1
|
Avedissian G, Dolan E, Martín-García B, Gobbi M, Casanova F, Hueso LE. Enhanced Spin Relaxation Time in a 2D/1D Van Der Waals Hybrid Heterostructure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2503192. [PMID: 40289493 DOI: 10.1002/smll.202503192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/09/2025] [Indexed: 04/30/2025]
Abstract
The key attraction of graphene in spintronics arises from its high electronic mobility and low intrinsic spin-orbit coupling (SOC), which enable long spin relaxation times. However, the weak SOC limits the ability to control spin currents within graphene. A promising strategy for enhancing the spin functionalities of graphene is to introduce proximity effects with other materials. In this context, molecular compounds show great potential for tuning the spin properties of graphene. Here, a novel fabrication methodology is presented that integrates molecular compounds with graphene-based spintronic nanodevices using stencil hexagonal boron nitride (hBN) masks, allowing us to investigate the resulting spin-related effects. First, our non-destructive fabrication technique, confirmed by micro-Raman spectroscopy, preserves the integrity of the molecular compound. Moreover, by combining experimental Hanle precession with a 3D spin diffusion model, it is demonstrated that fullerene (C60) molecules enhance the spin relaxation time of the graphene. The established fabrication methodology can be further expanded to integrate graphene with exotic molecular compounds, such as photochromic and spin cross-over molecules, enabling the exploration of proximity-induced spin phenomena and paving the way for spin-based multifunctional nanodevices.
Collapse
Affiliation(s)
- Garen Avedissian
- CIC nanoGUNE BRTA, Donostia-San Sebastian, Basque Country, 20018, Spain
| | - Eoin Dolan
- CIC nanoGUNE BRTA, Donostia-San Sebastian, Basque Country, 20018, Spain
| | - Beatriz Martín-García
- CIC nanoGUNE BRTA, Donostia-San Sebastian, Basque Country, 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Basque Country, 48009, Spain
| | - Marco Gobbi
- CIC nanoGUNE BRTA, Donostia-San Sebastian, Basque Country, 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Basque Country, 48009, Spain
- Centro de Física de Materiales (CSIC-UPV/EHU) and Materials Physics Center (MPC), Donostia-San Sebastian, Basque Country, 20018, Spain
| | - Fèlix Casanova
- CIC nanoGUNE BRTA, Donostia-San Sebastian, Basque Country, 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Basque Country, 48009, Spain
| | - Luis E Hueso
- CIC nanoGUNE BRTA, Donostia-San Sebastian, Basque Country, 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Basque Country, 48009, Spain
| |
Collapse
|
2
|
Senenko AI, Marchenko AA, Kurochkin O, Kapitanchuk OL, Kravets M, Nazarenko VG, Sashuk V. Spontaneous switching and fine structure of donor-acceptor Stenhouse adducts on Au(111). NANOSCALE 2024; 17:214-218. [PMID: 39559967 DOI: 10.1039/d4nr03942d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
We present the spontaneous isomerization of donor-acceptor Stenhouse adducts anchored onto a gold surface, visualized using scanning tunneling spectroscopy. Our investigation reveals a palette of molecular arrangements, including those with ferroelectric-like ordering, evolving over time into a fine pattern consisting of both open and closed forms of the photoswitch.
Collapse
Affiliation(s)
- Anton I Senenko
- Institute of Physics of the National Academy of Sciences of Ukraine, 46 Nauki ave., Kyiv, 03028, Ukraine.
| | - Alexandr A Marchenko
- Institute of Physics of the National Academy of Sciences of Ukraine, 46 Nauki ave., Kyiv, 03028, Ukraine.
| | - Oleksandr Kurochkin
- Institute of Physics of the National Academy of Sciences of Ukraine, 46 Nauki ave., Kyiv, 03028, Ukraine.
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Oleksiy L Kapitanchuk
- Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine, 14-B Metrologichna str., Kyiv, 03143, Ukraine
| | - Mykola Kravets
- Institute of Physics of the National Academy of Sciences of Ukraine, 46 Nauki ave., Kyiv, 03028, Ukraine.
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Vassili G Nazarenko
- Institute of Physics of the National Academy of Sciences of Ukraine, 46 Nauki ave., Kyiv, 03028, Ukraine.
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Volodymyr Sashuk
- Institute of Physics of the National Academy of Sciences of Ukraine, 46 Nauki ave., Kyiv, 03028, Ukraine.
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
3
|
Hendrich CM, Reinschmidt M, Büllmann SM, Kolmar T, Jäschke A. Synthesis and Development of Inverse-Type Nucleoside Diarylethene Photoswitches. Chemistry 2024; 30:e202401537. [PMID: 39045626 DOI: 10.1002/chem.202401537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 07/25/2024]
Abstract
Nucleosidic diarylethenes (DAEs) have evolved from an emerging class of photochromes into a well-established option for integrating photochromic functionalities into biological systems. However, a comprehensive understanding of how chemical structure influences their photochromic properties remains essential. While structural features, such as an inverse connection between the aryl residues and the ethene bridge, are well-documented for classical DAEs, their application to nucleosidic DAEs has been underexplored. In this study, we address this gap by developing three distinct types of inverse nucleosidic DAEs-semi-inverse thiophenes, semi-inverse uridines and inverse uridines. We successfully synthesized these compounds and conducted comprehensive analyses of their photostationary states, thermal stability, reversibility, and reaction quantum yields. Additionally, we conducted an in-depth comparison of their photochromic properties with those of their normal-type counterparts. Among the synthesized compounds, seven semi-inverse thiophenes exhibited the most promising characteristics. Notably, these compounds demonstrated excellent fatigue resistance, with up to 96 % retention of photochromic activity over 40 switching cycles, surpassing the performance of all comparable nucleosidic DAEs reported to date. These findings hold significant promise for future applications in various fields.
Collapse
Affiliation(s)
- Christoph M Hendrich
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Martin Reinschmidt
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Simon M Büllmann
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Theresa Kolmar
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| |
Collapse
|
4
|
Sun M, Wang S, Liang Y, Wang C, Zhang Y, Liu H, Zhang Y, Han L. Flexible Graphene Field-Effect Transistors and Their Application in Flexible Biomedical Sensing. NANO-MICRO LETTERS 2024; 17:34. [PMID: 39373823 PMCID: PMC11458861 DOI: 10.1007/s40820-024-01534-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/08/2024] [Indexed: 10/08/2024]
Abstract
Flexible electronics are transforming our lives by making daily activities more convenient. Central to this innovation are field-effect transistors (FETs), valued for their efficient signal processing, nanoscale fabrication, low-power consumption, fast response times, and versatility. Graphene, known for its exceptional mechanical properties, high electron mobility, and biocompatibility, is an ideal material for FET channels and sensors. The combination of graphene and FETs has given rise to flexible graphene field-effect transistors (FGFETs), driving significant advances in flexible electronics and sparked a strong interest in flexible biomedical sensors. Here, we first provide a brief overview of the basic structure, operating mechanism, and evaluation parameters of FGFETs, and delve into their material selection and patterning techniques. The ability of FGFETs to sense strains and biomolecular charges opens up diverse application possibilities. We specifically analyze the latest strategies for integrating FGFETs into wearable and implantable flexible biomedical sensors, focusing on the key aspects of constructing high-quality flexible biomedical sensors. Finally, we discuss the current challenges and prospects of FGFETs and their applications in biomedical sensors. This review will provide valuable insights and inspiration for ongoing research to improve the quality of FGFETs and broaden their application prospects in flexible biomedical sensing.
Collapse
Affiliation(s)
- Mingyuan Sun
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Shuai Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Yanbo Liang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Chao Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Yunhong Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, Shandong, People's Republic of China
| | - Yu Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China.
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China.
- School of Integrated Circuits, Shandong University, Jinan, 250100, Shandong, People's Republic of China.
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, 250100, Shandong, People's Republic of China.
| |
Collapse
|
5
|
Han B, Samorì P. Engineering the Interfacing of Molecules with 2D Transition Metal Dichalcogenides: Enhanced Multifunctional Electronics. Acc Chem Res 2024; 57:2532-2545. [PMID: 39159399 DOI: 10.1021/acs.accounts.4c00338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
ConspectusEngineering all interfaces between different components in electronic devices is the key to control and optimize fundamental physical processes such as charge injection at metal-semiconductor interfaces, gate modulation at the dielectric-semiconductor interface, and carrier modulation at semiconductor-environment interfaces. The use of two-dimensional (2D) crystals as semiconductors, by virtue of their atomically flat dangling bond-free structures, can facilitate the tailoring of such interfaces effectively. In this context, 2D transition metal dichalcogenides (TMDs) have garnered tremendous attention over the past two decades owing to their exclusive and outstanding physical and chemical characteristics such as their strong light-matter interactions and high charge mobility. These properties position them as promising building blocks for next-generation semiconductor materials. The combination of their large specific surface area, unique electronic structure, and properties highly sensitive to environmental changes makes 2D TMDs appealing platforms for applications in optoelectronics and sensing. While a broad arsenal of TMDs has been made available that exhibit a variety of electronic properties, the latter are unfortunately hardly tunable. To overcome this problem, the controlled functionalization of TMDs with molecules and assemblies thereof represents a most powerful strategy to finely tune their surface characteristics for electronics. Such functionalization can be used not only to encapsulate the electronic material, therefore enhancing its stability in air, but also to impart dynamic, stimuli-responsive characteristics to TMDs and to selectively recognize the presence of a given analyte in the environment, demonstrating unprecedented application potential.In this Account, we highlight the most enlightening recent progress made on the interface engineering in 2D TMD-based electronic devices via covalent and noncovalent functionalization with suitably designed molecules, underlining the remarkable synergies achieved. While electrode functionalization allows modulating charge injection and extraction, the functionalization of the dielectric substrate enables tuning of the carrier concentration in the device channel, and the functionalization of the upper surface of 2D TMDs allows screening the interaction with the environment and imparts molecular functionality to the devices, making them versatile for various applications. The tailored interfaces enable enhanced device performance and open up avenues for practical applications. This Account specifically focuses on our recent endeavor in the unusual properties conferred to 2D TMDs through the functionalization of their interfaces with stimuli-responsive molecules or molecular assemblies. This includes electrode-functionalized devices with modulable performance and charge carriers, molecular-bridged TMD network devices with overall enhanced electrical properties, sensor devices that are highly responsive to changes in the external environment, in particular, electrochemically switchable transistors that react to external electrochemical signals, optically switchable transistors that are sensitive to external light inputs, and multiresponsive transistors that simultaneously respond to multiple external stimuli including optical, electrical, redox, thermal, and magnetic inputs and their application in the development of unprecedented memories, artificial synapses, and logic inverters. By presenting the current challenges, opportunities, and prospects in this blooming research field, we will discuss the powerful integration of such strategies for next-generation electronic digital devices and logic circuitries, outlining future directions and potential breakthroughs in interface engineering.
Collapse
Affiliation(s)
- Bin Han
- Université de Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, F-67000 Strasbourg, France
| | - Paolo Samorì
- Université de Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, F-67000 Strasbourg, France
| |
Collapse
|
6
|
Bargstedt J, Reinschmidt M, Tydecks L, Kolmar T, Hendrich CM, Jäschke A. Photochromic Nucleosides and Oligonucleotides. Angew Chem Int Ed Engl 2024; 63:e202310797. [PMID: 37966433 DOI: 10.1002/anie.202310797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/16/2023]
Abstract
Photochromism is a reversible phenomenon wherein a material undergoes a change in color upon exposure to light. In organic photochromes, this effect often results from light-induced isomerization reactions, leading to alterations in either the spatial orientation or electronic properties of the photochrome. The incorporation of photochromic moieties into biomolecules, such as proteins or nucleic acids, has become a prevalent approach to render these biomolecules responsive to light stimuli. Utilizing light as a trigger for the manipulation of biomolecular structure and function offers numerous advantages compared to other stimuli, such as chemical or electrical treatments, due to its non-invasive nature. Consequently, light proves particularly advantageous in cellular and tissue applications. In this review, we emphasize recent advancements in the field of photochromic nucleosides and oligonucleotides. We provide an overview of the design principles of different classes of photochromes, synthetic strategies, critical analytical challenges, as well as structure-property relationships. The applications of photochromic nucleic acid derivatives encompass diverse domains, ranging from the precise photoregulation of gene expression to the controlled modulation of the three-dimensional structures of oligonucleotides and the development of DNA-based fluorescence modulators. Moreover, we present a future perspective on potential modifications and applications.
Collapse
Affiliation(s)
- Jörn Bargstedt
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Martin Reinschmidt
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Leon Tydecks
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Theresa Kolmar
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Christoph M Hendrich
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| |
Collapse
|
7
|
Zou R, Cao L, Wu N, Chang G, Li L, Xiao L, Yan H, Li H, Wang P, Bao T, Zhang X, Wang S, Wang Y, He H. Transistor-based immunosensor using AuNPs-Ab2-HRP enzyme nanoprobe for the detection of antigen biomarker in human blood. Anal Bioanal Chem 2024; 416:163-173. [PMID: 37930375 DOI: 10.1007/s00216-023-05002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 11/07/2023]
Abstract
Alpha-fetoprotein (AFP) is inextricably linked to various diseases, including liver cancer. Thus, detecting the content of AFP in biology has great significance in diagnosis, treatment, and intervention. Motivated by the urgent need for affordable and convenient electronic sensors in the analysis and detection of aqueous biological samples, we combined the solution-gated graphene transistor (SGGT) with the catalytic reaction of enzyme nanoprobes (HRP-AuNPs-Ab2) to accurately sense AFP. The SGGT immunosensor demonstrated high specificity and stability, excellent selectivity, and excessive linearity over a range of 4 ng/mL to 500 ng/mL, with the lower detection limit down to 1.03 ng/mL. Finally, clinical samples were successfully detected by the SGGT immunosensor, and the results were consistent with chemiluminescence methods that are popular in hospitals for detecting AFP. Notably, the SGGT immunosensor is also recyclable, so it has excellent potential for use in high-throughput detection.
Collapse
Affiliation(s)
- Rong Zou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, Hubei, China
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, Hubei, China
| | - Lei Cao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, Hubei, China
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, Hubei, China
| | - Nan Wu
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, Hubei, China
| | - Gang Chang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, College of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Li Li
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, Hubei, China
| | - Lu Xiao
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, Hubei, China
| | - Huiling Yan
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, Hubei, China
| | - Hongjie Li
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, Hubei, China
| | - Ping Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China.
| | - Ting Bao
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, Hubei, China
| | - Xiuhua Zhang
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, Hubei, China
| | - Shengfu Wang
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, Hubei, China
| | - Yaping Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, Hubei, China.
| | - Hanping He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, Hubei, China.
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, Hubei, China.
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, Hubei, China.
| |
Collapse
|
8
|
Thaggard GC, Park KC, Lim J, Maldeni Kankanamalage BKP, Haimerl J, Wilson GR, McBride MK, Forrester KL, Adelson ER, Arnold VS, Wetthasinghe ST, Rassolov VA, Smith MD, Sosnin D, Aprahamian I, Karmakar M, Bag SK, Thakur A, Zhang M, Tang BZ, Castaño JA, Chaur MN, Lerch MM, Fischer RA, Aizenberg J, Herges R, Lehn JM, Shustova NB. Breaking the photoswitch speed limit. Nat Commun 2023; 14:7556. [PMID: 37985777 PMCID: PMC10660956 DOI: 10.1038/s41467-023-43405-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
The forthcoming generation of materials, including artificial muscles, recyclable and healable systems, photochromic heterogeneous catalysts, or tailorable supercapacitors, relies on the fundamental concept of rapid switching between two or more discrete forms in the solid state. Herein, we report a breakthrough in the "speed limit" of photochromic molecules on the example of sterically-demanding spiropyran derivatives through their integration within solvent-free confined space, allowing for engineering of the photoresponsive moiety environment and tailoring their photoisomerization rates. The presented conceptual approach realized through construction of the spiropyran environment results in ~1000 times switching enhancement even in the solid state compared to its behavior in solution, setting a record in the field of photochromic compounds. Moreover, integration of two distinct photochromic moieties in the same framework provided access to a dynamic range of rates as well as complementary switching in the material's optical profile, uncovering a previously inaccessible pathway for interstate rapid photoisomerization.
Collapse
Affiliation(s)
- Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Jaewoong Lim
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
| | | | - Johanna Haimerl
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Gina R Wilson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Margaret K McBride
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Kelly L Forrester
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Esther R Adelson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Virginia S Arnold
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Shehani T Wetthasinghe
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Vitaly A Rassolov
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Daniil Sosnin
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA
| | - Ivan Aprahamian
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA
| | - Manisha Karmakar
- Department of Chemistry, Jadavpur University, 700032, Kolkata, India
| | - Sayan Kumar Bag
- Department of Chemistry, Jadavpur University, 700032, Kolkata, India
| | - Arunabha Thakur
- Department of Chemistry, Jadavpur University, 700032, Kolkata, India
| | - Minjie Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong Shenzhen, Guangdong, 518172, China
- Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, China
- AIE Institute, Guangzhou Development District, Huangpu, Guangzhou, 510530, China
| | - Jorge A Castaño
- Departamento de Química, Universidad del Valle, AA 25360, Cali, Colombia
| | - Manuel N Chaur
- Departamento de Química, Universidad del Valle, AA 25360, Cali, Colombia
- Centro de Excelencia en Neuvos Materiales (CENM), Universidad del Valle, AA 25360, Cali, Colombia
| | - Michael M Lerch
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Roland A Fischer
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Joanna Aizenberg
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Rainer Herges
- Otto Diels Institute of Organic Chemistry, University of Kiel, 24118, Kiel, Germany
| | - Jean-Marie Lehn
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 67000, Strasbourg, France
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA.
| |
Collapse
|
9
|
de-la-Huerta-Sainz S, Ballesteros A, Cordero NA. Gaussian Curvature Effects on Graphene Quantum Dots. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:95. [PMID: 36616005 PMCID: PMC9824217 DOI: 10.3390/nano13010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
In the last few years, much attention has been paid to the exotic properties that graphene nanostructures exhibit, especially those emerging upon deforming the material. Here we present a study of the mechanical and electronic properties of bent hexagonal graphene quantum dots employing density functional theory. We explore three different kinds of surfaces with Gaussian curvature exhibiting different shapes-spherical, cylindrical, and one-sheet hyperboloid-used to bend the material, and several boundary conditions regarding what atoms are forced to lay on the chosen surface. In each case, we study the curvature energy and two quantum regeneration times (classic and revival) for different values of the curvature radius. A strong correlation between Gaussian curvature and these regeneration times is found, and a special divergence is observed for the revival time for the hyperboloid case, probably related to the pseudo-magnetic field generated by this curvature being capable of causing a phase transition.
Collapse
Affiliation(s)
| | | | - Nicolás A. Cordero
- Physics Department, Universidad de Burgos, E-09001 Burgos, Spain
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), Unversidad de Burgos, E-09001 Burgos, Spain
- Institute Carlos I for Theoretical and Computational Physics (IC1), E-18016 Granada, Spain
| |
Collapse
|
10
|
Tong J, Doumbia A, Khan RU, Rahmanudin A, Turner ML, Casiraghi C. Electrolyte-Gated Organic Field-Effect Transistors for Quantitative Monitoring of the Molecular Dynamics of Crystallization at the Solid-Liquid Interface. NANO LETTERS 2022; 22:2643-2649. [PMID: 35324207 PMCID: PMC9098175 DOI: 10.1021/acs.nanolett.1c04424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Quantitative measurements of molecular dynamics at the solid-liquid interface are of crucial importance in a wide range of fields, such as heterogeneous catalysis, energy storage, nanofluidics, biosensing, and crystallization. In particular, the molecular dynamics associated with nucleation and crystal growth is very challenging to study because of the poor sensitivity or limited spatial/temporal resolution of the most widely used analytical techniques. We demonstrate that electrolyte-gated organic field-effect transistors (EGOFETs) are able to monitor in real-time the crystallization process in an evaporating droplet. The high sensitivity of these devices at the solid-liquid interface, through the electrical double layer and signal amplification, enables the quantification of changes in solute concentration over time and the transport rate of molecules at the solid-liquid interface during crystallization. Our results show that EGOFETs offer a highly sensitive and powerful, yet simple approach to investigate the molecular dynamics of compounds crystallizing from water.
Collapse
|
11
|
Gao J, Wang C, Wang C, Chu Y, Wang S, Sun MY, Ji H, Gao Y, Wang Y, Han Y, Song F, Liu H, Zhang Y, Han L. Poly-l-Lysine-Modified Graphene Field-Effect Transistor Biosensors for Ultrasensitive Breast Cancer miRNAs and SARS-CoV-2 RNA Detection. Anal Chem 2022; 94:1626-1636. [PMID: 35025203 PMCID: PMC8767657 DOI: 10.1021/acs.analchem.1c03786] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/04/2022] [Indexed: 11/29/2022]
Abstract
(Mi)RNAs are important biomarkers for cancers diagnosis and pandemic diseases, which require fast, ultrasensitive, and economical detection strategies to quantitatively detect exact (mi)RNAs expression levels. The novel coronavirus disease (SARS-CoV-2) has been breaking out globally, and RNA detection is the most effective way to identify the SARS-CoV-2 virus. Here, we developed an ultrasensitive poly-l-lysine (PLL)-functionalized graphene field-effect transistor (PGFET) biosensor for breast cancer miRNAs and viral RNA detection. PLL is functionalized on the channel surface of GFET to immobilize DNA probes by the electrostatic force. The results show that PGFET biosensors can achieve a (mi)RNA detection range of five orders with a detection limit of 1 fM and an entire detection time within 20 min using 2 μL of human serum and throat swab samples, which exhibits more than 113% enhancement in terms of sensitivity compared to that of GFET biosensors. The performance enhancement mechanisms of PGFET biosensors were comprehensively studied based on an electrical biosensor theoretical model and experimental results. In addition, the PGFET biosensor was applied for the breast cancer miRNA detection in actual serum samples and SARS-CoV-2 RNA detection in throat swab samples, providing a promising approach for rapid cancer diagnosis and virus screening.
Collapse
Affiliation(s)
- Jianwei Gao
- Institute
of Marine Science and Technology, Shandong
University, Qingdao 266237, China
| | - Chunhua Wang
- Institute
of Marine Science and Technology, Shandong
University, Qingdao 266237, China
| | - Chao Wang
- Institute
of Marine Science and Technology, Shandong
University, Qingdao 266237, China
| | - Yujin Chu
- Institute
of Marine Science and Technology, Shandong
University, Qingdao 266237, China
| | - Shun Wang
- Institute
of Marine Science and Technology, Shandong
University, Qingdao 266237, China
| | - Ming yuan Sun
- Institute
of Marine Science and Technology, Shandong
University, Qingdao 266237, China
| | - Hao Ji
- Institute
of Marine Science and Technology, Shandong
University, Qingdao 266237, China
| | - Yakun Gao
- Institute
of Marine Science and Technology, Shandong
University, Qingdao 266237, China
| | - Yanhao Wang
- Institute
of Marine Science and Technology, Shandong
University, Qingdao 266237, China
| | - Yingkuan Han
- Institute
of Marine Science and Technology, Shandong
University, Qingdao 266237, China
| | - Fangteng Song
- Institute
of Marine Science and Technology, Shandong
University, Qingdao 266237, China
| | - Hong Liu
- State
Key Laboratory of Crystal Materials, Shandong
University, Jinan, Shandong 250100, China
| | - Yu Zhang
- Institute
of Marine Science and Technology, Shandong
University, Qingdao 266237, China
| | - Lin Han
- Institute
of Marine Science and Technology, Shandong
University, Qingdao 266237, China
| |
Collapse
|
12
|
Mamun MSA, Sainoo Y, Takaoka T, Waizumi H, Wang Z, Alam MI, Ando A, Arafune R, Komeda T. Chemistry of the photoisomerization and thermal reset of nitro-spiropyran and merocyanine molecules on the channel of the MoS 2 field effect transistor. Phys Chem Chem Phys 2021; 23:27273-27281. [PMID: 34850795 DOI: 10.1039/d1cp04283a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We have explored the chemical reaction of the photoisomerization and thermal reaction of the photochromic spiropyran (SP) 1',3'-Dihydro-1',3',3' trimethyl-6-nitrospiro[2H-1 benzopyran-2,2'-(2H)-indole] molecule deposited on the atomic thin channel of a MoS2 field-effect transistor (FET) through the analysis of the FET property. With four monolayers of SP molecules on the channel, we observed a clear shift of the threshold voltage in the drain-current vs gate-voltage plot with UV-light injection on the molecule, which was due to the change of the SP molecule to merocyanine (MC). A complete reset from MC to SP molecule was achieved by thermal annealing, while the injection of green light could revert the FET property to the original condition. In the process of change from MC to SP, two types of decay rates were confirmed. The quick- and slow-decay components corresponded to the molecules attached directly to the substrate and those in the upper layer, respectively. The activation energies for the conversion of MC to SP molecules were estimated as 71 kJ/mol and 90 kJ/mol for the former and latter, respectively. Combined with DFT calculations, we concluded that the Id-Vg shift with photoisomerization from SP to MC is due to the upper layer molecules and the dipole moment in the surface normal direction. Based on the estimated activation energy of 90 kJ/mol for the reset process, we calculated the conversion rate in a controllable temperature range. From these values, we consider that the chemical state of MC can be maintained and switched in a designated time period, which demonstrates the possibility of this system in logical operation applications.
Collapse
Affiliation(s)
- Muhammad Shamim Al Mamun
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki-Aza-Aoba, Aoba-Ku, Sendai 9808578, Japan.
| | - Yasuyuki Sainoo
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM, Tagen), Tohoku University, 2-1-1, Katahira, Aoba-Ku, Sendai 9800877, Japan
| | - Tsuyoshi Takaoka
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM, Tagen), Tohoku University, 2-1-1, Katahira, Aoba-Ku, Sendai 9800877, Japan
| | - Hiroki Waizumi
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki-Aza-Aoba, Aoba-Ku, Sendai 9808578, Japan.
| | - Zhipeng Wang
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki-Aza-Aoba, Aoba-Ku, Sendai 9808578, Japan.
| | - Md Iftekharul Alam
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki-Aza-Aoba, Aoba-Ku, Sendai 9808578, Japan.
| | - Atsushi Ando
- National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Ryuichi Arafune
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 304-0044, Japan
| | - Tadahiro Komeda
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM, Tagen), Tohoku University, 2-1-1, Katahira, Aoba-Ku, Sendai 9800877, Japan
| |
Collapse
|
13
|
Zhao Y, Gobbi M, Hueso LE, Samorì P. Molecular Approach to Engineer Two-Dimensional Devices for CMOS and beyond-CMOS Applications. Chem Rev 2021; 122:50-131. [PMID: 34816723 DOI: 10.1021/acs.chemrev.1c00497] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Two-dimensional materials (2DMs) have attracted tremendous research interest over the last two decades. Their unique optical, electronic, thermal, and mechanical properties make 2DMs key building blocks for the fabrication of novel complementary metal-oxide-semiconductor (CMOS) and beyond-CMOS devices. Major advances in device functionality and performance have been made by the covalent or noncovalent functionalization of 2DMs with molecules: while the molecular coating of metal electrodes and dielectrics allows for more efficient charge injection and transport through the 2DMs, the combination of dynamic molecular systems, capable to respond to external stimuli, with 2DMs makes it possible to generate hybrid systems possessing new properties by realizing stimuli-responsive functional devices and thereby enabling functional diversification in More-than-Moore technologies. In this review, we first introduce emerging 2DMs, various classes of (macro)molecules, and molecular switches and discuss their relevant properties. We then turn to 2DM/molecule hybrid systems and the various physical and chemical strategies used to synthesize them. Next, we discuss the use of molecules and assemblies thereof to boost the performance of 2D transistors for CMOS applications and to impart diverse functionalities in beyond-CMOS devices. Finally, we present the challenges, opportunities, and long-term perspectives in this technologically promising field.
Collapse
Affiliation(s)
- Yuda Zhao
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, F-67000 Strasbourg, France.,School of Micro-Nano Electronics, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, 38 Zheda Road, 310027 Hangzhou, People's Republic of China
| | - Marco Gobbi
- Centro de Fisica de Materiales (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, E-20018 Donostia-San Sebastián, Spain.,CIC nanoGUNE, E-20018 Donostia-San Sebastian, Basque Country, Spain.,IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Luis E Hueso
- CIC nanoGUNE, E-20018 Donostia-San Sebastian, Basque Country, Spain.,IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, F-67000 Strasbourg, France
| |
Collapse
|
14
|
Wang Y, Iglesias D, Gali SM, Beljonne D, Samorì P. Light-Programmable Logic-in-Memory in 2D Semiconductors Enabled by Supramolecular Functionalization: Photoresponsive Collective Effect of Aligned Molecular Dipoles. ACS NANO 2021; 15:13732-13741. [PMID: 34370431 DOI: 10.1021/acsnano.1c05167] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nowadays, the unrelenting growth of the digital universe calls for radically novel strategies for data processing and storage. An extremely promising and powerful approach relies on the development of logic-in-memory (LiM) devices through the use of floating gate and ferroelectric technologies to write and erase data in a memory operating as a logic gate driven by electrical bias. In this work, we report an alternative approach to realize the logic-in-memory based on two-dimensional (2D) transition metal dichalcogenides (TMDs) where multiple memorized logic output states have been established via the interface with responsive molecular dipoles arranged in supramolecular arrays. The collective dynamic molecular dipole changes of the axial ligand coordinated onto self-assembled metal phthalocyanine nanostructures on the surface of 2D TMD enables large reversible modulation of the Fermi level of both n-type molybdenum disulfide (MoS2) and p-type tungsten diselenide (WSe2) field-effect transistors (FETs), to achieve multiple memory states by programming and erasing with ultraviolet (UV) and with visible light, respectively. As a result, logic-in-memory devices were built up with our supramolecular layer/2D TMD architecture where the output logic is encoded by the motion of the molecular dipoles. Our strategy relying on the dynamic control of the 2D electronics by harnessing the functions of molecular-dipole-induced memory in a supramolecular hybrid layer represents a versatile way to integrate the functional programmability of molecular science into the next generation nanoelectronics.
Collapse
Affiliation(s)
- Ye Wang
- University of Strasbourg,CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, F-67000 Strasbourg, France
| | - Daniel Iglesias
- University of Strasbourg,CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, F-67000 Strasbourg, France
| | - Sai Manoj Gali
- Laboratory for Chemistry of Novel Materials, Université de Mons, Place du Parc 20, 7000 Mons, Belgium
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, Université de Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Paolo Samorì
- University of Strasbourg,CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, F-67000 Strasbourg, France
| |
Collapse
|
15
|
Anichini C, Samorì P. Graphene-Based Hybrid Functional Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100514. [PMID: 34174141 DOI: 10.1002/smll.202100514] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/24/2021] [Indexed: 06/13/2023]
Abstract
Graphene is a 2D material combining numerous outstanding physical properties, including high flexibility and strength, extremely high thermal conductivity and electron mobility, transparency, etc., which make it a unique testbed to explore fundamental physical phenomena. Such physical properties can be further tuned by combining graphene with other nanomaterials or (macro)molecules to form hybrid functional materials, which by design can display not only the properties of the individual components but also exhibit new properties and enhanced characteristics arising from the synergic interaction of the components. The implementation of the hybrid approach to graphene also allows boosting the performances in a multitude of technological applications. This review reports the hybrids formed by graphene combined with other low-dimensional nanomaterials of diverse dimensionality (0D, 1D, and 2D) and (macro)molecules, with emphasis on the synthetic methods. The most important applications of these hybrids in the fields of sensing, water purification, energy storage, biomedical, (photo)catalysis, and opto(electronics) are also reviewed, with a special focus on the superior performances of these hybrids compared to the individual, nonhybridized components.
Collapse
Affiliation(s)
- Cosimo Anichini
- Université de Strasbourg, CNRS, ISIS, 8 alleé Gaspard Monge, Strasbourg, 67000, France
| | - Paolo Samorì
- Université de Strasbourg, CNRS, ISIS, 8 alleé Gaspard Monge, Strasbourg, 67000, France
| |
Collapse
|
16
|
Brill AR, Kafri A, Mohapatra PK, Ismach A, de Ruiter G, Koren E. Modulating the Optoelectronic Properties of MoS 2 by Highly Oriented Dipole-Generating Monolayers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32590-32597. [PMID: 34190537 DOI: 10.1021/acsami.1c09035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The noncovalent functionalization of two-dimensional materials (2DMs) with bespoke organic molecules is of central importance for future nanoscale electronic devices. Of particular interest is the incorporation of molecular functionalities that can modulate the physicochemical properties of the 2DMs via noninvasive external stimuli. In this study, we present the reversible modulation of the photoluminescence, spectroscopic properties (Raman), and charge transport characteristics of molybdenum disulfide (MoS2)-based devices via photoisomerization of a self-assembled monolayer of azobenzene-modified triazatriangulene molecules. The observed (opto)electronic modulations are explained by the n-type doping of the MoS2 lattice induced by the photoisomerization of the highly ordered azobenzene monolayer. This novel behavior could have profound effects on future composite 2DM-based (opto)electronics.
Collapse
Affiliation(s)
- Adam R Brill
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa 3200008, Israel
- Faculty of Materials Science and Engineering, Technion - Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Alonit Kafri
- Faculty of Materials Science and Engineering, Technion - Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Pranab K Mohapatra
- Department of Materials Science and Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| | - Ariel Ismach
- Department of Materials Science and Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| | - Graham de Ruiter
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Elad Koren
- Faculty of Materials Science and Engineering, Technion - Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| |
Collapse
|
17
|
Qiu H, Ippolito S, Galanti A, Liu Z, Samorì P. Asymmetric Dressing of WSe 2 with (Macro)molecular Switches: Fabrication of Quaternary-Responsive Transistors. ACS NANO 2021; 15:10668-10677. [PMID: 34096713 DOI: 10.1021/acsnano.1c03549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The forthcoming saturation of Moore's law has led to a strong demand for integrating analogue functionalities within semiconductor-based devices. As a step toward this goal, we fabricate quaternary-responsive WSe2-based field-effect transistors (FETs) whose output current can be remotely and reversibly controlled by light, heat, and electric field. A photochromic silane-terminated spiropyran (SP) is chemisorbed on SiO2 forming a self-assembled monolayer (SAM) that can switch from the SP to the merocyanine (MC) form in response to UV illumination and switch back by either heat or visible illumination. Such a SAM is incorporated at the dielectric-semiconductor interface in WSe2-based FETs. Upon UV irradiation, a drastic decrease in the output current of 82% is observed and ascribed to the zwitterionic MC isomer acting as charge scattering site. To provide an additional functionality, the WSe2 top surface is coated with a ferroelectric co-polymer layer based on poly(vinylidene fluoride-co-trifluoroethylene). Because of its switchable inherent electrical polarization, it can promote either the accumulation or depletion of charge carriers in the WSe2 channel, thereby inducing a current modulation with 99% efficiency. Thanks to the efficient tuning induced by the two components and their synergistic effects, the device polarity could be modulated from n-type to p-type. Such a control over the carrier concentration and device polarity is key to develop 2D advanced electronics. Moreover, the integration strategy of multiple stimuli-responsive elements into a single FET allows us to greatly enrich its functionality, thereby promoting the development for More-than-Moore technology.
Collapse
Affiliation(s)
- Haixin Qiu
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Stefano Ippolito
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Agostino Galanti
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Zhaoyang Liu
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Paolo Samorì
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
18
|
Tong J, Doumbia A, Turner ML, Casiraghi C. Real-time monitoring of crystallization from solution by using an interdigitated array electrode sensor. NANOSCALE HORIZONS 2021; 6:468-473. [PMID: 33908438 PMCID: PMC8168339 DOI: 10.1039/d0nh00685h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Monitoring crystallization events in real-time is challenging but crucial for understanding the molecular dynamics associated with nucleation and crystal growth, some of nature's most ubiquitous phenomena. Recent observations have suggested that the traditional nucleation model, which describes the nucleus having already the final crystal structure, may not be valid. It appears that the molecular assembly can range during nucleation from crystalline to partially ordered to totally amorphous phases, and can change its structure during the crystallization process. Therefore, it is of critical importance to develop methods that are able to provide real-time monitoring of the molecular interactions with high temporal resolution. Here, we demonstrate that a simple and scalable approach based on interdigitated electrode array sensors (IESs) is able to provide insights on the dynamics of the crystallization process with a temporal resolution of 15 ms.
Collapse
Affiliation(s)
- Jincheng Tong
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - Amadou Doumbia
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - Michael L Turner
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - Cinzia Casiraghi
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
19
|
Gao P, Xiao Y, YuliangWang, Li L, Li W, Tao W. Biomedical applications of 2D monoelemental materials formed by group VA and VIA: a concise review. J Nanobiotechnology 2021; 19:96. [PMID: 33794908 PMCID: PMC8012749 DOI: 10.1186/s12951-021-00825-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/06/2021] [Indexed: 01/10/2023] Open
Abstract
The development of two-dimensional (2D) monoelemental nanomaterials (Xenes) for biomedical applications has generated intensive interest over these years. In this paper, the biomedical applications using Xene-based 2D nanomaterials formed by group VA (e.g., BP, As, Sb, Bi) and VIA (e.g., Se, Te) are elaborated. These 2D Xene-based theranostic nanoplatforms confer some advantages over conventional nanoparticle-based systems, including better photothermal conversion, excellent electrical conductivity, and large surface area. Their versatile and remarkable features allow their implementation for bioimaging and theranostic purposes. This concise review is focused on the current developments in 2D Xenes formed by Group VA and VIA, covering the synthetic methods and various biomedical applications. Lastly, the challenges and future perspectives of 2D Xenes are provided to help us better exploit their excellent performance and use them in practice.
Collapse
Affiliation(s)
- Ping Gao
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Yufen Xiao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - YuliangWang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Leijiao Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
| | - Wenliang Li
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, 132013, China.
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|