1
|
Liang G, Gao C, Wu J, Hu G, Li X, Liu L. Enhancing electron transfer efficiency in microbial electrochemical systems for bioelectricity and chemical production. BIORESOURCE TECHNOLOGY 2025; 428:132445. [PMID: 40147568 DOI: 10.1016/j.biortech.2025.132445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/23/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Microbial electrochemical systems have emerged as promising platforms for chemical production and bioelectricity generation by utilizing cost-effective substrates. However, their performance is limited by the efficiency of both intracellular and extracellular electron transfer. This review systematically summarizes strategies to enhance electron transfer from a microbial perspective, including improvements in extracellular electron transfer, intracellular electron regeneration, and the establishment of electroactive microbial consortia. In addition, the working mechanisms and limitations of these strategies are analyzed. Furthermore, the potential applications of microbial electrochemical systems in bioelectricity production, chemical synthesis, and industrial-scale applications are explored. Finally, the current challenges of microbial electrochemical systems are discussed, and potential solutions are proposed to advance their practical applications.
Collapse
Affiliation(s)
- Guangjie Liang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Xiaomin Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Liming Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Li Y, Yang C, Liu M, Fu H, Wang J. Reprogramming Escherichia coli metabolism for butyrolactam production by the temperature-powered multi-genes control circuit. BIORESOURCE TECHNOLOGY 2025; 427:132438. [PMID: 40122353 DOI: 10.1016/j.biortech.2025.132438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 03/25/2025]
Abstract
Biomanufacturing offers a promising alternative for the production of the building block of nylons, of which butyrolactam is an important platform chemical. To date, there is few studies on butyrolactam biosynthesis, and static control characterized by orientation, irreversibility and ineffectiveness often impedes synthesis efficiency. Here, the chassis Escherichia coli was systematically engineered for butyrolactam synthesis by stepwise optimization strategies. In particular, inadequate α-ketoglutarate pool was identified as the main bottleneck, and then the CRISPRa and CRISPRi served as ON- and OFF-switch for establishing the temperature-powered bioswitch (thereafter renamed AITB circuit), achieving simultaneous transcriptional down- and up-regulation of the multi-genes. In the fed-batch culture, the highest titer of 59.87 g/L butyrolactam was produced by redirecting α-ketoglutarate catabolism. Further, with cassava starch as the substrate, a total of 14.96 g/L butyrolactam was generated, providing the possibility for bioproduct synthesis from renewable feedstock. This study provides efficient tool for developing high-performance biorefineries for bio-based compounds production of interest.
Collapse
Affiliation(s)
- Yang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Changyang Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Mingxiong Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Hongxin Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
3
|
Jayasekara UG, Hadibarata T, Hindarti D, Kurniawan B, Jusoh MNH, Gani P, Tan IS, Yuniarto A, Rubiyatno, Khamidun MHB. Environmental bioremediation of pharmaceutical residues: microbial processes and technological innovations: a review. Bioprocess Biosyst Eng 2025; 48:705-723. [PMID: 39760783 DOI: 10.1007/s00449-024-03125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
The ubiquitous presence of pharmaceuticals and personal care products (PPCPs) in the environment has become a significant concern due to their persistence, bioaccumulation potential in biota, and diverse implications for human health and wildlife. This review provides an overview of the current state-of-the-art in environmental bioremediation techniques for reducing pharmaceutical residues, with a special emphasis on microbial physiological aspects. Numerous microorganisms, including algae, bacteria or fungi, can biodegrade various pharmaceutical compounds such as antibiotics, analgesics and beta-blockers. Some microorganisms are capable of transferring electrons within the cell, and this feature can be harnessed using Bio Electrochemical Systems (BES) to potentiate the degradation of pharmaceuticals present in wastewater. Moreover, researchers are evaluating the genetic modification of microbial strains to improve their degradation capacity and expand list of target compounds. This includes also discuss how environment changes, such as fluctuations in temperature or pH, may affect bioremediation efficiency. Furthermore, the presence of pharmaceuticals in the environment is emphasised as a major public health issue because it increases the chance for antibiotic-resistant bacteria emerging. This review combines existing information and outlines needed research areas for improving bioremediation technologies in the future.
Collapse
Affiliation(s)
- Upeksha Gayangani Jayasekara
- Environmental Engineering Program, Department of Civil and Construction Engineering, Curtin University Malaysia, CDT 250, 98009, Miri, Malaysia
| | - Tony Hadibarata
- Environmental Engineering Program, Department of Civil and Construction Engineering, Curtin University Malaysia, CDT 250, 98009, Miri, Malaysia.
| | - Dwi Hindarti
- Research Center for Oceanography, National Research and Innovation Agency, Jalan Pasir Putih I, Jakarta, 14430, Indonesia
| | - Budi Kurniawan
- Research Center for Environment and Clean Technology, National Research and Innovation Agency, KST BJ Habibie, Puspitek, Serpong, Tangeran Selatan, 15314, Banten, Indonesia
| | - Mohammad Noor Hazwan Jusoh
- Environmental Engineering Program, Department of Civil and Construction Engineering, Curtin University Malaysia, CDT 250, 98009, Miri, Malaysia
| | - Paran Gani
- Environmental Engineering Program, Department of Civil and Construction Engineering, Curtin University Malaysia, CDT 250, 98009, Miri, Malaysia
| | - Inn Shi Tan
- Department of Chemical & Energy Engineering, Curtin University Malaysia, CDT 250, 98009, Miri, Malaysia
| | - Adhi Yuniarto
- Department of Environmental Engineering, Faculty of Civil, Planning, and Geo-Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - Rubiyatno
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi, 400-8511, Japan
| | - Mohd Hairul Bin Khamidun
- Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, Batu Pahat, 86400, Parit Raja, Johor, Malaysia
| |
Collapse
|
4
|
Yuan W, Qiu C, Liu J, Li X, Hu G, Gao C, Liu L. Engineering Precursor and Cofactor Metabolism in Escherichia Coli for Enhanced Adipic Acid Production From Glucose. Biotechnol Bioeng 2025. [PMID: 40302378 DOI: 10.1002/bit.29014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/13/2025] [Accepted: 04/20/2025] [Indexed: 05/02/2025]
Abstract
The reverse adipate degradation pathway (RADP) for adipic acid synthesis has garnered significant interest. However, the limited efficiency of existing pathways and their dependence on plasmids have hindered the practical application of microbial cell factories. In this study, the efficiency of the adipic acid synthetic pathway was enhanced by substituting and combinatorially expressing RADP enzymes. To obviate the need for chemical inducers and antibiotics, we integrated the reconstructed pathway genes into the genome of a succinic acid-producing strain Escherichia coli FMME N-26 and increased the copy number of rate-limiting enzymes. The supply of two critical precursors for adipic acid synthesis, acetyl-CoA and succinyl-CoA, was enhanced by deleting tdcD and overexpressing cat1. Additionally, cofactor metabolism was balanced through the overexpression of the udhA and dppD genes. Following these modifications, the adipic acid fermentation process was optimized in a 5 L bioreactor, resulting in a titer of 4.97 g/L after 72 h of fed-batch fermentation. This study lays a theoretical foundation and provides a technical basis for constructing cell factories to produce adipic acid and other dicarboxylic acids.
Collapse
Affiliation(s)
- Weijia Yuan
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Chong Qiu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Jia Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Xiaomin Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Liming Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| |
Collapse
|
5
|
Sun M, Gao J, Tang H, Wang H, Zhou L, Song C, Tian Y, Li Q. D-CAPS: an efficient CRISPR-Cas9-based phage defense system for E. coli. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 40289704 DOI: 10.3724/abbs.2024208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
Escherichia coli is widely used in industrial chemical synthesis but faces significant challenges due to bacteriophage contamination, which reduces product quality and yield. Therefore, developing an efficient antiphage system is essential. In this study, we develop a CRISPR-Cas9-based antiphage system (CAPS) targeting essential genes of the T7 phage (gene 5 and gene 19) with single gRNAs transformed into MG1655 strains expressing Cas9. While CAPS provides limited resistance, with plating efficiencies ranging from 10 -5 to 10 -1, further optimization is needed. To enhance efficacy, we design a double-site-targeting CRISPR-Cas9-based antiphage system (D-CAPS). D-CAPS demonstrates complete resistance, with no plaques observed even at a high multiplicity of infection (MOI of 2), and growth curve analysis reveals that antiphage E. coli strains grow normally, similar to the wild-type strain, even at a high multiplicity of infection. Furthermore, D-CAPS is effective against BL21(DE3) strains, showing strong resistance and demonstrating its versatility across different E . coli strains. Protein expression analysis via green fluorescent protein confirms that E. coli carrying D-CAPS could maintain normal protein expression levels even in the presence of phages, comparable to wild-type strains. Overall, D-CAPS offers a robust and versatile approach to enhancing E. coli resistance to phages, providing a practical solution for protecting industrial E. coli strains and improving fermentation processes.
Collapse
Affiliation(s)
- Mingjun Sun
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065 China
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jie Gao
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Hongjie Tang
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Hengyi Wang
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Liyan Zhou
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Chuan Song
- Luzhou Laojiao Co., Ltd., Luzhou 646000, China
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, China
| | - Yongqiang Tian
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065 China
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Qi Li
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China
| |
Collapse
|
6
|
Wang F, Sun H, Deng D, Wu Y, Zhao J, Li Q, Li A. Multidimensional Engineering of Escherichia coli for Efficient Adipic Acid Synthesis From Cyclohexane. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411938. [PMID: 39960345 PMCID: PMC11984861 DOI: 10.1002/advs.202411938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/07/2025] [Indexed: 04/12/2025]
Abstract
Adipic acid (AA), a key aliphatic dicarboxylic acid, is conventionally manufactured through energy-intensive, multi-step chemical processes with significant environmental impacts. In contrast, biological production methods offer more sustainable alternatives but are often limited by low productivity. To overcome these challenges, this study reports the engineering of a single Escherichia coli for efficient biosynthesis of AA starting from cyclohexanol (CHOL), KA oil (mixture of CHOL and cyclohexanone (CHONE)), or cyclohexane (CH). To start with, a comprehensive screening of rate-limiting enzymes is conducted, particularly focusing on cytochrome P450 monooxygenase, followed by the optimization of protein expression using strategies such as protein fusion, promoter replacement, and genome editing. Consequently, an engineered E. coli capable of efficiently converting either KA oil or CH into AA is obtained, achieving remarkable product titers of 110 and 22.6 g L-1, respectively. This represents the highest productivity record for the biological production of AA to date. Finally, this developed biocatalytic system is successfully employed to convert different cycloalkanes and cycloalkanols with varied carbon chain lengths into their corresponding dicarboxylic acids, highlighting its great potential as well as broad applicability for industrial applications.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Biocatalysis and Enzyme EngineeringHubei Key Laboratory of Industrial BiotechnologySchool of Life SciencesHubei UniversityWuhan430062P. R. China
- School of Synthetic BiologyShanxi UniversityTaiyuan030031P. R. China
| | - Huiqi Sun
- State Key Laboratory of Biocatalysis and Enzyme EngineeringHubei Key Laboratory of Industrial BiotechnologySchool of Life SciencesHubei UniversityWuhan430062P. R. China
| | - Di Deng
- State Key Laboratory of Biocatalysis and Enzyme EngineeringHubei Key Laboratory of Industrial BiotechnologySchool of Life SciencesHubei UniversityWuhan430062P. R. China
| | - Yuanqing Wu
- State Key Laboratory of Biocatalysis and Enzyme EngineeringHubei Key Laboratory of Industrial BiotechnologySchool of Life SciencesHubei UniversityWuhan430062P. R. China
| | - Jing Zhao
- State Key Laboratory of Biocatalysis and Enzyme EngineeringHubei Key Laboratory of Industrial BiotechnologySchool of Life SciencesHubei UniversityWuhan430062P. R. China
| | - Qian Li
- State Key Laboratory of Biocatalysis and Enzyme EngineeringHubei Key Laboratory of Industrial BiotechnologySchool of Life SciencesHubei UniversityWuhan430062P. R. China
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme EngineeringHubei Key Laboratory of Industrial BiotechnologySchool of Life SciencesHubei UniversityWuhan430062P. R. China
| |
Collapse
|
7
|
Gao Y, Li F, Yuan Z, Luo Z, Rao Y. Elucidation and biosynthesis of tetrahydroisoquinoline alkaloids: Recent advances and prospects. Biotechnol Adv 2025; 79:108524. [PMID: 39884566 DOI: 10.1016/j.biotechadv.2025.108524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/11/2024] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Tetrahydroisoquinoline alkaloids (THIAs) are a prominent class of plant-derived compounds with various important pharmaceutical applications. Considerable progress has been made in the biosynthesis of THIAs in microorganisms due to the elucidation of their natural biosynthetic pathways and the discovery of key enzymes. In this review, we systematically summarize recent progress in elucidating the natural biosynthetic pathways of THIAs and their biosynthesis in industrial microorganisms. In addition, recent advancements in the synthesis of THIAs through the construction of artificial multi-enzyme cascades and chemoenzymatic cascades are highlighted. Finally, the current challenges in developing efficient cell factories for producing THIAs are discussed, along with proposed strategies aimed at providing insights into the industrial production of THIAs.
Collapse
Affiliation(s)
- Yue Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.; College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Fei Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Zhenbo Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Zhengshan Luo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China..
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China..
| |
Collapse
|
8
|
Li F, Yuan Z, Gao Y, Deng Z, Zhang Y, Luo Z, Rao Y. A concise enzyme cascade enables the manufacture of natural and halogenated protoberberine alkaloids. Nat Commun 2025; 16:1904. [PMID: 39988594 PMCID: PMC11847921 DOI: 10.1038/s41467-025-57280-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/15/2025] [Indexed: 02/25/2025] Open
Abstract
The application and drug development of plant-derived natural products are often limited by their low abundance in medicinal plants and the lack of structural complexity and diversity. Herein, we design a concise enzyme cascade to efficiently produce natural and unnatural protoberberine alkaloids from cost-effective, readily available substrates. Through enzyme discovery and engineering, along with systematic optimization of the berberine bridge enzyme to address remaining manufacturing challenges in protoberberine alkaloid biosynthesis, the high production of drug Rotundine is achieved at an impressive gram-scale titer, demonstrating its industrial potential. More importantly, this cascade also enables the efficient biosynthesis of various unnatural halogenated protoberberine alkaloids. Thus, this work not only unlocks the potential of enzyme cascades in overcoming longstanding challenges in the efficient biosynthesis of plant-derived alkaloids, but also opens avenues to introduce structural complexity and diversity into alkaloids through synthetic biology, offering significant potential for drug development.
Collapse
Affiliation(s)
- Fei Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zhenbo Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yue Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zhiwei Deng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yan Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zhengshan Luo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China.
| |
Collapse
|
9
|
Xu X, Meng Y, Su B, Lin J. Development of whole cell biocatalytic system for asymmetric synthesis of esomeprazole with enhancing coenzyme biosynthesis pathway. Enzyme Microb Technol 2024; 179:110469. [PMID: 38878426 DOI: 10.1016/j.enzmictec.2024.110469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 08/07/2024]
Abstract
Esomeprazole is the most popular proton pump inhibitor for treating gastroesophageal reflux disease. Previously, a phenylacetone monooxygenase mutant LnPAMOmu15 (LM15) was obtained by protein engineering for asymmetric synthesis of esomeprazole using pyrmetazole as substrate. To scale up the whole cell asymmetric synthesis of esomeprazole and reduce the cost, in this work, an Escherichia coli whole-cell catalyst harboring LM15 and formate dehydrogenase from Burkholderia stabilis 15516 (BstFDH) were constructed through optimized gene assembly patterns. CRISPR/Cas9 mediated insertion of Ptrc promoter in genome was done to enhance the expression of key genes to increase the cellular NADP supply in the whole cell catalyst, by which the amount of externally added NADP+ for the asymmetric synthesis of esomeprazole decreased to 0.05 mM from 0.3 mM for reducing the cost. After the optimization of reaction conditions in the reactor, the scalable synthesis of esomeprazole was performed using the efficient LM15-BstFDH whole-cell as catalyst, which showed the highest reported space-time yield of 3.28 g/L/h with 50 mM of pyrmetazole loading. Isolation procedure was conducted to obtain esomeprazole sodium of 99.55 % purity and > 99.9 % ee with 90.1 % isolation yield. This work provides the basis for production of enantio-pure esomeprazole via cost-effective whole cell biocatalysis.
Collapse
Affiliation(s)
- Xinqi Xu
- Institute of Enzyme Catalysis and Synthetic Biotechnology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 360105, China
| | - Yaping Meng
- Institute of Enzyme Catalysis and Synthetic Biotechnology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 360105, China
| | - Bingmei Su
- Institute of Enzyme Catalysis and Synthetic Biotechnology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 360105, China.
| | - Juan Lin
- Institute of Enzyme Catalysis and Synthetic Biotechnology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 360105, China.
| |
Collapse
|
10
|
Xu X, Zhong J, Su B, Xu L, Hong X, Lin J. Single-cell enzymatic cascade synthesis of testolactone enabled by engineering of polycyclic ketone monooxygenase and multi-gene expression fine-tuning. Int J Biol Macromol 2024; 275:133229. [PMID: 38897507 DOI: 10.1016/j.ijbiomac.2024.133229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
The synthesis of steroids is challenging through multistep steroidal core modifications with high site-selectivity and productivity. In this work, a novel enzymatic cascade system was constructed for synthesis of testolactone by specific C17 lactonization/Δ1-dehydrogenation from inexpensive androstenedione using an engineered polycyclic ketone monooxygenase (PockeMO) and an appropriate 3-ketosteroid-Δ1-dehydrogenase (ReKstD). The focused saturation mutagenesis in the substrate binding pocket was implemented for evolution of PockeMO to eliminate the bottleneck effect. A best mutant MU3 (I225L/L226V/L532Y) was obtained with 20-fold higher specific activity compared to PockeMO. The catalytic efficiency (kcat/Km) of MU3 was 171-fold higher and the substrate scope shifted to polycyclic ketones. Molecular dynamic simulations suggested that the activity was improved by stabilization of the pre-lactonization state and generation of productive orientation of 4-AD mediated by distal L532Y mutation. Based on that, the three genes, MU3, ReKstD and a ketoreductase for NADPH regeneration, were rationally integrated in one cell via expression fine-tuning to form the efficient single cell catalyst E. coli S9. The single whole-cell biocatalytic process was scaled up and could generate 9.0 g/L testolactone with the high space time yield of 1 g/L/h without steroidal by-product, indicating the potential for site-specific and one-pot synthesis of steroid.
Collapse
Affiliation(s)
- Xinqi Xu
- Institute of Enzyme Catalysis and Synthetic Biotechnology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Jinchang Zhong
- Institute of Enzyme Catalysis and Synthetic Biotechnology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Bingmei Su
- Institute of Enzyme Catalysis and Synthetic Biotechnology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Lian Xu
- Institute of Enzyme Catalysis and Synthetic Biotechnology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xiaokun Hong
- Institute of Enzyme Catalysis and Synthetic Biotechnology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Juan Lin
- Institute of Enzyme Catalysis and Synthetic Biotechnology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
11
|
Liu WK, Su BM, Xu XQ, Xu L, Lin J. Multienzymatic Cascade for Synthesis of Hydroxytyrosol via Two-Stage Biocatalysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15293-15300. [PMID: 38940657 DOI: 10.1021/acs.jafc.4c04228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Hydroxytyrosol, a naturally occurring compound with antioxidant and antiviral activity, is widely applied in the cosmetic, food, and nutraceutical industries. The development of a biocatalytic approach for producing hydroxytyrosol from simple and readily accessible substrates remains a challenge. Here, we designed and implemented an effective biocatalytic cascade to obtain hydroxytyrosol from 3,4-dihydroxybenzaldehyde and l-threonine via a four-step enzymatic cascade composed of seven enzymes. To prevent cross-reactions and protein expression burden caused by multiple enzymes expressed in a single cell, the designed enzymatic cascade was divided into two modules and catalyzed in a stepwise manner. The first module (FM) assisted the assembly of 3,4-dihydroxybenzaldehyde and l-threonine into (2S,3R)-2-amino-3-(3,4-dihydroxyphenyl)-3-hydroxypropanoic acid, and the second module (SM) entailed converting (2S,3R)-2-amino-3-(3,4-dihydroxyphenyl)-3-hydroxypropanoic acid into hydroxytyrosol. Each module was cloned into Escherichia coli BL21 (DE3) and engineered in parallel by fine-tuning enzyme expression, resulting in two engineered whole-cell catalyst modules, BL21(FM01) and BL21(SM13), capable of converting 30 mM 3,4-dihydroxybenzaldehyde to 28.7 mM hydroxytyrosol with a high space-time yield (0.88 g/L/h). To summarize, the current study proposes a simple and effective approach for biosynthesizing hydroxytyrosol from low-cost substrates and thus has great potential for industrial applications.
Collapse
Affiliation(s)
- Wen-Kai Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
- Institute of Enzyme Catalysis and Synthetic Biotechnology, Fuzhou University, Fuzhou 350108, China
| | - Bing-Mei Su
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
- Institute of Enzyme Catalysis and Synthetic Biotechnology, Fuzhou University, Fuzhou 350108, China
| | - Xin-Qi Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
- Institute of Enzyme Catalysis and Synthetic Biotechnology, Fuzhou University, Fuzhou 350108, China
| | - Lian Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
- Institute of Enzyme Catalysis and Synthetic Biotechnology, Fuzhou University, Fuzhou 350108, China
| | - Juan Lin
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
- Institute of Enzyme Catalysis and Synthetic Biotechnology, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
12
|
Wang K, Yuan F, Huang L. Recent Progresses and Challenges in Upcycling of Plastics through Selective Catalytic Oxidation. Chempluschem 2024; 89:e202300701. [PMID: 38409525 DOI: 10.1002/cplu.202300701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 02/28/2024]
Abstract
Chemical upcycling of plastics provides an important direction for solving the challenging issues of plastic pollution and mitigating the wastage of carbon resources. Among them, catalytic oxidative cracking of plastics to produce high-value chemicals, such as catalytic oxidation of polyethylene (PE) to produce fatty dicarboxylic acids, catalytic oxidation of polystyrene (PS) to produce benzoic acid, and catalytic oxidation of polyethylene terephthalate (PET) to produce terephthalic acid under mild conditions has attracted increasing attention, and some exciting progress has been made recently. In this article, we will review recent progresses on the catalytic oxidation upcycling of plastics and provide our understanding on the current challenges in catalytic oxidation upcycling of plastics.
Collapse
Affiliation(s)
- Kaili Wang
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Fan Yuan
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Lei Huang
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
13
|
She M, Zhou H, Dong W, Xu Y, Gao L, Gao J, Yang Y, Yang Z, Cai D, Chen S. Modular metabolic engineering of Bacillus amyloliquefaciens for high-level production of green biosurfactant iturin A. Appl Microbiol Biotechnol 2024; 108:311. [PMID: 38676716 PMCID: PMC11055739 DOI: 10.1007/s00253-024-13083-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 04/29/2024]
Abstract
As a kind of biosurfactants, iturin A has attracted people's wide attentions due to their features of biodegradability, environmentally friendly, etc.; however, high production cost limited its extensive application, and the aim of this research wants to improve iturin A production in Bacillus amyloliquefaciens. Firstly, dual promoter was applied to strengthen iturin A synthetase expression, and its yield was increased to 1.25 g/L. Subsequently, original 5'-UTRs of downstream genes (ituA, ituB, and ituC) in iturin A synthetase cluster were optimized, which significantly increased mRNA secondary stability, and iturin A yield produced by resultant strain HZ-T3 reached 2.32 g/L. Secondly, synthetic pathway of α-glucosidase inhibitor 1-deoxynojirimycin was blocked to improve substrate corn starch utilization, and iturin A yield was increased by 34.91% to 3.13 g/L. Thirdly, efficient precursor (fatty acids, Ser, and Pro) supplies were proven as the critical role in iturin A synthesis, and 5.52 g/L iturin A was attained by resultant strain, through overexpressing yngH, serC, and introducing ocD. Meanwhile, genes responsible for poly-γ-glutamic acid, extracellular polysaccharide, and surfactin syntheses were deleted, which led to a 30.98% increase of iturin A yield. Finally, lipopeptide transporters were screened, and iturin A yield was increased by 17.98% in SwrC overexpression strain, reached 8.53 g/L, which is the highest yield of iturin A ever reported. This study laid a foundation for industrial production and application development of iturin A, and provided the guidance of metabolic engineering breeding for efficient production of other metabolites synthesized by non-ribosomal peptide synthetase. KEY POINTS: • Optimizing 5'-UTR is an effective tactics to regulate synthetase cluster expression. • Blocking 1-DNJ synthesis benefited corn starch utilization and iturin A production. • The iturin A yield attained in this work was the highest yield reported so far.
Collapse
Affiliation(s)
- Menglin She
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Huijuan Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Wanrong Dong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Yuxiang Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Lin Gao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China
| | - Jiaming Gao
- Hubei Corporation of China National Tobacco Corporation, Wuhan, 430000, People's Republic of China
| | - Yong Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Zhifan Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China.
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China.
| |
Collapse
|
14
|
Xu L, Shen JJ, Wu M, Su BM, Xu XQ, Lin J. An artificial biocatalytic cascade for efficient synthesis of norepinephrine by combination of engineered L-threonine transaldolase with multi-enzyme expression fine-tuning. Int J Biol Macromol 2024; 265:130819. [PMID: 38508550 DOI: 10.1016/j.ijbiomac.2024.130819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/19/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
Norepinephrine, a kind of β-adrenergic receptor agonist, is commonly used for treating shocks and hypotension caused by a variety of symptoms. The development of a straightforward, efficient and environmentally friendly biocatalytic route for manufacturing norepinephrine remains a challenge. Here, we designed and realized an artificial biocatalytic cascade to access norepinephrine starting from 3, 4-dihydroxybenzaldehyde and L-threonine mediated by a tailored-made L-threonine transaldolase PsLTTA-Mu1 and a newly screened tyrosine decarboxylase ErTDC. To overcome the imbalance of multi-enzymes in a single cell, engineering of PsLTTA for improved activity and fine-tuning expression mode of multi-enzymes in single E.coli cells were combined, leading to a robust whole cell biocatalyst ES07 that could produce 100 mM norepinephrine with 99% conversion, delivering a highest time-space yield (3.38 g/L/h) ever reported. To summarized, the current study proposed an effective biocatalytic approach for the synthesis of norepinephrine from low-cost substrates, paving the way for industrial applications of enzymatic norepinephrine production.
Collapse
Affiliation(s)
- Lian Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China
| | - Jun-Jiang Shen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China
| | - Ming Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China
| | - Bing-Mei Su
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China
| | - Xin-Qi Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China
| | - Juan Lin
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China.
| |
Collapse
|
15
|
Li JM, Shi K, Li AT, Zhang ZJ, Yu HL, Xu JH. Development of a Thermodynamically Favorable Multi-enzyme Cascade Reaction for Efficient Sustainable Production of ω-Amino Fatty Acids and α,ω-Diamines. CHEMSUSCHEM 2024; 17:e202301477. [PMID: 38117609 DOI: 10.1002/cssc.202301477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/25/2023] [Accepted: 12/19/2023] [Indexed: 12/22/2023]
Abstract
Aliphatic ω-amino fatty acids (ω-AFAs) and α,ω-diamines (α,ω-DMs) are essential monomers for the production of nylons. Development of a sustainable biosynthesis route for ω-AFAs and α,ω-DMs is crucial in addressing the challenges posed by climate change. Herein, we constructed an unprecedented thermodynamically favorable multi-enzyme cascade (TherFavMEC) for the efficient sustainable biosynthesis of ω-AFAs and α,ω-DMs from cheap α,ω-dicarboxylic acids (α,ω-DAs). This TherFavMEC was developed by incorporating bioretrosynthesis analysis tools, reaction Gibbs free energy calculations, thermodynamic equilibrium shift strategies and cofactor (NADPH&ATP) regeneration systems. The molar yield of 6-aminohexanoic acid (6-ACA) from adipic acid (AA) was 92.3 %, while the molar yield from 6-ACA to 1,6-hexanediamine (1,6-HMD) was 96.1 %, which were significantly higher than those of previously reported routes. Furthermore, the biosynthesis of ω-AFAs and α,ω-DMs from 20.0 mM α,ω-DAs (C6-C9) was also performed, giving 11.2 mM 1,6-HMD (56.0 % yield), 14.8 mM 1,7-heptanediamine (74.0 % yield), 17.4 mM 1,8-octanediamine (87.0 % yield), and 19.7 mM 1,9-nonanediamine (98.5 % yield), respectively. The titers of 1,9-nonanediamine, 1,8-octanediamine, 1,7-heptanediamine and 1,6-HMD were improved by 328-fold, 1740-fold, 87-fold and 3.8-fold compared to previous work. Therefore, this work holds great potential for the bioproduction of ω-AFAs and α,ω-DMs.
Collapse
Affiliation(s)
- Ju-Mou Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Kun Shi
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Ai-Tao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan, 430062, P.R. China
| | - Zhi-Jun Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| |
Collapse
|
16
|
Gu S, Zhu F, Zhang L, Wen J. Mid-Long Chain Dicarboxylic Acid Production via Systems Metabolic Engineering: Progress and Prospects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5555-5573. [PMID: 38442481 DOI: 10.1021/acs.jafc.4c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Mid-to-long-chain dicarboxylic acids (DCAi, i ≥ 6) are organic compounds in which two carboxylic acid functional groups are present at the terminal position of the carbon chain. These acids find important applications as structural components and intermediates across various industrial sectors, including organic compound synthesis, food production, pharmaceutical development, and agricultural manufacturing. However, conventional petroleum-based DCA production methods cause environmental pollution, making sustainable development challenging. Hence, the demand for eco-friendly processes and renewable raw materials for DCA production is rising. Owing to advances in systems metabolic engineering, new tools from systems biology, synthetic biology, and evolutionary engineering can now be used for the sustainable production of energy-dense biofuels. Here, we explore systems metabolic engineering strategies for DCA synthesis in various chassis via the conversion of different raw materials into mid-to-long-chain DCAs. Subsequently, we discuss the future challenges in this field and propose synthetic biology approaches for the efficient production and successful commercialization of these acids.
Collapse
Affiliation(s)
- Shanna Gu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian 116045, China
| | - Fuzhou Zhu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
| | - Lin Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian 116045, China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
| |
Collapse
|
17
|
Chen H, Liu R, Cai S, Zhang Y, Zhu C, Yu H, Li S. Intermediate product control in cascade reaction for one-pot production of ε-caprolactone by Escherichia coli. Biotechnol J 2024; 19:e2300210. [PMID: 38403458 DOI: 10.1002/biot.202300210] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 12/11/2023] [Accepted: 12/25/2023] [Indexed: 02/27/2024]
Abstract
ε-Caprolactone is an important non-toxic compound for polymer synthesis like polycaprolactone which has been widely used in drug delivery and degradable plastics. To meet the demand for a green economy, a bi-enzymatic cascade, consisting of an alcohol dehydrogenase (ADH) and a cyclohexanone monooxygenase (CHMO), was designed and introduced into Escherichia coli to synthesize ε-caprolactone from cyclohexanol with a self-sufficient NADPH-cofactor regeneration system. To further improve the catalytic efficiency, a carbonyl group-dependent colorimetric method using inexpensive 2,4-dinitrophenylhydrazine (DNPH) was developed for assay of cyclohexanone, an intermediate production of cascade reaction. It can be used to screen mutant strains with high catalytic efficiency from high-throughput library by detecting the absorbance value in microtiter plates (MTP) instead of gas chromatography (GC) analysis. Moreover, an RBS combinatorial library was constructed for balancing the expression of ADH and CHMO from two independent transcriptional units. After the high-throughput screening based on intermediate product control, an optimal variant with higher substrate tolerance and long-term stability was obtained from RBS combinatorial library. Through a fed-batch process, ε-caprolactone production reached 148.2 mM after 70 h of reaction under the optimized conditions, which was the highest yield achieved to date.
Collapse
Affiliation(s)
- Hefeng Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Ran Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shengliang Cai
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yingjiao Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Chaoyi Zhu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Hao Yu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Shuang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
18
|
Fang K, Xu Z, Yang L, Cui Q, Du B, Liu H, Wang R, Li P, Su J, Wang J. Biosynthesis of 10-Hydroxy-2-decenoic Acid through a One-Step Whole-Cell Catalysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1190-1202. [PMID: 38175798 DOI: 10.1021/acs.jafc.3c08142] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
10-Hydroxy-2-decenoic acid (10-HDA) is an important component of royal jelly, known for its antimicrobial, anti-inflammatory, blood pressure-lowering, and antiradiation effects. Currently, 10-HDA biosynthesis is limited by the substrate selectivity of acyl-coenzyme A dehydrogenase, which restricts the technique to a two-step process. This study aimed to develop an efficient and simplified method for synthesizing 10-HDA. In this study, ACOX from Candida tropicalis 1798, which catalyzes 10-hydroxydecanoyl coenzyme A desaturation for 10-HDA synthesis, was isolated and heterologously coexpressed with FadE, Macs, YdiI, and CYP in Escherichia coli/SK after knocking out FadB, FadJ, and FadR genes. The engineered E. coli/AKS strain achieved a 49.8% conversion of decanoic acid to 10-HDA. CYP expression was improved through ultraviolet mutagenesis and high-throughput screening, increased substrate conversion to 75.6%, and the synthesis of 10-HDA was increased to 0.628 g/L in 10 h. This is the highest conversion rate and product concentration achieved in the shortest time to date. This study provides a simple and efficient method for 10-HDA biosynthesis and offers an effective method for developing strains with high product yields.
Collapse
Affiliation(s)
- Ke Fang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) (Qilu University of Technology), Jinan 250353, Shandong, Republic of China
- School of Bioengineering, Qilu University of Technology, Jinan 250353, Shandong, Republic of China
| | - Ziting Xu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) (Qilu University of Technology), Jinan 250353, Shandong, Republic of China
- School of Bioengineering, Qilu University of Technology, Jinan 250353, Shandong, Republic of China
| | - Lu Yang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) (Qilu University of Technology), Jinan 250353, Shandong, Republic of China
- School of Bioengineering, Qilu University of Technology, Jinan 250353, Shandong, Republic of China
| | - Quan Cui
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) (Qilu University of Technology), Jinan 250353, Shandong, Republic of China
- School of Bioengineering, Qilu University of Technology, Jinan 250353, Shandong, Republic of China
| | - Bowen Du
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) (Qilu University of Technology), Jinan 250353, Shandong, Republic of China
- School of Bioengineering, Qilu University of Technology, Jinan 250353, Shandong, Republic of China
| | - Huijing Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) (Qilu University of Technology), Jinan 250353, Shandong, Republic of China
- School of Bioengineering, Qilu University of Technology, Jinan 250353, Shandong, Republic of China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) (Qilu University of Technology), Jinan 250353, Shandong, Republic of China
- School of Bioengineering, Qilu University of Technology, Jinan 250353, Shandong, Republic of China
| | - Piwu Li
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) (Qilu University of Technology), Jinan 250353, Shandong, Republic of China
- School of Bioengineering, Qilu University of Technology, Jinan 250353, Shandong, Republic of China
| | - Jing Su
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) (Qilu University of Technology), Jinan 250353, Shandong, Republic of China
- School of Bioengineering, Qilu University of Technology, Jinan 250353, Shandong, Republic of China
| | - Junqing Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) (Qilu University of Technology), Jinan 250353, Shandong, Republic of China
- School of Bioengineering, Qilu University of Technology, Jinan 250353, Shandong, Republic of China
| |
Collapse
|
19
|
Gao Y, Li F, Luo Z, Deng Z, Zhang Y, Yuan Z, Liu C, Rao Y. Modular assembly of an artificially concise biocatalytic cascade for the manufacture of phenethylisoquinoline alkaloids. Nat Commun 2024; 15:30. [PMID: 38167860 PMCID: PMC10761944 DOI: 10.1038/s41467-023-44420-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
Plant-derived alkaloids are an important class of pharmaceuticals. However, they still rely on phytoextraction to meet their diverse market demands. Since multistep biocatalytic cascades have begun to revolutionize the manufacture of natural or unnatural products, to address the synthetic challenges of alkaloids, herein we establish an artificially concise four-enzyme biocatalytic cascade with avoiding plant-derived P450 modification for synthesizing phenethylisoquinoline alkaloids (PEIAs) after enzyme discovery and enzyme engineering. Efficient biosynthesis of diverse natural and unnatural PEIAs is realized from readily available substrates. Most importantly, the scale-up preparation of the colchicine precursor (S)-autumnaline with a high titer is achieved after replacing the rate-limiting O-methylation by the plug-and-play strategy. This study not only streamlines future engineering endeavors for colchicine biosynthesis, but also provides a paradigm for constructing more artificial biocatalytic cascades for the manufacture of diverse alkaloids through synthetic biology.
Collapse
Affiliation(s)
- Yue Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Fei Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Zhengshan Luo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Zhiwei Deng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Yan Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Zhenbo Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Changmei Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China.
| |
Collapse
|
20
|
Grandi E, Feyza Özgen F, Schmidt S, Poelarends GJ. Enzymatic Oxy- and Amino-Functionalization in Biocatalytic Cascade Synthesis: Recent Advances and Future Perspectives. Angew Chem Int Ed Engl 2023; 62:e202309012. [PMID: 37639631 DOI: 10.1002/anie.202309012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
Biocatalytic cascades are a powerful tool for building complex molecules containing oxygen and nitrogen functionalities. Moreover, the combination of multiple enzymes in one pot offers the possibility to minimize downstream processing and waste production. In this review, we illustrate various recent efforts in the development of multi-step syntheses involving C-O and C-N bond-forming enzymes to produce high value-added compounds, such as pharmaceuticals and polymer precursors. Both in vitro and in vivo examples are discussed, revealing the respective advantages and drawbacks. The use of engineered enzymes to boost the cascades outcome is also addressed and current co-substrate and cofactor recycling strategies are presented, highlighting the importance of atom economy. Finally, tools to overcome current challenges for multi-enzymatic oxy- and amino-functionalization reactions are discussed, including flow systems with immobilized biocatalysts and cascades in confined nanomaterials.
Collapse
Affiliation(s)
- Eleonora Grandi
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Fatma Feyza Özgen
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Sandy Schmidt
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Gerrit J Poelarends
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
21
|
Nelson TF, Rothauer D, Sander M, Mecking S. Degradable and Recyclable Polyesters from Multiple Chain Length Bio- and Waste-Sourceable Monomers. Angew Chem Int Ed Engl 2023; 62:e202310729. [PMID: 37675615 DOI: 10.1002/anie.202310729] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/08/2023]
Abstract
Monomers sourced from waste or biomass are often mixtures of different chain lengths; e.g. catalytic oxidation of polyethylene waste yields mixtures of dicarboxylic acids (DCAs). Yet, polyesters synthesized from such monomer mixtures have rarely been studied. We report polyesters based on multiple linear aliphatic DCAs, present in chain length distributions that vary in their centers and ranges. We demonstrate that these materials can adopt high-density polyethylene-like solid state structures, and are ductile (e.g. Et 610 MPa), allowing for injection molding, or film and fiber extrusion. Melting and crystallization points of the polyesters show no odd-even effects as dipoles cannot favorably align in the crystal, similar to traditional odd carbon numbered, long-chain DCA polyesters. Biodegradation studies of 13 C-labelled polyesters in soil reveal rapid mineralization, and depolymerization by methanolysis indicates suitability for closed-loop recycling.
Collapse
Affiliation(s)
- Taylor F Nelson
- Department of Chemistry, University of Konstanz, Universitätstrasse 10, 78457, Konstanz, Germany
| | - Dario Rothauer
- Department of Chemistry, University of Konstanz, Universitätstrasse 10, 78457, Konstanz, Germany
| | - Michael Sander
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitätstrasse 16, 8092, Zurich, Switzerland
| | - Stefan Mecking
- Department of Chemistry, University of Konstanz, Universitätstrasse 10, 78457, Konstanz, Germany
| |
Collapse
|
22
|
Zhang W, Dong H, Wang X, Zhang L, Chen C, Wang P. Engineered Escherichia coli Consortia Function in a Programmable Pattern for Multiple Enzymatic Biosynthesis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45886-45894. [PMID: 37738613 DOI: 10.1021/acsami.3c09123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Coordinating microbial consortia to realize complex synthetic pathways is an area of great interest in the rapidly growing field of biomanufacturing. This work presents a programmable method for assembling living cells based on the surface display of affinity groups, enabling whole-cell catalysis with optimized catalytic efficiency through the rational arrangement of cell assemblies and enzymes. In the context of d-phenyllactic acid (d-PLA) synthesis, four enzymes were rationally arranged considering substrate channeling and protein expression levels. The production efficiencies of d-PLA catalyzed by engineered microbial consortia were 1.31- and 2.55-fold higher than those of biofilm and whole-cell catalysts, respectively. Notably, substrate channeling was identified between the coimmobilized rate-limiting enzymes, resulting in a 3.67-fold improvement in catalytic efficiency compared with hybrid catalysts (free enzymes coupled with whole-cell catalysts). The highest yield of d-PLA catalyzed by microbial consortia was 102.85 ± 3.39 mM with 140 mM benzaldehyde as the substrate. This study proposes a novel approach to cell enzyme assembly for coordinating microbial consortia in multiple enzymatic biosynthesis processes.
Collapse
Affiliation(s)
- Wenxue Zhang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Hao Dong
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiaoli Wang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Liting Zhang
- Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Chao Chen
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ping Wang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, Minnesota 55108, United States
| |
Collapse
|
23
|
Liu HL, Wu JM, Deng XT, Yu L, Yi PH, Liu ZQ, Xue YP, Jin LQ, Zheng YG. Development of an aminotransferase-driven biocatalytic cascade for deracemization of d,l-phosphinothricin. Biotechnol Bioeng 2023; 120:2940-2952. [PMID: 37227020 DOI: 10.1002/bit.28432] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/29/2023] [Accepted: 05/07/2023] [Indexed: 05/26/2023]
Abstract
2-oxo-4-[(hydroxy)(methyl)phosphinoyl]butyric acid (PPO) is the essential precursor keto acid for the asymmetric biosynthesis of herbicide l-phosphinothricin (l-PPT). Developing a biocatalytic cascade for PPO production with high efficiency and low cost is highly desired. Herein, a d-amino acid aminotransferase from Bacillus sp. YM-1 (Ym DAAT) with high activity (48.95 U/mg) and affinity (Km = 27.49 mM) toward d-PPT was evaluated. To circumvent the inhibition of by-product d-glutamate (d-Glu), an amino acceptor (α-ketoglutarate) regeneration cascade was constructed as a recombinant Escherichia coli (E. coli D), by coupling Ym d-AAT, d-aspartate oxidase from Thermomyces dupontii (TdDDO) and catalase from Geobacillus sp. CHB1. Moreover, the regulation of the ribosome binding site was employed to overcome the limiting step of expression toxic protein TdDDO in E. coli BL21(DE3). The aminotransferase-driven whole-cell biocatalytic cascade (E. coli D) showed superior catalytic efficiency for the synthesis of PPO from d,l-phosphinothricin (d,l-PPT). It revealed the production of PPO exhibited high space-time yield (2.59 g L-1 h-1 ) with complete conversion of d-PPT to PPO at high substrate concentration (600 mM d,l-PPT) in 1.5 L reaction system. This study first provides the synthesis of PPO from d,l-PPT employing an aminotransferase-driven biocatalytic cascade.
Collapse
Affiliation(s)
- Han-Lin Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Jia-Min Wu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Xin-Tong Deng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Lan Yu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Pu-Hong Yi
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Ya-Ping Xue
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Li-Qun Jin
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| |
Collapse
|
24
|
Liu J, Hu Y, Gu W, Lan H, Zhang Z, Jiang L, Xu X. Research progress on the application of cell-free synthesis systems for enzymatic processes. Crit Rev Biotechnol 2023; 43:938-955. [PMID: 35994247 DOI: 10.1080/07388551.2022.2090314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/24/2022] [Accepted: 04/09/2022] [Indexed: 11/03/2022]
Abstract
Cell-free synthesis systems can complete the transcription and translation process in vitro to produce complex proteins that are difficult to be expressed in traditional cell-based systems. Such systems also can be used for the assembly of efficient localized multienzyme cascades to synthesize products that are toxic to cells. Cell-free synthesis systems provide a simpler and faster engineering solution than living cells, allowing unprecedented design freedom. This paper reviews the latest progress on the application of cell-free synthesis systems in the field of enzymatic catalysis, including cell-free protein synthesis and cell-free metabolic engineering. In cell-free protein synthesis: complex proteins, toxic proteins, membrane proteins, and artificial proteins containing non-natural amino acids can be easily synthesized by directly controlling the reaction conditions in the cell-free system. In cell-free metabolic engineering, the synthesis of desired products can be made more specific and efficient by designing metabolic pathways and screening biocatalysts based on purified enzymes or crude extracts. Through the combination of cell-free synthesis systems and emerging technologies, such as: synthetic biology, microfluidic control, cofactor regeneration, and artificial scaffolds, we will be able to build increasingly complex biomolecule systems. In the next few years, these technologies are expected to mature and reach industrialization, providing innovative platforms for a wide range of biotechnological applications.
Collapse
Affiliation(s)
- Jie Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Yongqi Hu
- School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wanyi Gu
- School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Haiquan Lan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Zhidong Zhang
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Xian Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
25
|
Narayanan M, Kandasamy S, Lee J, Barathi S. Microbial degradation and transformation of PPCPs in aquatic environment: A review. Heliyon 2023; 9:e18426. [PMID: 37520972 PMCID: PMC10382289 DOI: 10.1016/j.heliyon.2023.e18426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023] Open
Abstract
The Pharmaceuticals and Personal Care Products (PPCPs) presence at harmful levels has been identified in aquatic ecosystems all over the world. Currently, PPCPs are more common in aquatic regions and have been discovered to be extremely harmful to aquatic creatures. Waste-water treatment facilities are the primary cause of PPCPs pollution in aquatic systems due to their limited treatment as well as the following the release of PPCPs. The degree of PPCPs elimination is primarily determined by the method applied for the remediation. It must be addressed in an eco-friendly manner in order to significantly improve the environmental quality or, at the very least, to prevent the spread as well as effects of toxic pollutants. However, when compared to other methods, environmentally friendly strategies (biological methods) are less expensive and require less energy. Most biological methods under aerobic conditions have been shown to degrade PPCPs effectively. Furthermore, the scientific literature indicates that with the exception of a few extremely hydrophobic substances, biological degradation by microbes is the primary process for the majority of PPCPs compounds. Hence, this review discusses about the optimistic role of microbe concerned in the degradation or transformation of PPCPs into non/less toxic form in the polluted environment. Accordingly, more number of microbial strains has been implicated in the biodegradation/transformation of harmful PPCPs through a process termed as bioremediation and their limitations.
Collapse
Affiliation(s)
- Mathiyazhagan Narayanan
- Division of Research and Innovations, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, 602 105, Tamil Nadu, India
| | - Sabariswaran Kandasamy
- Department of Biotechnology, PSGR Krishnammal College for Women, Peelamedu, Coimbatore, 641004, India
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Selvaraj Barathi
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| |
Collapse
|
26
|
Shi K, Li JM, Zhang ZJ, Chen Q, Xu JH, Yu HL. Virtual screening of carboxylic acid reductases for biocatalytic synthesis of 6-aminocaproic acid and 1,6-hexamethylenediamine. Biotechnol Bioeng 2023. [PMID: 37130074 DOI: 10.1002/bit.28408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/13/2023] [Accepted: 02/19/2023] [Indexed: 05/03/2023]
Abstract
The key precursors for nylon synthesis, that is, 6-aminocaproic acid (6-ACA) and 1,6-hexamethylenediamine (HMD), are produced from petroleum-based feedstocks. A sustainable biocatalytic alternative method from bio-based adipic acid has been demonstrated recently. However, the low efficiency and specificity of carboxylic acid reductases (CARs) used in the process hampers its further application. Herein, we describe a highly accurate protein structure prediction-based virtual screening method for the discovery of new CARs, which relies on near attack conformation frequency and the Rosetta Energy Score. Through virtual screening and functional detection, five new CARs were selected, each with a broad substrate scope and the highest activities toward various di- and ω-aminated carboxylic acids. Compared with the reported CARs, KiCAR was highly specific with regard to adipic acid without detectable activity to 6-ACA, indicating a potential for 6-ACA biosynthesis. In addition, MabCAR3 had a lower Km with regard to 6-ACA than the previously validated CAR MAB4714, resulting in twice conversion in the enzymatic cascade synthesis of HMD. The present work highlights the use of structure-based virtual screening for the rapid discovery of pertinent new biocatalysts.
Collapse
Affiliation(s)
- Kun Shi
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Ju-Mou Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Zhi-Jun Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Qi Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
27
|
Yang J, Wei W, Gao C, Song W, Gao C, Chen X, Liu J, Guo L, Liu L, Wu J. Efficient production of salvianic acid A from L-dihydroxyphenylalanine through a tri-enzyme cascade. BIORESOUR BIOPROCESS 2023; 10:31. [PMID: 38647923 PMCID: PMC10992476 DOI: 10.1186/s40643-023-00649-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/31/2023] [Indexed: 04/25/2024] Open
Abstract
Salvianic acid A (SAA), used for treating cardiovascular and cerebrovascular diseases, possesses several pharmacological properties. However, the current methods for the enzymatic synthesis of SAA show low efficiency. Here, we constructed a three-enzyme cascade pathway in Escherichia coli BL21 (DE3) to produce SAA from L-dihydroxyphenylalanine (L-DOPA). The phenylpyruvate reductase (LaPPR) from Lactobacillus sp. CGMCC 9967 is a rate-limiting enzyme in this process. Therefore, we employed a mechanism-guided protein engineering strategy to shorten the transfer distances of protons and hydrides, generating an optimal LaPPR mutant, LaPPRMu2 (H89M/H143D/P256C), with a 2.8-fold increase in specific activity and 9.3-time increase in kcat/Km value compared to that of the wild type. Introduction of the mutant LaPPRMu2 into the cascade pathway and the optimization of enzyme levels and transformation conditions allowed the obtainment of the highest SAA titer (82.6 g L-1) ever reported in vivo, good conversion rate (91.3%), excellent ee value (99%) and the highest productivity (6.9 g L-1 h-1) from 90 g L-1 L-DOPA in 12 h. This successful strategy provides a potential new method for the industrial production of SAA.
Collapse
Affiliation(s)
- Jiahui Yang
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Wanqing Wei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Changzheng Gao
- Department of Cardiology, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Wei Song
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jing Wu
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
28
|
Nitric acid free cyclohexane to adipic acid production using nickel and vanadium incorporated AlPO-5 molecular sieve. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
29
|
Gwon DA, Seo E, Lee JW. Construction of Synthetic Microbial Consortium for Violacein Production. BIOTECHNOL BIOPROC E 2023. [DOI: 10.1007/s12257-022-0284-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
30
|
Hayes G, Laurel M, MacKinnon D, Zhao T, Houck HA, Becer CR. Polymers without Petrochemicals: Sustainable Routes to Conventional Monomers. Chem Rev 2023; 123:2609-2734. [PMID: 36227737 PMCID: PMC9999446 DOI: 10.1021/acs.chemrev.2c00354] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/28/2022]
Abstract
Access to a wide range of plastic materials has been rationalized by the increased demand from growing populations and the development of high-throughput production systems. Plastic materials at low costs with reliable properties have been utilized in many everyday products. Multibillion-dollar companies are established around these plastic materials, and each polymer takes years to optimize, secure intellectual property, comply with the regulatory bodies such as the Registration, Evaluation, Authorisation and Restriction of Chemicals and the Environmental Protection Agency and develop consumer confidence. Therefore, developing a fully sustainable new plastic material with even a slightly different chemical structure is a costly and long process. Hence, the production of the common plastic materials with exactly the same chemical structures that does not require any new registration processes better reflects the reality of how to address the critical future of sustainable plastics. In this review, we have highlighted the very recent examples on the synthesis of common monomers using chemicals from sustainable feedstocks that can be used as a like-for-like substitute to prepare conventional petrochemical-free thermoplastics.
Collapse
Affiliation(s)
- Graham Hayes
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Matthew Laurel
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Dan MacKinnon
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Tieshuai Zhao
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Hannes A. Houck
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
- Institute
of Advanced Study, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - C. Remzi Becer
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| |
Collapse
|
31
|
Zhang S, Wu C, Ma C, Li L, He YC. Transformation of bread waste into 2,5-furandimethanol via an efficient chemoenzymatic approach in a benign reaction system. BIORESOURCE TECHNOLOGY 2023; 371:128579. [PMID: 36610484 DOI: 10.1016/j.biortech.2023.128579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Via combination catalysis with deep eutectic solvent lactic acid:betaine (chemocatalyst) and HMFOMUT cell (biocatalyst: E. coli HMFOMUT whole-cell), one-pot manufacture of 2,5-furandimethanol from waste bioresource was constructed in a chemoenzymatic approach. With bread waste (50 g/L) as substrate, the 5-hydroxymethylfuran yield reached 44.2 Cmol% (based on bread waste) by lactic acid:betaine (15 wt%) at 180 °C for 15 min. With glucose as co-substrate, HMFOMUT could transform 5-hydroxymethylfurfural (150 mM) to 2,5-furandimethanol (84.5 % yield) after 1 day at 37 °C and pH 7.0. In lactic acid:betaine-H2O, HMFOMUT effectively converted bread-derived 5-hydroxymethylfurfural into 2,5-furandimethanol in a productivity of 700 kg 2,5-furandimethanol per kg 5-hydroxymethylfurfural (230 kg 2,5-furandimethanol per kg bread). In an eco-friendly lactic acid:betaine system, an effective one-pot chemoenzymatic strategy was firstly developed to convert bread waste into 2,5-furandimethanol, which would reduce the operation cost and has potential application value for valorizing waste food bioresource into value-added furan.
Collapse
Affiliation(s)
- Shunli Zhang
- School of Pharmacy, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Changqing Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Cuiluan Ma
- School of Pharmacy, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Lei Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Yu-Cai He
- School of Pharmacy, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
32
|
Chong GG, Ding LY, Qiu YY, Qian XL, Dong YL, Li CX, Li A, Pan J, Xu JH. Building Flexible Escherichia coli Modules for Bifunctionalizing n-Octanol: The Byproduct of Oleic Acid Biorefinery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10543-10551. [PMID: 35997264 DOI: 10.1021/acs.jafc.2c04329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Artificial biorefinery of oleic acid into 1,10-decanedioic acid represents a revolutionizing route to the sustainable production of chemically difficult-to-make bifunctional chemicals. However, the carbon atom economy is extremely low (56%) due to the formation of unifunctional n-octanol. Here, we report a panel of recombinant Escherichia coli modules for diverse bifunctionalization, where the desired genetic parts are well distributed into different modules that can be flexibly combined in a plug-and-play manner. The designed ω-functionalizing modules could achieve ω-hydroxylation, consecutive ω-oxidation, or ω-amination of n-octanoic acid. By integrating these advanced modules with the reported oleic acid-cleaving modules, high-value C8 and C10 products, including ω-hydroxy acid, ω-amino acid, and α,ω-dicarboxylic acid, were produced with 100% carbon atom economy. These ω-functionalizing modules enabled the complete use of all of the carbon atoms from oleic acid (released from plant oil) for the green synthesis of structurally diverse bifunctional chemicals.
Collapse
Affiliation(s)
- Gang-Gang Chong
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Liang-Yi Ding
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yan-Yan Qiu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiao-Long Qian
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ya-Li Dong
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Chun-Xiu Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062 Wuhan, China
| | - Jiang Pan
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
33
|
Liang X, Deng H, Bai Y, Fan TP, Zheng X, Cai Y. Highly efficient biosynthesis of spermidine from L-homoserine and putrescine using an engineered Escherichia coli with NADPH self-sufficient system. Appl Microbiol Biotechnol 2022; 106:5479-5493. [PMID: 35931895 DOI: 10.1007/s00253-022-12110-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022]
Abstract
Spermidine is an important polyamine that can be used for the synthesis of various bioactive compounds in the food and pharmaceutical fields. In this study, a novel efficient whole-cell biocatalytic method with an NADPH self-sufficient cycle for spermidine biosynthesis was designed and constructed by co-expressing homoserine dehydrogenase (HSD), carboxyspermidine dehydrogenase (CASDH), and carboxyspermidine decarboxylase (CASDC). First, the enzyme-substrate coupled cofactor regeneration system from co-expression of NADP+-dependent ScHSD and NADPH-dependent AfCASDH exactly provides an efficient method for cofactor cycling. Second, we identified and characterized a putative CASDC with high decarboxylase activity from Butyrivibrio crossotus DSM 2876; it showed an optimum temperature of 35 °C and an optimum pH of 7.0, which make it better suited for the designed synthetic route. Subsequently, the protein expression level of each enzyme was optimized through the variation of the gene copy number, and a whole-cell catalyst with high catalytic efficiency was constructed successfully. Finally, a yield of 28.6 mM of spermidine was produced in a 1-L scale of E. coli whole-cell catalytic system with a 95.3% molar conversion rate after optimization of temperature, the ratio of catalyst-to-substrate, and the amount of NADP+, and a productivity of 0.17 g·L-1·h-1 was achieved. In summary, this novel pathway of constructing a whole-cell catalytic system from L-homoserine and putrescine could provide a green alternative method for the efficient synthesis of spermidine. KEY POINTS: • A novel pathway for spermidine biosynthesis was developed in Escherichia coli. • The enzyme-substrate coupled system provides an NADPH self-sufficient cycle. • Spermidine with 28.6 mM was obtained using an optimized whole-cell system.
Collapse
Affiliation(s)
- Xinxin Liang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Huaxiang Deng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Yajun Bai
- College of Life Sciences, Northwest University, Xi'an, 710069, Shanxi, China
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1T, UK
| | - Xiaohui Zheng
- College of Life Sciences, Northwest University, Xi'an, 710069, Shanxi, China.
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
34
|
Velasco-Lozano S, Santiago-Arcos J, Grazia Rubanu M, López-Gallego F. Cell-Free Biosynthesis of ω-Hydroxy Acids Boosted by a Synergistic Combination of Alcohol Dehydrogenases. CHEMSUSCHEM 2022; 15:e202200397. [PMID: 35348296 DOI: 10.1002/cssc.202200397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/28/2022] [Indexed: 06/14/2023]
Abstract
The activity orchestration of an unprecedented cell-free enzyme system with self-sufficient cofactor recycling enables the stepwise transformation of aliphatic diols into ω-hydroxy acids at the expense of molecular oxygen as electron acceptor. The efficiency of the biosynthetic route was maximized when two compatible alcohol dehydrogenases were selected as specialist biocatalysts for each one of the oxidative steps required for the oxidative lactonization of diols. The cell-free system reached up to 100 % conversion using 100 mM of linear C5 diols and performed the desymmetrization of prochiral branched diols into the corresponding ω-hydroxy acids with an exquisite enantioselectivity (ee>99 %). Green metrics demonstrate superior sustainability of this system compared to traditional metal catalysts and even to whole cells for the synthesis of 5-hydroxypetanoic acid. Finally, the cell-free system was assembled into a consortium of heterogeneous biocatalysts that allowed the enzyme reutilization. This cascade illustrates the potential of systems biocatalysis to access new heterofunctional molecules such as ω-hydroxy acids.
Collapse
Affiliation(s)
- Susana Velasco-Lozano
- Heterogeneous biocatalysis group, CIC biomaGUNE, Edificio Empresarial "C", Paseo de Miramón 182, 20009, Donostia, Spain
| | - Javier Santiago-Arcos
- Heterogeneous biocatalysis group, CIC biomaGUNE, Edificio Empresarial "C", Paseo de Miramón 182, 20009, Donostia, Spain
| | - Maria Grazia Rubanu
- Heterogeneous biocatalysis group, CIC biomaGUNE, Edificio Empresarial "C", Paseo de Miramón 182, 20009, Donostia, Spain
| | - Fernando López-Gallego
- Heterogeneous biocatalysis group, CIC biomaGUNE, Edificio Empresarial "C", Paseo de Miramón 182, 20009, Donostia, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
35
|
Preparation of cross-linked cell aggregates (CLCAs) of recombinant E. coli harboring glutamate dehydrogenase and glucose dehydrogenase for efficient asymmetric synthesis of L-phosphinothricin. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Li Q, Ma C, Di J, Ni J, He YC. Catalytic valorization of biomass for furfuryl alcohol by novel deep eutectic solvent-silica chemocatalyst and newly constructed reductase biocatalyst. BIORESOURCE TECHNOLOGY 2022; 347:126376. [PMID: 34801722 DOI: 10.1016/j.biortech.2021.126376] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Chemoenzymatic cascade catalysis using deep eutectic solvent-silica heterogeneous catalyst and reductase biocatalyst was constructed for synthesizing furfuryl alcohol from biomass in one-pot manner. A novel heterogeneous catalyst B:LA-SG(SiO2) was firstly prepared by immobilizing deep eutectic solvent Betaine:Lactic acid on silica with sol-gel method using tetraethyl orthosilicate as silicon source. High furfural yield (45.3%) was achieved from corncob with B:LA-SG(SiO2) catalyst (2.5 wt%) in water at 170 ˚C for 0.5 h. Possible catalytic mechanism for converting biomass into furfural was proposed. Moreover, one newly constructed recombinant E. coli KF2021 cells containing formate dehydrogenase and reductase was utilized to transform corncob-valorized furfural into furfuralcohol at 97.7% yield at pH 7.5 and 40 ˚C via HCOONa-driven coenzyme regeneration. Such a hybrid process was constructed for tandem chemocatalysis and biocatalysis in a same reactor, potentially reducing the operation cost, which had potential application for valorization of biomass to value-added furans.
Collapse
Affiliation(s)
- Qi Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei Province, China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei Province, China
| | - Junhua Di
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, China
| | - Jiacheng Ni
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, China
| | - Yu-Cai He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei Province, China; National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, China.
| |
Collapse
|
37
|
Peng Y, Gao C, Zhang Z, Wu S, Zhao J, Li A. A Chemoenzymatic Strategy for the Synthesis of Steroid Drugs Enabled by P450 Monooxygenase-Mediated Steroidal Core Modification. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05776] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yaqin Peng
- School of Life Sciences, Hubei University, State Key Laboratory of Biocatalysis and Enzyme Engineering, #368 Youyi Road, Wuhan 430062, P.R. China
| | - Chenghua Gao
- School of Life Sciences, Hubei University, State Key Laboratory of Biocatalysis and Enzyme Engineering, #368 Youyi Road, Wuhan 430062, P.R. China
| | - Zili Zhang
- School of Life Sciences, Hubei University, State Key Laboratory of Biocatalysis and Enzyme Engineering, #368 Youyi Road, Wuhan 430062, P.R. China
| | - Shijie Wu
- School of Life Sciences, Hubei University, State Key Laboratory of Biocatalysis and Enzyme Engineering, #368 Youyi Road, Wuhan 430062, P.R. China
| | - Jing Zhao
- School of Life Sciences, Hubei University, State Key Laboratory of Biocatalysis and Enzyme Engineering, #368 Youyi Road, Wuhan 430062, P.R. China
| | - Aitao Li
- School of Life Sciences, Hubei University, State Key Laboratory of Biocatalysis and Enzyme Engineering, #368 Youyi Road, Wuhan 430062, P.R. China
| |
Collapse
|
38
|
Liu J, Tian M, Wang Z, Xiao F, Huang X, Shan Y. Production of hesperetin from naringenin in an engineered Escherichia coli consortium. J Biotechnol 2022; 347:67-76. [DOI: 10.1016/j.jbiotec.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 11/17/2022]
|
39
|
Bao S, Zhong X, Wan Y, Tan G, Xu K, Yu X. Synthesis of Halogenated Diphenylpiperazines from L-Tyrosine Derivatives by Biotransformation. CHEM LETT 2022. [DOI: 10.1246/cl.210551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shumin Bao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, P. R. China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, P. R. China
| | - Xiaoyan Zhong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, P. R. China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, P. R. China
| | - Ying Wan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, P. R. China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, P. R. China
| | - Guishan Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, P. R. China
- Xiangya Hospital of Central South University, Central South University, Changsha 410008, P. R. China
| | - Kangping Xu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, P. R. China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, P. R. China
| | - Xia Yu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, P. R. China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, P. R. China
| |
Collapse
|
40
|
Liu J, Liu J, Guo L, Liu J, Chen X, Liu L, Gao C. Advances in microbial synthesis of bioplastic monomers. ADVANCES IN APPLIED MICROBIOLOGY 2022; 119:35-81. [DOI: 10.1016/bs.aambs.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
Bretschneider L, Heuschkel I, Bühler K, Karande R, Bühler B. Rational orthologous pathway and biochemical process engineering for adipic acid production using Pseudomonas taiwanensis VLB120. Metab Eng 2022; 70:206-217. [DOI: 10.1016/j.ymben.2022.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 11/17/2022]
|
42
|
Cheng J, Tu W, Luo Z, Liang L, Gou X, Wang X, Liu C, Zhang G. Coproduction of 5-Aminovalerate and δ-Valerolactam for the Synthesis of Nylon 5 From L-Lysine in Escherichia coli. Front Bioeng Biotechnol 2021; 9:726126. [PMID: 34604186 PMCID: PMC8481640 DOI: 10.3389/fbioe.2021.726126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022] Open
Abstract
The compounds 5-aminovalerate and δ-valerolactam are important building blocks that can be used to synthesize bioplastics. The production of 5-aminovalerate and δ-valerolactam in microorganisms provides an ideal source that reduces the cost. To achieve efficient biobased coproduction of 5-aminovalerate and δ-valerolactam in Escherichia coli, a single biotransformation step from L-lysine was constructed. First, an equilibrium mixture was formed by L-lysine α-oxidase RaiP from Scomber japonicus. In addition, by adjusting the pH and H2O2 concentration, the titers of 5-aminovalerate and δ-valerolactam reached 10.24 and 1.82 g/L from 40 g/L L-lysine HCl at pH 5.0 and 10 mM H2O2, respectively. With the optimized pH value, the δ-valerolactam titer was improved to 6.88 g/L at pH 9.0 with a molar yield of 0.35 mol/mol lysine. The ratio of 5AVA and δ-valerolactam was obviously affected by pH value. The ratio of 5AVA and δ-valerolactam could be obtained in the range of 5.63:1-0.58:1 at pH 5.0-9.0 from the equilibrium mixture. As a result, the simultaneous synthesis of 5-aminovalerate and δ-valerolactam from L-lysine in Escherichia coli is highly promising. To our knowledge, this result constitutes the highest δ-valerolactam titer reported by biological methods. In summary, a commercially implied bioprocess developed for the coproduction of 5-aminovalerate and δ-valerolactam using engineered Escherichia coli.
Collapse
Affiliation(s)
- Jie Cheng
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Wenying Tu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Zhou Luo
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Li Liang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Xinghua Gou
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Xinhui Wang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Chao Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Guoqiang Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
43
|
Li Y, Cheng Z, Zhao C, Gao C, Song W, Liu L, Chen X. Reprogramming Escherichia coli Metabolism for Bioplastics Synthesis from Waste Cooking Oil. ACS Synth Biol 2021; 10:1966-1979. [PMID: 34337931 DOI: 10.1021/acssynbio.1c00155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The recycle and reutilization of food wastes is a promising alternative for supporting and facilitating circular economy. However, engineering industrially relevant model organisms to use food wastes as their sole carbon source has remained an outstanding challenge so far. Here, we reprogrammed Escherichia coli metabolism using modular pathway engineering followed by laboratory adaptive evolution to establish a strain that can efficiently utilize waste cooking oil (WCO) as the sole carbon source to produce monomers of bioplastics, namely, medium-chain α,ω-dicarboxylic acids (MCDCAs). First, the biosynthetic pathway of MCDCAs was designed and rewired by modifying the β-oxidation pathway and introducing an ω-oxidation pathway. Then, metabolic engineering and laboratory adaptive evolution were applied for improving the pathway efficiency of fatty acids utilization. Finally, the engineered strain E. coli AA0306 was able to produce 15.26 g/L MCDCAs with WCO as the sole carbon source. This study provides an economically attractive strategy for biomanufacturing bioplastics from food wastes, which has a great potentiality to be developed as a wide range of enabling biotechnologies for achieving green revolution.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 214122 Wuxi, China
| | - Zhenzhen Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 214122 Wuxi, China
| | - Chunlei Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 214122 Wuxi, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 214122 Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, 214122 Wuxi, China
| | - Wei Song
- School of Pharmaceutical Science, State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 214122 Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, 214122 Wuxi, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 214122 Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, 214122 Wuxi, China
| |
Collapse
|
44
|
Escherichia coli as a platform microbial host for systems metabolic engineering. Essays Biochem 2021; 65:225-246. [PMID: 33956149 DOI: 10.1042/ebc20200172] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022]
Abstract
Bio-based production of industrially important chemicals and materials from non-edible and renewable biomass has become increasingly important to resolve the urgent worldwide issues including climate change. Also, bio-based production, instead of chemical synthesis, of food ingredients and natural products has gained ever increasing interest for health benefits. Systems metabolic engineering allows more efficient development of microbial cell factories capable of sustainable, green, and human-friendly production of diverse chemicals and materials. Escherichia coli is unarguably the most widely employed host strain for the bio-based production of chemicals and materials. In the present paper, we review the tools and strategies employed for systems metabolic engineering of E. coli. Next, representative examples and strategies for the production of chemicals including biofuels, bulk and specialty chemicals, and natural products are discussed, followed by discussion on materials including polyhydroxyalkanoates (PHAs), proteins, and nanomaterials. Lastly, future perspectives and challenges remaining for systems metabolic engineering of E. coli are discussed.
Collapse
|
45
|
Bretschneider L, Wegner M, Bühler K, Bühler B, Karande R. One-pot synthesis of 6-aminohexanoic acid from cyclohexane using mixed-species cultures. Microb Biotechnol 2021; 14:1011-1025. [PMID: 33369139 PMCID: PMC8085927 DOI: 10.1111/1751-7915.13744] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 11/28/2022] Open
Abstract
6-Aminohexanoic acid (6AHA) is a vital polymer building block for Nylon 6 production and an FDA-approved orphan drug. However, its production from cyclohexane is associated with several challenges, including low conversion and yield, and severe environmental issues. We aimed at overcoming these challenges by developing a bioprocess for 6AHA synthesis. A mixed-species approach turned out to be most promising. Thereby, Pseudomonas taiwanensis VLB120 strains harbouring an upstream cascade converting cyclohexane to either є-caprolactone (є-CL) or 6-hydroxyhexanoic acid (6HA) were combined with Escherichia coli JM101 strains containing the corresponding downstream cascade for the further conversion to 6AHA. ε-CL was found to be a better 'shuttle molecule' than 6HA enabling higher 6AHA formation rates and yields. Mixed-species reaction performance with 4 g l-1 biomass, 10 mM cyclohexane, and an air-to-aqueous phase ratio of 23 combined with a repetitive oxygen feeding strategy led to complete substrate conversion with 86% 6AHA yield and an initial specific 6AHA formation rate of 7.7 ± 0.1 U gCDW -1 . The same cascade enabled 49% 7-aminoheptanoic acid yield from cycloheptane. This combination of rationally engineered strains allowed direct 6AHA production from cyclohexane in one pot with high conversion and yield under environmentally benign conditions.
Collapse
Affiliation(s)
- Lisa Bretschneider
- Department of Solar MaterialsHelmholtz‐Centre for Environmental Research –UFZPermoserstrasse 15Leipzig04318Germany
| | - Martin Wegner
- Department of Solar MaterialsHelmholtz‐Centre for Environmental Research –UFZPermoserstrasse 15Leipzig04318Germany
| | - Katja Bühler
- Department of Solar MaterialsHelmholtz‐Centre for Environmental Research –UFZPermoserstrasse 15Leipzig04318Germany
| | - Bruno Bühler
- Department of Solar MaterialsHelmholtz‐Centre for Environmental Research –UFZPermoserstrasse 15Leipzig04318Germany
| | - Rohan Karande
- Department of Solar MaterialsHelmholtz‐Centre for Environmental Research –UFZPermoserstrasse 15Leipzig04318Germany
| |
Collapse
|
46
|
Hao T, Li G, Zhou S, Deng Y. Engineering the Reductive TCA Pathway to Dynamically Regulate the Biosynthesis of Adipic Acid in Escherichia coli. ACS Synth Biol 2021; 10:632-639. [PMID: 33687200 DOI: 10.1021/acssynbio.0c00648] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Adipic acid is a versatile aliphatic dicarboxylic acid. It is applied mainly in the polymerization of nylon-6,6, which accounts for 50.8% of the global consumption market of adipic acid. The microbial production of adipic acid avoids the usage of petroleum resources and the emission of harmful nitrogen oxides that are generated by traditional chemical synthetic approaches. However, in the fermentation process, the low theoretical yield and the usage of expensive inducers hinders the large-scale industrial production of adipic acid. To overcome these challenges, we established an oxygen-dependent dynamic regulation (ODDR) system to control the expression of key genes (sucD, pyc, mdh, and frdABCD) that could be induced to enhance the metabolic flux of the reductive TCA pathway under anaerobic conditions. Coupling of the constitutively expressed adipic acid synthetic pathway not only avoids the use of inducers but also increases the theoretical yield by nearly 50%. After the gene combination and operon structure were optimized, the reaction catalyzed by frdABCD was found to be the rate-limiting step. Further optimizing the relative expression levels of sucD, pyc, and frdABCD improved the titer of adipic acid 41.62-fold compared to the control strain Mad1415, demonstrating the superior performance of our ODDR system.
Collapse
Affiliation(s)
- Tingting Hao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guohui Li
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shenghu Zhou
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
47
|
Wang Z, Sundara Sekar B, Li Z. Recent advances in artificial enzyme cascades for the production of value-added chemicals. BIORESOURCE TECHNOLOGY 2021; 323:124551. [PMID: 33360113 DOI: 10.1016/j.biortech.2020.124551] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Enzyme cascades are efficient tools to perform multi-step synthesis in one-pot in a green and sustainable manner, enabling non-natural synthesis of valuable chemicals from easily available substrates by artificially combining two or more enzymes. Bioproduction of many high-value chemicals such as chiral and highly functionalised molecules have been achieved by developing new enzyme cascades. This review summarizes recent advances on engineering and application of enzyme cascades to produce high-value chemicals (alcohols, aldehydes, ketones, amines, carboxylic acids, etc) from simple starting materials. While 2-step enzyme cascades are developed for versatile enantioselective synthesis, multi-step enzyme cascades are engineered to functionalise basic chemicals, such as styrenes, cyclic alkanes, and aromatic compounds. New cascade reactions have also been developed for producing valuable chemicals from bio-based substrates, such as ʟ-phenylalanine, and renewable feedstocks such as glucose and glycerol. The challenges in current process and future outlooks in the development of enzyme cascades are also addressed.
Collapse
Affiliation(s)
- Zilong Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Balaji Sundara Sekar
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| |
Collapse
|
48
|
Sinumvayo JP, Zhao C, Liu G, Li Y, Zhang Y. One-pot production of butyl butyrate from glucose using a cognate "diamond-shaped" E. coli consortium. BIORESOUR BIOPROCESS 2021; 8:18. [PMID: 38650238 PMCID: PMC10992435 DOI: 10.1186/s40643-021-00372-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/15/2021] [Indexed: 11/10/2022] Open
Abstract
Esters are widely used in plastics, textile fibers, and general petrochemicals. Usually, esters are produced via chemical synthesis or enzymatic processes from the corresponding alcohols and acids. However, the fermentative production of esters from alcohols and/or acids has recently also become feasible. Here we report a cognate microbial consortium capable of producing butyl butyrate. This microbial consortium consists of two engineered butyrate- and butanol-producing E. coli strains with nearly identical genetic background. The pathways for the synthesis of butyrate and butanol from butyryl-CoA in the respective E. coli strains, together with a lipase-catalyzed esterification reaction, created a "diamond-shaped" consortium. The concentration of butyrate and butanol in the fermentation vessel could be altered by adjusting the inoculation ratios of each E. coli strain in the consortium. After optimization, the consortium produced 7.2 g/L butyl butyrate with a yield of 0.12 g/g glucose without the exogenous addition of butanol or butyrate. To our best knowledge, this is the highest titer and yield of butyl butyrate produced by E. coli reported to date. This study thus provides a new way for the biotechnological production of esters.
Collapse
Affiliation(s)
- Jean Paul Sinumvayo
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunhua Zhao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoxia Liu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yin Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yanping Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
49
|
Zhang X, Hu Y, Peng W, Gao C, Xing Q, Wang B, Li A. Exploring the Potential of Cytochrome P450 CYP109B1 Catalyzed Regio-and Stereoselective Steroid Hydroxylation. Front Chem 2021; 9:649000. [PMID: 33681151 PMCID: PMC7930613 DOI: 10.3389/fchem.2021.649000] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 01/18/2021] [Indexed: 12/18/2022] Open
Abstract
Cytochrome P450 enzyme CYP109B1 is a versatile biocatalyst exhibiting hydroxylation activities toward various substrates. However, the regio- and stereoselective steroid hydroxylation by CYP109B1 is far less explored. In this study, the oxidizing activity of CYP109B1 is reconstituted by coupling redox pairs from different sources, or by fusing it to the reductase domain of two self-sufficient P450 enzymes P450RhF and P450BM3 to generate the fused enzyme. The recombinant Escherichia coli expressing necessary proteins are individually constructed and compared in steroid hydroxylation. The ferredoxin reductase (Fdr_0978) and ferredoxin (Fdx_1499) from Synechococcus elongates is found to be the best redox pair for CYP109B1, which gives above 99% conversion with 73% 15β selectivity for testosterone. By contrast, the rest ones and the fused enzymes show much less or negligible activity. With the aid of redox pair of Fdr_0978/Fdx_1499, CYP109B1 is used for hydroxylating different steroids. The results show that CYP109B1 displayed good to excellent activity and selectivity toward four testosterone derivatives, giving all 15β-hydroxylated steroids as main products except for 9 (10)-dehydronandrolone, for which the selectivity is shifted to 16β. While for substrates bearing bulky substitutions at C17 position, the activity is essentially lost. Finally, the origin of activity and selectivity for CYP109B1 catalyzed steroid hydroxylation is revealed by computational analysis, thus providing theoretical basis for directed evolution to further improve its catalytic properties.
Collapse
Affiliation(s)
- Xiaodong Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Yun Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Wei Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Chenghua Gao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Qiong Xing
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
50
|
Liu H, Song Y, Fan X, Wang C, Lu X, Tian Y. Yarrowia lipolytica as an Oleaginous Platform for the Production of Value-Added Fatty Acid-Based Bioproducts. Front Microbiol 2021; 11:608662. [PMID: 33469452 PMCID: PMC7813756 DOI: 10.3389/fmicb.2020.608662] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/26/2020] [Indexed: 01/14/2023] Open
Abstract
The microbial fermentation process has been used as an alternative pathway to the production of value-added natural products. Of the microorganisms, Yarrowia lipolytica, as an oleaginous platform, is able to produce fatty acid-derived biofuels and biochemicals. Nowadays, there are growing progresses on the production of value-added fatty acid-based bioproducts in Y. lipolytica. However, there are fewer reviews performing the metabolic engineering strategies and summarizing the current production of fatty acid-based bioproducts in Y. lipolytica. To this end, we briefly provide the fatty acid metabolism, including fatty acid biosynthesis, transportation, and degradation. Then, we introduce the various metabolic engineering strategies for increasing bioproduct accumulation in Y. lipolytica. Further, the advanced progress in the production of fatty acid-based bioproducts by Y. lipolytica, including nutraceuticals, biofuels, and biochemicals, is summarized. This review will provide attractive thoughts for researchers working in the field of Y. lipolytica.
Collapse
Affiliation(s)
- Huhu Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yulan Song
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Xiao Fan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Chong Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Xiangyang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|