jiang Y. Effect and mechanism of GLP-1 on cognitive function in diabetes mellitus. Front Neurosci 2025; 19:1537898. [PMID: 40171533 PMCID: PMC11959055 DOI: 10.3389/fnins.2025.1537898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/03/2025] [Indexed: 04/03/2025] Open
Abstract
Background Diabetes mellitus (DM) is a metabolic disorder associated with cognitive impairment. Glucagon-like peptide-1 (GLP-1) and its receptor (GLP-1R) have shown neuroprotective effects. Scope of review This review explores the impact of DM on cognitive function. Diabetes-related cognitive impairment is divided into three stages: diabetes-associated cognitive decrements, mild cognitive impairment (MCI), and dementia. GLP-1R agonists (GLP-1RAs) have many functions, such as neuroprotection, inhibiting infection, and metabolic regulation, and show good application prospects in improving cognitive function. The mechanisms of GLP-1RAs neuroprotection may be interconnected, warranting further investigation. Understanding these mechanisms could lead to targeted treatments for diabetes-related cognitive dysfunction. Major conclusions Therefore, this paper reviewed the regulatory effects of GLP-1 on cognitive dysfunction and its possible mechanism. Further research is required to fully explore the potential of GLP-1 and its analogs in this context.
Collapse
Affiliation(s)
- Xiaoke Dou
- Department of Endocrinology and Metabolism, The First Hospital of China Medical University, Shenyang, China
- Department of Gerontology, The First Hospital of China Medical University, Shenyang, China
| | - Lei Zhao
- Department of Laboratory Medicine, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, China
| | - Jing Li
- Department of Gerontology, The First Hospital of China Medical University, Shenyang, China
| | - Yaqiu Jiang
- Department of Gerontology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Fu X, Zhao Y, Cui X, Huang S, Lv Y, Li C, Gong F, Yang Z, Yang X, Xiao R. Cxcl9 modulates aging associated microvascular metabolic and angiogenic dysfunctions in subcutaneous adipose tissue. Angiogenesis 2025; 28:17. [PMID: 39934436 PMCID: PMC11813824 DOI: 10.1007/s10456-025-09970-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/02/2025] [Indexed: 02/13/2025]
Abstract
Microvascular aging, predominantly driven by endothelial cells (ECs) dysfunction, is a critical early event in cardiovascular diseases. However, the specific effects of aging on ECs across the microvascular network segments and the associated mechanisms are not fully understood. In this study, we detected a microvascular rarefaction and a decreased proportion of venular ECs in the subcutaneous adipose tissue of aged mice using light-sheet immunofluorescence microscopy and single-cell RNA sequencing. Moreover, aged ECs, especially in the venular subtype, exhibited a pseudotemporal transition to a terminal state characterized by diminished oxidative phosphorylation and strengthened cytokine signaling. Metabolic flux balance analysis predicted that among the 13 differentially expressed cytokines identified in aged EC subpopulations, Cxcl9 was strongly correlated with impaired oxidative phosphorylation in aged ECs. It was further validated using microvascular ECs treated with Cxcl9. Notably, the G protein-coupled receptor signaling pathway was subsequently suppressed, in which Aplnr suppression was also observed in aged ECs, contributing to their impaired energy metabolism and reduced angiogenesis. Based on these findings, we propose Cxcl9 as a biomarker for aging-related dysfunction of microvascular ECs, suggesting that targeting Cxcl9 signaling may help combat microvascular aging.
Collapse
Affiliation(s)
- Xin Fu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, P. R. China
- Key Laboratory of Tissue and Organ Regeneration, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Yu Zhao
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, P. R. China
- Key Laboratory of Tissue and Organ Regeneration, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Xiwei Cui
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, P. R. China
- Key Laboratory of Tissue and Organ Regeneration, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Siyuan Huang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Yanze Lv
- Department of Hemangioma and Vascular Malformation of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, P. R. China
| | - Chen Li
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, P. R. China
- Key Laboratory of Tissue and Organ Regeneration, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Fuxing Gong
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, P. R. China
- Key Laboratory of Tissue and Organ Regeneration, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Zhigang Yang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, P. R. China
- Key Laboratory of Tissue and Organ Regeneration, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Xiaonan Yang
- Department of Hemangioma and Vascular Malformation of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, P. R. China
| | - Ran Xiao
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, P. R. China.
- Key Laboratory of Tissue and Organ Regeneration, Chinese Academy of Medical Sciences, Beijing, P. R. China.
| |
Collapse
|
5
|
Santisteban MM, Iadecola C. The pathobiology of neurovascular aging. Neuron 2025; 113:49-70. [PMID: 39788087 DOI: 10.1016/j.neuron.2024.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025]
Abstract
As global life expectancy increases, age-related brain diseases such as stroke and dementia have become leading causes of death and disability. The aging of the neurovasculature is a critical determinant of brain aging and disease risk. Neurovascular cells are particularly vulnerable to aging, which induces significant structural and functional changes in arterial, venous, and lymphatic vessels. Consequently, neurovascular aging impairs oxygen and glucose delivery to active brain regions, disrupts endothelial transport mechanisms essential for blood-brain exchange, compromises proteostasis by reducing the clearance of potentially toxic proteins, weakens immune surveillance and privilege, and deprives the brain of key growth factors required for repair and renewal. In this review, we examine the effects of neurovascular aging on brain function and its role in stroke, vascular cognitive impairment, and Alzheimer's disease. Finally, we discuss key unanswered questions that must be addressed to develop neurovascular strategies aimed at promoting healthy brain aging.
Collapse
Affiliation(s)
- Monica M Santisteban
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
6
|
Cummings JL, Atri A, Feldman HH, Hansson O, Sano M, Knop FK, Johannsen P, León T, Scheltens P. evoke and evoke+: design of two large-scale, double-blind, placebo-controlled, phase 3 studies evaluating efficacy, safety, and tolerability of semaglutide in early-stage symptomatic Alzheimer's disease. Alzheimers Res Ther 2025; 17:14. [PMID: 39780249 PMCID: PMC11708093 DOI: 10.1186/s13195-024-01666-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Disease-modifying therapies targeting the diverse pathophysiology of Alzheimer's disease (AD), including neuroinflammation, represent potentially important and novel approaches. The glucagon-like peptide-1 receptor agonist semaglutide is approved for the treatment of type 2 diabetes and obesity and has an established safety profile. Semaglutide may have a disease-modifying, neuroprotective effect in AD through multimodal mechanisms including neuroinflammatory, vascular, and other AD-related processes. Large randomized controlled trials are needed to assess the efficacy and safety of semaglutide in early-stage symptomatic AD. METHODS evoke and evoke+ are randomized, double-blind, placebo-controlled phase 3 trials investigating the efficacy, safety, and tolerability of once-daily oral semaglutide versus placebo in early-stage symptomatic AD. Eligible participants were men or women aged 55-85 years with mild cognitive impairment or mild dementia due to AD with confirmed amyloid abnormalities (assessed by positron emission tomography or cerebrospinal fluid [CSF] analysis). After a maximum 12-week screening phase, an anticipated 1840 patients in each trial are randomized (1:1) to semaglutide or placebo for 156 weeks (104-week main treatment phase and 52-week extension). Randomized participants follow an 8-week dose escalation regimen (3 mg [weeks 0-4], 7 mg [weeks 4-8], and 14 mg [weeks 8-156]). The primary endpoint is the semaglutide-placebo difference on change from baseline to week 104 in the Clinical Dementia Rating - Sum of Boxes score. Analyses of plasma biomarkers, collected from all participants, and a CSF sub-study (planned n = 210) will explore semaglutide effects on AD biomarkers and neuroinflammation. RESULTS Enrollment was undertaken between May 18, 2021, and September 8, 2023. Completion of the trials' main phase is expected in September 2025, and the 52-week extension (in which participants and investigators remain blinded to treatment assignment) will continue to October 2026. CONCLUSION evoke and evoke+ are the first large-scale trials to investigate the disease-modifying potential of semaglutide in participants with early-stage symptomatic AD, including exploration of effects on AD biomarkers and neuroinflammation. The trials will provide data on the potential disease-modifying effects of semaglutide and will be important in evaluating its utility in the treatment of early-stage symptomatic AD. TRIAL REGISTRATION Clinicaltrials.gov, NCT04777396 and NCT04777409. Date: 02/03/2021.
Collapse
Affiliation(s)
- Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, Kirk Kerkorian School of Medicine, University of Nevada, Las Vegas, NV, USA.
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada, Las Vegas, NV, USA.
| | - Alireza Atri
- Banner Sun Health Research Institute, Sun City, AZ, USA
- Banner Alzheimer's Institute, Phoenix, AZ, USA
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Howard H Feldman
- Department of Neurosciences, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Mary Sano
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Novo Nordisk A/S, Søborg, Denmark
| | | | | | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- EQT Life Sciences, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Hong CT, Chen JH, Hu CJ. Role of glucagon-like peptide-1 receptor agonists in Alzheimer's disease and Parkinson's disease. J Biomed Sci 2024; 31:102. [PMID: 39501255 PMCID: PMC11539687 DOI: 10.1186/s12929-024-01090-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
Neurodegenerative diseases, including Alzheimer's Disease (AD) and Parkinson's Disease (PD) are common complications of diabetes, arising from insulin resistance, inflammation, and other pathological processes in the central nervous system. The potential of numerous antidiabetic agents to modify neurodegenerative disease progression, both preclinically and clinically, has been assessed. These agents may provide additional therapeutic benefits beyond glycemic control. Introduced in the twenty-first century, glucagon-like peptide-1 receptor agonists (GLP-1RAs) are a class of antidiabetic drugs noted not only for their potent glucose-lowering effects but also for their cardiovascular and renal protective benefits. Various GLP-1RAs have been demonstrated to have significant benefits in in vitro and in vivo models of neurodegenerative diseases through modulating a variety of pathogenic mechanisms, including neuroinflammation, autophagy, mitochondrial dysfunction, and the abnormal phosphorylation of pathognomonic proteins. These agents also have substantial protective effects on cognitive and behavioral functions, such as motor function. However, clinical trials investigating GLP-1RAs in diseases such as AD, PD, mild cognitive impairment, psychiatric disorders, and diabetes have yielded mixed results for cognitive and motor function. This review examines the link between diabetes and neurodegenerative diseases, explores the effects of antidiabetic agents on neurodegeneration, provides a concise overview of the GLP-1 pathway, and discusses both preclinical and clinical trial outcomes of GLP-1RAs for neurodegenerative diseases, including their effects on cognition in AD and PD. This review also proposed new strategies for the design of future clinical trials on GLP-1 RAs for both AD and PD.
Collapse
Affiliation(s)
- Chien-Tai Hong
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wuxing St., Xinyi Dist., Taipei, 110, Taiwan
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Jia-Hung Chen
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wuxing St., Xinyi Dist., Taipei, 110, Taiwan
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Chaur-Jong Hu
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wuxing St., Xinyi Dist., Taipei, 110, Taiwan.
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
8
|
Yue Q, Leng X, Xie N, Zhang Z, Yang D, Hoi MPM. Endothelial Dysfunctions in Blood-Brain Barrier Breakdown in Alzheimer's Disease: From Mechanisms to Potential Therapies. CNS Neurosci Ther 2024; 30:e70079. [PMID: 39548663 PMCID: PMC11567945 DOI: 10.1111/cns.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/13/2024] [Accepted: 09/28/2024] [Indexed: 11/18/2024] Open
Abstract
Recent research has shown the presence of blood-brain barrier (BBB) breakdown in Alzheimer's disease (AD). BBB is a dynamic interface consisting of a continuous monolayer of brain endothelial cells (BECs) enveloped by pericytes and astrocytes. The restricted permeability of BBB strictly controls the exchange of substances between blood and brain parenchyma, which is crucial for brain homeostasis by excluding blood-derived detrimental factors and pumping out brain-derived toxic molecules. BBB breakdown in AD is featured as a series of BEC pathologies such as increased paracellular permeability, abnormal levels and functions of transporters, and inflammatory or oxidative profile, which may disturb the substance transportation across BBB, thereafter induce CNS disorders such as hypometabolism, Aβ accumulation, and neuroinflammation, eventually aggravate cognitive decline. Therefore, it seems important to protect BEC properties for BBB maintenance and neuroprotection. In this review, we thoroughly summarized the pathological alterations of BEC properties reported in AD patients and numerous AD models, including paracellular permeability, influx and efflux transporters, and inflammatory and oxidative profiles, and probably associated underlying mechanisms. Then we reviewed current therapeutic agents that are effective in ameliorating a series of BEC pathologies, and ultimately protecting BBB integrity and cognitive functions. Regarding the current drug development for AD proceeds extremely hard, this review aims to discuss the therapeutic potentials of targeting BEC pathologies and BBB maintenance for AD treatment, therefore expecting to shed a light on the future AD drug development by targeting BEC pathologies and BBB protection.
Collapse
Affiliation(s)
- Qian Yue
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacao SARChina
- Department of Pharmaceutical Sciences, Faculty of Health SciencesUniversity of MacauMacao SARChina
- Department of CardiologyThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
- The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital)HeyuanGuangdongChina
| | - Xinyue Leng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacao SARChina
- Department of Pharmaceutical Sciences, Faculty of Health SciencesUniversity of MacauMacao SARChina
| | - Ningqing Xie
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐Cerebrovascular Diseases, and Institute of New Drug ResearchJinan UniversityGuangzhouChina
- Guangdong‐Hong Kong‐Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs ResearchJinan University College of PharmacyGuangzhouChina
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)Jinan University College of PharmacyGuangzhouChina
| | - Zaijun Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐Cerebrovascular Diseases, and Institute of New Drug ResearchJinan UniversityGuangzhouChina
- Guangdong‐Hong Kong‐Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs ResearchJinan University College of PharmacyGuangzhouChina
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)Jinan University College of PharmacyGuangzhouChina
| | - Deguang Yang
- Department of CardiologyThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
- The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital)HeyuanGuangdongChina
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)Jinan University College of PharmacyGuangzhouChina
| | - Maggie Pui Man Hoi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacao SARChina
- Department of Pharmaceutical Sciences, Faculty of Health SciencesUniversity of MacauMacao SARChina
| |
Collapse
|
9
|
Mok VCT, Cai Y, Markus HS. Vascular cognitive impairment and dementia: Mechanisms, treatment, and future directions. Int J Stroke 2024; 19:838-856. [PMID: 39283037 PMCID: PMC11490097 DOI: 10.1177/17474930241279888] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 08/17/2024] [Indexed: 10/21/2024]
Abstract
Worldwide, around 50 million people live with dementia, and this number is projected to triple by 2050. It has been estimated that 20% of all dementia cases have a predominant cerebrovascular pathology, while perhaps another 20% of vascular diseases contribute to a mixed dementia picture. Therefore, the vascular contribution to dementia affects 20 million people currently and will increase markedly in the next few decades, particularly in lower- and middle-income countries.In this review, we discuss the mechanisms of vascular cognitive impairment (VCI) and review management. VCI refers to the spectrum of cerebrovascular pathologies that contribute to any degree of cognitive impairment, ranging from subjective cognitive decline, to mild cognitive impairment, to dementia. While acute cognitive decline occurring soon after a stroke is the most recognized form of VCI, chronic cerebrovascular disease, in particular cerebral small-vessel disease, can cause insidious cognitive decline in the absence of stroke. Moreover, cerebrovascular disease not only commonly co-occurs with Alzheimer's disease (AD) and increases the probability that AD pathology will result in clinical dementia, but may also contribute etiologically to the development of AD pathologies.Despite its enormous health and economic impact, VCI has been a neglected research area, with few adequately powered trials of therapies, resulting in few proven treatments. Current management of VCI emphasizes prevention and treatment of stroke and vascular risk factors, with most evidence for intensive hypertension control. Reperfusion therapies in acute stroke may attenuate the risk of VCI. Associated behavioral symptoms such as apathy and poststroke emotionalism are common. We also highlight novel treatment strategies that will hopefully lead to new disease course-modifying therapies. Finally, we highlight the importance of including cognitive endpoints in large cardiovascular prevention trials and the need for an increased research focus and funding for this important area.
Collapse
Affiliation(s)
- Vincent Chung Tong Mok
- Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, Therese Pei Fong Chow Research Centre for Prevention of Dementia, Lui Che Woo Institute of Innovative Medicine, Gerald Choa Neuroscience Institute, Li Ka Shing Institute of Health Science, Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Yuan Cai
- Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, Therese Pei Fong Chow Research Centre for Prevention of Dementia, Lui Che Woo Institute of Innovative Medicine, Gerald Choa Neuroscience Institute, Li Ka Shing Institute of Health Science, Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Hugh S Markus
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
10
|
Hong B, Bea S, Ko HY, Kim WJ, Cho YM, Shin JY. Sodium-Glucose Cotransporter-2 Inhibitors, Dulaglutide, and Risk for Dementia : A Population-Based Cohort Study. Ann Intern Med 2024; 177:1319-1329. [PMID: 39186787 DOI: 10.7326/m23-3220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Both sodium-glucose cotransporter-2 (SGLT2) inhibitors and glucagon-like peptide-1 receptor agonists (GLP-1 RAs) may have neuroprotective effects in patients with type 2 diabetes (T2D). However, their comparative effectiveness in preventing dementia remains uncertain. OBJECTIVE To compare the risk for dementia between SGLT2 inhibitors and dulaglutide (a GLP-1 RA). DESIGN Target trial emulation study. SETTING Nationwide health care data of South Korea obtained from the National Health Insurance Service between 2010 and 2022. PATIENTS Patients aged 60 years or older who have T2D and are initiating treatment with SGLT2 inhibitors or dulaglutide. MEASUREMENTS The primary outcome was the presumed clinical onset of dementia. The date of onset was defined as the year before the date of dementia diagnosis, assuming that the time between the onset of dementia and diagnosis was 1 year. The 5-year risk ratios and risk differences comparing SGLT2 inhibitors with dulaglutide were estimated in a 1:2 propensity score-matched cohort adjusted for confounders. RESULTS Overall, 12 489 patients initiating SGLT2 inhibitor treatment (51.9% dapagliflozin and 48.1% empagliflozin) and 1075 patients initiating dulaglutide treatment were included. In the matched cohort, over a median follow-up of 4.4 years, the primary outcome event occurred in 69 participants in the SGLT2 inhibitor group and 43 in the dulaglutide group. The estimated risk difference was -0.91 percentage point (95% CI, -2.45 to 0.63 percentage point), and the estimated risk ratio was 0.81 (CI, 0.56 to 1.16). LIMITATION Residual confounding is possible; there was no adjustment for hemoglobin A1c levels or duration of diabetes; the study is not representative of newer drugs, including more effective GLP-1 RAs; and the onset of dementia was not measured directly. CONCLUSION Under conventional statistical criteria, a risk for dementia between 2.5 percentage points lower and 0.6 percentage point greater for SGLT2 inhibitors than for dulaglutide was estimated to be highly compatible with the data from this study. However, whether these findings generalize to newer GLP-1 RAs is uncertain. Thus, further studies incorporating newer drugs within these drug classes and better addressing residual confounding are required. PRIMARY FUNDING SOURCE Ministry of Food and Drug Safety of South Korea.
Collapse
Affiliation(s)
- Bin Hong
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea (B.H., H.Y.K.)
| | - Sungho Bea
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea, and Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts (S.B.)
| | - Hwa Yeon Ko
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea (B.H., H.Y.K.)
| | - Woo Jung Kim
- Department of Psychiatry, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin; Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul; and Institute for Innovation in Digital Healthcare, Yonsei University, Seoul, South Korea (W.J.K.)
| | - Young Min Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea (Y.M.C.)
| | - Ju-Young Shin
- School of Pharmacy and Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, and Department of Clinical Research Design & Evaluation, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, South Korea (J.-Y.S.)
| |
Collapse
|
11
|
Wu YC, Lehtonen Š, Trontti K, Kauppinen R, Kettunen P, Leinonen V, Laakso M, Kuusisto J, Hiltunen M, Hovatta I, Freude K, Dhungana H, Koistinaho J, Rolova T. Human iPSC-derived pericyte-like cells carrying APP Swedish mutation overproduce beta-amyloid and induce cerebral amyloid angiopathy-like changes. Fluids Barriers CNS 2024; 21:78. [PMID: 39334385 PMCID: PMC11438249 DOI: 10.1186/s12987-024-00576-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Patients with Alzheimer's disease (AD) frequently present with cerebral amyloid angiopathy (CAA), characterized by the accumulation of beta-amyloid (Aβ) within the cerebral blood vessels, leading to cerebrovascular dysfunction. Pericytes, which wrap around vascular capillaries, are crucial for regulating cerebral blood flow, angiogenesis, and vessel stability. Despite the known impact of vascular dysfunction on the progression of neurodegenerative diseases, the specific role of pericytes in AD pathology remains to be elucidated. METHODS To explore this, we generated pericyte-like cells from human induced pluripotent stem cells (iPSCs) harboring the Swedish mutation in the amyloid precursor protein (APPswe) along with cells from healthy controls. We initially verified the expression of classic pericyte markers in these cells. Subsequent functional assessments, including permeability, tube formation, and contraction assays, were conducted to evaluate the functionality of both the APPswe and control cells. Additionally, bulk RNA sequencing was utilized to compare the transcriptional profiles between the two groups. RESULTS Our study reveals that iPSC-derived pericyte-like cells (iPLCs) can produce Aβ peptides. Notably, cells with the APPswe mutation secreted Aβ1-42 at levels ten-fold higher than those of control cells. The APPswe iPLCs also demonstrated a reduced ability to support angiogenesis and maintain barrier integrity, exhibited a prolonged contractile response, and produced elevated levels of pro-inflammatory cytokines following inflammatory stimulation. These functional changes in APPswe iPLCs correspond with transcriptional upregulation in genes related to actin cytoskeleton and extracellular matrix organization. CONCLUSIONS Our findings indicate that the APPswe mutation in iPLCs mimics several aspects of CAA pathology in vitro, suggesting that our iPSC-based vascular cell model could serve as an effective platform for drug discovery aimed to ameliorate vascular dysfunction in AD.
Collapse
Affiliation(s)
- Ying-Chieh Wu
- Neuroscience Center, University of Helsinki, 00014, Helsinki, Finland
| | - Šárka Lehtonen
- Neuroscience Center, University of Helsinki, 00014, Helsinki, Finland.
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.
| | - Kalevi Trontti
- Neuroscience Center, University of Helsinki, 00014, Helsinki, Finland
| | - Riitta Kauppinen
- Neuroscience Center, University of Helsinki, 00014, Helsinki, Finland
| | - Pinja Kettunen
- Neuroscience Center, University of Helsinki, 00014, Helsinki, Finland
| | - Ville Leinonen
- NeuroCenter, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Johanna Kuusisto
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Medicine and Clinical Research, Kuopio University Hospital, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Iiris Hovatta
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kristine Freude
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark
| | - Hiramani Dhungana
- Neuroscience Center, University of Helsinki, 00014, Helsinki, Finland
| | - Jari Koistinaho
- Helsinki Institute of Life Science, University of Helsinki, 00014, Helsinki, Finland.
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, University of Helsinki, 00014, Helsinki, Finland.
| | - Taisia Rolova
- Neuroscience Center, University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
12
|
Kim SY, Cheon J. Senescence-associated microvascular endothelial dysfunction: A focus on the blood-brain and blood-retinal barriers. Ageing Res Rev 2024; 100:102446. [PMID: 39111407 DOI: 10.1016/j.arr.2024.102446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/05/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
The blood-brain barrier (BBB) and blood-retinal barrier (BRB) constitute critical physiochemical interfaces, precisely orchestrating the bidirectional communication between the brain/retina and blood. Increased permeability or leakage of these barriers has been demonstrably linked to age-related vascular and parenchymal damage. While it has been suggested that the gradual aging process may coincide with disruptions in these barriers, this phenomenon is significantly exacerbated in individuals with age-related neurodegenerative disorders (ARND). This review focuses on the microvascular endothelium, a key constituent of BBB and BRB, highlighting the impact of endothelial senescence on barrier dysfunction and exploring recent discoveries regarding core pathways implicated in its breakdown. Subsequently, we address the "vascular senescence hypothesis" for ARND, with a particular emphasis on Alzheimer's disease and age-related macular degeneration, centered on endothelial senescence. Finally, we discuss potential senotherapeutic strategies targeting barrier dysfunction.
Collapse
Affiliation(s)
- Sung Young Kim
- Department of Biochemistry, Konkuk University School of Medicine, Republic of Korea; Research Institute of Medical Science, Konkuk University, Republic of Korea; IBST, Konkuk University, Republic of Korea.
| | - Jaejoung Cheon
- Department of Biochemistry, Konkuk University School of Medicine, Republic of Korea
| |
Collapse
|
13
|
Shen K, Shi Y, Wang X, Leung SWS. Cellular Components of the Blood-Brain Barrier and Their Involvement in Aging-Associated Cognitive Impairment. Aging Dis 2024; 16:1513-1534. [PMID: 39122454 PMCID: PMC12096933 DOI: 10.14336/ad.202.0424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/01/2024] [Indexed: 08/12/2024] Open
Abstract
Human life expectancy has been significantly extended, which poses major challenges to our healthcare and social systems. Aging-associated cognitive impairment is attributed to endothelial dysfunction in the cardiovascular system and neurological dysfunction in the central nervous system. The central nervous system is considered an immune-privileged tissue due to the exquisite protection provided by the blood-brain barrier. The present review provides an overview of the structure and function of blood-brain barrier, extending the cell components of blood-brain barrier from endothelial cells and pericytes to astrocytes, perivascular macrophages and oligodendrocyte progenitor cells. In particular, the pathological changes in the blood-brain barrier in aging, with special focus on the underlying mechanisms and molecular changes, are presented. Furthermore, the potential preventive/therapeutic strategies against aging-associated blood-brain barrier disruption are discussed.
Collapse
Affiliation(s)
- Kaiyuan Shen
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yi Shi
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China.
- Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Susan WS Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
14
|
Weber CM, Moiz B, Clyne AM. Brain microvascular endothelial cell metabolism and its ties to barrier function. VITAMINS AND HORMONES 2024; 126:25-75. [PMID: 39029976 PMCID: PMC11756814 DOI: 10.1016/bs.vh.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Brain microvascular endothelial cells, which lie at the interface between blood and brain, are critical to brain energetics. These cells must precisely balance metabolizing nutrients for their own demands with transporting nutrients into the brain to sustain parenchymal cells. It is essential to understand this integrated metabolism and transport so that we can develop better diagnostics and therapeutics for neurodegenerative diseases such as Alzheimer's disease, multiple sclerosis, and traumatic brain injury. In this chapter, we first describe brain microvascular endothelial cell metabolism and how these cells regulate both blood flow and nutrient transport. We then explain the impact of brain microvascular endothelial cell metabolism on the integrity of the blood-brain barrier, as well as how metabolites produced by the endothelial cells impact other brain cells. We detail some ways that cell metabolism is typically measured experimentally and modeled computationally. Finally, we describe changes in brain microvascular endothelial cell metabolism in aging and neurodegenerative diseases. At the end of the chapter, we highlight areas for future research in brain microvascular endothelial cell metabolism. The goal of this chapter is to underscore the importance of nutrient metabolism and transport at the brain endothelium for cerebral health and neurovascular disease treatment.
Collapse
Affiliation(s)
- Callie M Weber
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Bilal Moiz
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Alisa Morss Clyne
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States.
| |
Collapse
|
15
|
Dobner S, Tóth F, de Rooij LPMH. A high-resolution view of the heterogeneous aging endothelium. Angiogenesis 2024; 27:129-145. [PMID: 38324119 PMCID: PMC11021252 DOI: 10.1007/s10456-023-09904-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/28/2023] [Indexed: 02/08/2024]
Abstract
Vascular endothelial cell (EC) aging has a strong impact on tissue perfusion and overall cardiovascular health. While studies confined to the investigation of aging-associated vascular readouts in one or a few tissues have already drastically expanded our understanding of EC aging, single-cell omics and other high-resolution profiling technologies have started to illuminate the intricate molecular changes underlying endothelial aging across diverse tissues and vascular beds at scale. In this review, we provide an overview of recent insights into the heterogeneous adaptations of the aging vascular endothelium. We address critical questions regarding tissue-specific and universal responses of the endothelium to the aging process, EC turnover dynamics throughout lifespan, and the differential susceptibility of ECs to acquiring aging-associated traits. In doing so, we underscore the transformative potential of single-cell approaches in advancing our comprehension of endothelial aging, essential to foster the development of future innovative therapeutic strategies for aging-associated vascular conditions.
Collapse
Affiliation(s)
- Sarah Dobner
- The CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Fanni Tóth
- The CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Laura P M H de Rooij
- The CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
16
|
Zapata-Acevedo JF, Mantilla-Galindo A, Vargas-Sánchez K, González-Reyes RE. Blood-brain barrier biomarkers. Adv Clin Chem 2024; 121:1-88. [PMID: 38797540 DOI: 10.1016/bs.acc.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The blood-brain barrier (BBB) is a dynamic interface that regulates the exchange of molecules and cells between the brain parenchyma and the peripheral blood. The BBB is mainly composed of endothelial cells, astrocytes and pericytes. The integrity of this structure is essential for maintaining brain and spinal cord homeostasis and protection from injury or disease. However, in various neurological disorders, such as traumatic brain injury, Alzheimer's disease, and multiple sclerosis, the BBB can become compromised thus allowing passage of molecules and cells in and out of the central nervous system parenchyma. These agents, however, can serve as biomarkers of BBB permeability and neuronal damage, and provide valuable information for diagnosis, prognosis and treatment. Herein, we provide an overview of the BBB and changes due to aging, and summarize current knowledge on biomarkers of BBB disruption and neurodegeneration, including permeability, cellular, molecular and imaging biomarkers. We also discuss the challenges and opportunities for developing a biomarker toolkit that can reliably assess the BBB in physiologic and pathophysiologic states.
Collapse
Affiliation(s)
- Juan F Zapata-Acevedo
- Grupo de Investigación en Neurociencias, Centro de Neurociencia Neurovitae-UR, Instituto de Medicina Traslacional, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Alejandra Mantilla-Galindo
- Grupo de Investigación en Neurociencias, Centro de Neurociencia Neurovitae-UR, Instituto de Medicina Traslacional, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Karina Vargas-Sánchez
- Laboratorio de Neurofisiología Celular, Grupo de Neurociencia Traslacional, Facultad de Medicina, Universidad de los Andes, Bogotá, Colombia
| | - Rodrigo E González-Reyes
- Grupo de Investigación en Neurociencias, Centro de Neurociencia Neurovitae-UR, Instituto de Medicina Traslacional, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
17
|
Katdare KA, Kjar A, O’Brown NM, Neal EH, Sorets AG, Shostak A, Romero-Fernandez W, Kwiatkowski AJ, Mlouk K, Kim H, Cowell RP, Schwensen KR, Horner KB, Wilson JT, Schrag MS, Megason SG, Lippmann ES. IQGAP2 regulates blood-brain barrier immune dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.07.527394. [PMID: 38645082 PMCID: PMC11030232 DOI: 10.1101/2023.02.07.527394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Brain endothelial cells (BECs) play an important role in maintaining central nervous system (CNS) homeostasis through blood-brain barrier (BBB) functions. BECs express low baseline levels of adhesion receptors, which limits entry of leukocytes. However, the molecular mediators governing this phenotype remain mostly unclear. Here, we explored how infiltration of immune cells across the BBB is influenced by the scaffold protein IQ motif containing GTPase activating protein 2 (IQGAP2). In mice and zebrafish, we demonstrate that loss of Iqgap2 increases infiltration of peripheral leukocytes into the CNS under homeostatic and inflammatory conditions. Using single-cell RNA sequencing and immunohistology, we further show that BECs from mice lacking Iqgap2 exhibit a profound inflammatory signature, including extensive upregulation of adhesion receptors and antigen-processing machinery. Human tissue analyses also reveal that Alzheimer's disease is associated with reduced hippocampal IQGAP2. Overall, our results implicate IQGAP2 as an essential regulator of BBB immune privilege and immune cell entry into the CNS.
Collapse
Affiliation(s)
- Ketaki A. Katdare
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Andrew Kjar
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | | | - Emma H. Neal
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Alexander G. Sorets
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Alena Shostak
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | - Kate Mlouk
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Hyosung Kim
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Rebecca P. Cowell
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Katrina R. Schwensen
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Kensley B. Horner
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - John T. Wilson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Matthew S. Schrag
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sean G. Megason
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Ethan S. Lippmann
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
18
|
Chasseigneaux S, Cochois-Guégan V, Lecorgne L, Lochus M, Nicolic S, Blugeon C, Jourdren L, Gomez-Zepeda D, Tenzer S, Sanquer S, Nivet-Antoine V, Menet MC, Laplanche JL, Declèves X, Cisternino S, Saubaméa B. Fasting upregulates the monocarboxylate transporter MCT1 at the rat blood-brain barrier through PPAR δ activation. Fluids Barriers CNS 2024; 21:33. [PMID: 38589879 PMCID: PMC11003008 DOI: 10.1186/s12987-024-00526-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/29/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND The blood-brain barrier (BBB) is pivotal for the maintenance of brain homeostasis and it strictly regulates the cerebral transport of a wide range of endogenous compounds and drugs. While fasting is increasingly recognized as a potential therapeutic intervention in neurology and psychiatry, its impact upon the BBB has not been studied. This study was designed to assess the global impact of fasting upon the repertoire of BBB transporters. METHODS We used a combination of in vivo and in vitro experiments to assess the response of the brain endothelium in male rats that were fed ad libitum or fasted for one to three days. Brain endothelial cells were acutely purified and transcriptionaly profiled using RNA-Seq. Isolated brain microvessels were used to assess the protein expression of selected BBB transporters through western blot. The molecular mechanisms involved in the adaptation to fasting were investigated in primary cultured rat brain endothelial cells. MCT1 activity was probed by in situ brain perfusion. RESULTS Fasting did not change the expression of the main drug efflux ATP-binding cassette transporters or P-glycoprotein activity at the BBB but modulated a restrictive set of solute carrier transporters. These included the ketone bodies transporter MCT1, which is pivotal for the brain adaptation to fasting. Our findings in vivo suggested that PPAR δ, a major lipid sensor, was selectively activated in brain endothelial cells in response to fasting. This was confirmed in vitro where pharmacological agonists and free fatty acids selectively activated PPAR δ, resulting in the upregulation of MCT1 expression. Moreover, dosing rats with a specific PPAR δ antagonist blocked the upregulation of MCT1 expression and activity induced by fasting. CONCLUSIONS Altogether, our study shows that fasting affects a selected set of BBB transporters which does not include the main drug efflux transporters. Moreover, we describe a previously unknown selective adaptive response of the brain vasculature to fasting which involves PPAR δ and is responsible for the up-regulation of MCT1 expression and activity. Our study opens new perspectives for the metabolic manipulation of the BBB in the healthy or diseased brain.
Collapse
Affiliation(s)
- Stéphanie Chasseigneaux
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Inserm, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Véronique Cochois-Guégan
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Inserm, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Lucas Lecorgne
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Inserm, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Murielle Lochus
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Inserm, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Sophie Nicolic
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Inserm, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Corinne Blugeon
- Département de biologie, GenomiqueENS, Institut de Biologie de l'ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Laurent Jourdren
- Département de biologie, GenomiqueENS, Institut de Biologie de l'ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - David Gomez-Zepeda
- Helmholtz-Institute for Translational Oncology Mainz (HI-TRON Mainz), A Hemlholtz Institute of the DKFZ, Mainz, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division 191, 69120, Heidelberg, Germany
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Stefan Tenzer
- Helmholtz-Institute for Translational Oncology Mainz (HI-TRON Mainz), A Hemlholtz Institute of the DKFZ, Mainz, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division 191, 69120, Heidelberg, Germany
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | | | - Valérie Nivet-Antoine
- AP-HP Biochimie générale, Hôpital Necker Enfants Malades, Université Paris Cité, Inserm, Innovations Thérapeutiques en Hémostase, Paris, France
| | - Marie-Claude Menet
- Institut de Chimie Physique, CNRS UMR8000, Université Paris-Saclay, 91400, Orsay, France
| | - Jean-Louis Laplanche
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Inserm, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Xavier Declèves
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Inserm, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Salvatore Cisternino
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Inserm, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Bruno Saubaméa
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Inserm, 4 avenue de l'Observatoire, 75006, Paris, France.
| |
Collapse
|
19
|
Wasielewska JM, Szostak K, McInnes LE, Quek H, Chaves JCS, Liddell JR, Koistinaho J, Oikari LE, Donnelly PS, White AR. Patient-Derived Blood-Brain Barrier Model for Screening Copper Bis(thiosemicarbazone) Complexes as Potential Therapeutics in Alzheimer's Disease. ACS Chem Neurosci 2024; 15:1432-1455. [PMID: 38477556 DOI: 10.1021/acschemneuro.3c00743] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent cause of dementia characterized by a progressive cognitive decline. Addressing neuroinflammation represents a promising therapeutic avenue to treat AD; however, the development of effective antineuroinflammatory compounds is often hindered by their limited blood-brain barrier (BBB) permeability. Consequently, there is an urgent need for accurate, preclinical AD patient-specific BBB models to facilitate the early identification of immunomodulatory drugs capable of efficiently crossing the human AD BBB. This study presents a unique approach to BBB drug permeability screening as it utilizes the familial AD patient-derived induced brain endothelial-like cell (iBEC)-based model, which exhibits increased disease relevance and serves as an improved BBB drug permeability assessment tool when compared to traditionally employed in vitro models. To demonstrate its utility as a small molecule drug candidate screening platform, we investigated the effects of diacetylbis(N(4)-methylthiosemicarbazonato)copper(II) (CuII(atsm)) and a library of metal bis(thiosemicarbazone) complexes─a class of compounds exhibiting antineuroinflammatory therapeutic potential in neurodegenerative disorders. By evaluating the toxicity, cellular accumulation, and permeability of those compounds in the AD patient-derived iBEC, we have identified 3,4-hexanedione bis(N(4)-methylthiosemicarbazonato)copper(II) (CuII(dtsm)) as a candidate with good transport across the AD BBB. Furthermore, we have developed a multiplex approach where AD patient-derived iBEC were combined with immune modulators TNFα and IFNγ to establish an in vitro model representing the characteristic neuroinflammatory phenotype at the patient's BBB. Here, we observed that treatment with CuII(dtsm) not only reduced the expression of proinflammatory cytokine genes but also reversed the detrimental effects of TNFα and IFNγ on the integrity and function of the AD iBEC monolayer. This suggests a novel pathway through which copper bis(thiosemicarbazone) complexes may exert neurotherapeutic effects on AD by mitigating BBB neuroinflammation and related BBB integrity impairment. Together, the presented model provides an effective and easily scalable in vitro BBB platform for screening AD drug candidates. Its improved translational potential makes it a valuable tool for advancing the development of metal-based compounds aimed at modulating neuroinflammation in AD.
Collapse
Affiliation(s)
- Joanna M Wasielewska
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- Faculty of Medicine, University of Queensland, Herston, QLD 4006, Australia
| | - Kathryn Szostak
- School of Chemistry, Bio21 Institute for Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Lachlan E McInnes
- School of Chemistry, Bio21 Institute for Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Hazel Quek
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- School of Biomedical Science, University of Queensland, St. Lucia, QLD 4067, Australia
| | - Juliana C S Chaves
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Jeffrey R Liddell
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jari Koistinaho
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki 00014,Finland
- Neuroscience Centre, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Lotta E Oikari
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Paul S Donnelly
- School of Chemistry, Bio21 Institute for Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Anthony R White
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- School of Biomedical Science, University of Queensland, St. Lucia, QLD 4067, Australia
| |
Collapse
|
20
|
Todorov-Völgyi K, González-Gallego J, Müller SA, Beaufort N, Malik R, Schifferer M, Todorov MI, Crusius D, Robinson S, Schmidt A, Körbelin J, Bareyre F, Ertürk A, Haass C, Simons M, Paquet D, Lichtenthaler SF, Dichgans M. Proteomics of mouse brain endothelium uncovers dysregulation of vesicular transport pathways during aging. NATURE AGING 2024; 4:595-612. [PMID: 38519806 DOI: 10.1038/s43587-024-00598-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/20/2024] [Indexed: 03/25/2024]
Abstract
Age-related decline in brain endothelial cell (BEC) function contributes critically to neurological disease. Comprehensive atlases of the BEC transcriptome have become available, but results from proteomic profiling are lacking. To gain insights into endothelial pathways affected by aging, we developed a magnetic-activated cell sorting-based mouse BEC enrichment protocol compatible with proteomics and resolved the profiles of protein abundance changes during aging. Unsupervised cluster analysis revealed a segregation of age-related protein dynamics with biological functions, including a downregulation of vesicle-mediated transport. We found a dysregulation of key regulators of endocytosis and receptor recycling (most prominently Arf6), macropinocytosis and lysosomal degradation. In gene deletion and overexpression experiments, Arf6 affected endocytosis pathways in endothelial cells. Our approach uncovered changes not picked up by transcriptomic studies, such as accumulation of vesicle cargo and receptor ligands, including Apoe. Proteomic analysis of BECs from Apoe-deficient mice revealed a signature of accelerated aging. Our findings provide a resource for analysing BEC function during aging.
Collapse
Affiliation(s)
- Katalin Todorov-Völgyi
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.
| | - Judit González-Gallego
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Graduate School of Systemic Neuroscience (GSN), University Hospital, LMU Munich, Munich, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Neuroproteomics, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Nathalie Beaufort
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Rainer Malik
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Martina Schifferer
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Mihail Ivilinov Todorov
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, Neuherberg, Germany
| | - Dennis Crusius
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Sophie Robinson
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Graduate School of Systemic Neuroscience (GSN), University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Andree Schmidt
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Neuroproteomics, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jakob Körbelin
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florence Bareyre
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany
- Biomedical Center Munich (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Ali Ertürk
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, Neuherberg, Germany
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Division of Metabolic Biochemistry, Biomedical Center Munich (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mikael Simons
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Dominik Paquet
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Neuroproteomics, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
21
|
Ip BYM, Ko H, Lam BYK, Au LWC, Lau AYL, Huang J, Kwok AJ, Leng X, Cai Y, Leung TWH, Mok VCT. Current and Future Treatments of Vascular Cognitive Impairment. Stroke 2024; 55:822-839. [PMID: 38527144 DOI: 10.1161/strokeaha.123.044174] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Affiliation(s)
- Bonaventure Yiu Ming Ip
- Division of Neurology, Department of Medicine and Therapeutics (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Li Ka Shing Institute of Health Sciences (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Lau Tat-Chuen Research Centre of Brain Degenerative Diseases in Chinese (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., C.Y., V.C.T.M.)
- Kwok Tak Seng Centre for Stroke Research and Intervention, Hong Kong SAR, China (B.Y.M.I., X.L., T.W.H.L.)
| | - Ho Ko
- Division of Neurology, Department of Medicine and Therapeutics (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Li Ka Shing Institute of Health Sciences (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Lau Tat-Chuen Research Centre of Brain Degenerative Diseases in Chinese (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., C.Y., V.C.T.M.)
| | - Bonnie Yin Ka Lam
- Division of Neurology, Department of Medicine and Therapeutics (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Li Ka Shing Institute of Health Sciences (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Lau Tat-Chuen Research Centre of Brain Degenerative Diseases in Chinese (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., C.Y., V.C.T.M.)
| | - Lisa Wing Chi Au
- Division of Neurology, Department of Medicine and Therapeutics (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Li Ka Shing Institute of Health Sciences (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Lau Tat-Chuen Research Centre of Brain Degenerative Diseases in Chinese (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., C.Y., V.C.T.M.)
| | - Alexander Yuk Lun Lau
- Division of Neurology, Department of Medicine and Therapeutics (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Lau Tat-Chuen Research Centre of Brain Degenerative Diseases in Chinese (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
| | - Junzhe Huang
- Division of Neurology, Department of Medicine and Therapeutics (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Li Ka Shing Institute of Health Sciences (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Lau Tat-Chuen Research Centre of Brain Degenerative Diseases in Chinese (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., C.Y., V.C.T.M.)
| | - Andrew John Kwok
- Division of Neurology, Department of Medicine and Therapeutics (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Li Ka Shing Institute of Health Sciences (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Lau Tat-Chuen Research Centre of Brain Degenerative Diseases in Chinese (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., C.Y., V.C.T.M.)
| | - Xinyi Leng
- Division of Neurology, Department of Medicine and Therapeutics (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Li Ka Shing Institute of Health Sciences (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Kwok Tak Seng Centre for Stroke Research and Intervention, Hong Kong SAR, China (B.Y.M.I., X.L., T.W.H.L.)
| | - Yuan Cai
- Division of Neurology, Department of Medicine and Therapeutics (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Li Ka Shing Institute of Health Sciences (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Lau Tat-Chuen Research Centre of Brain Degenerative Diseases in Chinese (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., C.Y., V.C.T.M.)
| | - Thomas Wai Hong Leung
- Division of Neurology, Department of Medicine and Therapeutics (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Li Ka Shing Institute of Health Sciences (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Kwok Tak Seng Centre for Stroke Research and Intervention, Hong Kong SAR, China (B.Y.M.I., X.L., T.W.H.L.)
| | - Vincent Chung Tong Mok
- Division of Neurology, Department of Medicine and Therapeutics (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Li Ka Shing Institute of Health Sciences (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Lau Tat-Chuen Research Centre of Brain Degenerative Diseases in Chinese (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., C.Y., V.C.T.M.)
| |
Collapse
|
22
|
Kwok AJ, Lu J, Huang J, Ip BY, Mok VCT, Lai HM, Ko H. High-resolution omics of vascular ageing and inflammatory pathways in neurodegeneration. Semin Cell Dev Biol 2024; 155:30-49. [PMID: 37380595 DOI: 10.1016/j.semcdb.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/07/2023] [Indexed: 06/30/2023]
Abstract
High-resolution omics, particularly single-cell and spatial transcriptomic profiling, are rapidly enhancing our comprehension of the normal molecular diversity of gliovascular cells, as well as their age-related changes that contribute to neurodegeneration. With more omic profiling studies being conducted, it is becoming increasingly essential to synthesise valuable information from the rapidly accumulating findings. In this review, we present an overview of the molecular features of neurovascular and glial cells that have been recently discovered through omic profiling, with a focus on those that have potentially significant functional implications and/or show cross-species differences between human and mouse, and that are linked to vascular deficits and inflammatory pathways in ageing and neurodegenerative disorders. Additionally, we highlight the translational applications of omic profiling, and discuss omic-based strategies to accelerate biomarker discovery and facilitate disease course-modifying therapeutics development for neurodegenerative conditions.
Collapse
Affiliation(s)
- Andrew J Kwok
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Jianning Lu
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Junzhe Huang
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Bonaventure Y Ip
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Vincent C T Mok
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hei Ming Lai
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Ho Ko
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
23
|
Shin YJ, Lee JH. Exploring the Molecular and Developmental Dynamics of Endothelial Cell Differentiation. Int J Stem Cells 2024; 17:15-29. [PMID: 37879853 PMCID: PMC10899884 DOI: 10.15283/ijsc23086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/06/2023] [Accepted: 09/05/2023] [Indexed: 10/27/2023] Open
Abstract
The development and differentiation of endothelial cells (ECs) are fundamental processes with significant implications for both health and disease. ECs, which are found in all organs and blood vessels, play a crucial role in facilitating nutrient and waste exchange and maintaining proper vessel function. Understanding the intricate signaling pathways involved in EC development holds great promise for enhancing vascularization, tissue engineering, and vascular regeneration. Hematopoietic stem cells originating from hemogenic ECs, give rise to diverse immune cell populations, and the interaction between ECs and immune cells is vital for maintaining vascular integrity and regulating immune responses. Dysregulation of vascular development pathways can lead to various diseases, including cancer, where tumor-specific ECs promote tumor growth through angiogenesis. Recent advancements in single-cell genomics and in vivo genetic labeling have shed light on EC development, plasticity, and heterogeneity, uncovering tissue-specific gene expression and crucial signaling pathways. This review explores the potential of ECs in various applications, presenting novel opportunities for advancing vascular medicine and treatment strategies.
Collapse
Affiliation(s)
- Yu Jung Shin
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Jung Hyun Lee
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Dermatology, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
24
|
Chandra PK, Panner Selvam MK, Castorena-Gonzalez JA, Rutkai I, Sikka SC, Mostany R, Busija DW. Fibrinogen in mice cerebral microvessels induces blood-brain barrier dysregulation with aging via a dynamin-related protein 1-dependent pathway. GeroScience 2024; 46:395-415. [PMID: 37897653 PMCID: PMC10828490 DOI: 10.1007/s11357-023-00988-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/14/2023] [Indexed: 10/30/2023] Open
Abstract
We previously reported evidence that oxidative stress during aging leads to adverse protein profile changes of brain cortical microvessels (MVs: end arterioles, capillaries, and venules) that affect mRNA/protein stability, basement membrane integrity, and ATP synthesis capacity in mice. As an extension of our previous study, we also found that proteins which comprise the blood-brain barrier (BBB) and regulate mitochondrial quality control were also significantly decreased in the mice's cortical MVs with aging. Interestingly, the neuroinflammatory protein fibrinogen (Fgn) was increased in mice brain MVs, which corresponds with clinical reports indicating that the plasma Fgn concentration increased progressively with aging. In this study, protein-protein interaction network analysis indicated that high expression of Fgn is linked with downregulated expression of both BBB- and mitochondrial fission/fusion-related proteins in mice cortical MVs with aging. To investigate the mechanism of Fgn action, we observed that 2 mg/mL or higher concentration of human plasma Fgn changed cell morphology, induced cytotoxicity, and increased BBB permeability in primary human brain microvascular endothelial cells (HBMECs). The BBB tight junction proteins were significantly decreased with increasing concentration of human plasma Fgn in primary HBMECs. Similarly, the expression of phosphorylated dynamin-related protein 1 (pDRP1) and other mitochondrial fission/fusion-related proteins were also significantly reduced in Fgn-treated HBMECs. Interestingly, DRP1 knockdown by shRNA(h) resulted in the reduction of both BBB- and mitochondrial fission/fusion-related proteins in HBMECs. Our results suggest that elevated Fgn downregulates DRP1, leading to mitochondrial-dependent endothelial and BBB dysfunction in the brain microvasculature.
Collapse
Affiliation(s)
- Partha K Chandra
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA.
- Tulane Brain Institute, Tulane University, 200 Flower Hall, 6823 St. Charles Avenue, New Orleans, LA, 70118, USA.
| | - Manesh Kumar Panner Selvam
- Department of Urology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Jorge A Castorena-Gonzalez
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Ibolya Rutkai
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
- Tulane Brain Institute, Tulane University, 200 Flower Hall, 6823 St. Charles Avenue, New Orleans, LA, 70118, USA
| | - Suresh C Sikka
- Department of Urology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Ricardo Mostany
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
- Tulane Brain Institute, Tulane University, 200 Flower Hall, 6823 St. Charles Avenue, New Orleans, LA, 70118, USA
| | - David W Busija
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
- Tulane Brain Institute, Tulane University, 200 Flower Hall, 6823 St. Charles Avenue, New Orleans, LA, 70118, USA
| |
Collapse
|
25
|
Flotho M, Amand J, Hirsch P, Grandke F, Wyss-Coray T, Keller A, Kern F. ZEBRA: a hierarchically integrated gene expression atlas of the murine and human brain at single-cell resolution. Nucleic Acids Res 2024; 52:D1089-D1096. [PMID: 37941147 PMCID: PMC10767845 DOI: 10.1093/nar/gkad990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/02/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023] Open
Abstract
The molecular causes and mechanisms of neurodegenerative diseases remain poorly understood. A growing number of single-cell studies have implicated various neural, glial, and immune cell subtypes to affect the mammalian central nervous system in many age-related disorders. Integrating this body of transcriptomic evidence into a comprehensive and reproducible framework poses several computational challenges. Here, we introduce ZEBRA, a large single-cell and single-nucleus RNA-seq database. ZEBRA integrates and normalizes gene expression and metadata from 33 studies, encompassing 4.2 million human and mouse brain cells sampled from 39 brain regions. It incorporates samples from patients with neurodegenerative diseases like Alzheimer's disease, Parkinson's disease, and Multiple sclerosis, as well as samples from relevant mouse models. We employed scVI, a deep probabilistic auto-encoder model, to integrate the samples and curated both cell and sample metadata for downstream analysis. ZEBRA allows for cell-type and disease-specific markers to be explored and compared between sample conditions and brain regions, a cell composition analysis, and gene-wise feature mappings. Our comprehensive molecular database facilitates the generation of data-driven hypotheses, enhancing our understanding of mammalian brain function during aging and disease. The data sets, along with an interactive database are freely available at https://www.ccb.uni-saarland.de/zebra.
Collapse
Affiliation(s)
- Matthias Flotho
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, 66123 Saarbrücken, Germany
- Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Jérémy Amand
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, 66123 Saarbrücken, Germany
- Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Pascal Hirsch
- Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Friederike Grandke
- Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA
| | - Andreas Keller
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, 66123 Saarbrücken, Germany
- Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Fabian Kern
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, 66123 Saarbrücken, Germany
- Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
26
|
de la Monte SM. Conquering Insulin Network Dysfunctions in Alzheimer's Disease: Where Are We Today? J Alzheimers Dis 2024; 101:S317-S343. [PMID: 39422949 PMCID: PMC11807374 DOI: 10.3233/jad-240069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Functional impairments in the brain's insulin and insulin-like growth factor (IGF) signal transduction networks are recognized mediators of dysregulated energy metabolism, a major driver of the Alzheimer's disease (AD) neurodegeneration cascade. AD-associated insulin-deficient and insulin-resistant states mimic those of diabetes mellitus and affect all cell types in the brain. Besides accounting for abundant amyloid-β and hyperphosphorylated tau lesions in AD, insulin/IGF pathway dysfunctions cause cortical atrophy, loss of synaptic plasticity, white matter myelin/oligodendrocyte degeneration, astrocyte and microglial neuroinflammation and oxidative stress, deficits in energy metabolism, mitochondrial dysfunction, and microvascular disease. These same neuropathological processes have been linked to cognitive impairment in type 2 diabetes mellitus, Parkinson's disease, and vascular dementia. Strategies to address metabolic mediators of cognitive impairment have been borrowed from diabetes and other insulin-resistant diseases and leveraged on preclinical AD model data. The repurposing of diabetes drugs led to clinical trials with intranasal insulin, followed by insulin sensitizers including metformin and peroxisome-proliferator-activated receptor agonists, and then incretin mimetics primarily targeting GLP-1 receptors. In addition, other glucose-lowering agents have been tested for their efficacy in preventing cognitive declines. The strengths and limitations of these approaches are discussed. The main conclusion of this review is that we have now arrived at a stage in which it is time to address long-term deficits in trophic factor availability and receptor responsiveness, signaling abnormalities that extend beyond insulin and include IGFs and interconnected pathways, and the need for multi-pronged rather than single-pronged therapeutic targeting to remediate AD and other forms of neurodegeneration.
Collapse
Affiliation(s)
- Suzanne M. de la Monte
- Departments of Pathology and Laboratory Medicine, Medicine, Neurology and Neurosurgery, Rhode Island Hospital, Lifespan Academic Institutions, and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
27
|
Liang M, Jian T, Tao J, Wang X, Wang R, Jin W, Chen Q, Yao J, Zhao Z, Yang X, Xiao J, Yang Z, Liao X, Chen X, Wang L, Qin H. Hypothalamic supramammillary neurons that project to the medial septum modulate wakefulness in mice. Commun Biol 2023; 6:1255. [PMID: 38087004 PMCID: PMC10716381 DOI: 10.1038/s42003-023-05637-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The hypothalamic supramammillary nucleus (SuM) plays a crucial role in controlling wakefulness, but the downstream target regions participating in this control process remain unknown. Here, using circuit-specific fiber photometry and single-neuron electrophysiology together with electroencephalogram, electromyogram and behavioral recordings, we find that approximately half of SuM neurons that project to the medial septum (MS) are wake-active. Optogenetic stimulation of axonal terminals of SuM-MS projection induces a rapid and reliable transition to wakefulness from non-rapid-eye movement or rapid-eye movement sleep, and chemogenetic activation of SuMMS projecting neurons significantly increases wakefulness time and prolongs latency to sleep. Consistently, chemogenetically inhibiting these neurons significantly reduces wakefulness time and latency to sleep. Therefore, these results identify the MS as a functional downstream target of SuM and provide evidence for the modulation of wakefulness by this hypothalamic-septal projection.
Collapse
Affiliation(s)
- Mengru Liang
- Department of Anatomy, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Tingliang Jian
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jie Tao
- Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning, 530004, China
| | - Xia Wang
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Rui Wang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Wenjun Jin
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Qianwei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Jiwei Yao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Zhikai Zhao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Xinyu Yang
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Jingyu Xiao
- Department of Anesthesiology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Zhiqi Yang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Xiang Liao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China.
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China.
| | - Liecheng Wang
- Department of Anatomy, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Han Qin
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, 400044, China.
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China.
| |
Collapse
|
28
|
Liao H, Wan Z, Liang Y, Kang L, Wan R. Metabolic and senescence characteristics associated with the immune microenvironment in non-small cell lung cancer: insights from single-cell RNA sequencing. Aging (Albany NY) 2023; 15:11571-11587. [PMID: 37889543 PMCID: PMC10637824 DOI: 10.18632/aging.205146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023]
Abstract
Non-small lung cancer (NSCLC) has been defined as a highly life-threatening heterogeneous disease, with high mortality and occurrence. Recent research has indicated that tumor-infiltrating lymphocytes play a key determinant role in cancer progression. Emerging single-cell RNA sequencing (also termed scRNA-seq) has been extensively applied to depict the baseline landscape of the cell composition and function phenotype in the tumor environment (TME). Herein, we dissected the cell types in NSCLC samples (including tissue and blood) and identified three types of cell marker genes including cancer cells, T cells, and macrophages by integrating two NSCLC-associated scRNA-seq datasets in GEO. Survival analysis indicated that 17 marker genes were related to tumor prognosis. Function annotation was used to scrutinize the molecular mechanism of these marker genes in different cells. Besides, we investigated the developmental trajectory and T cell receptor repertoire diversity of tumor-infiltrating T cells. Our analysis will help further understand the complexity of cell components and the heterogeneity of TME in NSCLC.
Collapse
Affiliation(s)
- Hongliang Liao
- Department of Thoracic Surgery, The Yuebei People’s Hospital of Shaoguan, Shaoguan, Guangdong 512025, China
| | - Zihao Wan
- College of Physical Education and Health, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yaqin Liang
- Department of Nursing Medical College, Shaoguan University, Shaoguan, Guangdong 512005, China
| | - Lin Kang
- Department of Gynaecology and Obstetrics, The Qujiang District Maternal and Child Health Care Hospital, Shaoguan, Guangdong, China
| | - Renping Wan
- Department of Thoracic Surgery, The Yuebei People’s Hospital of Shaoguan, Shaoguan, Guangdong 512025, China
| |
Collapse
|
29
|
Sun N, Akay LA, Murdock MH, Park Y, Galiana-Melendez F, Bubnys A, Galani K, Mathys H, Jiang X, Ng AP, Bennett DA, Tsai LH, Kellis M. Single-nucleus multiregion transcriptomic analysis of brain vasculature in Alzheimer's disease. Nat Neurosci 2023; 26:970-982. [PMID: 37264161 PMCID: PMC10464935 DOI: 10.1038/s41593-023-01334-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/17/2023] [Indexed: 06/03/2023]
Abstract
Cerebrovascular dysregulation is a hallmark of Alzheimer's disease (AD), but the changes that occur in specific cell types have not been fully characterized. Here, we profile single-nucleus transcriptomes in the human cerebrovasculature in six brain regions from 220 individuals with AD and 208 age-matched controls. We annotate 22,514 cerebrovascular cells, including 11 subtypes of endothelial, pericyte, smooth muscle, perivascular fibroblast and ependymal cells. We identify 2,676 differentially expressed genes in AD, including downregulation of PDGFRB in pericytes, and of ABCB1 and ATP10A in endothelial cells, and validate the downregulation of SLC6A1 and upregulation of APOD, INSR and COL4A1 in postmortem AD brain tissues. We detect vasculature, glial and neuronal coexpressed gene modules, suggesting coordinated neurovascular unit dysregulation in AD. Integration with AD genetics reveals 125 AD differentially expressed genes directly linked to AD-associated genetic variants. Lastly, we show that APOE4 genotype-associated differences are significantly enriched among AD-associated genes in capillary and venule endothelial cells, as well as subsets of pericytes and fibroblasts.
Collapse
Affiliation(s)
- Na Sun
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Leyla Anne Akay
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mitchell H Murdock
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yongjin Park
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology and Laboratory Medicine, Department of Statistics, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, BC Cancer, Vancouver, British Columbia, Canada
| | - Fabiola Galiana-Melendez
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Adele Bubnys
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kyriaki Galani
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hansruedi Mathys
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xueqiao Jiang
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ayesha P Ng
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Li-Huei Tsai
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Manolis Kellis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
30
|
Iadecola C, Smith EE, Anrather J, Gu C, Mishra A, Misra S, Perez-Pinzon MA, Shih AY, Sorond FA, van Veluw SJ, Wellington CL. The Neurovasculome: Key Roles in Brain Health and Cognitive Impairment: A Scientific Statement From the American Heart Association/American Stroke Association. Stroke 2023; 54:e251-e271. [PMID: 37009740 PMCID: PMC10228567 DOI: 10.1161/str.0000000000000431] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
BACKGROUND Preservation of brain health has emerged as a leading public health priority for the aging world population. Advances in neurovascular biology have revealed an intricate relationship among brain cells, meninges, and the hematic and lymphatic vasculature (the neurovasculome) that is highly relevant to the maintenance of cognitive function. In this scientific statement, a multidisciplinary team of experts examines these advances, assesses their relevance to brain health and disease, identifies knowledge gaps, and provides future directions. METHODS Authors with relevant expertise were selected in accordance with the American Heart Association conflict-of-interest management policy. They were assigned topics pertaining to their areas of expertise, reviewed the literature, and summarized the available data. RESULTS The neurovasculome, composed of extracranial, intracranial, and meningeal vessels, as well as lymphatics and associated cells, subserves critical homeostatic functions vital for brain health. These include delivering O2 and nutrients through blood flow and regulating immune trafficking, as well as clearing pathogenic proteins through perivascular spaces and dural lymphatics. Single-cell omics technologies have unveiled an unprecedented molecular heterogeneity in the cellular components of the neurovasculome and have identified novel reciprocal interactions with brain cells. The evidence suggests a previously unappreciated diversity of the pathogenic mechanisms by which disruption of the neurovasculome contributes to cognitive dysfunction in neurovascular and neurodegenerative diseases, providing new opportunities for the prevention, recognition, and treatment of these conditions. CONCLUSIONS These advances shed new light on the symbiotic relationship between the brain and its vessels and promise to provide new diagnostic and therapeutic approaches for brain disorders associated with cognitive dysfunction.
Collapse
|
31
|
Becker LM, Chen SH, Rodor J, de Rooij LPMH, Baker AH, Carmeliet P. Deciphering endothelial heterogeneity in health and disease at single-cell resolution: progress and perspectives. Cardiovasc Res 2023; 119:6-27. [PMID: 35179567 PMCID: PMC10022871 DOI: 10.1093/cvr/cvac018] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/16/2021] [Accepted: 02/16/2022] [Indexed: 11/14/2022] Open
Abstract
Endothelial cells (ECs) constitute the inner lining of vascular beds in mammals and are crucial for homeostatic regulation of blood vessel physiology, but also play a key role in pathogenesis of many diseases, thereby representing realistic therapeutic targets. However, it has become evident that ECs are heterogeneous, encompassing several subtypes with distinct functions, which makes EC targeting and modulation in diseases challenging. The rise of the new single-cell era has led to an emergence of studies aimed at interrogating transcriptome diversity along the vascular tree, and has revolutionized our understanding of EC heterogeneity from both a physiological and pathophysiological context. Here, we discuss recent landmark studies aimed at teasing apart the heterogeneous nature of ECs. We cover driving (epi)genetic, transcriptomic, and metabolic forces underlying EC heterogeneity in health and disease, as well as current strategies used to combat disease-enriched EC phenotypes, and propose strategies to transcend largely descriptive heterogeneity towards prioritization and functional validation of therapeutically targetable drivers of EC diversity. Lastly, we provide an overview of the most recent advances and hurdles in single EC OMICs.
Collapse
Affiliation(s)
| | | | | | | | - Andrew H Baker
- Corresponding authors. Tel: +32 16 32 62 47, E-mail: (P.C.); Tel: +44 (0)131 242 6774, E-mail: (A.H.B.)
| | - Peter Carmeliet
- Corresponding authors. Tel: +32 16 32 62 47, E-mail: (P.C.); Tel: +44 (0)131 242 6774, E-mail: (A.H.B.)
| |
Collapse
|
32
|
Andjelkovic AV, Situ M, Citalan-Madrid AF, Stamatovic SM, Xiang J, Keep RF. Blood-Brain Barrier Dysfunction in Normal Aging and Neurodegeneration: Mechanisms, Impact, and Treatments. Stroke 2023; 54:661-672. [PMID: 36848419 PMCID: PMC9993074 DOI: 10.1161/strokeaha.122.040578] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Cerebral endothelial cells and their linking tight junctions form a unique, dynamic and multi-functional interface, the blood-brain barrier (BBB). The endothelium is regulated by perivascular cells and components forming the neurovascular unit. This review examines BBB and neurovascular unit changes in normal aging and in neurodegenerative disorders, particularly focusing on Alzheimer disease, cerebral amyloid angiopathy and vascular dementia. Increasing evidence indicates BBB dysfunction contributes to neurodegeneration. Mechanisms underlying BBB dysfunction are outlined (endothelium and neurovascular unit mediated) as is the BBB as a therapeutic target including increasing the uptake of systemically delivered therapeutics across the BBB, enhancing clearance of potential neurotoxic compounds via the BBB, and preventing BBB dysfunction. Finally, a need for novel biomarkers of BBB dysfunction is addressed.
Collapse
Affiliation(s)
- Anuska V. Andjelkovic
- Department of Pathology, University of Michigan Medical School, Ann Arbor MI, USA
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor MI, USA
| | - Muyu Situ
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor MI, USA
| | | | | | - Jianming Xiang
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor MI, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor MI, USA
| |
Collapse
|
33
|
Abstract
Vascular endothelial cells form the inner layer of blood vessels where they have a key role in the development and maintenance of the functional circulatory system and provide paracrine support to surrounding non-vascular cells. Technical advances in the past 5 years in single-cell genomics and in in vivo genetic labelling have facilitated greater insights into endothelial cell development, plasticity and heterogeneity. These advances have also contributed to a new understanding of the timing of endothelial cell subtype differentiation and its relationship to the cell cycle. Identification of novel tissue-specific gene expression patterns in endothelial cells has led to the discovery of crucial signalling pathways and new interactions with other cell types that have key roles in both tissue maintenance and disease pathology. In this Review, we describe the latest findings in vascular endothelial cell development and diversity, which are often supported by large-scale, single-cell studies, and discuss the implications of these findings for vascular medicine. In addition, we highlight how techniques such as single-cell multimodal omics, which have become increasingly sophisticated over the past 2 years, are being utilized to study normal vascular physiology as well as functional perturbations in disease.
Collapse
Affiliation(s)
- Emily Trimm
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Biophysics Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Kristy Red-Horse
- Department of Biology, Stanford University, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
34
|
Ximerakis M, Holton KM, Giadone RM, Ozek C, Saxena M, Santiago S, Adiconis X, Dionne D, Nguyen L, Shah KM, Goldstein JM, Gasperini C, Gampierakis IA, Lipnick SL, Simmons SK, Buchanan SM, Wagers AJ, Regev A, Levin JZ, Rubin LL. Heterochronic parabiosis reprograms the mouse brain transcriptome by shifting aging signatures in multiple cell types. NATURE AGING 2023; 3:327-345. [PMID: 37118429 PMCID: PMC10154248 DOI: 10.1038/s43587-023-00373-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 01/30/2023] [Indexed: 04/30/2023]
Abstract
Aging is a complex process involving transcriptomic changes associated with deterioration across multiple tissues and organs, including the brain. Recent studies using heterochronic parabiosis have shown that various aspects of aging-associated decline are modifiable or even reversible. To better understand how this occurs, we performed single-cell transcriptomic profiling of young and old mouse brains after parabiosis. For each cell type, we cataloged alterations in gene expression, molecular pathways, transcriptional networks, ligand-receptor interactions and senescence status. Our analyses identified gene signatures, demonstrating that heterochronic parabiosis regulates several hallmarks of aging in a cell-type-specific manner. Brain endothelial cells were found to be especially malleable to this intervention, exhibiting dynamic transcriptional changes that affect vascular structure and function. These findings suggest new strategies for slowing deterioration and driving regeneration in the aging brain through approaches that do not rely on disease-specific mechanisms or actions of individual circulating factors.
Collapse
Affiliation(s)
- Methodios Ximerakis
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Kristina M Holton
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Richard M Giadone
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Ceren Ozek
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Monika Saxena
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Samara Santiago
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Xian Adiconis
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Danielle Dionne
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lan Nguyen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kavya M Shah
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Jill M Goldstein
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Caterina Gasperini
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Ioannis A Gampierakis
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Scott L Lipnick
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sean K Simmons
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sean M Buchanan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Amy J Wagers
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Joslin Diabetes Center, Boston, MA, USA
- Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Koch Institute of Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joshua Z Levin
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lee L Rubin
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
35
|
Aging decreases docosahexaenoic acid transport across the blood-brain barrier in C57BL/6J mice. PLoS One 2023; 18:e0281946. [PMID: 36795730 PMCID: PMC9934487 DOI: 10.1371/journal.pone.0281946] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/05/2023] [Indexed: 02/17/2023] Open
Abstract
Nutrients are actively taken up by the brain via various transporters at the blood-brain barrier (BBB). A lack of specific nutrients in the aged brain, including decreased levels of docosahexaenoic acid (DHA), is associated with memory and cognitive dysfunction. To compensate for decreased brain DHA, orally supplied DHA must be transported from the circulating blood to the brain across the BBB through transport carriers, including major facilitator superfamily domain-containing protein 2a (MFSD2A) and fatty acid-binding protein 5 (FABP5) that transport esterified and non-esterified DHA, respectively. Although it is known that the integrity of the BBB is altered during aging, the impact of aging on DHA transport across the BBB has not been fully elucidated. We used 2-, 8-, 12-, and 24-month-old male C57BL/6 mice to evaluate brain uptake of [14C]DHA, as the non-esterified form, using an in situ transcardiac brain perfusion technique. Primary culture of rat brain endothelial cells (RBECs) was used to evaluate the effect of siRNA-mediated MFSD2A knockdown on cellular uptake of [14C]DHA. We observed that the 12- and 24-month-old mice exhibited significant reductions in brain uptake of [14C]DHA and decreased MFSD2A protein expression in the brain microvasculature compared with that of the 2-month-old mice; nevertheless, FABP5 protein expression was up-regulated with age. Brain uptake of [14C]DHA was inhibited by excess unlabeled DHA in 2-month-old mice. Transfection of MFSD2A siRNA into RBECs decreased the MFSD2A protein expression levels by 30% and reduced cellular uptake of [14C]DHA by 20%. These results suggest that MFSD2A is involved in non-esterified DHA transport at the BBB. Therefore, the decreased DHA transport across the BBB that occurs with aging could be due to age-related down-regulation of MFSD2A rather than FABP5.
Collapse
|
36
|
Murdock MH, Tsai LH. Insights into Alzheimer's disease from single-cell genomic approaches. Nat Neurosci 2023; 26:181-195. [PMID: 36593328 PMCID: PMC10155598 DOI: 10.1038/s41593-022-01222-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 10/28/2022] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) is an age-related disease pathologically defined by the deposition of amyloid plaques and neurofibrillary tangles in the brain parenchyma. Single-cell profiling has shown that Alzheimer's dementia involves the complex interplay of virtually every major brain cell type. Here, we highlight cell-type-specific molecular perturbations in AD. We discuss how genomic information from single cells expands existing paradigms of AD pathogenesis and highlight new opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Mitchell H Murdock
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Li-Huei Tsai
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
37
|
Jung SC, Zhou T, Ko EA. Age-dependent expression of ion channel genes in rat. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2023; 27:85-94. [PMID: 36575936 PMCID: PMC9806634 DOI: 10.4196/kjpp.2023.27.1.85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 12/29/2022]
Abstract
Ion channels regulate a large number of cellular functions and their functional role in many diseases makes them potential therapeutic targets. Given their diverse distribution across multiple organs, the roles of ion channels, particularly in age-associated transcriptomic changes in specific organs, are yet to be fully revealed. Using RNA-seq data, we investigated the rat transcriptomic profiles of ion channel genes across 11 organs/tissues and 4 developmental stages in both sexes of Fischer 344 rats and identify tissue-specific and age-dependent changes in ion channel gene expression. Organ-enriched ion channel genes were identified. In particular, the brain showed higher tissue-specificity of ion channel genes, including Gabrd, Gabra6, Gabrg2, Grin2a, and Grin2b. Notably, age-dependent changes in ion channel gene expression were prominently observed in the thymus, including in Aqp1, Clcn4, Hvcn1, Itpr1, Kcng2, Kcnj11, Kcnn3, and Trpm2. Our comprehensive study of ion channel gene expression will serve as a primary resource for biological studies of aging-related diseases caused by abnormal ion channel functions.
Collapse
Affiliation(s)
- Sung-Cherl Jung
- Department of Physiology, School of Medicine, Jeju National University, Jeju 63243, Korea
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Eun-A Ko
- Department of Physiology, School of Medicine, Jeju National University, Jeju 63243, Korea,Correspondence Eun-A Ko, E-mail:
| |
Collapse
|
38
|
Yuan Y, Sun J, Dong Q, Cui M. Blood-brain barrier endothelial cells in neurodegenerative diseases: Signals from the "barrier". Front Neurosci 2023; 17:1047778. [PMID: 36908787 PMCID: PMC9998532 DOI: 10.3389/fnins.2023.1047778] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
As blood-brain barrier (BBB) disruption emerges as a common problem in the early stages of neurodegenerative diseases, the crucial roles of barrier-type brain endothelial cells (BECs), the primary part of the BBB, have been reported in the pathophysiology of neurodegenerative diseases. The mechanisms of how early vascular dysfunction contributes to the progress of neurodegeneration are still unclear, and understanding BEC functions is a promising start. Our understanding of the BBB has gone through different stages, from a passive diffusion barrier to a mediator of central-peripheral interactions. BECs serve two seemingly paradoxical roles: as a barrier to protect the delicate brain from toxins and as an interface to constantly receive and release signals, thus maintaining and regulating the homeostasis of the brain. Most previous studies about neurodegenerative diseases focus on the loss of barrier functions, and far too little attention has been paid to the active regulations of BECs. In this review, we present the current evidence of BEC dysfunction in neurodegenerative diseases and explore how BEC signals participate in the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yiwen Yuan
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Sun
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Mei Cui
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
39
|
Fonken LK, Gaudet AD. Neuroimmunology of healthy brain aging. Curr Opin Neurobiol 2022; 77:102649. [PMID: 36368270 PMCID: PMC9826730 DOI: 10.1016/j.conb.2022.102649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/10/2022]
Abstract
Aging involves progressive deterioration away from homeostasis. Whereas the healthy adult brain maintains neuroimmune cells in a surveillant and homeostatic state, aged glial cells have a hyperreactive phenotype. These age-related pro-inflammatory biases are driven in part by cell-intrinsic factors, including increased cell priming and pro-inflammatory cell states. In addition, the aged inflammatory milieu is shaped by an altered environment, such as amplified danger signals and cytokines and dysregulated glymphatic function. These cell-instrinsic and environmental factors conspire to heighten the age-related risk for neuroimmune activation and associated pathology. In this review, we discuss cellular and molecular neuroimmune shifts with "healthy" aging; how these age-related changes affect physiology and behavior; and how recent research has revealed neuroimmune pathways and targets for improving health span.
Collapse
Affiliation(s)
- Laura K Fonken
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX, USA.
| | - Andrew D Gaudet
- Department of Psychology, College of Liberal Arts, University of Texas at Austin, Austin, TX, USA; Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, USA. https://twitter.com/Gaudet_91
| |
Collapse
|
40
|
O'Brien JT, Chouliaras L, Sultana J, Taylor JP, Ballard C. RENEWAL: REpurposing study to find NEW compounds with Activity for Lewy body dementia-an international Delphi consensus. Alzheimers Res Ther 2022; 14:169. [PMID: 36369100 PMCID: PMC9650797 DOI: 10.1186/s13195-022-01103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022]
Abstract
Drug repositioning and repurposing has proved useful in identifying new treatments for many diseases, which can then rapidly be brought into clinical practice. Currently, there are few effective pharmacological treatments for Lewy body dementia (which includes both dementia with Lewy bodies and Parkinson's disease dementia) apart from cholinesterase inhibitors. We reviewed several promising compounds that might potentially be disease-modifying agents for Lewy body dementia and then undertook an International Delphi consensus study to prioritise compounds. We identified ambroxol as the top ranked agent for repurposing and identified a further six agents from the classes of tyrosine kinase inhibitors, GLP-1 receptor agonists, and angiotensin receptor blockers that were rated by the majority of our expert panel as justifying a clinical trial. It would now be timely to take forward all these compounds to Phase II or III clinical trials in Lewy body dementia.
Collapse
Affiliation(s)
- John T O'Brien
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK.
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK.
| | - Leonidas Chouliaras
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Janet Sultana
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle, UK
| | - Clive Ballard
- College of Medicine and Health, University of Exeter, Exeter, UK
| |
Collapse
|
41
|
Yang Y, Zhao X, Zhu Z, Zhang L. Vascular dementia: A microglia's perspective. Ageing Res Rev 2022; 81:101734. [PMID: 36113763 DOI: 10.1016/j.arr.2022.101734] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/28/2022] [Accepted: 09/11/2022] [Indexed: 01/31/2023]
Abstract
Vascular dementia (VaD) is a second most common form of age-related dementia. It is characterized by cognitive impairment associated with vascular pathology, symptoms mainly caused by cerebral damage due to inadequate blood flow to the brain. The pathogenesis of VaD is complex, and a growing body of literature emphasizes on the involvement of microglia in disease development and progression. Here, we review the current knowledge on the role of microglia in regulating neuroinflammation under the pathogenesis of VaD. The commonly used animal and cell models for understanding the disease pathogenesis were summarized. The mechanisms by which microglia contribute to VaD are multifactorial, and we specifically focus on some of the predominant functions of microglia, including chemotaxis, secretory property, phagocytosis, and its crosstalk with other neurovascular unit cells. Finally, potential therapeutic strategies targeting microglia-modulated neuroinflammation are discussed.
Collapse
Affiliation(s)
- Yi Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Hangzhou Key Laboratory of Medical Neurobiology, Hangzhou Normal University, Hangzhou 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China.
| | - Xinyuan Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Hangzhou Key Laboratory of Medical Neurobiology, Hangzhou Normal University, Hangzhou 311121, China
| | - Zirui Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Hangzhou Key Laboratory of Medical Neurobiology, Hangzhou Normal University, Hangzhou 311121, China
| | - Lihui Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Hangzhou Key Laboratory of Medical Neurobiology, Hangzhou Normal University, Hangzhou 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
42
|
Rangan P, Lobo F, Parrella E, Rochette N, Morselli M, Stephen TL, Cremonini AL, Tagliafico L, Persia A, Caffa I, Monacelli F, Odetti P, Bonfiglio T, Nencioni A, Pigliautile M, Boccardi V, Mecocci P, Pike CJ, Cohen P, LaDu MJ, Pellegrini M, Xia K, Tran K, Ann B, Chowdhury D, Longo VD. Fasting-mimicking diet cycles reduce neuroinflammation to attenuate cognitive decline in Alzheimer's models. Cell Rep 2022; 40:111417. [PMID: 36170815 PMCID: PMC9648488 DOI: 10.1016/j.celrep.2022.111417] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/30/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022] Open
Abstract
The effects of fasting-mimicking diet (FMD) cycles in reducing many aging and disease risk factors indicate it could affect Alzheimer's disease (AD). Here, we show that FMD cycles reduce cognitive decline and AD pathology in E4FAD and 3xTg AD mouse models, with effects superior to those caused by protein restriction cycles. In 3xTg mice, long-term FMD cycles reduce hippocampal Aβ load and hyperphosphorylated tau, enhance genesis of neural stem cells, decrease microglia number, and reduce expression of neuroinflammatory genes, including superoxide-generating NADPH oxidase (Nox2). 3xTg mice lacking Nox2 or mice treated with the NADPH oxidase inhibitor apocynin also display improved cognition and reduced microglia activation compared with controls. Clinical data indicate that FMD cycles are feasible and generally safe in a small group of AD patients. These results indicate that FMD cycles delay cognitive decline in AD models in part by reducing neuroinflammation and/or superoxide production in the brain.
Collapse
Affiliation(s)
- Priya Rangan
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Fleur Lobo
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Edoardo Parrella
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA; Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, BS 25123, Italy
| | - Nicolas Rochette
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, 611 Charles E. Young Dr. E., Los Angeles, CA 90095, USA; Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 612 Charles E. Young Dr. E., Los Angeles, CA 90095, USA
| | - Marco Morselli
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, 610 Charles E. Young Dr. S., Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, 611 Charles E. Young Dr. E., Los Angeles, CA 90095, USA
| | - Terri-Leigh Stephen
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Anna Laura Cremonini
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Luca Tagliafico
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy
| | - Angelica Persia
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy
| | - Irene Caffa
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Patrizio Odetti
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Tommaso Bonfiglio
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Martina Pigliautile
- Santa Maria della Misericordia Hospital, Section of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Virginia Boccardi
- Santa Maria della Misericordia Hospital, Section of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Patrizia Mecocci
- Santa Maria della Misericordia Hospital, Section of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Christian J Pike
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Pinchas Cohen
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA; USC Dornsife College of Letters, Arts & Sciences, Department of Biological Sciences, University of Southern California, 3551 Trousdale Pkwy., Los Angeles, CA 90089-0191, USA
| | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, 610 Charles E. Young Dr. S., Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, 611 Charles E. Young Dr. E., Los Angeles, CA 90095, USA
| | - Kyle Xia
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Katelynn Tran
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Brandon Ann
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Dolly Chowdhury
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Valter D Longo
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, 1425 San Pablo St., Los Angeles, CA 90033, USA; IFOM FIRC Institute of Molecular Oncology, Via Adamello 16, Milano, MI 20139, Italy.
| |
Collapse
|
43
|
Chen Y, Luo Z, Sun Y, Li F, Han Z, Qi B, Lin J, Lin WW, Yao M, Kang X, Huang J, Sun C, Ying C, Guo C, Xu Y, Chen J, Chen S. Exercise improves choroid plexus epithelial cells metabolism to prevent glial cell-associated neurodegeneration. Front Pharmacol 2022; 13:1010785. [PMID: 36188600 PMCID: PMC9523215 DOI: 10.3389/fphar.2022.1010785] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/29/2022] [Indexed: 02/05/2023] Open
Abstract
Recent studies have shown that physical activities can prevent aging-related neurodegeneration. Exercise improves the metabolic landscape of the body. However, the role of these differential metabolites in preventing neurovascular unit degeneration (NVU) is still unclear. Here, we performed single-cell analysis of brain tissue from young and old mice. Normalized mutual information (NMI) was used to measure heterogeneity between each pair of cells using the non-negative Matrix Factorization (NMF) method. Astrocytes and choroid plexus epithelial cells (CPC), two types of CNS glial cells, differed significantly in heterogeneity depending on their aging status and intercellular interactions. The MetaboAnalyst 5.0 database and the scMetabolism package were used to analyze and calculate the differential metabolic pathways associated with aging in the CPC. These mRNAs and corresponding proteins were involved in the metabolites (R)-3-Hydroxybutyric acid, 2-Hydroxyglutarate, 2-Ketobutyric acid, 3-Hydroxyanthranilic acid, Fumaric acid, L-Leucine, and Oxidized glutathione pathways in CPC. Our results showed that CPC age heterogeneity-associated proteins (ECHS1, GSTT1, HSD17B10, LDHA, and LDHB) might be directly targeted by the metabolite of oxidized glutathione (GSSG). Further molecular dynamics and free-energy simulations confirmed the insight into GSSG's targeting function and free-energy barrier on these CPC age heterogeneity-associated proteins. By inhibiting these proteins in CPC, GSSG inhibits brain energy metabolism, whereas exercise improves the metabolic pathway activity of CPC in NVU by regulating GSSG homeostasis. In order to develop drugs targeting neurodegenerative diseases, further studies are needed to understand how physical exercise enhances NVU function and metabolism by modulating CPC-glial cell interactions.
Collapse
Affiliation(s)
- Yisheng Chen
- Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiwen Luo
- Huashan Hospital, Fudan University, Shanghai, China
| | - Yaying Sun
- Huashan Hospital, Fudan University, Shanghai, China
| | - Fangqi Li
- Huashan Hospital, Fudan University, Shanghai, China
| | - Zhihua Han
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Beijie Qi
- Huashan Hospital, Fudan University, Shanghai, China
| | - Jinrong Lin
- Huashan Hospital, Fudan University, Shanghai, China
| | - Wei-Wei Lin
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Mengxuan Yao
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei
| | - Xueran Kang
- Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, Hebei
| | - Jiebin Huang
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, Chicago, IL, United States
| | - Chenting Ying
- Department of Orthopaedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenyang Guo
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Jiwu Chen
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shiyi Chen
- Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
44
|
Wang Q, Xie C. Microglia activation linking amyloid-β drive tau spatial propagation in Alzheimer's disease. Front Neurosci 2022; 16:951128. [PMID: 36033617 PMCID: PMC9417618 DOI: 10.3389/fnins.2022.951128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Qing Wang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Chunming Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
- Institute of Neuropsychiatry, Affiliated ZhongDa Hospital, Southeast University, Nanjing, China
- The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
- *Correspondence: Chunming Xie
| |
Collapse
|
45
|
Abstract
Ageing leads to profound alterations in the immune system and increases susceptibility to some chronic, infectious and autoimmune diseases. In recent years, widespread application of single-cell techniques has enabled substantial progress in our understanding of the ageing immune system. These comprehensive approaches have expanded and detailed the current views of ageing and immunity. Here we review a body of recent studies that explored how the immune system ages using unbiased profiling techniques at single-cell resolution. Specifically, we discuss an emergent understanding of age-related alterations in innate and adaptive immune cell populations, antigen receptor repertoires and immune cell-supporting microenvironments of the peripheral tissues. Focusing on the results obtained in mice and humans, we describe the multidimensional data that align with established concepts of immune ageing as well as novel insights emerging from these studies. We further discuss outstanding questions in the field and highlight techniques that will advance our understanding of immune ageing in the future.
Collapse
Affiliation(s)
- Denis A Mogilenko
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Irina Shchukina
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
46
|
Zhang X, Wang R, Chen H, Jin C, Jin Z, Lu J, Xu L, Lu Y, Zhang J, Shi L. Aged microglia promote peripheral T cell infiltration by reprogramming the microenvironment of neurogenic niches. Immun Ageing 2022; 19:34. [PMID: 35879802 PMCID: PMC9310471 DOI: 10.1186/s12979-022-00289-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/07/2022] [Indexed: 04/18/2023]
Abstract
BACKGROUND The immune cell compartment of the mammalian brain changes dramatically and peripheral T cells infiltrate the brain parenchyma during normal aging. However, the mechanisms underlying age-related T cell infiltration in the central nervous system remain unclear. RESULTS Chronic inflammation and peripheral T cell infiltration were observed in the subventricular zone of aged mice. Cell-cell interaction analysis revealed that aged microglia released CCL3 to recruit peripheral CD8+ memory T cells. Moreover, the aged microglia shifted towards a pro-inflammation state and released TNF-α to upregulate the expression of VCAM1 and ICAM1 in brain venous endothelial cells, which promoted the transendothelial migration of peripheral T cells. In vitro experiment reveals that human microglia would also transit to a chemotactic phenotype when treated with CSF from the elderly. CONCLUSIONS Our research demonstrated that microglia play an important role in the aging process of brain by shifting towards a pro-inflammation and chemotactic state. Aged microglia promote T cell infiltration by releasing chemokines and upregulating adhesion molecules on venous brain endothelial cells.
Collapse
Affiliation(s)
- Xiaotao Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Rui Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Haoran Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Chenghao Jin
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Ziyang Jin
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Jianan Lu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Liang Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Yunrong Lu
- Department of Psychiatry, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
- Brain Research Institute, Zhejiang University, Hangzhou, Zhejiang, China.
- Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Ligen Shi
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
47
|
Zhou M, Li D, Shen Q, Gao L, Zhuang P, Zhang Y, Guo H. Storax Inhibits Caveolae-Mediated Transcytosis at Blood-Brain Barrier After Ischemic Stroke in Rats. Front Pharmacol 2022; 13:876235. [PMID: 35873558 PMCID: PMC9304983 DOI: 10.3389/fphar.2022.876235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose: Blood-brain barrier (BBB) disruption following ischemic stroke (IS) contributes to hemorrhagic transformation, brain edema, increased neural dysfunction, secondary injury, and mortality. The prevailing view attributes the destruction of tight junction proteins (TJs) to the resulting BBB damage following IS. However, recent studies define a stepwise impairment of the transcellular barrier followed by the paracellular barrier which accounts for the BBB leakage in IS. The increased endothelial transcytosis that has been proven to be caveolae-mediated, preceding and independent of TJs disintegration. Emerging experimental investigations suggested Storax attenuates BBB damage after stroke. This study aimed to test our hypothesis that Storax inhibits caveolae-mediated transcytosis at BBB after ischemic stroke in rats. Methods: Male Wistar rats (250-300 g) were subjected to transient middle cerebral artery occlusion (t-MCAO). Brain water content and the cerebral infarction size were assessed by brain tissue drying-wet method and 2,3,5-triphenyltetrazolium chloride (TTC) staining. BBB permeability was detected by the leakage of Evans blue and Albumin-Alexa594. The ultrastructure of BBB was examined by transmission electron microscopy (TEM). Cav-1 and Mfsd2a were quantified by western blotting and immunofluorescence staining, AQP4, PDGFR-β, ZO-1 and Occludin were quantified by western blotting. Results: Storax treatment of 0.1 g/kg had no significant effects on brain lesions. Storax treatment of 0.2, 0.4, and 0.8 g/kg led to a significant decrease in infarction size, and the Storax 0.4, 0.8 g/kg groups displayed a significant reduction in brain water content. Storax treatment of 0.8 g/kg showed mild toxic reactions. Thus, 0.4 g/kg Storax was selected as the optimal dose for subsequent studies. Storax significantly inhibited the fluorescent albumin intensity in the brain parenchyma and the number of caveolae in ECs, alongside attenuating the ultrastructural disruption of BBB at 6 h after stroke. Meanwhile, Storax significantly increased the expression of Mfsd2a and PDGFR-β, and decrease the expression of Cav-1 and AQP4, corresponding to the significantly decreased Cav-1 positive cells and increased Mfsd2a positive cells. However, Storax has no significant effects on Evan blue leakage or the expression ZO-1, Occludin. Conclusion: Our experimental findings demonstrate Storax treatment inhibits caveolae-mediated transcytosis at BBB in the focal stroke model of rats. We also speculate that regulation of Cav-1, Mfsd2a, AQP4, and PDGFR-β expressions might be associated with its beneficial pharmacological effect, but remain to define and elucidate in future investigation.
Collapse
Affiliation(s)
- Min Zhou
- Department of Traditional Chinese Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Dongna Li
- Chinese Materia Medica College, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qian Shen
- Chinese Materia Medica College, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lei Gao
- The Microscopy Core Facility, Westlake University, Hangzhou, China
| | - Pengwei Zhuang
- Chinese Materia Medica College, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanjun Zhang
- Chinese Materia Medica College, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hong Guo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
48
|
He H, Zhang X, Du L, Ye M, Lu Y, Xue J, Wu J, Shuai X. Molecular imaging nanoprobes for theranostic applications. Adv Drug Deliv Rev 2022; 186:114320. [PMID: 35526664 DOI: 10.1016/j.addr.2022.114320] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/11/2022] [Accepted: 04/30/2022] [Indexed: 12/13/2022]
Abstract
As a non-invasive imaging monitoring method, molecular imaging can provide the location and expression level of disease signature biomolecules in vivo, leading to early diagnosis of relevant diseases, improved treatment strategies, and accurate assessment of treating efficacy. In recent years, a variety of nanosized imaging probes have been developed and intensively investigated in fundamental/translational research and clinical practice. Meanwhile, as an interdisciplinary discipline, this field combines many subjects of chemistry, medicine, biology, radiology, and material science, etc. The successful molecular imaging not only requires advanced imaging equipment, but also the synthesis of efficient imaging probes. However, limited summary has been reported for recent advances of nanoprobes. In this paper, we summarized the recent progress of three common and main types of nanosized molecular imaging probes, including ultrasound (US) imaging nanoprobes, magnetic resonance imaging (MRI) nanoprobes, and computed tomography (CT) imaging nanoprobes. The applications of molecular imaging nanoprobes were discussed in details. Finally, we provided an outlook on the development of next generation molecular imaging nanoprobes.
Collapse
Affiliation(s)
- Haozhe He
- Nanomedicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Xindan Zhang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lihua Du
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510260, China
| | - Minwen Ye
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yonglai Lu
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiajia Xue
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jun Wu
- PCFM Lab of Ministry of Education, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China.
| | - Xintao Shuai
- Nanomedicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510260, China.
| |
Collapse
|
49
|
Nutrition Interventions of Herbal Compounds on Cellular Senescence. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1059257. [PMID: 35528514 PMCID: PMC9068308 DOI: 10.1155/2022/1059257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/01/2021] [Accepted: 04/02/2022] [Indexed: 01/10/2023]
Abstract
When cells undergo large-scale senescence, organ aging ensues, resulting in irreversible organ pathology and organismal aging. The study of senescence in cells provides an important avenue to understand the factors that influence aging and can be used as one of the useful tools for examining age-related human diseases. At present, many herbal compounds have shown effects on delaying cell senescence. This review summarizes the main characteristics and mechanisms of cell senescence, age-related diseases, and the recent progress on the natural products targeting cellular senescence, with the aim of providing insights to aid the clinical management of age-related diseases.
Collapse
|
50
|
Peng W, Zhou R, Sun ZF, Long JW, Gong YQ. Novel Insights into the Roles and Mechanisms of GLP-1 Receptor Agonists against Aging-Related Diseases. Aging Dis 2022; 13:468-490. [PMID: 35371594 PMCID: PMC8947838 DOI: 10.14336/ad.2021.0928] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/16/2021] [Indexed: 11/01/2022] Open
Abstract
Aging and aging-related diseases have emerged as increasingly severe health and social problems. Therefore, it is imperative to discover novel and effective therapeutics to delay the aging process and to manage aging-related diseases. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs), one of the classes of antihyperglycemic drugs, have been recommended to manage type 2 diabetes mellitus (T2DM). Moreover, GLP-1 RAs have been shown to protect against oxidative stress, cellular senescence and chronic inflammation, which are widely accepted as the major risk factors of aging. However, their significance in aging or aging-related diseases has not been elucidated. Herein, we explain the underlying mechanisms and protective roles of GLP-1 RAs in aging from a molecular, cellular and phenotypic perspective. We provide novel insights into the broad prospect of GLP-1 RAs in preventing and treating aging-related diseases. Additionally, we highlight the gaps for further studies in clinical applications of GLP-1 RAs in aging-related diseases. This review forms a basis for further studies on the relationship between aging-related diseases and GLP-1 RAs.
Collapse
Affiliation(s)
- Wei Peng
- Department of Gastrointestinal Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Rui Zhou
- Hunan Normal University School of Medicine, Changsha, Hunan, China.
| | - Ze-Fang Sun
- Hunan Normal University School of Medicine, Changsha, Hunan, China.
| | - Jia-Wei Long
- Hunan Normal University School of Medicine, Changsha, Hunan, China.
| | - Yong-Qiang Gong
- Department of Gastrointestinal Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China,Correspondence should be addressed to: Dr. Yong-Qiang Gong, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan, China. E-mail:
| |
Collapse
|