1
|
Huang J, Chen J, Luo Y. Cell-Sheet Shape Transformation by Internally-Driven, Oriented Forces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416624. [PMID: 40165759 DOI: 10.1002/adma.202416624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/04/2025] [Indexed: 04/02/2025]
Abstract
During morphogenesis, cells collectively execute directional forces that drive the programmed folding and growth of the layers, forming tissues and organs. The ability to recapitulate aspects of these processes in vitro will constitute a significant leap forward in the field of tissue engineering. Free-standing, self-organizing, cell-laden matrices are fabricated using a sequential deposition approach that uses liquid crystal-templated hydrogel fibers to direct cell arrangements. The orientation of hydrogel fibers is controlled using flow or boundary cues, while their microstructures are controlled by depletion interaction and probed by scattering and microscopy. These fibers effectively direct cells embedded in a collagen matrix, creating multilayer structures through contact guidance and by leveraging steric interactions amongst the cells. In uniformly aligned cell matrices, oriented cells exert traction forces that can induce preferential contraction of the matrix. Simultaneously, the matrix densifies and develops anisotropy through cell remodeling. Such an approach can be extended to create cell arrangements with arbitrary in-plane patterns, allowing for coordinated cell forces and pre-programmed, macroscopic shape changes. This work reveals a fundamentally new path for controlled force generation, emphasizing the role of a carefully designed initial orientational field for manipulating shape transformations of reconstituted matrices.
Collapse
Affiliation(s)
- Junrou Huang
- Department of Mechanical Engineering and Materials Science, Yale University, 9 Hillhouse Ave, New Haven, CT, 06511, USA
| | - Juan Chen
- Department of Mechanical Engineering and Materials Science, Yale University, 9 Hillhouse Ave, New Haven, CT, 06511, USA
| | - Yimin Luo
- Department of Mechanical Engineering and Materials Science, Yale University, 9 Hillhouse Ave, New Haven, CT, 06511, USA
| |
Collapse
|
2
|
Qi F, Zhou C, Qing H, Sun H, Yin J. Aerial Track-Guided Autonomous Soft Ring Robot. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2503288. [PMID: 40279520 DOI: 10.1002/advs.202503288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/28/2025] [Indexed: 04/27/2025]
Abstract
Navigating in three-dimensional (3D) environments with precise motion control is challenging for soft robots due to their inherent flexibility. Inspired by aerial trams, here, an autonomous soft twisted ring robot is reported capable of navigating pre-defined tracks in 3D space under constant photothermal actuation, without requiring spatiotemporal control of actuation sources. Made of liquid crystal elastomers, the ring robot, suspended on thread-based tracks, self-flips around its centerline when exposed to constant infrared light. Curling the twisted ring around tracks converts its self-rotary motion into autonomous linear movement via screw theory. This mechanism enables the autonomous robot to adapt to tracks of various materials and micron-to-millimeter sizes, overcome obstacles like knots on tracks, transport loads over 12 times its weight, ascend and descend steep slopes up to 80°, and navigate complex paths, including circular, polygonal, and 3D spiral tracks, as well as loose threads with dynamically changing shapes.
Collapse
Affiliation(s)
- Fangjie Qi
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Caizhi Zhou
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Haitao Qing
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Haoze Sun
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jie Yin
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
3
|
Pan M, Liu M, Lei J, Wang Y, Linghu C, Bowen C, Hsia KJ. Bioinspired Mechanisms and Actuation of Soft Robotic Crawlers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416764. [PMID: 40112177 PMCID: PMC12021124 DOI: 10.1002/advs.202416764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/13/2025] [Indexed: 03/22/2025]
Abstract
Inspired by soft-bodied animals, scientists and roboticists have explored and created soft materials and robots in this last decade to mimic the functionality and behavior of soft-crawling animals. Such effort has originated from the unique ability of soft structures to crawl effectively in complex natural environments. As a result, there is growing interest in the design of highly functional soft robotic crawlers through the creation of new flexible functional materials, understanding the underlying science of crawling mechanisms, and employing advanced actuation strategies. This review investigates the current state-of-the-art in this fascinating area to demonstrate the nexus between materials, mechanisms, actuation, and applications. Bioinspired crawling mechanisms of soft crawlers are initially outlined, which include two-anchor peristaltic and serpentine crawling and undulatory motion as analogs to caterpillars, worms, and snakes, respectively. The fabrication and use of new materials in the design of soft crawlers are also discussed, along with the exploitation of actuation mechanisms to achieve specific crawling locomotion. Finally, insights into future research directions are outlined.
Collapse
Affiliation(s)
- Min Pan
- Department of Mechanical EngineeringUniversity of BathBathBA2 7AYUK
| | - Miaomiao Liu
- Department of Mechanical EngineeringUniversity of BathBathBA2 7AYUK
| | - Jiayi Lei
- School of Mechanical and Aerospace EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Yunyi Wang
- Department of Mechanical EngineeringUniversity of BathBathBA2 7AYUK
| | - Changhong Linghu
- School of Mechanical and Aerospace EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Chris Bowen
- Department of Mechanical EngineeringUniversity of BathBathBA2 7AYUK
| | - K. Jimmy Hsia
- School of Mechanical and Aerospace EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
- School of ChemistryChemical Engineering and BiotechnologyNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| |
Collapse
|
4
|
Wang H, Du J, Mao Y. Hydrogel-Based Continuum Soft Robots. Gels 2025; 11:254. [PMID: 40277689 PMCID: PMC12026835 DOI: 10.3390/gels11040254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
This paper comprehensively reviews the latest advances in hydrogel-based continuum soft robots. Hydrogels exhibit exceptional flexibility and adaptability compared to traditional robots reliant on rigid structures, making them ideal as biomimetic robotic skins and platforms for constructing highly accurate, real-time responsive sensory interfaces. The article systematically summarizes recent research developments across several key dimensions, including application domains, fabrication methods, actuator technologies, and sensing mechanisms. From an application perspective, developments span healthcare, manufacturing, and agriculture. Regarding fabrication techniques, the paper extensively explores crosslinking methods, additive manufacturing, microfluidics, and other related processes. Additionally, the article categorizes and thoroughly discusses various hydrogel-based actuators responsive to solute/solvent variations, pH, chemical reactions, temperature, light, magnetic fields, electric fields, hydraulic/electro-osmotic stimuli, and humidity. It also details the strategies for designing and implementing diverse sensors, including strain, pressure, humidity, conductive, magnetic, thermal, gas, optical, and multimodal sensors. Finally, the paper offers an in-depth discussion of the prospective applications of hydrogel-based continuum soft robots, particularly emphasizing their potential in medical and industrial fields. Concluding remarks include a forward-looking outlook highlighting future challenges and promising research directions.
Collapse
Affiliation(s)
- Honghong Wang
- School of Mechano-Electronic Engineering, Xidian University, Xi’an 710071, China
| | - Jingli Du
- School of Mechano-Electronic Engineering, Xidian University, Xi’an 710071, China
| | - Yi Mao
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China;
| |
Collapse
|
5
|
Guo K, Sun H, Nan M, Sun T, Wang G, Liu S. An iodine-driven muscle-mimicking self-resetting bilayer hydrogel actuator. MATERIALS HORIZONS 2025; 12:1938-1943. [PMID: 39703149 DOI: 10.1039/d4mh01545b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Hydrogels that can swell and deswell under the influence of opposing external stimuli have frequently been reported as muscle-mimicking materials. However, the mechanism of such materials is markedly dissimilar to that of natural muscles. Natural muscles contract when fueled by ATP and spontaneously relax once ATP is completely consumed. The subtlety of this "self-resetting" mechanism is avoiding the equivalent opposite modulation to reset the size and shape of the muscle, which may easily result in the cumulation of action error after several repeating cycles. In this article, we fabricate a bilayer hydrogel actuator with the aid of the I2-responsiveness of poly(ethylene glycol)-based hydrogel. When this actuator is coupled with a reaction network containing NaIO3, NaI, and CS(NH2)2, which generates I2 as an intermediate product, it will temporarily deform and recover spontaneously with the consumption of I2. Such an actuator is highly similar to natural muscles in terms of the actuation mechanism. Several biomimicking functions were achieved by this actuator.
Collapse
Affiliation(s)
- Kangle Guo
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China.
| | - Hao Sun
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150080, People's Republic of China
| | - Mengmeng Nan
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China.
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China.
| | - Guangtong Wang
- School of Medicine and Health, Harbin Institute of Technology, Harbin, Heilongjiang 150080, People's Republic of China.
| | - Shaoqin Liu
- School of Medicine and Health, Harbin Institute of Technology, Harbin, Heilongjiang 150080, People's Republic of China.
| |
Collapse
|
6
|
Chen H, Qin H, Yao X, Cong HP, Yu SH. Incompatible Geometry Regulation of Nanowire Assemblies Enabled Light-Driven Shape Morphing and Motions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418730. [PMID: 39906914 DOI: 10.1002/adma.202418730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/16/2025] [Indexed: 02/06/2025]
Abstract
Photoresponsive shape-changing materials have significant applications in miniaturized smart robotics and biomedicine powered in a remote and wireless manner. Existing light-fuelled soft materials suffer from limited continuous shape manipulation and constrained mobility and locomotive modes. One promising solution is developing a hierarchical structure design approach to integrate rapid, reversible photoactive molecular alignment and mechanically incompatible geometry in a macroscopic system. Here, a nanowire assemblies-induced geometry engineering method is reported for the fabrication of silver nanowire-incorporated nematic liquid crystalline elastomers with prominent anisotropic structures at multi-length scales and incompatible elasticity that show sharp morphological transitions among the rings, helicoids, and spirals with diverse helical configurations. The engineered composite films can realize complex light-driven motions including rotating, rolling, and jumping with the controlled directionality and magnitude that are pre-encoded in their both molecular and macroscopic configurations. Owing to the great controllability of multimodal locomotion, a spiral robot can undertake task-specific configuration to climb up complex terrains. The complete regulatory relationship among molecular orientation, shape geometry, and light-driven motions is also established. This study may open an avenue for elaborate design and precise fabrication of novel shape-morphing materials for future applications in intelligent robotic systems.
Collapse
Affiliation(s)
- Hong Chen
- Anhui Province Engineering Research Center of Flexible and Intelligent Materials, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Haili Qin
- Anhui Province Engineering Research Center of Flexible and Intelligent Materials, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Xin Yao
- Anhui Province Engineering Research Center of Flexible and Intelligent Materials, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Huai-Ping Cong
- Anhui Province Engineering Research Center of Flexible and Intelligent Materials, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Shu-Hong Yu
- Institute of Innovative Materials, Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- New Cornerstone Science Laboratory, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230009, P. R. China
| |
Collapse
|
7
|
Bai HY, Zhu QL, Cheng HL, Wen XL, Wang ZJ, Zheng Q, Wu ZL. Muscle-like hydrogels with fast isochoric responses and their applications as soft robots: a minireview. MATERIALS HORIZONS 2025; 12:719-733. [PMID: 39530734 DOI: 10.1039/d4mh01187b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Hydrogels with abundant water and responsiveness to external stimuli have emerged as promising candidates for artificial muscles and garnered significant interest for applications as soft actuators and robots. However, most hydrogels possess amorphous structures and exhibit slow, isotropic responses to external stimuli. These features are far inferior to real muscles, which have ordered structures and endow living organisms with programmable deformations and motions through fast, anisotropic responses in complex environments. In recent years, this issue has been addressed by a conceptual new strategy to develop muscle-like hydrogels with highly oriented nanosheets. These hydrogels exhibit fast, isochoric responses based on temperature-mediated electrostatic repulsion between charged nanosheets rather than water diffusion, which significantly advances the development of soft actuators and robots. This minireview summarizes the recent progress in muscle-like hydrogels and their applications as soft actuators and robots. We first introduce the synthesis of muscle-like hydrogels with monodomain structures and the unique mechanism for rapid and isochoric deformations. Then, the developments of hydrogels with complex ordered structures and hydrogel-based soft robots are discussed. The morphing mechanisms and motion kinematics of the hydrogel actuators and robots are highlighted. Finally, concluding remarks are given to discuss future opportunities and challenges in this field.
Collapse
Affiliation(s)
- Hui Ying Bai
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Qing Li Zhu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Han Lei Cheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Xin Ling Wen
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Zhi Jian Wang
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo 001-0021, Japan.
| | - Qiang Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
Tootoonchian P, Bahçeci L, Budnyk A, Okur HI, Baytekin B. Lyotropic "Salty" Tuning for Straightforward Diversification and Anisotropy in Hydrogel Actuators. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:162-171. [PMID: 39743324 PMCID: PMC11736847 DOI: 10.1021/acs.langmuir.4c03291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 01/04/2025]
Abstract
The specific ion effect (SIE), the control of polymer solubility in aqueous solutions by the added ions, has been a phenomenon known for more than a century. The seemingly simple nature of the ion-polymer-water interactions can lead to complex behaviors, which have also been exploited in many applications in biochemistry, electrochemistry, and energy harvesting. Here, we show an emerging diversification of actuation behaviors in "salty" hydrogel and hydrogel-paper actuators. SIE controls not only the dehydration speeds but also the water diffusion and mechanical properties of the gels, leading to composite actuation behavior. Most reported thermally activated hydrogel actuators suffer from expensive precursors or complex fabrication processes. This work addresses these issues by using a physicochemical effect displayed within an inexpensive gel with common salts. SIE-controlled anisotropic actuation in geometrically different systems provides a demonstration of how such physicochemical effects can lead to higher complexity in basic soft material design and hydrogel soft robotics.
Collapse
Affiliation(s)
| | - Levent Bahçeci
- Chemistry
Department, Bilkent University, Ankara 06800, Turkey
| | - Andriy Budnyk
- UNAM
− National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Halil I. Okur
- Chemistry
Department, Bilkent University, Ankara 06800, Turkey
- UNAM
− National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Bilge Baytekin
- Chemistry
Department, Bilkent University, Ankara 06800, Turkey
- UNAM
− National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
9
|
Gu Y, Xu C, Wang Y, Luo J, Shi D, Wu W, Chen L, Jin Y, Jiang B, Chen C. Compressible, anti-fatigue, extreme environment adaptable, and biocompatible supramolecular organohydrogel enabled by lignosulfonate triggered noncovalent network. Nat Commun 2025; 16:160. [PMID: 39747042 PMCID: PMC11696470 DOI: 10.1038/s41467-024-55530-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
Achieving a synergy of biocompatibility and extreme environmental adaptability with excellent mechanical property remains challenging in the development of synthetic materials. Herein, a "bottom-up" solution-interface-induced self-assembly strategy is adopted to develop a compressible, anti-fatigue, extreme environment adaptable, biocompatible, and recyclable organohydrogel composed of chitosan-lignosulfonate-gelatin by constructing noncovalent bonded conjoined network. The ethylene glycol/water solvent induced lignosulfonate nanoparticles function as bridge in chitosan/gelation network, forming multiple interfacial interactions that can effectively dissipate energy. The organohydrogel exhibits high compressive strength (54 MPa) and toughness (3.54 MJ/m3), 100 and 70 times higher than those of pure chitosan/gelatin hydrogel, meanwhile, excellent self-recovery and fatigue resistance properties. Even when subjected to severe compression up to a strain of 0.5 for 500,000 cycles, the organohydrogel still remains intact. This organohydrogel also demonstrates notable biocompatibility both in vivo and vitro, environment adaptability at low temperature, as well as recyclability. Such all natural organohydrogel provides a promising route towards the development of high-performance load-bearing materials.
Collapse
Affiliation(s)
- Yihui Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China
| | - Chao Xu
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China
| | - Yilin Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jing Luo
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Dongsheng Shi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Lu Chen
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Bo Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Chaoji Chen
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
10
|
Ma Q, Xiong J, Zhou Y, Zhang S, Wang J, Li W, Zou X, Yan F. Predicting Fatigue Damage in Hydrogels Through Force-Induced Luminescence Enhancement. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2413874. [PMID: 39520329 DOI: 10.1002/adma.202413874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Fatigue damage of polymers occurs under long-term load cycling, resulting in irreversible fracture failure, which is difficult to predict. The real-time monitoring of material fatigue damage is of great significance. Here, tough hydrogels are prepared with force-induced confined luminescence enhancement of carbonated polymer quantum dot (CPD) clusters to realize the visualization of fracture process and the monitoring of fatigue damage. The enhanced interactions induced by force between the clusters and the polymer in the confined space inhibit the non-radiative leaps and promote the radiative leaps to quantify the fatigue damage into optical signals. Rigid CPDs with abundant active sites on the surface can form dynamic reversible bonds with polymer and dissipate stress concentration, which significantly enhances the crack propagation strain (8000%) and fracture energy (26.4 kJ m-2) of hydrogels. CPD hydrogels have a wide range of applications in novel information encryption and luminescent robotics.
Collapse
Affiliation(s)
- Qi Ma
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiaofeng Xiong
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yawen Zhou
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Shilong Zhang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiayu Wang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Weizheng Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiuyang Zou
- Jiangsu Engineering Research Center for Environmental Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, 223300, China
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
11
|
Yao X, Chen H, Qin H, Wu QH, Cong HP, Yu SH. Solvent-adaptive hydrogels with lamellar confinement cellular structure for programmable multimodal locomotion. Nat Commun 2024; 15:9254. [PMID: 39461965 PMCID: PMC11514043 DOI: 10.1038/s41467-024-53549-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Biological organisms can perform flexible and controllable multimodal motion under external stimuli owing to the hierarchical assembly of anisotropic structures across multiple length scales. However, artificial soft actuators exhibit the limited response speed, deformation programmability and movement capability especially in harsh environments because of insufficient anisotropic hierarchy and precision in structural design. Here, we report a programmed assembly directed confinement polymerization method for the fabrication of environmentally tolerant and fast responsive hydrogels with lamellar assembly-confined cellular structure interpenetrated with highly aligned nanopillars by the directional freezing-assisted polymerization in the predesigned anisotropic laminar scaffold. The obtained hydrogel exhibits ultrafast responsiveness and anisotropic deformation exposed to temperature/light/solvent stimulation, maintaining highly consistent responsive deformation capability in all-polarity solvents over 100 days of soaking. Moreover, the hydrogels implement photoactive programmable multi-gait locomotion whose amplitude and directionality are precisely regulated by the intrinsic structure, including controlled crawling and rotation in water and non-polar solvents, and 3D self-propulsion floating and swimming in polar solvents. Thus, this hydrogel with hierarchically ordered structure and dexterous locomotion may be suitable for flexible intelligent actuators serving in harsh solvent environments.
Collapse
Affiliation(s)
- Xin Yao
- Anhui Province Engineering Research Center of Flexible and Intelligent Materials, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Hong Chen
- Anhui Province Engineering Research Center of Flexible and Intelligent Materials, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Haili Qin
- Anhui Province Engineering Research Center of Flexible and Intelligent Materials, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Qi-Hang Wu
- Anhui Province Engineering Research Center of Flexible and Intelligent Materials, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Huai-Ping Cong
- Anhui Province Engineering Research Center of Flexible and Intelligent Materials, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, P. R. China.
| | - Shu-Hong Yu
- Institute of Innovative Materials, Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen, P. R. China.
- New Cornerstone Science Laboratory, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, P. R. China.
| |
Collapse
|
12
|
Khodami S, Gharakhloo M, Dagdelen S, Fita P, Romanski J, Karbarz M, Stojek Z, Mackiewicz M. Rapid Photoinduced Self-Healing, Controllable Drug Release, Skin Adhesion Ability, and Mechanical Stability of Hydrogels Incorporating Linker-Modified Gold Nanoparticles and Nanogels. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57659-57671. [PMID: 39378138 PMCID: PMC11503619 DOI: 10.1021/acsami.4c11908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024]
Abstract
Appropriately modified thermoresponsive hydrogels, such as poly(N-isopropylacrylamide) hydrogels, bring an opportunity for a variety of biomedical applications. Incorporating compounds with different properties into poly(N-isopropylacrylamide) hydrogels offers opportunities to enhance their mechanical, self-healing ability, adhesiveness, thermal responsiveness, and drug release capabilities. In this study, we investigated the influence of Au-sulfur interactions on the properties of the poly(N-isopropylacrylamide) hydrogels after introducing N,N'-bis(acryloyl)cystine (a newly synthesized cross-linker), modified gold nanoparticles, and a p(NIPAm-BISS) nanogel into the hydrogel matrix. Our findings demonstrated that poly(N-isopropylacrylamide) hydrogels with these compounds exhibited higher mechanical strength (65% tensile stress and 25% elongation), faster thermal responsiveness, controllable self-healing [85% recovery after 2 min, using a NIR laser (800 nm, 0.75 W)], skin adhesiveness, and enhanced drug release (0.08 mg·mL-1, a 93% improvement). These results may contribute to advancements in the design of temperature-responsive hydrogels tailored for specific biomedical needs, such as targeted drug delivery with the use of a NIR laser and tissue engineering.
Collapse
Affiliation(s)
- Samaneh Khodami
- Biological
and Chemical Research Center, University
of Warsaw, Zwirki i Wigury 101, Warsaw 02-089, Poland
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Mosayeb Gharakhloo
- Biological
and Chemical Research Center, University
of Warsaw, Zwirki i Wigury 101, Warsaw 02-089, Poland
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Serife Dagdelen
- Biological
and Chemical Research Center, University
of Warsaw, Zwirki i Wigury 101, Warsaw 02-089, Poland
| | - Piotr Fita
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, Warsaw 02-093, Poland
| | - Jan Romanski
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Marcin Karbarz
- Biological
and Chemical Research Center, University
of Warsaw, Zwirki i Wigury 101, Warsaw 02-089, Poland
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Zbigniew Stojek
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Marcin Mackiewicz
- Biological
and Chemical Research Center, University
of Warsaw, Zwirki i Wigury 101, Warsaw 02-089, Poland
| |
Collapse
|
13
|
Gao ZQ, Liu CH, Zhang SL, Li SH, Gao LW, Chai RL, Zhou TY, Ma XJ, Li X, Li S, Zhao J, Zhao Q. Lanternarene-Based Self-Sorting Double-Network Hydrogels for Flexible Strain Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404231. [PMID: 38943438 DOI: 10.1002/smll.202404231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/21/2024] [Indexed: 07/01/2024]
Abstract
Conductive flexible hydrogels have attracted immense attentions recently due to their wide applications in wearable sensors. However, the poor mechanical properties of most conductive polymer limit their utilizations. Herein, a double network hydrogel is fabricated via a self-sorting process with cationic polyacrylamide as the first flexible network and the lantern[33]arene-based hydrogen organic framework nanofibers as the second rigid network. This hydrogel is endowed with good conductivity (0.25 S m-1) and mechanical properties, such as large Young's modulus (31.9 MPa), fracture elongation (487%) and toughness (6.97 MJ m-3). The stretchability of this hydrogel is greatly improved after the kirigami cutting, which makes it can be used as flexible strain sensor for monitoring human motions, such as bending of fingers, wrist and elbows. This study not only provides a valuable strategy for the construction of double network hydrogels by lanternarene, but also expands the application of the macrocycle hydrogels to flexible electronics.
Collapse
Affiliation(s)
- Zi-Qi Gao
- College of Sciences, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Chuan-Hong Liu
- College of Sciences, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Shuang-Long Zhang
- College of Sciences, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Sheng-Hua Li
- Tianjin R&D Biotechnology Co., Ltd., Tianjin, 300456, P. R. China
| | - Li-Wei Gao
- College of Sciences, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Rui-Lin Chai
- College of Sciences, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Tuo-Yu Zhou
- College of Sciences, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Xu-Juan Ma
- College of Sciences, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Xin Li
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| | - Shibo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300382, P. R. China
| | - Jin Zhao
- College of Sciences, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Qian Zhao
- College of Sciences, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| |
Collapse
|
14
|
Jing X, Zhang S, Zhang F, Chi C, Cui S, Ding H, Li J. Ultra-strong and tough cellulose-based conductive hydrogels via orientation inspired by noodles pre-stretching. Carbohydr Polym 2024; 340:122286. [PMID: 38858003 DOI: 10.1016/j.carbpol.2024.122286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/27/2024] [Accepted: 05/15/2024] [Indexed: 06/12/2024]
Abstract
Due to the unsatisfactory mechanical properties of natural polymer-based conductive hydrogels, their applications are limited. Shaanxi Biangbiang noodles can be toughened by applying external mechanical forces through stretching and beating movements; this process provides inspiration for the preparation of high-strength hydrogels. In this paper, we propose a strategy for the preparation of ultrastrong and ultratough conductive hydrogels by directional prestretching and solvent exchange. Neatly arranged fiber bundles containing many intermolecular hydrogen bonds and metal ion coordination bonds are successfully constructed inside the prepared hydrogels. The hydrogel has exceptional mechanical properties, with a fracture stress exceeding 50 MPa, fracture strain approaching 105 %, fracture toughness exceeding 30 MJ m-3, and high conductivity reaching 11.738 ± 0.06 mS m-1. Impressively, the hydrogel can maintain its high mechanical properties after being frozen at an ultralow temperature of -80 °C for 7 days. Compared with other tough hydrogels, natural tendons and synthetic rubbers, the hydrogel exhibits excellent mechanical properties. The cellulose-based conductive hydrogel prepared in this study can be applied to robotic soft tissues (such as the Achilles tendon) that require high strength and are operated in extreme environments.
Collapse
Affiliation(s)
- Xiaokai Jing
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China
| | - Sufeng Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China.
| | - Fengjiao Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China
| | - Congcong Chi
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China
| | - Shuyuan Cui
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China
| | - Hao Ding
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China
| | - Jinrui Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China
| |
Collapse
|
15
|
Cheng Q, Lu X, Tai Y, Luo T, Yang R. Light-Driven Microrobots for Targeted Drug Delivery. ACS Biomater Sci Eng 2024; 10:5562-5594. [PMID: 39147594 DOI: 10.1021/acsbiomaterials.4c01191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
As a new micromanipulation tool with the advantages of small size, flexible movement and easy manipulation, light-driven microrobots have a wide range of prospects in biomedical fields such as drug targeting and cell manipulation. Recently, microrobots have been controlled in various ways, and light field has become a research hotspot by its advantages of noncontact manipulation, precise localization, fast response, and biocompatibility. It utilizes the force or deformation generated by the light field to precisely control the microrobot, and combines with the drug release technology to realize the targeted drug application. Therefore, this paper provides an overview of light-driven microrobots with drug targeting to provide new ideas for the manipulation of microrobots. Here, this paper briefly categorizes the driving mechanisms and materials of light-driven microrobots, which mainly include photothermal, photochemical, and biological. Then, typical designs of light-driven microrobots with different driving mechanisms and control strategies for multiple physical fields are summarized. Finally, the applications of microrobots in the fields of drug targeting and bioimaging are presented as well as the future prospects of light-driven microrobots in the biomedical field are demonstrated.
Collapse
Affiliation(s)
- Qilong Cheng
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Xingqi Lu
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Yunhao Tai
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Tingting Luo
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Runhuai Yang
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
16
|
Tian Y, Hou LX, Zhang XN, Du M, Zheng Q, Wu ZL. Engineering Tough Supramolecular Hydrogels with Structured Micropillars for Tunable Wetting and Adhesion Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308570. [PMID: 38716740 DOI: 10.1002/smll.202308570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/06/2024] [Indexed: 10/01/2024]
Abstract
Soft-lithography is widely used to fabricate microstructured surfaces on plastics and elastomers for designable physical properties such as wetting and adhesions. However, it remains a big challenge to construct high-aspect-ratio microstructures on the surface of hydrogels due to the difficulty in demolding from the gel with low strength and stiffness. Demonstrated here is the engineering of tough hydrogels by soft-lithography to form well-defined micropillars. The mechanical properties of poly(acrylamide-co-methacrylic acid) hydrogels with dense hydrogen-bond associations severely depend on temperature, with Young's modulus increasing from 8.1 MPa at 15 °C to 821.8 MPa at -30 °C, enabling easy demolding at low temperatures. Arrays of micropillars are maintained on the surface of the gel, and can be used at room temperature when the gel restores soft and stretchable. The hydrogel also exhibits good shape-memory property, favoring tailoring the morphology with a switchable tilt angle of micropillars. Consequently, the hydrogel shows tunable wetting and adhesion properties, as manifested by varying contact angles and adhesion strengths. These surface properties can also be tuned by geometry and arrangement of micropillars. This facile strategy by harnessing tunable viscoelasticity of supramolecular hydrogels should be applicable to other soft materials, and broaden their applications in biomedical and engineering fields.
Collapse
Affiliation(s)
- Ye Tian
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Hangzhou, 310023, China
| | - Li Xin Hou
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xin Ning Zhang
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Miao Du
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Qiang Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
17
|
Diao S, Meng L, Pelicano CM, Huang J, Tian Z, Lai F, Liu T, Cao S. Rapid Photothermal-Responsive Soft Hydrogel Actuator Contained Ti 3C 2T x MXene and Laponite Clay with Enhanced Mechanical Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44067-44076. [PMID: 39133189 DOI: 10.1021/acsami.4c09539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Photothermal responsive hydrogels are widely used in bionic soft actuators due to their remote-controlled capabilities and flexibility. However, their weak mechanical properties and limited responsiveness hinder their potential applications. To overcome this, we developed an innovative laponite/MXene/PNIPAm (LxMyPN) nanocomposite hydrogel that is mechanically robust and exhibits excellent photothermally responsive properties based on abundant hydrogen bonds. Notably, laponite clay is used as a co-cross-linking agent to improve the mechanical properties of LxMyPN hydrogel, while MXene nanosheets are added to promote the photothermal responsiveness. The resulting L3M0.4PN nanocomposite hydrogel exhibits enhanced mechanical properties, with a compressive strength of 0.201 MPa, a tensile strength of 90 kPa, and a fracture toughness of 27.25 kJ m-2. In addition, the L3M0.4PN hydrogel displays a deswelling ratio of 73.6% within 60 s and experiences an excellent volume shrinkage of 82.4% under light irradiation. Furthermore, hydrogel actuators with fast response behaviors are constructed and employed as grippers capable of grasping and releasing target objects. Overall, this high-strength and fast-responsive hydrogel actuator is beneficial to paving the way for remote controlled soft robots.
Collapse
Affiliation(s)
- Siyuan Diao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Lili Meng
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Christian Mark Pelicano
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam 14476, Germany
| | - Jiajia Huang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zhihong Tian
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, P. R. China
| | - Feili Lai
- Department of Chemistry, KU Leuven, Leuven 3001, Belgium
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Shaokui Cao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| |
Collapse
|
18
|
López-Díaz A, Vázquez AS, Vázquez E. Hydrogels in Soft Robotics: Past, Present, and Future. ACS NANO 2024; 18:20817-20826. [PMID: 39099317 PMCID: PMC11328171 DOI: 10.1021/acsnano.3c12200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The rise of soft robotics in recent years has motivated significant developments in smart materials (and vice versa), as these materials allow for more compact robotic designs thanks to the embodied intelligence that they provide. Hydrogels have long been postulated as one of the potential candidates to be used in soft robotics due to their softness, elasticity, and smart properties that can be tuned with nanomaterials. However, nowadays they represent only a small percentage of the materials used in the field. In this perspective, the drawbacks that have hindered their utilization so far are analyzed as well as the current state of hydrogel-based soft actuators, sensors, and manufacturing possibilities. The future improvements that need to be made to achieve a real application of hydrogels in soft robotics are also discussed.
Collapse
Affiliation(s)
- Antonio López-Díaz
- Escuela Técnica Superior de Ingeniería Industrial, Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Andrés S Vázquez
- Escuela Técnica Superior de Ingeniería Industrial, Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Ester Vázquez
- Instituto Regional de Investigación Científica Aplicada, Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
- Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
| |
Collapse
|
19
|
Han L, Si J, Guo M, Wang R, Wang K, Yang J, Wang Z, Yang X. An Untethered Soft Crawling Robot Driven by Wireless Power Transfer Technology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309661. [PMID: 38268235 DOI: 10.1002/smll.202309661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/16/2024] [Indexed: 01/26/2024]
Abstract
Soft robots based on flexible materials have attracted the attention due to high flexibility and great environmental adaptability. Among the common driving modes, electricity, light, and magnetism have the limitations of wiring, poor penetration capability, and sophisticated equipment, respectively. Here, an emerging wireless driving mode is proposed for the soft crawling robot based on wireless power transfer (WPT) technology. The receiving coil at the robot's tail, as an energy transfer station, receives energy from the transmitting coil and supplies the electrothermal responsiveness to drive the robot's crawling. By regulating the WPT's duration to control the friction between the robot and the ground, bidirectional crawling is realized. Furthermore, the receiving coil is also employed as a sensory organ to equip the robot with localization, ID recognition, and sensing capabilities based on electromagnetic coupling. This work provides an innovative and promising strategy for the design and integration of soft crawling robots, exhibiting great potential in the field of intelligent robots.
Collapse
Affiliation(s)
- Lei Han
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing, 210096, China
| | - Jiawei Si
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing, 210096, China
| | - Miaomiao Guo
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing, 210096, China
| | - Rui Wang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing, 210096, China
| | - Kai Wang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing, 210096, China
| | - Jin Yang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing, 210096, China
| | - Ziyuan Wang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing, 210096, China
| | - Xiaohan Yang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing, 210096, China
| |
Collapse
|
20
|
Zhu QL, Liu W, Khoruzhenko O, Breu J, Bai H, Hong W, Zheng Q, Wu ZL. Closed Twisted Hydrogel Ribbons with Self-Sustained Motions under Static Light Irradiation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314152. [PMID: 38652466 DOI: 10.1002/adma.202314152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/25/2024] [Indexed: 04/25/2024]
Abstract
Self-sustained motions are widespread in biological systems by harvesting energy from surrounding environments, which inspire scientists to develop autonomous soft robots. However, most-existing soft robots require dynamic heterogeneous stimuli or complex fabrication with different components. Recently, control of topological geometry has been promising to afford soft robots with physical intelligence and thus life-like motions. Reported here are a series of closed twisted ribbon robots, which exhibit self-sustained flipping and rotation under constant light irradiation. Both Möbius strip and Seifert ribbon robots are devised for the first time by using an identical hydrogel, which responds to light irradiation on either side. Experiment and simulation results indicate that the self-regulated motions of the hydrogel robots are related to fast and reversible response of muscle-like gel, self-shadowing effect, and topology-facilitated refresh of light-exposed regions. The motion speeds and directions of the hydrogel robots can be tuned over a wide range. These closed twisted ribbon hydrogels are further applied to execute specific tasks in aqueous environments, such as collecting plastic balls, climbing a vertical rod, and transporting objects. This work presents new design principle for autonomous hydrogel robots by benefiting from material response and topology geometry, which may be inspirative for the robotics community.
Collapse
Affiliation(s)
- Qing Li Zhu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Weixuan Liu
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Olena Khoruzhenko
- Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany
| | - Josef Breu
- Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany
| | - Huiying Bai
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Wei Hong
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qiang Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
21
|
Dai CF, Zhu QL, Khoruzhenko O, Thelen M, Bai H, Breu J, Du M, Zheng Q, Wu ZL. Reversible Snapping of Constrained Anisotropic Hydrogels Upon Light Stimulations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402824. [PMID: 38704682 PMCID: PMC11234394 DOI: 10.1002/advs.202402824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/12/2024] [Indexed: 05/07/2024]
Abstract
Creatures, such as Venus flytrap and hummingbirds, capable of rapid predation through snap-through transition, provide paradigms for the design of soft actuators and robots with fast actions. However, these artificial "snappers" usually need contact stimulations to trigger the flipping. Reported here is a constrained anisotropic poly(N-isopropylacrylamide) hydrogel showing fast snapping upon light stimulation. This hydrogel is prepared by flow-induced orientation of nanosheets (NSs) within a rectangular tube. The precursor containing gold nanoparticles is immediately exposed to UV light for photopolymerization to fix the ordered structure of NSs. Two ends of the slender gel are clamped to form a buckle with bistability nature, which snaps to the other side upon laser irradiation. Systematic experiments are conducted to investigate the influences of power intensity and irradiation angle of the laser, as well as thickness and buckle height of the gel, on the snapping behaviors. The fast snapping is further used to kick a plastic bead and control the switch state. Furthermore, synergetic or oscillated snapping of the gel with two buckles of opposite directions is realized by inclined irradiation of a laser or horizontal irradiation with two lasers, respectively. Such light-steered snapping of hydrogels should merit designing soft robots, energy harvests, etc.
Collapse
Affiliation(s)
- Chen Fei Dai
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Qing Li Zhu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Olena Khoruzhenko
- Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany
| | - Michael Thelen
- Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany
| | - Huiying Bai
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Josef Breu
- Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany
| | - Miao Du
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Qiang Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
22
|
Fallert L, Urigoitia-Asua A, Cipitria A, Jimenez de Aberasturi D. Dynamic 3D in vitro lung models: applications of inorganic nanoparticles for model development and characterization. NANOSCALE 2024; 16:10880-10900. [PMID: 38787741 DOI: 10.1039/d3nr06672j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Being a vital organ exposed to the external environment, the lung is susceptible to a plethora of pathogens and pollutants. This is reflected in high incidences of chronic respiratory diseases, which remain a leading cause of mortality world-wide and pose a persistent global burden. It is thus of paramount importance to improve our understanding of these pathologies and provide better therapeutic options. This necessitates the development of representative and physiologically relevant in vitro models. Advances in bioengineering have enabled the development of sophisticated models that not only capture the three-dimensional architecture of the cellular environment but also incorporate the dynamics of local biophysical stimuli. However, such complex models also require novel approaches that provide reliable characterization. Within this review we explore how 3D bioprinting and nanoparticles can serve as multifaceted tools to develop such dynamic 4D printed in vitro lung models and facilitate their characterization in the context of pulmonary fibrosis and breast cancer lung metastasis.
Collapse
Affiliation(s)
- Laura Fallert
- Department of Hybrid Biofunctional Materials, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain.
- Group of Bioengineering in Regeneration and Cancer, Biogipuzkoa Health Research Institute, 20014 Donostia-San Sebastián, Spain
- Department of Applied Chemistry, University of the Basque Country, 20018 Donostia-San Sebastián, Spain
| | - Ane Urigoitia-Asua
- Department of Hybrid Biofunctional Materials, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain.
- Department of Applied Chemistry, University of the Basque Country, 20018 Donostia-San Sebastián, Spain
- POLYMAT, Basque Centre for Macromolecular Design and Engineering, 20018 Donostia-San Sebastián, Spain
| | - Amaia Cipitria
- Group of Bioengineering in Regeneration and Cancer, Biogipuzkoa Health Research Institute, 20014 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Dorleta Jimenez de Aberasturi
- Department of Hybrid Biofunctional Materials, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain.
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), 20014 Donostia-San Sebastián, Spain
| |
Collapse
|
23
|
Yang F, Jia X, Hua C, Zhou F, Hua J, Ji Y, Zhao P, Yuan Q, Xing M, Lyu G. Highly efficient semiconductor modules making controllable parallel microchannels for non-compressible hemorrhages. Bioact Mater 2024; 36:30-47. [PMID: 38425745 PMCID: PMC10904172 DOI: 10.1016/j.bioactmat.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Nature makes the most beautiful solution to involuted problems. Among them, the parallel tubular structures are capable of transporting fluid quickly in plant trunks and leaf stems, which demonstrate an ingenious evolutionary design. This study develops a mini-thermoelectric semiconductor P-N module to create gradient and parallel channeled hydrogels. The modules decrease quickly the temperature of polymer solution from 20 °C to -20 °C within 5 min. In addition to the exceptional liquid absorption rate, the foams exhibited shape memory mechanics. Our mini device universally makes the inspired structure in such as chitosan, gelatin, alginate and polyvinyl alcohol. Non-compressible hemorrhages are the primary cause of death in emergency. The rapid liquid absorption leads to fast activation of coagulation, which provides an efficient strategy for hemostasis management. We demonstrated this by using our semiconductor modules on collagen-kaolin parallel channel foams with their high porosity (96.43%) and rapid expansion rate (2934%). They absorb liquid with 37.25 times of the own weight, show 46.5-fold liquid absorption speed and 24-fold of blood compared with random porous foams. These superior properties lead to strong hemostatic performance in vitro and in vivo.
Collapse
Affiliation(s)
- Fengbo Yang
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, Affiliated Hospital of Jiangnan University, Wuxi, 214000, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
| | - Xiaoli Jia
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, Affiliated Hospital of Jiangnan University, Wuxi, 214000, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
| | - Chao Hua
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, Affiliated Hospital of Jiangnan University, Wuxi, 214000, China
- Medical School of Nantong University, Nantong, 226019, China
| | - Feifan Zhou
- Department of Critical Care Medicine, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Jianing Hua
- Burn & Trauma Treatment Center, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Yuting Ji
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, Affiliated Hospital of Jiangnan University, Wuxi, 214000, China
- Burn & Trauma Treatment Center, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Peng Zhao
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, Affiliated Hospital of Jiangnan University, Wuxi, 214000, China
- Burn & Trauma Treatment Center, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical, Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Guozhong Lyu
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, Affiliated Hospital of Jiangnan University, Wuxi, 214000, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
- Medical School of Nantong University, Nantong, 226019, China
- Burn & Trauma Treatment Center, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| |
Collapse
|
24
|
Wu B, Si M, Hua L, Zhang D, Li W, Zhao C, Lu W, Chen T. Cephalopod-Inspired Chemical-Gated Hydrogel Actuation Systems for Information 3D-Encoding Display. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401659. [PMID: 38533903 DOI: 10.1002/adma.202401659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/14/2024] [Indexed: 03/28/2024]
Abstract
Cephalopods evolve the acetylcholine-gated actuation control function of their skin muscles, which enables their dynamic/static multimode display capacities for achieving perfectly spatial control over the colors/patterns on every inch of skin. Reproduction of artificial analogs that exhibit similar multimodal display is essential to reach advanced information three-dimensional (3D) encoding with higher security than the classic 2D-encoding strategy, but remains underdeveloped. The core difficulty is how to replicate such chemical-gated actuation control function into artificial soft actuating systems. Herein, this work proposes to develop azobenzene-functionalized poly(acrylamide) (PAAm) hydrogel systems, whose upper critical solution temperature (UCST) type actuation responsiveness can be intelligently programmed or even gated by the addition of hydrophilic α-cyclodextrin (α-CD) molecules for reversible association with pendant azobenzene moieties via supramolecular host-guest interactions. By employing such α-CD-gated hydrogel actuator as an analogue of cephalopods' skin muscle, biomimetic mechanically modulated multicolor fluorescent display systems are designed, which demonstrate a conceptually new α-CD-gated "thermal stimulation-hydrogel actuation-fluorescence output" display mechanism. Consequently, high-security 3D-encoding information carriers with an unprecedented combination of single-input multiple-output, dynamic/static dual-mode and spatially controlled display capacities are achieved. This bioinspired strategy brings functional-integrated features for artificial display systems and opens previously unidentified avenues for information security.
Collapse
Affiliation(s)
- Baoyi Wu
- Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Muqing Si
- Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Luqin Hua
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Dong Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Wanning Li
- Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Chuanzhuang Zhao
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Wei Lu
- Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Tao Chen
- Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
25
|
Kropacek J, Maslen C, Gidoni P, Cigler P, Stepanek F, Rehor I. Light-Responsive Hydrogel Microcrawlers, Powered and Steered with Spatially Homogeneous Illumination. Soft Robot 2024; 11:531-538. [PMID: 38447126 DOI: 10.1089/soro.2023.0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
Sub-millimeter untethered locomoting robots hold promise to radically change multiple areas of human activity such as microfabrication/assembly or health care. To overcome the associated hurdles of such a degree of robot miniaturization, radically new approaches are being adopted, often relying on soft actuating polymeric materials. Here, we present light-driven, crawling microrobots that locomote by a single degree of freedom actuation of their light-responsive tail section. The direction of locomotion is dictated by the robot body design and independent of the spatial modulation of the light stimuli, allowing simultaneous multidirectional motion of multiple robots. Moreover, we present a method for steering such robots by reversibly deforming their front section, using ultraviolet (UV) light as a trigger. The deformation dictates the robot locomotion, performing right- or left-hand turning when the UV is turned on or off respectively. The robots' motion and navigation are not coupled to the position of the light sources, which enables simultaneous locomotion of multiple robots, steering of robots and brings about flexibility with the methods to deliver the light to the place of robot operation.
Collapse
Affiliation(s)
- Jindrich Kropacek
- Faculty of Chemical Engineering, Department of Chemical Engineering, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Charlie Maslen
- Faculty of Chemical Engineering, Department of Chemical Engineering, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Paolo Gidoni
- Polytechnic Department of Engineering and Architecture, University of Udine, Udine, Italy
- Department of Decision-Making Theory, Institute of Information Theory and Automation of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Cigler
- Synthetic Nanochemistry, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Frantisek Stepanek
- Faculty of Chemical Engineering, Department of Chemical Engineering, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Ivan Rehor
- Faculty of Chemical Engineering, Department of Chemical Engineering, University of Chemistry and Technology Prague, Prague, Czech Republic
- Synthetic Nanochemistry, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
26
|
Wang XQ, Xie AQ, Cao P, Yang J, Ong WL, Zhang KQ, Ho GW. Structuring and Shaping of Mechanically Robust and Functional Hydrogels toward Wearable and Implantable Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309952. [PMID: 38389497 DOI: 10.1002/adma.202309952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Hydrogels possess unique features such as softness, wetness, responsiveness, and biocompatibility, making them highly suitable for biointegrated applications that have close interactions with living organisms. However, conventional man-made hydrogels are usually soft and brittle, making them inferior to the mechanically robust biological hydrogels. To ensure reliable and durable operation of biointegrated wearable and implantable devices, mechanical matching and shape adaptivity of hydrogels to tissues and organs are essential. Recent advances in polymer science and processing technologies have enabled mechanical engineering and shaping of hydrogels for various biointegrated applications. In this review, polymer network structuring strategies at micro/nanoscales for toughening hydrogels are summarized, and representative mechanical functionalities that exist in biological materials but are not easily achieved in synthetic hydrogels are further discussed. Three categories of processing technologies, namely, 3D printing, spinning, and coating for fabrication of tough hydrogel constructs with complex shapes are reviewed, and the corresponding hydrogel toughening strategies are also highlighted. These developments enable adaptive fabrication of mechanically robust and functional hydrogel devices, and promote application of hydrogels in the fields of biomedical engineering, bioelectronics, and soft robotics.
Collapse
Affiliation(s)
- Xiao-Qiao Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - An-Quan Xie
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Pengle Cao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Jian Yang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Wei Li Ong
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Ghim Wei Ho
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| |
Collapse
|
27
|
Dong M, Liu W, Dai CF, Jiao D, Zhu QL, Hong W, Yin J, Zheng Q, Wu ZL. Photo-steered rapid and multimodal locomotion of 3D-printed tough hydrogel robots. MATERIALS HORIZONS 2024; 11:2143-2152. [PMID: 38376773 DOI: 10.1039/d3mh02247a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Hydrogels are an ideal material to develop soft robots. However, it remains a grand challenge to develop miniaturized hydrogel robots with mechanical robustness, rapid actuation, and multi-gait motions. Reported here is a facile strategy to fabricate hydrogel-based soft robots by three-dimensional (3D) printing of responsive and nonresponsive tough gels for programmed morphing and locomotion upon stimulations. Highly viscoelastic poly(acrylic acid-co-acrylamide) and poly(acrylic acid-co-N-isopropyl acrylamide) aqueous solutions, as well as their mixtures, are printed with multiple nozzles into 3D constructs followed by incubation in a solution of zirconium ions to form robust carboxyl-Zr4+ coordination complexes, to produce tough metallo-supramolecular hydrogel fibers. Gold nanorods are incorporated into ink to afford printed gels with response to light. Owing to the mechanical excellence and small diameter of gel fibers, the printed hydrogel robots exhibit high robustness, fast response, and agile motions when remotely steered by dynamic light. The design of printed constructs and steering with spatiotemporal light allow for multimodal motions with programmable trajectories of the gel robots. The hydrogel robots can walk, turn, flip, and transport cargos upon light stimulations. Such printed hydrogels with good mechanical performances, fast response, and agile locomotion may open opportunities for soft robots in biomedical and engineering fields.
Collapse
Affiliation(s)
- Min Dong
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Weixuan Liu
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chen Fei Dai
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Dejin Jiao
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Qing Li Zhu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Wei Hong
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering Zhejiang University, Hangzhou 310058, China
| | - Qiang Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
28
|
Yao X, Chen H, Qin H, Cong HP. Nanocomposite Hydrogel Actuators with Ordered Structures: From Nanoscale Control to Macroscale Deformations. SMALL METHODS 2024; 8:e2300414. [PMID: 37365950 DOI: 10.1002/smtd.202300414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/06/2023] [Indexed: 06/28/2023]
Abstract
Flexible intelligent actuators with the characteristics of flexibility, safety and scalability, are highly promising in industrial production, biomedical fields, environmental monitoring, and soft robots. Nanocomposite hydrogels are attractive candidates for soft actuators due to their high pliability, intelligent responsiveness, and capability to execute large-scale rapid reversible deformations under external stimuli. Here, the recent advances of nanocomposite hydrogels as soft actuators are reviewed and focus is on the construction of elaborate and programmable structures by the assembly of nano-objects in the hydrogel matrix. With the help of inducing the gradient or oriented distributions of the nanounits during the gelation process by the external forces or molecular interactions, nanocomposite hydrogels with ordered structures are achieved, which can perform bending, spiraling, patterned deformations, and biomimetic complex shape changes. Given great advantages of these intricate yet programmable shape-morphing, nanocomposite hydrogel actuators have presented high potentials in the fields of moving robots, energy collectors, and biomedicines. In the end, the challenges and future perspectives of this emerging field of nanocomposite hydrogel actuators are proposed.
Collapse
Affiliation(s)
- Xin Yao
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hong Chen
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Haili Qin
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Huai-Ping Cong
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
29
|
Cui Z, Wang Y, den Toonder JMJ. Metachronal Motion of Biological and Artificial Cilia. Biomimetics (Basel) 2024; 9:198. [PMID: 38667209 PMCID: PMC11048255 DOI: 10.3390/biomimetics9040198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
Cilia are slender, hair-like cell protrusions that are present ubiquitously in the natural world. They perform essential functions, such as generating fluid flow, propulsion, and feeding, in organisms ranging from protozoa to the human body. The coordinated beating of cilia, which results in wavelike motions known as metachrony, has fascinated researchers for decades for its role in functions such as flow generation and mucus transport. Inspired by nature, researchers have explored diverse materials for the fabrication of artificial cilia and developed several methods to mimic the metachronal motion observed in their biological counterparts. In this review, we will introduce the different types of metachronal motion generated by both biological and artificial cilia, the latter including pneumatically, photonically, electrically, and magnetically driven artificial cilia. Furthermore, we review the possible applications of metachronal motion by artificial cilia, focusing on flow generation, transport of mucus, particles, and droplets, and microrobotic locomotion. The overall aim of this review is to offer a comprehensive overview of the metachronal motions exhibited by diverse artificial cilia and the corresponding practical implementations. Additionally, we identify the potential future directions within this field. These insights present an exciting opportunity for further advancements in this domain.
Collapse
Affiliation(s)
- Zhiwei Cui
- Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (Z.C.); (Y.W.)
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ye Wang
- Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (Z.C.); (Y.W.)
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jaap M. J. den Toonder
- Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (Z.C.); (Y.W.)
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
30
|
Wang Y, Ba X, Zhang B, Wang Y, Wu Y, Zhang H. Halloysite nanotubes as nano-support matrix for programming the photo/H 2O dual triggered reversible gel actuator. J Colloid Interface Sci 2024; 657:344-351. [PMID: 38043236 DOI: 10.1016/j.jcis.2023.11.173] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Gel actuators are a kind of soft intelligent material that can convert external stimuli into deformations to generate mechanical responses. The development of gel actuators with advanced structures to integrate multiple responsiveness, programmability, and fast deformation ability is urgently needed. Here, we explored a poly(7-(2-methacryloyloxyethoxy)-4-methylcoumarin-co-acrylic acid-co-glycol) ternary gel network as an actuator with reprogrammable photo/H2O dual responsibilities. In such a design, [2 + 2] photodimerization and photocleavage reactions of coumarin moieties can be realized under 365 and 254 nm light irradiation, respectively, affording reversible photodriven behaviour of the gels. The abundant carboxylic acid in the backbone has the capacity to form additional crosslinks to assist and accelerate the photodriven behaviour. The incorporation and orientation of halloysite nanotubes (HNTs) in gel matrices support an axial direction force and result in a more controllable and programmable actuating behaviour. The synergistic response enables fast grasping-releasing of 5-times the weight of the object in water within 10 min by fabricating HNT-incorporated gels as a four-arm gripper.
Collapse
Affiliation(s)
- Yuan Wang
- College of Chemistry & Materials Science, Hebei University, 180 Wusi Road, Baoding 071002, China
| | - Xinwu Ba
- College of Chemistry & Materials Science, Hebei University, 180 Wusi Road, Baoding 071002, China; Engineering Research Center for Nanomaterials, Henan University, Zhengzhou 450000, China.
| | - Bo Zhang
- College of Chemistry & Materials Science, Hebei University, 180 Wusi Road, Baoding 071002, China
| | - Yu Wang
- College of Chemistry & Materials Science, Hebei University, 180 Wusi Road, Baoding 071002, China
| | - Yonggang Wu
- College of Chemistry & Materials Science, Hebei University, 180 Wusi Road, Baoding 071002, China
| | - Hailei Zhang
- College of Chemistry & Materials Science, Hebei University, 180 Wusi Road, Baoding 071002, China; Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Gent 9000, Belgium.
| |
Collapse
|
31
|
Ye AL, Zhang H, Wu B, Lu H, Si M, Zhang K, Chen T. Hydrogel Rivet with Unidirectional Shape Morphing for Flexible Mechanical Assembly. Macromol Rapid Commun 2024; 45:e2300586. [PMID: 37972640 DOI: 10.1002/marc.202300586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/11/2023] [Indexed: 11/19/2023]
Abstract
Integrating diverse materials and functions into highly additive produce has piqued global interest due to the increasing demands of intelligent soft robotics. Nevertheless, existing assembly techniques, especially supramolecular assembly which heavily rely on precise chemical design and specific recognition, may prove inadequate when confronted with diverse external demands. Inspired by the traditional mechanical assembly, rivet connection, herein, a thermo-responsive hydrogel with unidirectional shape-morphing is fabricated and a stable mechanical assembly is constructed by emulating the rivet connection mechanism. This system employed poly(acrylamide-co-acrylic acid) [P(AAm-co-AAc)] to induce continuous swelling and hexylamine-modified polyvinyl alcohol (PVA-C6) as a molecular switch to control the swelling process. The hydrogel rivet, initially threaded through pre-fabricated hollows in two components. Subsequently, upon the disassociation of alkane chains the molecular switch would activate, inducing swelling and stable mechanical assembly via anchor structures. Moreover, to enhance the assembly strength, knots are introduced to enhance assembly strength, guiding localized stress release for programmed deformations. Additionally, the system can be remotely controlled using near-infrared light (NIR) by incorporating photo-thermal nanoparticles. This work presents a universal and efficient strategy for constructing stable mechanical assemblies without compromising overall softness, offering significant potential for the fabrication of integrated soft robots.
Collapse
Affiliation(s)
- April L Ye
- Ningbo Hanvos Kent School, Ningbo, 315200, China
- Georgia School Ningbo, Ningbo, 315000, China
| | - Haozhe Zhang
- Ningbo Hanvos Kent School, Ningbo, 315200, China
| | - Baoyi Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Huanhuan Lu
- College of Chemical Engineering, Ningbo Polytechnic, Ningbo, 315800, China
| | - Muqing Si
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Kaihang Zhang
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| |
Collapse
|
32
|
Guo K, Yang X, Zhou C, Li C. Self-regulated reversal deformation and locomotion of structurally homogenous hydrogels subjected to constant light illumination. Nat Commun 2024; 15:1694. [PMID: 38402204 PMCID: PMC10894256 DOI: 10.1038/s41467-024-46100-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/14/2024] [Indexed: 02/26/2024] Open
Abstract
Environmentally adaptive hydrogels that are capable of reconfiguration in response to external stimuli have shown great potential toward bioinspired actuation and soft robotics. Previous efforts have focused mainly on either the sophisticated design of heterogeneously structured hydrogels or the complex manipulation of external stimuli, and achieving self-regulated reversal shape deformation in homogenous hydrogels under a constant stimulus has been challenging. Here, we report the molecular design of structurally homogenous hydrogels containing simultaneously two spiropyrans that exhibit self-regulated transient deformation reversal when subjected to constant illumination. The deformation reversal mechanism originates from the molecular sequential descending-ascending charge variation of two coexisting spiropyrans upon irradiation, resulting in a macroscale volumetric contraction-expansion of the hydrogels. Hydrogel film actuators were developed to display complex temporary bidirectional shape transformations and self-regulated reversal rolling under constant illumination. Our work represents an innovative strategy for programming complex shape transformations of homogeneous hydrogels using a single constant stimulus.
Collapse
Affiliation(s)
- Kexin Guo
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Xuehan Yang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Chao Zhou
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Chuang Li
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
33
|
Wang Z, Chen Y, Ma Y, Wang J. Bioinspired Stimuli-Responsive Materials for Soft Actuators. Biomimetics (Basel) 2024; 9:128. [PMID: 38534813 DOI: 10.3390/biomimetics9030128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024] Open
Abstract
Biological species can walk, swim, fly, jump, and climb with fast response speeds and motion complexity. These remarkable functions are accomplished by means of soft actuation organisms, which are commonly composed of muscle tissue systems. To achieve the creation of their biomimetic artificial counterparts, various biomimetic stimuli-responsive materials have been synthesized and developed in recent decades. They can respond to various external stimuli in the form of structural or morphological transformations by actively or passively converting input energy into mechanical energy. They are the core element of soft actuators for typical smart devices like soft robots, artificial muscles, intelligent sensors and nanogenerators. Significant progress has been made in the development of bioinspired stimuli-responsive materials. However, these materials have not been comprehensively summarized with specific actuation mechanisms in the literature. In this review, we will discuss recent advances in biomimetic stimuli-responsive materials that are instrumental for soft actuators. Firstly, different stimuli-responsive principles for soft actuators are discussed, including fluidic, electrical, thermal, magnetic, light, and chemical stimuli. We further summarize the state-of-the-art stimuli-responsive materials for soft actuators and explore the advantages and disadvantages of using electroactive polymers, magnetic soft composites, photo-thermal responsive polymers, shape memory alloys and other responsive soft materials. Finally, we provide a critical outlook on the field of stimuli-responsive soft actuators and emphasize the challenges in the process of their implementation to various industries.
Collapse
Affiliation(s)
- Zhongbao Wang
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yixin Chen
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuan Ma
- Department of Mechanical Engineering, Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Jing Wang
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
34
|
Lee S, Lee WS, Enomoto T, Akimoto AM, Yoshida R. Anisotropically self-oscillating gels by spatially patterned interpenetrating polymer network. SOFT MATTER 2024; 20:796-803. [PMID: 38168689 DOI: 10.1039/d3sm01237a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Here we introduce sub-millimeter self-oscillating gels that undergo the Belousov-Zhabotinsky (BZ) reaction and can anisotropically oscillate like cardiomyocytes. The anisotropically self-oscillating gels in this study were realized by spatially patterning an acrylic acid-based interpenetrating network (AA-IPN). We found that the patterned AA-IPN regions, locally introduced at both ends of the gels through UV photolithography, can constrain the horizontal gel shape deformation during the BZ reaction. In other words, the two AA-IPN regions could act as a physical barrier to prevent isotropic deformation. Furthermore, we controlled the anisotropic deformation behavior during the BZ reaction by varying the concentration of acrylic acid used in the patterning process of the AA-IPN. As a result, a specific directional deformation behavior (66% horizontal/vertical amplitude ratio) was fulfilled, similar to that of cardiomyocytes. Our study can provide a promising insight to fabricating robust gel systems for cardiomyocyte modeling or designing novel autonomous microscale soft actuators.
Collapse
Affiliation(s)
- Suwen Lee
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Won Seok Lee
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Takafumi Enomoto
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Aya Mizutani Akimoto
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Ryo Yoshida
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
35
|
Zhu QL, Liu W, Khoruzhenko O, Breu J, Hong W, Zheng Q, Wu ZL. Animating hydrogel knotbots with topology-invoked self-regulation. Nat Commun 2024; 15:300. [PMID: 38182606 PMCID: PMC10770334 DOI: 10.1038/s41467-023-44608-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/21/2023] [Indexed: 01/07/2024] Open
Abstract
Steering soft robots in a self-regulated manner remains a grand challenge, which often requires continuous symmetry breaking and recovery steps for persistent motion. Although structural morphology is found significant for robotic functions, geometric topology has rarely been considered and appreciated. Here we demonstrate a series of knotbots, namely hydrogel-based robots with knotted structures, capable of autonomous rolling and spinning/rotating motions. With symmetry broken by external stimuli and restored by self-regulation, the coupling between self-constraint-induced prestress and photothermal strain animates the knotbots continuously. Experiments and simulations reveal that nonequilibrium processes are regulated dynamically and cooperatively by self-constraints, active deformations, and self-shadowing effect of the photo-responsive gel. The active motions enable the knotbots to execute tasks including gear rotation and rod climbing. This work paves the way to devise advanced soft robots with self-regulated sustainable motions by harnessing the topology.
Collapse
Affiliation(s)
- Qing Li Zhu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310058, Hangzhou, China
| | - Weixuan Liu
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Olena Khoruzhenko
- Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany
| | - Josef Breu
- Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany
| | - Wei Hong
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, 518055, Shenzhen, China.
| | - Qiang Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310058, Hangzhou, China.
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
36
|
Wajahat M, Kim JH, Kim JH, Jung ID, Pyo J, Seol SK. 4D Printing of Ultrastretchable Magnetoactive Soft Material Architectures for Soft Actuators. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59582-59591. [PMID: 38100363 DOI: 10.1021/acsami.3c12173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Magnetoactive soft materials (MSMs) comprising magnetic particles and soft matrices have emerged as smart materials for realizing soft actuators. 4D printing, which involves fabricating 3D architectures that can transform shapes under external magnetic fields, is an effective way to fabricate MSMs-based soft actuators with complex shapes. The printed MSMs must be flexible, stretchable, and adaptable in their magnetization profiles to maximize the degrees of freedom for shape morphing. This study utilizes a facile 4D printing strategy for producing ultrastretchable (stretchability > 1000%) MSM 3D architectures for soft-actuator applications. The strategy involves two sequential steps: (i) direct ink writing (DIW) of the MSM 3D architectures with ink composed of NdFeB and styrene-isoprene block copolymers (SIS) at room temperature and (ii) programming and reconfiguration of the magnetization profiles of the printed architecture using an origami-inspired magnetization method (magnetization field, Hm = 2.7 T). Various differently shaped MSM 3D architectures, which can be transformed into desired shapes under an actuation magnetic field (Ba = 85 mT), are successfully fabricated. In addition, two different soft-actuator applications are demonstrated: a multifinger magnetic soft gripper and a Kirigami-shaped 3D electrical switch with conductive and magnetic functionalities. Our strategy shows potential for realizing multifunctional, shape-morphing, and reprogrammable magnetoactive devices for advanced soft-actuator applications.
Collapse
Affiliation(s)
- Muhammad Wajahat
- Smart 3D Printing Research Team, Korea Electrotechnology Research Institute (KERI), Changwon-si, Gyeongsangnam-do 51543, Republic of Korea
- Electro-Functional Materials Engineering, University of Science and Technology (UST), Changwon-si, Gyeongsangnam-do 51543, Republic of Korea
| | - Je Hyeong Kim
- Smart 3D Printing Research Team, Korea Electrotechnology Research Institute (KERI), Changwon-si, Gyeongsangnam-do 51543, Republic of Korea
- Electro-Functional Materials Engineering, University of Science and Technology (UST), Changwon-si, Gyeongsangnam-do 51543, Republic of Korea
| | - Jung Hyun Kim
- Smart 3D Printing Research Team, Korea Electrotechnology Research Institute (KERI), Changwon-si, Gyeongsangnam-do 51543, Republic of Korea
- Electro-Functional Materials Engineering, University of Science and Technology (UST), Changwon-si, Gyeongsangnam-do 51543, Republic of Korea
| | - Im Doo Jung
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulju-gun, Ulsangwang-yeogsi, Ulsan 44919, Republic of Korea
| | - Jaeyeon Pyo
- Smart 3D Printing Research Team, Korea Electrotechnology Research Institute (KERI), Changwon-si, Gyeongsangnam-do 51543, Republic of Korea
- Electro-Functional Materials Engineering, University of Science and Technology (UST), Changwon-si, Gyeongsangnam-do 51543, Republic of Korea
| | - Seung Kwon Seol
- Smart 3D Printing Research Team, Korea Electrotechnology Research Institute (KERI), Changwon-si, Gyeongsangnam-do 51543, Republic of Korea
- Electro-Functional Materials Engineering, University of Science and Technology (UST), Changwon-si, Gyeongsangnam-do 51543, Republic of Korea
| |
Collapse
|
37
|
Song S, Wang Q, Xie J, Dai J, Ouyang D, Huang G, Guo Y, Chen C, Wu M, Huang T, Ruan J, Cheng X, Lin X, He Y, Rozhkova EA, Chen Z, Yang H. Dual-Responsive Turn-On T 1 Imaging-Guided Mild Photothermia for Precise Apoptotic Cancer Therapy. Adv Healthc Mater 2023; 12:e2301437. [PMID: 37379009 DOI: 10.1002/adhm.202301437] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 06/29/2023]
Abstract
Apoptosis has gained increasing attention in cancer therapy as an intrinsic signaling pathway, which leads to minimal leakage of waste products from a dying cell to neighboring normal cells. Among various stimuli to trigger apoptosis, mild hyperthermia is attractive but confronts limitations of non-specific heating and acquired resistance from elevated expression of heat shock proteins. Here, a dual-stimulation activated turn-on T1 imaging-based nanoparticulate system (DAS) is developed for mild photothermia (≈43 °C)-mediated precise apoptotic cancer therapy. In the DAS, a superparamagnetic quencher (ferroferric oxide nanoparticles, Fe3 O4 NPs) and a paramagnetic enhancer (Gd-DOTA complexes) are connected via the N6-methyladenine (m6 A)-caged, Zn2+ -dependent DNAzyme molecular device. The substrate strand of the DNAzyme contains one segment of Gd-DOTA complex-labeled sequence and another one of HSP70 antisense oligonucleotide. When the DAS is taken up by cancer cells, overexpressed fat mass and obesity-associated protein (FTO) specifically demethylates the m6 A group, thereby activating DNAzymes to cleave the substrate strand and simultaneously releasing Gd-DOTA complex-labeled oligonucleotides. The restored T1 signal from the liberated Gd-DOTA complexes lights up the tumor to guide the location and time of deploying 808 nm laser irradiation. Afterward, locally generated mild photothermia works in concert with HSP70 antisense oligonucleotides to promote apoptosis of tumor cells. This highly integrated design provides an alternative strategy for mild hyperthermia-mediated precise apoptotic cancer therapy.
Collapse
Affiliation(s)
- Sijie Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Qi Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Jiangao Xie
- Fujian Medical University Union Hospital, Fuzhou, 350108, P. R. China
| | - Junduan Dai
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Dilan Ouyang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Guoming Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Yuheng Guo
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Chen Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Mengnan Wu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Tingjing Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Jingwen Ruan
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Xiaofeng Cheng
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Xucong Lin
- Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety in Fujian Province, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Yu He
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Elena A Rozhkova
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Zhaowei Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| |
Collapse
|
38
|
Xie J, Wei S, Lu W, Wu S, Zhang Y, Wang R, Zhu N, Chen T. Environment-Interactive Programmable Deformation of Electronically Innervated Synergistic Fluorescence-Color/Shape Changeable Hydrogel Actuators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304204. [PMID: 37496099 DOI: 10.1002/smll.202304204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/10/2023] [Indexed: 07/28/2023]
Abstract
Utilization of life-like hydrogels to replicate synergistic shape/color changeable behaviors of living organisms has been long envisaged to produce robust functional integrated soft actuators/robots. However, it remains challenging to construct such hydrogel systems with integrated functionality of remote, localized and environment-interactive control over synergistic discoloration/actuation. Herein, inspired by the evolution-optimized bioelectricity stimulus and multilayer structure of natural reptile skins, electronically innervated fluorescence-color switchable hydrogel actuating systems with bio-inspired multilayer structure comprising of responsive fluorescent hydrogel sheet and conductive Graphene/PDMS film with electrothermal effect is presented. Such rational structure enables remote control over synergistic fluorescence-color and shape changes of the systems via the cascading "electrical trigger-Joule heat generation-hydrogel shrinkage" mechanism. Consequently, local/sequential control of discoloration/actuation are achieved due to the highly controllable electrical stimulus in terms of amplitude and circuit design. Furthermore, by joint use with acoustic sensors, soft chameleon robots with unprecedented environment-interactive adaptation are demonstrated, which can intelligently sense environment signals to adjust their color/shape-changeable behaviors. This work opens previously unidentified avenues for functional integrated soft actuators/robots and will inspire life-like intelligent systems for versatile uses.
Collapse
Affiliation(s)
- Junni Xie
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Shuxin Wei
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Wei Lu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Shuangshuang Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Yi Zhang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Ruijia Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211800, P. R. China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
39
|
Yang Y, Lv C, Tan C, Li J, Wang X. Easy-to-Prepare Flexible Multifunctional Sensors Assembled with Anti-Swelling Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46417-46427. [PMID: 37733927 DOI: 10.1021/acsami.3c11117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Recent years have witnessed the development of flexible electronic materials. Flexible electronic devices based on hydrogels are promising but face the limitations of having no resistance to swelling and a lack of functional integration. Herein, we fabricated a hydrogel using a solvent replacement strategy and explored it as a flexible electronic material. This hydrogel was obtained by polymerizing 2-hydroxyethyl methacrylate (HEMA) in ethylene glycol and then immersing it in water. The synergistic effect of hydrogen bonding and hydrophobic interactions endows this hydrogel with anti-swelling properties in water, and it also exhibits enhanced mechanical properties and outstanding self-bonding properties. Moreover, the modulus of the hydrogel is tissue-adaptable. These properties allowed the hydrogel to be simply assembled with a liquid metal (LM) to create a series of structurally complex and functionally integrated flexible sensors. The hydrogel was used to assemble resistive and capacitive sensors to sense one-, two-, and three-dimensional strains and finger touches by employing specific structural designs. In addition, a multifunctional flexible sensor integrating strain sensing, temperature sensing, and conductance sensing was assembled via simple multilayer stacking to enable the simultaneous monitoring of underwater motion, water temperature, and water quality. This work demonstrates a simple strategy for assembling functionally integrated flexible electronics, which should open opportunities in next-generation electronic skins and hydrogel machines for various applications, especially underwater applications.
Collapse
Affiliation(s)
- Yongqi Yang
- School of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Chunyang Lv
- School of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Chang Tan
- School of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Jingfang Li
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Xin Wang
- School of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| |
Collapse
|
40
|
Cui Z, Wang Y, Zhang S, Wang T, den Toonder JMJ. Miniaturized metachronal magnetic artificial cilia. Proc Natl Acad Sci U S A 2023; 120:e2304519120. [PMID: 37611057 PMCID: PMC10629582 DOI: 10.1073/pnas.2304519120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/14/2023] [Indexed: 08/25/2023] Open
Abstract
Biological cilia, hairlike organelles on cell surfaces, often exhibit collective wavelike motion known as metachrony, which helps generating fluid flow. Inspired by nature, researchers have developed artificial cilia as microfluidic actuators, exploring several methods to mimic the metachrony. However, reported methods are difficult to miniaturize because they require either control of individual cilia properties or the generation of a complex external magnetic field. We introduce a concept that generates metachronal motion of magnetic artificial cilia (MAC), even though the MAC are all identical, and the applied external magnetic field is uniform. This is achieved by integrating a paramagnetic substructure in the substrate underneath the MAC. Uniquely, we can create both symplectic and antiplectic metachrony by changing the relative positions of MAC and substructure. We demonstrate the flow generation of the two metachronal motions in both high and low Reynolds number conditions. Our research marks a significant milestone by breaking the size limitation barrier in metachronal artificial cilia. This achievement not only showcases the potential of nature-inspired engineering but also opens up a host of exciting opportunities for designing and optimizing microsystems with enhanced fluid manipulation capabilities.
Collapse
Affiliation(s)
- Zhiwei Cui
- Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven5600MB, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven5600MB, The Netherlands
| | - Ye Wang
- Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven5600MB, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven5600MB, The Netherlands
| | - Shuaizhong Zhang
- Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
| | - Tongsheng Wang
- Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven5600MB, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven5600MB, The Netherlands
| | - Jaap M. J. den Toonder
- Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven5600MB, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven5600MB, The Netherlands
| |
Collapse
|
41
|
Wang Y, Li L, Ji YE, Wang T, Fu Y, Li X, Li G, Zheng T, Wu L, Han Q, Zhang Y, Wang Y, Kaplan DL, Lu Y. Silk-protein-based gradient hydrogels with multimode reprogrammable shape changes for biointegrated devices. Proc Natl Acad Sci U S A 2023; 120:e2305704120. [PMID: 37549277 PMCID: PMC10434304 DOI: 10.1073/pnas.2305704120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/11/2023] [Indexed: 08/09/2023] Open
Abstract
Biocompatible and morphable hydrogels capable of multimode reprogrammable, and adaptive shape changes are potentially useful for diverse biomedical applications. However, existing morphable systems often rely on complicated structural designs involving cumbersome and energy-intensive fabrication processes. Here, we report a simple electric-field-activated protein network migration strategy to reversibly program silk-protein hydrogels with controllable and reprogrammable complex shape transformations. The application of a low electric field enables the convergence of net negatively charged protein cross-linking networks toward the anode (isoelectric point plane) due to the pH gradient generated in the process, facilitating the formation of a gradient network structure and systems suitable for three-dimensional shape change. These tunable protein networks can be reprogrammed or permanently fixed by control of the polymorphic transitions. We show that these morphing hydrogels are capable of conformally interfacing with biological tissues by programming the shape changes and a bimorph structure consisting of aligned carbon nanotube multilayers and the silk hydrogels was assembled to illustrate utility as an implantable bioelectronic device for localized low-voltage electrical stimulation of the sciatic nerve in a rabbit.
Collapse
Affiliation(s)
- Yushu Wang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210023, China
- Department of Biomedical Engineering, Tufts University, Medford, MA02155
| | - Luhe Li
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210023, China
| | - Yue-E. Ji
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210023, China
| | - Tao Wang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210023, China
| | - Yinghao Fu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210023, China
| | - Xinxin Li
- Department of Biomedical Engineering, Tufts University, Medford, MA02155
| | - Guicai Li
- Key Laboratory of Neuroregeneration, Collaborative Innovation Center of Neuroregeneration, Nantong University, Nantong226001, China
| | - Tiantian Zheng
- Key Laboratory of Neuroregeneration, Collaborative Innovation Center of Neuroregeneration, Nantong University, Nantong226001, China
| | - Linliang Wu
- Key Laboratory of Neuroregeneration, Collaborative Innovation Center of Neuroregeneration, Nantong University, Nantong226001, China
| | - Qi Han
- Key Laboratory of Neuroregeneration, Collaborative Innovation Center of Neuroregeneration, Nantong University, Nantong226001, China
| | - Ye Zhang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210023, China
| | - Yu Wang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210023, China
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA02155
| | - Yanqing Lu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210023, China
| |
Collapse
|
42
|
Zhang D, Li L, Fang Y, Ma Q, Cao Y, Lei H. Ester Bonds for Modulation of the Mechanical Properties of Protein Hydrogels. Int J Mol Sci 2023; 24:10778. [PMID: 37445957 PMCID: PMC10341797 DOI: 10.3390/ijms241310778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/24/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Hydrogels are soft materials constructed of physically or chemically crosslinked polymeric net-works with abundant water. The crosslinkers, as the mechanophores that bear and respond to mechanical forces, play a critical role in determining the mechanical properties of hydrogels. Here, we use a polyprotein as the crosslinker and mechanophore to form covalent polymer hydrogels in which the toughness and fatigue fracture are controlled by the mechanical unfolding of polyproteins. The protein Parvimonas sp. (ParV) is super stable and remains folded even at forces > 2 nN; however, it can unfold under loading forces of ~100 pN at basic pH values or low calcium concentrations due to destabilization of the protein structures. Through tuning the protein unfolding by pH and calcium concentrations, the hydrogel exhibits differences in modulus, strength, and anti-fatigue fracture. We found that due to the partially unfolding of ParV, the Young's modulus decreased at pH 9.0 or in the presence of EDTA (Ethylene Diamine Tetraacetic Acid), moreover, because partially unfolded ParV can be further completely unfolded due to the mechanically rupture of ester bond, leading to the observed hysteresis of the stretching and relaxation traces of the hydrogels, which is in line with single-molecule force spectroscopy experiments. These results display a new avenue for designing pH- or calcium-responsive hydrogels based on proteins and demonstrate the relationship between the mechanical properties of single molecules and macroscopic hydrogel networks.
Collapse
Affiliation(s)
| | | | | | | | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Hai Lei
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| |
Collapse
|
43
|
Jiang J, Xu S, Ma H, Li C, Huang Z. Photoresponsive hydrogel-based soft robot: A review. Mater Today Bio 2023; 20:100657. [PMID: 37229213 PMCID: PMC10205512 DOI: 10.1016/j.mtbio.2023.100657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/13/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023] Open
Abstract
Soft robots have received a lot of attention because of their great human-robot interaction and environmental adaptability. Most soft robots are currently limited in their applications due to wired drives. Photoresponsive soft robotics is one of the most effective ways to promote wireless soft drives. Among the many soft robotics materials, photoresponsive hydrogels have received a lot of attention due to their good biocompatibility, ductility, and excellent photoresponse properties. This paper visualizes and analyzes the research hotspots in the field of hydrogels using the literature analysis tool Citespace, demonstrating that photoresponsive hydrogel technology is currently a key research direction. Therefore, this paper summarizes the current state of research on photoresponsive hydrogels in terms of photochemical and photothermal response mechanisms. The progress of the application of photoresponsive hydrogels in soft robots is highlighted based on bilayer, gradient, orientation, and patterned structures. Finally, the main factors influencing its application at this stage are discussed, including the development directions and insights. Advancement in photoresponsive hydrogel technology is crucial for its application in the field of soft robotics. The advantages and disadvantages of different preparation methods and structures should be considered in different application scenarios to select the best design scheme.
Collapse
Affiliation(s)
- Jingang Jiang
- Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin, 150080, Heilongjiang, PR China
| | - Shuainan Xu
- Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin, 150080, Heilongjiang, PR China
| | - Hongyuan Ma
- Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin, 150080, Heilongjiang, PR China
- Harbin Branch of Taili Communication Technology Limited, China Electronics Technology Group Corporation, Harbin, 150080, Heilongjiang, PR China
| | - Changpeng Li
- Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin, 150080, Heilongjiang, PR China
| | - Zhiyuan Huang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, PR China
| |
Collapse
|
44
|
Ma C, Peng S, Chen L, Cao X, Sun Y, Chen L, Yang L, Ma C, Liu Q, Liu Z, Jiang S. Anisotropic Bi-Layer Hydrogel Actuator with pH-Responsive Color-Changing and Photothermal-Responsive Shape-Changing Bi-Functional Synergy. Gels 2023; 9:438. [PMID: 37367109 DOI: 10.3390/gels9060438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Stimuli-responsive color-changing and shape-changing hydrogels are promising intelligent materials for visual detections and bio-inspired actuations, respectively. However, it is still an early stage to integrate the color-changing performance and shape-changing performance together to provide bi-functional synergistic biomimetic devices, which are difficult to design but will greatly expand further applications of intelligent hydrogels. Herein, we present an anisotropic bi-layer hydrogel by combining a pH-responsive rhodamine-B (RhB)-functionalized fluorescent hydrogel layer and a photothermal-responsive shape-changing melanin-added poly (N-isopropylacrylamide) (PNIPAM) hydrogel layer with fluorescent color-changing and shape-changing bi-functional synergy. This bi-layer hydrogel can obtain fast and complex actuations under irradiation with 808 nm near-infrared (NIR) light due to both the melanin-composited PNIPAM hydrogel with high efficiency of photothermal conversion and the anisotropic structure of this bi-hydrogel. Furthermore, the RhB-functionalized fluorescent hydrogel layer can provide rapid pH-responsive fluorescent color change, which can be integrated with NIR-responsive shape change to achieve bi-functional synergy. As a result, this bi-layer hydrogel can be designed using various biomimetic devices, which can show the actuating process in the dark for real-time tracking and even mimetic starfish to synchronously change both the color and shape. This work provides a new bi-layer hydrogel biomimetic actuator with color-changing and shape-changing bi-functional synergy, which will inspire new strategies for other intelligent composite materials and high-level biomimetic devices.
Collapse
Affiliation(s)
- Chao Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Shuyi Peng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Lian Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xingyu Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- Shenzhen Institute of Advanced Electronic Materials-Shenzhen Fundamental Research Institutions, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ye Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- Shenzhen Institute of Advanced Electronic Materials-Shenzhen Fundamental Research Institutions, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lin Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Lang Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Chunming Ma
- Shenzhen Institute of Advanced Electronic Materials-Shenzhen Fundamental Research Institutions, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qijie Liu
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University, Taizhou 318000, China
| | - Zhenzhong Liu
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University, Taizhou 318000, China
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
45
|
Wu Y, Zhang Y, Wu H, Wen J, Zhang S, Xing W, Zhang H, Xue H, Gao J, Mai Y. Solvent-Exchange-Assisted Wet Annealing: A New Strategy for Superstrong, Tough, Stretchable, and Anti-Fatigue Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210624. [PMID: 36648109 DOI: 10.1002/adma.202210624] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Hydrogels are widely used in tissue engineering, soft robots, wearable electronics, etc. However, it remains a great challenge to develop hydrogels possessing simultaneously high strength, large stretchability, great fracture energy, and good fatigue threshold to suit different applications. Herein, a novel solvent-exchange-assisted wet-annealing strategy is proposed to prepare high performance poly(vinyl alcohol) hydrogels by extensively tuning the macromolecular chain movement and optimizing the polymer network. The reinforcing and toughening mechanisms are found to be "macromolecule crystallization and entanglement". These hydrogels have large tensile strengths up to 11.19 ± 0.27 MPa and extremely high fracture strains of 1879 ± 10%. In addition, the fracture energy and fatigue threshold can reach as high as 25.39 ± 6.64 kJ m-2 and ≈1233 J m-2 , respectively. These superb mechanical properties compare favorably to those of other tough hydrogels, organogels, and even natural tendons and synthetic rubbers. This work provides a new and effective method to fabricate superstrong, tough, stretchable, and anti-fatigue hydrogels with potential applications in artificial tendons and ligaments.
Collapse
Affiliation(s)
- Yongchuan Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, No. 180, Road Siwangting, Yangzhou, Jiangsu, 225002, P. R. China
| | - Ya Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, No. 180, Road Siwangting, Yangzhou, Jiangsu, 225002, P. R. China
| | - Haidi Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, No. 180, Road Siwangting, Yangzhou, Jiangsu, 225002, P. R. China
| | - Jing Wen
- School of Chemistry and Chemical Engineering, Yangzhou University, No. 180, Road Siwangting, Yangzhou, Jiangsu, 225002, P. R. China
| | - Shu Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, No. 180, Road Siwangting, Yangzhou, Jiangsu, 225002, P. R. China
| | - Wenqian Xing
- School of Chemistry and Chemical Engineering, Yangzhou University, No. 180, Road Siwangting, Yangzhou, Jiangsu, 225002, P. R. China
| | - Hechuan Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, No. 180, Road Siwangting, Yangzhou, Jiangsu, 225002, P. R. China
| | - Huaiguo Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, No. 180, Road Siwangting, Yangzhou, Jiangsu, 225002, P. R. China
| | - Jiefeng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, No. 180, Road Siwangting, Yangzhou, Jiangsu, 225002, P. R. China
| | - Yiuwing Mai
- Centre for Advanced Materials Technology (CAMT), School of Aerospace, Mechanical and Mechatronic Engineering J07, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
46
|
Maslen C, Gholamipour-Shirazi A, Butler MD, Kropacek J, Rehor I, Montenegro-Johnson T. A New Class of Single-Material, Non-Reciprocal Microactuators. Macromol Rapid Commun 2023; 44:e2200842. [PMID: 36515359 DOI: 10.1002/marc.202200842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Indexed: 12/15/2022]
Abstract
A crucial component in designing soft actuating structures with controllable shape changes is programming internal, mismatching stresses. In this work, a new paradigm for achieving anisotropic dynamics between isotropic end-states-yielding a non-reciprocal shrinking/swelling response over a full actuation cycle-in a microscale actuator made of a single material, purely through microscale design is demonstrated. Anisotropic dynamics is achieved by incorporating micro-sized pores into certain segments of the structures; by arranging porous and non-porous segments (specifically, struts) into a 2D hexagonally-shaped microscopic poly(N-isopropyl acrylamide) hydrogel particle, the rate of isotropic shrinking/swelling in the structure is locally modulated, generating global anisotropic, non-reciprocal, dynamics. A simple mathematical model is introduced that reveals the physics that underlies these dynamics. This design has the potential to be used as a foundational tool for inducing non-reciprocal actuation cycles with a single material structure, and enables new possibilities in producing customized soft actuators and modular anisotropic metamaterials for a range of real-world applications, such as artificial cilia.
Collapse
Affiliation(s)
- Charlie Maslen
- Department of Chemical Engineering, University of Chemistry and Technology, Prague, 166 28, Czech Republic
| | | | - Matthew D Butler
- School of Mathematics, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Jindrich Kropacek
- Department of Chemical Engineering, University of Chemistry and Technology, Prague, 166 28, Czech Republic
| | - Ivan Rehor
- Department of Chemical Engineering, University of Chemistry and Technology, Prague, 166 28, Czech Republic
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, Prague, 160 00, Czech Republic
| | - Thomas Montenegro-Johnson
- School of Mathematics, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
47
|
Li W, Guan Q, Li M, Saiz E, Hou X. Nature's strategy to construct tough responsive hydrogel actuators and their applications. Prog Polym Sci 2023. [DOI: 10.1016/j.progpolymsci.2023.101665] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
48
|
Easy regulation of chitosan-based hydrogel microstructure with citric acid as an efficient buffer. Carbohydr Polym 2023; 300:120258. [DOI: 10.1016/j.carbpol.2022.120258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/27/2022]
|
49
|
Wu Y, Xing W, Wen J, Wu Z, Zhang Y, Zhang H, Wu H, Yao H, Xue H, Gao J. Mixed solvent exchange enabled high-performance polymeric gels. POLYMER 2023. [DOI: 10.1016/j.polymer.2022.125661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
50
|
Wu B, Xue Y, Ali I, Lu H, Yang Y, Yang X, Lu W, Zheng Y, Chen T. The Dynamic Mortise-and-Tenon Interlock Assists Hydrated Soft Robots Toward Off-Road Locomotion. RESEARCH (WASHINGTON, D.C.) 2022; 2022:0015. [PMID: 39290972 PMCID: PMC11407522 DOI: 10.34133/research.0015] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/01/2022] [Indexed: 09/19/2024]
Abstract
Natural locomotion such as walking, crawling, and swimming relies on spatially controlled deformation of soft tissues, which could allow efficient interaction with the external environment. As one of the ideal candidates for biomimetic materials, hydrogels can exhibit versatile bionic morphings. However, it remains an enormous challenge to transfer these in situ deformations to locomotion, particularly above complex terrains. Herein, inspired by the crawling mode of inchworms, an isotropic hydrogel with thermoresponsiveness could evolve to an anisotropic hydrogel actuator via interfacial diffusion polymerization, further evolving to multisection structure and exhibiting adaptive deformation with diverse degrees of freedom. Therefore, a dynamic mortise-and-tenon interlock could be generated through the interaction between the self-deformation of the hydrogel actuator and rough terrains, inducing continual multidimensional locomotion on various artificial rough substrates and natural sandy terrain. Interestingly, benefiting from the powerful mechanical energy transfer capability, the crawlable hydrogel actuators could also be utilized as hydrogel motors to activate static cargos to overstep complex terrains, which exhibit the potential application of a biomimetic mechanical discoloration device. Therefore, we believe that this design principle and control strategy may be of potential interest to the field of deformable materials, soft robots, and biomimetic devices.
Collapse
Affiliation(s)
- Baoyi Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yaoting Xue
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Israt Ali
- INRS-EMT, 1650 Boul. Lionel Boulet, Varennes J3X 0A1, Canada
| | - Huanhuan Lu
- College of Chemical Engineering, Ningbo Polytechnic, Ningbo 315800, China
| | - Yuming Yang
- Key Laboratory for Biomedical Engineering of Ministry of Education Ministry of China, Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Xuxu Yang
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Wei Lu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yinfei Zheng
- Key Laboratory for Biomedical Engineering of Ministry of Education Ministry of China, Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
- Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou 311100, China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|