1
|
Zeng H, Chen Z, Jiang Q, Zhong Q, Ji Y, Chen Y, Li J, Liu C, Zhang R, Tang J, Xiong X, Zhang Z, Chen Z, Dai Y, Li C, Chen Y, Zhao D, Li X, Zheng T, Xu X, Xia C. Sustainable and cost-efficient hydrogen production using platinum clusters at minimal loading. Nat Commun 2025; 16:4314. [PMID: 40341062 PMCID: PMC12062374 DOI: 10.1038/s41467-025-59450-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 04/23/2025] [Indexed: 05/10/2025] Open
Abstract
Proton exchange membrane water electrolysis stands as a promising technology for sustainable hydrogen production, although its viability hinges on minimizing platinum (Pt) usage without sacrificing catalytic efficiency. Central to this challenge is enhancing the intrinsic activity of Pt while ensuring the stability of the catalyst. We herein present a Mo2TiC2 MXene-supported Pt nanocluster catalyst (Mo2TiC2-PtNC) that requires a minimal Pt content (36 μg cm-2) to function, yet remains highly active and stable. Operando spectroscopy and theoretical simulation provide evidence for anomalous charge transfer from the MXene substrate to PtNC, thus generating highly efficient electron-rich Pt sites for robust hydrogen evolution. When incorporated into a proton exchange membrane electrolyzer, the catalyst affords more than 8700 h at 200 mA cm-2 under ambient temperature with a decay rate of just 2.2 μV h-1. All the performance metrics of the present Mo2TiC2-PtNC catalysts are on par with or even surpass those of current hydrogen evolution electrocatalysts under identical operation conditions, thereby challenging the monopoly of high-loading Pt/C-20% in the current electrolyzer design.
Collapse
Affiliation(s)
- Hongliang Zeng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Zheng Chen
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Fudan University, Shanghai, P. R. China
| | - Qiu Jiang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, P. R. China.
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, P. R. China.
| | - Qingtian Zhong
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Yuan Ji
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Yizhen Chen
- Department of Chemical Engineering, University of California, Davis, CA, USA
| | - Jiawei Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Chunxiao Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Runhao Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Jialin Tang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Xiaoxia Xiong
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Zhongyue Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Zhaoyang Chen
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Yizhou Dai
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Chengbo Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Yinfang Chen
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Donghao Zhao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Xu Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Tingting Zheng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Xin Xu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Fudan University, Shanghai, P. R. China.
- Hefei National Laboratory, Hefei, P. R. China.
| | - Chuan Xia
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, P. R. China.
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, P. R. China.
| |
Collapse
|
2
|
Ma X, Mao B, Yu Z, Wang D, Xia J, Hou J, Meng X, Lin H, Hu C. Elucidating Relay Catalysis on Copper Clusters With Satellite Single Atoms for Enhanced Urea Electrosynthesis. Angew Chem Int Ed Engl 2025; 64:e202423706. [PMID: 40014448 DOI: 10.1002/anie.202423706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/14/2025] [Accepted: 02/27/2025] [Indexed: 03/01/2025]
Abstract
Relay catalysis represents significant efficacy in alleviating competition among different reactants during coupling reactions. However, a comprehensive understanding of the reaction mechanism underlying relay catalysis for the urea electrosynthesis remains challenging. Herein, we have developed a catalyst (CuAC-CuSA@NC) comprising Cu atomic clusters (CuAC) with satellite Cu─N4 single atoms (CuSA) sites on the nitrogen-doped porous interconnected carbon skeleton (NC), enabling elucidation of a relay catalysis process for co-reduction of CO2 and NO3 -. The designed CuAC-CuSA@NC catalyst exhibits an approximately threefold higher urea yield rate compared to that of CuSA@NC at -1.3 V versus RHE. Ex-situ experimental results and in-situ attenuated total reflection surface-enhanced infrared absorption spectroscopy analysis reveal a formation sequence between the *NH2 and *NH2CO species on CuAC-CuSA@NC with increasing reduction potential. The combination of theoretical calculations further elucidates that the relay catalysis pathway involves "CuAC" sites facilitating the conversion of *NO3 to *NOx, followed by a hydrogenation process to form *NH2 with *H from water dissociation promoted by "CuSA" sites, which subsequently couples with *CO2 to produce urea. This work provides novel insights into the investigation of coupling reactions, but not limit to, urea synthesis.
Collapse
Affiliation(s)
- Xinyue Ma
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Baoguang Mao
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zeqiang Yu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dan Wang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jing Xia
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jianhua Hou
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xiangmin Meng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Husitu Lin
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chuangang Hu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
3
|
Bulemo PM, Kim DH, Shin H, Cho HJ, Koo WT, Choi SJ, Park C, Ahn J, Güntner AT, Penner RM, Kim ID. Selectivity in Chemiresistive Gas Sensors: Strategies and Challenges. Chem Rev 2025; 125:4111-4183. [PMID: 40198852 DOI: 10.1021/acs.chemrev.4c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
The demand for highly functional chemical gas sensors has surged due to the increasing awareness of human health to monitor metabolic disorders or noncommunicable diseases, safety measures against harmful greenhouse and/or explosive gases, and determination of food freshness. Over the years of dedicated research, several types of chemiresistive gas sensors have been realized with appreciable sensitivities toward various gases. However, critical issues such as poor selectivity and sluggish response/recovery speeds continue to impede their widespread commercialization. Specifically, the mechanisms behind the selective response of some chemiresistive materials toward specific gas analytes remain unclear. In this review, we discuss state-of-the-art strategies employed to attain gas-selective chemiresistive materials, with particular emphasis on materials design, surface modification or functionalization with catalysts, defect engineering, material structure control, and integration with physical/chemical gas filtration media. The nature of material surface-gas interactions and the supporting mechanisms are elucidated, opening opportunities for optimizing the materials design, fine-tuning the gas sensing performance, and guiding the selection of the most appropriate materials for the accurate detection of specific gases. This review concludes with recommendations for future research directions and potential opportunities for further selectivity improvements.
Collapse
Affiliation(s)
- Peresi Majura Bulemo
- Department of Mechanical and Industrial Engineering, University of Dar es Salaam, P.O. Box 35131, Dar es Salaam, Tanzania
| | - Dong-Ha Kim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hamin Shin
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Advanced Nanosensor Research Center, KI Nanocentury, KAIST, Daejeon 34141, Republic of Korea
- Human-Centered Sensing Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Hee-Jin Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Advanced Nanosensor Research Center, KI Nanocentury, KAIST, Daejeon 34141, Republic of Korea
| | - Won-Tae Koo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Advanced Nanosensor Research Center, KI Nanocentury, KAIST, Daejeon 34141, Republic of Korea
| | - Seon-Jin Choi
- Division of Materials of Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Chungseong Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Advanced Nanosensor Research Center, KI Nanocentury, KAIST, Daejeon 34141, Republic of Korea
| | - Jaewan Ahn
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Advanced Nanosensor Research Center, KI Nanocentury, KAIST, Daejeon 34141, Republic of Korea
| | - Andreas T Güntner
- Human-Centered Sensing Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Reginald M Penner
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Advanced Nanosensor Research Center, KI Nanocentury, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
4
|
Li T, Zhang R, Fang N, Shi Y, Li J, He C, Chu Y. Metal cluster-mediated photocatalysis: synthesis, characterization and application. NANOSCALE 2025; 17:9834-9869. [PMID: 40171804 DOI: 10.1039/d5nr00506j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
The escalation of global energy crises and environmental degradation has intensified the focus on photocatalytic technology, which harnesses solar energy for direct chemical reactions in a green manner. Metal clusters serve as multifunctional components in photocatalytic systems, with their unique properties (such as dimensions, composition, and surface modification) offering a plethora of regulatory mechanisms for designing innovative and efficient cluster-based photocatalysts. These improvements enhance light absorption, charge separation, and catalytic activity. This comprehensive review explores the fundamental principles and applications of photocatalytic technology, emphasizing the role of metal cluster materials in advancing this field. The synthetic methodologies, especially AI-assisted synthesis, characterization techniques, and modification strategies of metal cluster materials are introduced in detail, highlighting their significance in enhancing photocatalytic performance. The applications of metal clusters in various photocatalytic processes are also discussed, including water splitting, CO2 reduction, N2 fixation, pollutant degradation, H2O2 generation and selective organic synthesis, showcasing their potential in environmental remediation and energy transformation. Finally, the review concludes with an outlook on future research directions, emphasizing the need for innovating synthesis methods, developing advanced characterizations techniques, and optimizing catalytic performance to address existing challenges and unlock the full potential of cluster-based photocatalysts.
Collapse
Affiliation(s)
- Tong Li
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Ruirui Zhang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Ningjie Fang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Yanbiao Shi
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Jinhui Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuanshu He
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Yinghao Chu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China.
| |
Collapse
|
5
|
Liu Y, Qin Y, Yu D, Zhuo H, Ma C, Chen K. Enhance Water Electrolysis for Green Hydrogen Production with Material Engineering: A Review. CHEM REC 2025:e202400258. [PMID: 40195465 DOI: 10.1002/tcr.202400258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/21/2025] [Indexed: 04/09/2025]
Abstract
Water electrolysis, a traditional and highly technology, is gaining significant attention due to the growing demand for renewable energy resources. It stands as a promising solution for energy conversion, offer substantial benefits in environmental protection and sustainable development efforts. The aim of this research is to provide a concise review of the current state-of-the-art in the field of water electrolysis, focusing on the principles of water splitting fundamental, recent advancements in catalytic materials, various advanced characterization methods and emerging electrolysis technology improvements. Moreover, the paper delves into the development trends of catalysts engineering for water electrolysis, providing insight on how to enhance the catalytic performance. With the advancement of technology and the reduction of costs, hydrogen production through water electrolysis is expected to assume a more significant role in future energy ecosystem. This paper not only synthesizes existing knowledge but also highlights emerging opportunities and potential advancements in this field, offering a clear roadmap for further research and innovation.
Collapse
Affiliation(s)
- Ying Liu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Yuanyuan Qin
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Dawei Yu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Haiyue Zhuo
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Churong Ma
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Kai Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
6
|
Yan T, Wang S, Lang S, Wang Z, Lin S, Zhao J. Screened Ni 3 single-cluster catalyst supported on graphidyne for high-performance electrocatalytic NO reduction to NH 3: A computational study. J Colloid Interface Sci 2025; 683:1067-1076. [PMID: 39778488 DOI: 10.1016/j.jcis.2024.12.243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/17/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025]
Abstract
Electrocatalytic NO reduction (NORR) to NH3 represents a promising approach for converting hazardous NO waste gases into high-value NH3 products under ambient conditions. However, exploring stable, low-cost, and highly efficient catalysts to enhance the NO-to-NH3 conversion process remains a significant challenge. Herein, through systematic computational studies based on density functional theory (DFT), we rationally designed transition metal triatomic cluster supported on graphdiyne (TM3/GDY) as potential single-cluster catalysts for high-performance NORR. The results indicated that the GDY support is incredibly effective at immobilizing these triatomic metal clusters, preventing metal aggregation and dissolution. Furthermore, the TM3/GDY systems exhibit tunable reactivity for NO activation due to the synergistic effect of triple-metal sites. Among all examined candidates, Ni3/GDY demonstrates the highest NORR catalytic performance with a record low limiting potential of -0.05 V. Notably, NO adsorption strength was identified as an effective descriptor to rationalize the NORR activity trend, which is highly dependent on the amount of the carrying charges on the anchored TM3 clusters. Additionally, the hydrogenation steps during NORR are kinetically feasible on Ni3/GDY with a small kinetic barrier of 0.34 V for the rate-determining step, corresponding to an outstanding turnover frequency (3.03 × 10-25) s-1 per site at 300 K for NH3 generation, implying an ultra-fast reaction rate. Our work not only identified promising NORR catalysts but also provided valuable insights for rationally designing atomically precise novel catalysts for the resource utilization of small molecules.
Collapse
Affiliation(s)
- Tingyu Yan
- Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Siyao Wang
- Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Simone Lang
- Division of Chemistry and Biochemistry, Texas Woman's University, Denton, TX 76204, USA
| | - Zhongxu Wang
- Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Shiru Lin
- Division of Chemistry and Biochemistry, Texas Woman's University, Denton, TX 76204, USA.
| | - Jingxiang Zhao
- Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
7
|
Lang Z, Wang X, Jabeen S, Cheng Y, Liu N, Liu Z, Gan T, Zhuang Z, Li H, Wang D. Destabilization of Single-Atom Catalysts: Characterization, Mechanisms, and Regeneration Strategies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418942. [PMID: 39828525 DOI: 10.1002/adma.202418942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/09/2025] [Indexed: 01/22/2025]
Abstract
Numerous in situ characterization studies have focused on revealing the catalytic mechanisms of single-atom catalysts (SACs), providing a theoretical basis for their rational design. Although research is relatively limited, the stability of SACs under long-term operating conditions is equally important and a prerequisite for their real-world energy applications, such as fuel cells and water electrolyzers. Recently, there has been a rise in in situ characterization studies on the destabilization and regeneration of SACs; however, timely and comprehensive summaries that provide the catalysis community with valuable insights and research directions are still lacking. This review summarizes recent advances in the destabilization mechanisms and regeneration strategies of SACs, specifically highlighting various state-of-the-art characterization techniques employed in the studies. The factors that induce destabilization in SACs are identified by discussing the failure of active sites, coordination environments, supports, and reaction conditions under long-term operating scenarios. Next, the primary regeneration strategies for SACs are introduced, including redispersion, surface poison desorption, and exposure of subsurface active sites. Additionally, the advantages and limitations of both in situ and ex situ characterization techniques are discussed. Finally, future research directions are proposed, aimed at constructing structure-stability relationships and guiding the design of more stable SACs.
Collapse
Affiliation(s)
- Zhiquan Lang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212003, P. R. China
| | - Xixi Wang
- Center for Marine Materials Corrosion and Protection, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Sobia Jabeen
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212003, P. R. China
| | - Yuanyuan Cheng
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212003, P. R. China
| | - Naiyun Liu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212003, P. R. China
| | - Zhenhui Liu
- College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Tao Gan
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 200120, China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Department of Chemical Engineering, Columbia University, New York, 10027-6902, USA
| | - Haitao Li
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212003, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
8
|
Ospina-Acevedo F, Godínez-Salomón JF, Naymik ZG, Matthews KC, Warner JH, Rhodes CP, Balbuena PB. Impacts of Surface Reconstruction and Metal Dissolution on Ru 1-x Ti x O 2 Acidic Oxygen Evolution Electrocatalysts. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2025; 129:3595-3613. [PMID: 40008199 PMCID: PMC11848923 DOI: 10.1021/acs.jpcc.4c08119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025]
Abstract
Improved oxygen evolution reaction (OER) electrocatalysts based on an additional understanding of surface changes that occur upon metal dissolution are needed to enable the efficient use of electrochemical water splitting. This work integrates theoretical and experimental studies of the effects of metal dissolution from the RuO2 and Ru1-x Ti x O2 surfaces on the OER activity and electrochemical stability. Our computational analysis shows that the energetic barriers for metal dissolution depend highly on the surface site and Ti-substituent location. Metal dissolution induces the formation of new active surface sites with different electronic density distributions. In addition to dissolution-induced changes to the surface composition, electron density changes occur in the interfacial electrolyte components. Surface reconstruction changes the activation barriers for the OER steps. Our experimental analysis of RuO2 and Ru0.8Ti0.2O2 using a two-step durability test in acidic electrolytes shows that the OER activity, surface, and metal dissolution change over the durability tests. Ti-substitution exhibits improved electrochemical stability with cycling. For RuO2, changes in the mass activity of RuO2 with cycling are directly correlated with Ru dissolution and lowering of the electrochemical surface area (ECSA). In contrast, Ru0.8Ti0.2O2 showed a 19 times lower Ru dissolution rate, and metal dissolution results in increasing the ECSA and new active sites. Our STEM and EELS analysis supports that repeated cycling under OER conditions results in surface reconstruction for both RuO2 and Ru0.8Ti0.2O2, with the formation of a disordered RuO2 surface and changes to the distribution of Ru and Ti at the Ru0.8Ti0.2O2 surface. The experimentally observed changes in activity and surface structure after cycling are consistent with computational analysis, which shows how metal dissolution may alter the OER activation barriers. Combining experimental and computational insights, this work reveals the effects of metal dissolution on the surface atomic and electronic structure and OER activity and advances our comprehension of metal dissolution dynamics and surface reconstruction, which may have implications for other catalytic processes.
Collapse
Affiliation(s)
| | | | - Zachary G. Naymik
- Materials
Science, Engineering and Commercialization Program, Texas State University, San Marcos, Texas 78666, United States
| | - Kevin C. Matthews
- Texas
Materials Institute, The University of Texas
at Austin, Austin, Texas 78712, United States
| | - Jamie H. Warner
- Texas
Materials Institute, The University of Texas
at Austin, Austin, Texas 78712, United States
- Walker
Department of Mechanical Engineering, The
University of Texas at Austin, Austin, Texas 78712, United States
| | - Christopher P. Rhodes
- Department
of Chemistry and Biochemistry, Texas State
University, San Marcos, Texas 78666, United States
- Materials
Science, Engineering and Commercialization Program, Texas State University, San Marcos, Texas 78666, United States
| | - Perla B. Balbuena
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
9
|
Rao Y, Yang J, Tian J, Ning W, Guo S, Zhou H. The Spin-Selective Channels in Fully-Exposed PtFe Clusters Enable Fast Cathodic Kinetics of Li-O 2 Battery. Angew Chem Int Ed Engl 2025; 64:e202418893. [PMID: 39623909 DOI: 10.1002/anie.202418893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/01/2024] [Indexed: 12/10/2024]
Abstract
In Li-O2 batteries (LOBs), the electron transfer between triplet O2 and singlet Li2O2 possesses a spin-dependent character but is still neglected, while the spin-conserved electron transfer without losing phase information should guarantee fast kinetics and reduced energy barriers. Here, we provide a paradigm of spin-selective catalysis for LOB that the ferromagnetic quantum spin exchange interactions between Pt and Fe atoms in fully-exposed PtFe clusters filter directional e-spins for spin-conserved electron transfer at Fe-Fe sites. The kinetics of O2/Li2O2 redox reaction is markedly accelerated as predicted by theoretical calculations, showing dramatically decreased relaxation time of the rate determining step for more than one order of magnitude, compared with the Fe clusters without spin-selective behavior. In consequence, the assembled LOB provides ultrahigh energy conversion efficiency of 89.6 % at 100 mA g-1 under a discharge-charge overpotential of only 0.32 V. This work provides new insights into the spin-dependent mechanisms of O2/Li2O2 redox reaction, and the strategy of constructing spin catalysts at atomic level.
Collapse
Affiliation(s)
- Yuan Rao
- College of Engineering and Applied Sciences, Center for Energy Storage Materials and Technologies, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
- Lab of Power and Energy Storage Batteries, Shenzhen Research Institute of Nanjing University, Shenzhen, 518057, P. R. China
| | - Jiawei Yang
- College of Engineering and Applied Sciences, Center for Energy Storage Materials and Technologies, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
- Lab of Power and Energy Storage Batteries, Shenzhen Research Institute of Nanjing University, Shenzhen, 518057, P. R. China
| | - Jiaming Tian
- College of Engineering and Applied Sciences, Center for Energy Storage Materials and Technologies, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
- Lab of Power and Energy Storage Batteries, Shenzhen Research Institute of Nanjing University, Shenzhen, 518057, P. R. China
| | - Wenjie Ning
- College of Engineering and Applied Sciences, Center for Energy Storage Materials and Technologies, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
- Lab of Power and Energy Storage Batteries, Shenzhen Research Institute of Nanjing University, Shenzhen, 518057, P. R. China
| | - Shaohua Guo
- College of Engineering and Applied Sciences, Center for Energy Storage Materials and Technologies, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
- Lab of Power and Energy Storage Batteries, Shenzhen Research Institute of Nanjing University, Shenzhen, 518057, P. R. China
| | - Haoshen Zhou
- College of Engineering and Applied Sciences, Center for Energy Storage Materials and Technologies, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
10
|
Mitomo T, Wada Y, Suda T, Tamura A, Yagi S, Kikkawa S, Yamazoe S, Sunada Y. A coordination polymer with a silylene-supported Pd 6 core as an efficient heterogeneous hydrogenation catalyst. Chem Sci 2025:d4sc05663a. [PMID: 39926707 PMCID: PMC11799931 DOI: 10.1039/d4sc05663a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/15/2025] [Indexed: 02/11/2025] Open
Abstract
A hexanuclear palladium cluster supported by two silylene units was readily linked by molecules of a linear ditopic isocyanide to afford a coordination polymer that retained the core Pd6(SiPh2)2Cl2 framework. The obtained coordination polymer exhibited good performance as a heterogeneous catalyst in the hydrogenation of various alkenes in common organic solvents and in protic solvents such as H2O. Furthermore, the obtained coordination polymer showed sufficient stability during the hydrogenation in order for it to be recycled and reused.
Collapse
Affiliation(s)
- Taiga Mitomo
- Institute of Industrial Science, The University of Tokyo 4-6-1, Komaba, Meguro-ku Tokyo 153-8505 Japan
| | - Yoshimasa Wada
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 4-6-1, Komaba, Meguro-ku Tokyo 153-8505 Japan
- Institute of Industrial Science, The University of Tokyo 4-6-1, Komaba, Meguro-ku Tokyo 153-8505 Japan
| | - Tetsuro Suda
- Institute of Industrial Science, The University of Tokyo 4-6-1, Komaba, Meguro-ku Tokyo 153-8505 Japan
| | - Atsushi Tamura
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 4-6-1, Komaba, Meguro-ku Tokyo 153-8505 Japan
| | - Shunsuke Yagi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 4-6-1, Komaba, Meguro-ku Tokyo 153-8505 Japan
| | - Soichi Kikkawa
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University 1-1 Minami-Osawa, Hachioji Tokyo 192-0397 Japan
| | - Seiji Yamazoe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University 1-1 Minami-Osawa, Hachioji Tokyo 192-0397 Japan
| | - Yusuke Sunada
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 4-6-1, Komaba, Meguro-ku Tokyo 153-8505 Japan
- Institute of Industrial Science, The University of Tokyo 4-6-1, Komaba, Meguro-ku Tokyo 153-8505 Japan
| |
Collapse
|
11
|
Su G, Hou Y, Yin J, Yang J, Li Z, Du X, Zhang X, Xi P, Yan C. CeO 2-δ as Electron Donor in Co 0.07Ce 0.93O 2-δ Solid Solution Boosts Alkaline Water Splitting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411845. [PMID: 39621538 PMCID: PMC11775571 DOI: 10.1002/advs.202411845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/13/2024] [Indexed: 01/30/2025]
Abstract
Optimizing the electronic structure with increasing intrinsic stability is a usual method to enhance the catalysts' performance. Herein, a series of cerium dioxide (CeO2-δ) based solid solution materials is synthesized via substituting Ce atoms with transition metal (Co, Cu, Ni, etc.), in which Co0.07Ce0.93O2-δ shows optimized band structure because of electron transition in the reaction, namely Co3+ (3d64s0) + Ce3+ (4f15d 06s0) → Co2+ (3d74s0) + Ce4+ (4f05d06s0), with more stable electronic configuration. The in situ Raman spectra show a stable F2g peak at ≈452 cm-1 of Co0.07Ce0.93O2-δ, while the F2g peak in CeO2-δ almost disappeared during HER progress, demonstrating the charge distribution of *H adsorbed on Co0.07Ce0.93O2-δ is more stable than *H adsorbed on CeO2-δ. Density functional theory calculations reveal that Co0.07Ce0.93O2-δ solid solution increases protonation capacity and favors for formation of *H in alkaline media. General guidelines are formulated for optimizing adsorption capacity and the volcano plot demonstrates the excellent catalytic performance of Co0.07Ce0.93O2-δ solid solution. The alkaline anion exchange membrane water electrolysis based on Co0.07Ce0.93O2-δ/NiFe LDH realizes a current density of 1000 mA cm-2 at ≈1.86 V in alkaline seawater at 80 °C and exhibits long-term stability for 450 h.
Collapse
Affiliation(s)
- Gege Su
- State Key Laboratory of Applied Organic ChemistryKey Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceFrontiers Science Center for Rare IsotopesCollege of Chemistry and Chemical EngineeringLanzhou UniversityLanzhou730000P. R. China
| | - Yichao Hou
- State Key Laboratory of Applied Organic ChemistryKey Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceFrontiers Science Center for Rare IsotopesCollege of Chemistry and Chemical EngineeringLanzhou UniversityLanzhou730000P. R. China
| | - Jie Yin
- State Key Laboratory of Applied Organic ChemistryKey Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceFrontiers Science Center for Rare IsotopesCollege of Chemistry and Chemical EngineeringLanzhou UniversityLanzhou730000P. R. China
| | - Jiayi Yang
- State Key Laboratory of Applied Organic ChemistryKey Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceFrontiers Science Center for Rare IsotopesCollege of Chemistry and Chemical EngineeringLanzhou UniversityLanzhou730000P. R. China
| | - Zhenglong Li
- State Key Laboratory of Applied Organic ChemistryKey Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceFrontiers Science Center for Rare IsotopesCollege of Chemistry and Chemical EngineeringLanzhou UniversityLanzhou730000P. R. China
| | - Xin Du
- College of ChemistryZhengzhou UniversityZhengzhou450001China
| | - Xin Zhang
- School of Nuclear Science and TechnologyLanzhou UniversityLanzhou730000China
| | - Pinxian Xi
- State Key Laboratory of Applied Organic ChemistryKey Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceFrontiers Science Center for Rare IsotopesCollege of Chemistry and Chemical EngineeringLanzhou UniversityLanzhou730000P. R. China
| | - Chun‐Hua Yan
- State Key Laboratory of Applied Organic ChemistryKey Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceFrontiers Science Center for Rare IsotopesCollege of Chemistry and Chemical EngineeringLanzhou UniversityLanzhou730000P. R. China
- Beijing National Laboratory for Molecular SciencesState Key Laboratory of Rare Earth Materials Chemistry and ApplicationsPKU‐HKU Joint Laboratory in Rare Earth Materials and Bioinorganic ChemistryCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| |
Collapse
|
12
|
Sun J, Lian G, Chen Z, Zou Z, Wang L. Merger of Single-Atom Catalysis and Photothermal Catalysis for Future Chemical Production. ACS NANO 2024; 18:34572-34595. [PMID: 39652059 DOI: 10.1021/acsnano.4c13030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Photothermal catalysis is an emerging field with significant potential for sustainable chemical production processes. The merger of single-atom catalysts (SACs) and photothermal catalysis has garnered widespread attention for its ability to achieve precise bond activation and superior catalytic performance. This review provides a comprehensive overview of the recent progress of SACs in photothermal catalysis, focusing on their underlying mechanisms and applications. The dynamic structural evolution of SACs during photothermal processes is highlighted, and the current advancements and future perspectives in the design, screening, and scaling up of SACs for photothermal processes are discussed. This review aims to provide insights into their continued development in this rapidly evolving field.
Collapse
Affiliation(s)
- Junchuan Sun
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Guanwu Lian
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Zhongxin Chen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Zhigang Zou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Lu Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
13
|
Zhang H, Ma C, Wang YC, Zhu X, Qu K, Ma X, He C, Han S, Liu AH, Wang Q, Cao W, Lin W, Xia J, Zhu L, Gu L, Yun Q, Wang AL, Lu Q. Transition Metal-Gallium Intermetallic Compounds with Tailored Active Site Configurations for Electrochemical Ammonia Synthesis. Angew Chem Int Ed Engl 2024; 63:e202409515. [PMID: 39228207 DOI: 10.1002/anie.202409515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/05/2024]
Abstract
Gallium (Ga) with a low melting point can serve as a unique metallic solvent in the synthesis of intermetallic compounds (IMCs). The negative formation enthalpy of transition metal-Ga IMCs endows them with high catalytic stability. Meanwhile, their tunable crystal structures offer the possibility to tailor the configurations of active sites to meet the requirements for specific catalytic applications. Herein, we present a general method for preparing a range of transition metal-Ga IMCs, including Co-Ga, Ni-Ga, Pt-Ga, Pd-Ga, and Rh-Ga IMCs. The structurally ordered CoGa IMCs with body-centered cubic (bcc) structure are uniformly dispersed on the nitrogen-doped reduced graphene oxide substrate (O-CoGa/NG) and deliver outstanding nitrate reduction reaction (NO3RR) performance, making them excellent catalysts to construct highly efficient rechargeable Zn-NO3 - battery. Operando studies and theoretical simulations demonstrate that the electron-rich environments around the Co atoms enhance the adsorption strength of *NO3 intermediate and simultaneously suppress the formation of hydrogen, thus improving the NO3RR activity and selectivity.
Collapse
Affiliation(s)
- Huaifang Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China
| | - Chaoqun Ma
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China
| | - Yi-Chi Wang
- Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiaojuan Zhu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Kaiyu Qu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Xiao Ma
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China
| | - Caihong He
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China
| | - Sumei Han
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China
| | - Ai-Hua Liu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China
| | - Qi Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wenbin Cao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wei Lin
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jing Xia
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lijie Zhu
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, 100192, China
| | - Lin Gu
- Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Qinbai Yun
- Department of Chemical and Biological Engineering & Energy Institute, The Hong Kong University of Science and Technology, Hong Kong, China
- Guangzhou HKUST Fok Ying Tung Research Institute, Nansha, Guangzhou, 511458, China
| | - An-Liang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Qipeng Lu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China
- State Key Laboratory of Nuclear Power Safety Technology and Equipment, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
14
|
Martínez-Galera AJ, Molina-Motos R, Gómez-Rodríguez JM. Unearthing Atomic Dynamics in Nanocatalysts. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60348-60355. [PMID: 39453444 PMCID: PMC11551902 DOI: 10.1021/acsami.4c14382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/25/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
Being able to access the rich atomic-scale phenomenology, which occurs during the reactions pathways, is a pressing need toward the pursued knowledge-based design of more efficient nanocatalysts, precisely tailored atom by atom for each reaction. However, to reach this goal of achieving maximum optimization, it is mandatory, first, to address how exposure to the experimental conditions, which will be needed to activate the processes, affects the internal configuration of the nanoparticles at the atomic level. In particular, the most critical experimental parameter is probably the temperature, which among other unwanted effects can induce nanocatalyst aggregation. This work highlights the high potential of experimental techniques such as the scanning probe microscopies, which are able to investigate matter in real space with atomic resolution, to reach the key challenge in heterogeneous catalysis of achieving access to the atomic-scale processes taking place in the nanocatalysts. Specifically, the phenomenology occurring in a nanoparticle system during annealing is studied with atomic precision by scanning tunneling microscopy. As a result, the existence of an internal atomic restructuring, occurring already at relatively low temperatures, within Ir nanoparticles grown over h-BN/Ru(0001) surfaces is demonstrated. Such restructuration, which reduces the undercoordination of the outer Ir atoms, is expected to have a significant effect on the reactivity of the nanoparticles. Going a step further, an internal restructuring of the nanoparticles during their involvement as catalysts has also been also identified.
Collapse
Affiliation(s)
- Antonio J. Martínez-Galera
- Departamento
de Física de Materiales, Universidad
Autónoma de Madrid, Madrid E-28049, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, Madrid E-28049, Spain
- Instituto
Nicolás Cabrera, Universidad Autónoma
de Madrid, Madrid E-28049, Spain
| | - Rocío Molina-Motos
- Departamento
de Física de Materiales, Universidad
Autónoma de Madrid, Madrid E-28049, Spain
| | - José M. Gómez-Rodríguez
- Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, Madrid E-28049, Spain
- Instituto
Nicolás Cabrera, Universidad Autónoma
de Madrid, Madrid E-28049, Spain
- Departamento
de Física de la Materia condensada, Universidad Autónoma de Madrid, Madrid E-28049, Spain
| |
Collapse
|
15
|
Yan L, Wang D, Li M, Lu R, Lu M, Li P, Wang K, Jin S, Wang Z, Tian S. Hexa-atom Pt Catalyst Fabricated by a Ligand Engineering Strategy for Efficient Hydrogen Oxidation Reaction. Angew Chem Int Ed Engl 2024; 63:e202410832. [PMID: 38975967 DOI: 10.1002/anie.202410832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 07/09/2024]
Abstract
Atomically precise supported nanocluster catalysts (APSNCs), which feature exact atomic composition, well-defined structures, and unique catalytic properties, offer an exceptional platform for understanding the structure-performance relationship at the atomic level. However, fabricating APSNCs with precisely controlled and uniform metal atom numbers, as well as maintaining a stable structure, remains a significant challenge due to uncontrollable dispersion and easy aggregation during synthetic and catalytic processes. Herein, we developed an effective ligand engineering strategy to construct a Pt6 nanocluster catalyst stabilized on oxidized carbon nanotubes (Pt6/OCNT). The structural analysis revealed that Pt6 nanoclusters in Pt6/OCNT were fully exposed and exhibited a planar structure. Furthermore, the obtained Pt6/OCNT exhibited outstanding acidic HOR performances with a high mass activity of 18.37 A ⋅ mgpt -1 along with excellent stability during a 24 h constant operation and good CO tolerance, surpassing those of the commercial Pt/C. Density functional theory (DFT) calculations demonstrated that the unique geometric and electronic structures of Pt6 nanoclusters on OCNT altered the hydrogen adsorption energies on catalytic sites and thus lowered the HOR theoretical overpotential. This work presents a new prospect for designing and synthesizing advanced APSNCs for efficient energy electrocatalysis.
Collapse
Affiliation(s)
- Li Yan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dunchao Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Mengjiao Li
- School of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Ruihu Lu
- School of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Mengge Lu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Panpan Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kaiyue Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shao Jin
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ziyun Wang
- School of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Shubo Tian
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
16
|
Ryu SH, Kim S, Lee H, Choi JH, Jeong H. Robust palladium oxide nano-cluster catalysts using atomic ions and strong interactions for high-performance methane oxidation. Nat Commun 2024; 15:8348. [PMID: 39333084 PMCID: PMC11436890 DOI: 10.1038/s41467-024-52698-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
Optimizing metal catalyst structures to achieve desired states is vital for efficient surface reactions, yet remains challenging due to the lack of well-defined precursor materials and weak metal-support interaction. Palladium-based catalysts, when not properly tailored for complete methane oxidation exhibit insufficient performance. Herein, we fabricate Pd oxide nano-clusters supported on SSZ-13 using atomic ions with strong metal-support interaction (SMSI). Steam treatment of Pd/SSZ-13 transforms Pd particles into ions and induces SMSI. Subsequently, CO reduction and O2 oxidation yield mildly sintered Pd oxide nano-clusters firmly anchored on extra-framework Alpenta sites of SSZ-13, facilitating superior activity. The robustness from SMSI prevents irreversible deactivation, and water-resistance by complete dehydration suppresses reversible degradation in wet conditions. This catalyst exhibits high performance in bench-scale reactions using monolith catalysts, ensuring applicability for industrial methane abatement. The results demonstrate that sequential treatment to Pd/SSZ-13 offers a promising approach for tailoring metal structures to enable high-performance methane oxidation.
Collapse
Affiliation(s)
- Seung-Hee Ryu
- Nano Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, Republic of Korea
- Department of Materials Science and Engineering, Pukyong National University, Busan, Republic of Korea
| | - Seungeun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Hyunjoo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Joon-Hwan Choi
- Nano Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, Republic of Korea
| | - Hojin Jeong
- Nano Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, Republic of Korea.
| |
Collapse
|
17
|
Yang X, Song W, Liao K, Wang X, Wang X, Zhang J, Wang H, Chen Y, Yan N, Han X, Ding J, Hu W. Cohesive energy discrepancy drives the fabrication of multimetallic atomically dispersed materials for hydrogen evolution reaction. Nat Commun 2024; 15:8216. [PMID: 39294161 PMCID: PMC11411064 DOI: 10.1038/s41467-024-52520-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 09/11/2024] [Indexed: 09/20/2024] Open
Abstract
Atomically dispersed single atom (SA) and atomic cluster (AC) metallic materials attract tremendous attentions in various fields. Expanding monometallic SA and AC to multimetallic SA/AC composites opens vast scientific and technological potentials yet exponentially increasing the synthesis difficulty. Here, we present a general energy-selective-clustering methodology to build the largest reported library of carbon supported bi-/multi-metallic SA/AC materials. The discrepancy in cohesive energy results into selective metal clustering thereby driving the symbiosis of multimetallic SA or/and AC. The library includes 23 bimetallic SA/AC composites, and expanded compositional space of 17 trimetallic, quinary-metallic, septenary-metallic SA/AC composites. We chose bimetallic M1SAM2AC to demonstrate the electrocatalysis utility. Unique decoupled active sites and inter-site synergy lead to 8/47 mV overpotential at 10 mA cm-2 for alkaline/acidic hydrogen evolution and over 1000 h durability in water electrolyzer. Moreover, delicate modulations towards composition and configuration yield high-performance catalysts for multiple electrocatalysis systems. Our work broadens the family of atomically dispersed materials from monometallic to multimetallic and provides a platform to explore the complex composition induced unconventional effects.
Collapse
Affiliation(s)
- Xinyi Yang
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Wanqing Song
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Kang Liao
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Xiaoyang Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Xin Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Jinfeng Zhang
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Haozhi Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, China
| | - Yanan Chen
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Ning Yan
- School of Physics and Technology, Wuhan University, Wuhan, China
| | - Xiaopeng Han
- School of Materials Science and Engineering, Tianjin University, Tianjin, China.
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, China.
| | - Jia Ding
- School of Materials Science and Engineering, Tianjin University, Tianjin, China.
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, China.
| | - Wenbin Hu
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, China
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, China
| |
Collapse
|
18
|
Zhang C, Wang ZH, Wang H, Liang JX, Zhu C, Li J. Ru 3@Mo 2CO 2 MXene single-cluster catalyst for highly efficient N 2-to-NH 3 conversion. Natl Sci Rev 2024; 11:nwae251. [PMID: 39257434 PMCID: PMC11385201 DOI: 10.1093/nsr/nwae251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 09/12/2024] Open
Abstract
Single-cluster catalysts (SCCs) representing structurally well-defined metal clusters anchored on support tend to exhibit tunable catalytic performance for complex redox reactions in heterogeneous catalysis. Here we report a theoretical study on an SCC of Ru3@Mo2CO2 MXene for N2-to-NH3 thermal conversion. Our results show that Ru3@Mo2CO2 can effectively activate N2 and promotes its conversion to NH3 through an association mechanism, in which the rate-determining step of NH2* + H* → NH3* has a low energy barrier of 1.29 eV. Notably, with the assistance of Mo2CO2 support, the positively charged Ru3 cluster active site can effectively adsorb and activate N2, leading to 0.74 |e| charge transfer from Ru3@Mo2CO2 to the adsorbed N2. The supported Ru3 also acts as an electron reservoir to regulate the charge transfer for various intermediate steps of ammonia synthesis. Microkinetic analysis shows that the turnover frequency of the N2-to-NH3 conversion on Ru3@Mo2CO2 is as high as 1.45 × 10-2 s-1 site-1 at a selected thermodynamic condition of 48 bar and 700 K, the performance of which even surpasses that of the Ru B5 site and Fe3/θ-Al2O3(010) reported before. Our work provides a theoretical understanding of the high stability and catalytic mechanism of Ru3@Mo2CO2 and guidance for further designing and fabricating MXene-based metal SCCs for ammonia synthesis under mild conditions.
Collapse
Affiliation(s)
- Cong Zhang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Ze-Hui Wang
- Shaanxi Key Laboratory of Catalysis, Institute of Theoretical and Computational Chemistry, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong 723000, China
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Haiyan Wang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Jin-Xia Liang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Chun Zhu
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun Li
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
- Fundamental Science Center of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| |
Collapse
|
19
|
Zhou C, Shi J, Dong Z, Zeng L, Chen Y, Han Y, Li L, Zhang W, Zhang Q, Gu L, Lv F, Luo M, Guo S. Oxophilic gallium single atoms bridged ruthenium clusters for practical anion-exchange membrane electrolyzer. Nat Commun 2024; 15:6741. [PMID: 39112466 PMCID: PMC11306551 DOI: 10.1038/s41467-024-51200-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
The development of highly efficient and durable alkaline hydrogen evolution reaction (HER) catalysts is crucial for achieving high-performance practical anion exchange membrane water electrolyzer (AEMWE) at ampere-level current density. Herein, we report a design concept by employing Ga single atoms as an electronic bridge to stabilize the Ru clusters for boosting alkaline HER performance in practical AEMWE. Experimental and theoretical results collectively reveal that the bridged Ga sites trigger strong metal-support interaction for the homogeneous distribution of Ru clusters with high density, as well as optimize the Ru-H bond strength due to the electron transfer between Ru and Ga for enhanced intrinsic HER activity. Moreover, the oxophilic Ga sites near the Ru clusters tend to adsorb the hydroxyl species and accelerate the water dissociation for sufficient proton supplement in an alkaline medium. The Ru-GaSA/N-C catalyst exhibits a low overpotential of 4 ± 1 mV (10 mA cm-2) and high mass activity of 9.3 ± 0.5 A mg-1Ru at -0.05 V vs RHE. In particular, the Ru-GaSA/N-C-based AEMWE in 1 M KOH delivers a voltage of only 1.74 V to reach an industrial current density of 1 A cm-2, and can steadily operate at 1 A cm-2 for more than 170 h.
Collapse
Affiliation(s)
- Chenhui Zhou
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Jia Shi
- Department of Physics, University of Central Florida, Orlando, FL, USA
| | - Zhaoqi Dong
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Lingyou Zeng
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Yan Chen
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Ying Han
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Lu Li
- School of Materials Science and Engineering, Peking University, Beijing, China
| | | | - Qinghua Zhang
- Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Lin Gu
- Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Fan Lv
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing, China.
| |
Collapse
|
20
|
Liu D, Xu L, Li S, Xu A, Sun Y, Liu T, Liu M, Wang H, Liu X, Yao T, Ding T. Atomically precise Ru-O-Ru clusters for enhanced water dissociation in alkaline hydrogen evolution. NANO RESEARCH 2024; 17:6993-7000. [DOI: 10.1007/s12274-024-6726-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 01/16/2025]
|
21
|
Shi BX, Wales DJ, Michaelides A, Myung CW. Going for Gold(-Standard): Attaining Coupled Cluster Accuracy in Oxide-Supported Nanoclusters. J Chem Theory Comput 2024; 20:5306-5316. [PMID: 38856017 DOI: 10.1021/acs.jctc.4c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The structure of oxide-supported metal nanoclusters plays an essential role in their sharply enhanced catalytic activity over that of bulk metals. Simulations provide the atomic-scale resolution needed to understand these systems. However, the sensitive mix of metal-metal and metal-support interactions, which govern their structure, puts stringent requirements on the method used, requiring calculations beyond standard density functional theory (DFT). The method of choice is coupled cluster theory [specifically CCSD(T)], but its computational cost has so far prevented its application to these systems. In this work, we showcase two approaches to make CCSD(T) accuracy readily achievable in oxide-supported nanoclusters. First, we leverage the SKZCAM protocol to provide the first benchmarks of oxide-supported nanoclusters, revealing that it is specifically metal-metal interactions that are challenging to capture with DFT. Second, we propose a CCSD(T) correction (ΔCC) to the metal-metal interaction errors in DFT, reaching accuracy comparable to that of the SKZCAM protocol at significantly lower cost. This approach forges a path toward studying larger systems at reliable accuracy, which we highlight by identifying a ground-state structure in agreement with experiments for Au20 on MgO, a challenging system where DFT models have yielded conflicting predictions.
Collapse
Affiliation(s)
- Benjamin X Shi
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - David J Wales
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Angelos Michaelides
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Chang Woo Myung
- Department of Energy Science, Sungkyunkwan University, Seobu-ro 2066, Suwon 16419, Korea
| |
Collapse
|
22
|
Tan R, Wang X, Kong Y, Ji Q, Zhan Q, Xiong Q, Mu X, Li L. Liberating C-H Bond Activation: Achieving 56% Quantum Efficiency in Photocatalytic Cyclohexane Dehydrogenation. J Am Chem Soc 2024; 146:14149-14156. [PMID: 38717984 DOI: 10.1021/jacs.4c02792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The technology of liquid organic hydrogen carriers presents great promise for large-scale hydrogen storage. Nevertheless, the activation of inert C(sp3)-H bonds in hydrocarbon carriers poses formidable challenges, resulting in a sluggish dehydrogenation process and necessitating high operating temperatures. Here, we break the shackles of C-H bond activation under visible light irradiation by fabricating subnanometer Pt clusters on defective Ce-Zr solid solutions. We achieved an unprecedented hydrogen production rate of 2601 mmol gcat.-1 h-1 (turnover frequency >50,000 molH2 molPt-1 h-1) from cyclohexane, surpassing the most advanced thermo- and photocatalysts. By optimizing the temperature-dominated hydrogen transfer process, achievable by harnessing hitherto wasted infrared light in sunlight, an astonishing 56% apparent quantum efficiency and a 5.2% solar-to-hydrogen efficiency are attained at 353 K. Our research stands as one of the most effective photocatalytic processes to date, holding profound practical significance in the utilization of solar energy and the exploitation of alkanes.
Collapse
Affiliation(s)
- Ruike Tan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Xinhui Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Yuxiang Kong
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Qing Ji
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Qingyun Zhan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Qingchuan Xiong
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Xiaoyue Mu
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Lu Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
23
|
Luo Z, Shehzad A. Advances in Naked Metal Clusters for Catalysis. Chemphyschem 2024; 25:e202300715. [PMID: 38450926 DOI: 10.1002/cphc.202300715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/08/2024]
Abstract
The properties of sub-nano metal clusters are governed by quantum confinement and their large surface-to-bulk ratios, atomically precise compositions and geometric/electronic structures. Advances in metal clusters lead to new opportunities in diverse aspects of sciences including chemo-sensing, bio-imaging, photochemistry, and catalysis. Naked metal clusters having synergic multiple active sites and coordinative unsaturation and tunable stability/activity enable researchers to design atomically precise metal catalysts with tailored catalysis for different reactions. Here we summarize the progress of ligand-free naked metal clusters for catalytic applications. It is anticipated that this review helps to better understand the chemistry of small metal clusters and facilitates the design and development of new catalysts for potential applications.
Collapse
Affiliation(s)
- Zhixun Luo
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aamir Shehzad
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
24
|
Shen J, Chen J, Qian Y, Wang X, Wang D, Pan H, Wang Y. Atomic Engineering of Single-Atom Nanozymes for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313406. [PMID: 38319004 DOI: 10.1002/adma.202313406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/24/2024] [Indexed: 02/07/2024]
Abstract
Single-atom nanozymes (SAzymes) showcase not only uniformly dispersed active sites but also meticulously engineered coordination structures. These intricate architectures bestow upon them an exceptional catalytic prowess, thereby captivating numerous minds and heralding a new era of possibilities in the biomedical landscape. Tuning the microstructure of SAzymes on the atomic scale is a key factor in designing targeted SAzymes with desirable functions. This review first discusses and summarizes three strategies for designing SAzymes and their impact on reactivity in biocatalysis. The effects of choices of carrier, different synthesis methods, coordination modulation of first/second shell, and the type and number of metal active centers on the enzyme-like catalytic activity are unraveled. Next, a first attempt is made to summarize the biological applications of SAzymes in tumor therapy, biosensing, antimicrobial, anti-inflammatory, and other biological applications from different mechanisms. Finally, how SAzymes are designed and regulated for further realization of diverse biological applications is reviewed and prospected. It is envisaged that the comprehensive review presented within this exegesis will furnish novel perspectives and profound revelations regarding the biomedical applications of SAzymes.
Collapse
Affiliation(s)
- Ji Shen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jian Chen
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Yuping Qian
- Center of Digital Dentistry/Department of Prosthodontics, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Xinqiang Wang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Dingsheng Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Yuguang Wang
- Center of Digital Dentistry/Department of Prosthodontics, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| |
Collapse
|
25
|
Ren Y, Wang J, Zhang M, Wang Y, Cao Y, Kim DH, Liu Y, Lin Z. Strategies Toward High Selectivity, Activity, and Stability of Single-Atom Catalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308213. [PMID: 38183335 DOI: 10.1002/smll.202308213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/07/2023] [Indexed: 01/08/2024]
Abstract
Single-atom catalysts (SACs) hold immense promise in facilitating the rational use of metal resources and achieving atomic economy due to their exceptional atom-utilization efficiency and distinct characteristics. Despite the growing interest in SACs, only limited reviews have holistically summarized their advancements centering on performance metrics. In this review, first, a thorough overview on the research progress in SACs is presented from a performance perspective and the strategies, advancements, and intriguing approaches employed to enhance the critical attributes in SACs are discussed. Subsequently, a comprehensive summary and critical analysis of the electrochemical applications of SACs are provided, with a particular focus on their efficacy in the oxygen reduction reaction , oxygen evolution reaction, hydrogen evolution reaction , CO2 reduction reaction, and N2 reduction reaction . Finally, the outline future research directions on SACs by concentrating on performance-driven investigation, where potential areas for improvement are identified and promising avenues for further study are highlighted, addressing challenges to unlock the full potential of SACs as high-performance catalysts.
Collapse
Affiliation(s)
- Yujing Ren
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jinyong Wang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Mingyue Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yuqing Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yuan Cao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Dong Ha Kim
- Department of Chemistry and NanoScience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Yan Liu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, 627833, Singapore
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
- Department of Chemistry and NanoScience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| |
Collapse
|
26
|
Wang Q, Sang K, Liu C, Zhang Z, Chen W, Ji T, Li L, Lian C, Qian G, Zhang J, Zhou X, Yuan W, Duan X. Nanoparticles as an antidote for poisoned gold single-atom catalysts in sustainable propylene epoxidation. Nat Commun 2024; 15:3249. [PMID: 38627484 PMCID: PMC11021464 DOI: 10.1038/s41467-024-47538-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/28/2024] [Indexed: 04/19/2024] Open
Abstract
The development of sustainable and anti-poisoning single-atom catalysts (SACs) is essential for advancing their research from laboratory to industry. Here, we present a proof-of-concept study on the poisoning of Au SACs, and the antidote of Au nanoparticles (NPs), with trace addition shown to reinforce and sustain propylene epoxidation. Multiple characterizations, kinetics investigations, and multiscale simulations reveal that Au SACs display remarkable epoxidation activity at a low propylene coverage, but become poisoned at higher coverages. Interestingly, Au NPs can synergistically cooperate with Au SACs by providing distinct active sites required for H2/O2 and C3H6 activations, as well as hydroperoxyl radical to restore poisoned SACs. The difference in reaction order between C3H6 and H2 (nC3H6-nH2) is identified as the descriptor for establishing the volcano curves, which can be fine-tuned by the intimacy and composition of SACs and NPs to achieve a rate-matching scenario for the formation, transfer, and consumption of hydroperoxyl. Consequently, only trace addition of Au NPs antidote (0.3% ratio of SACs) stimulates significant improvements in propylene oxide formation rate, selectivity, and H2 efficiency compared to SACs alone, offering a 56-fold, 3-fold, and 22-fold increase, respectively, whose performances can be maintained for 150 h.
Collapse
Affiliation(s)
- Qianhong Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Keng Sang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Changwei Liu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zhihua Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wenyao Chen
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Te Ji
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Shanghai, 201210, China
| | - Lina Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Shanghai, 201210, China
| | - Cheng Lian
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Gang Qian
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jing Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Weikang Yuan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xuezhi Duan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
27
|
Ospina-Acevedo F, Albiter LA, Bailey KO, Godínez-Salomón JF, Rhodes CP, Balbuena PB. Catalytic Activity and Electrochemical Stability of Ru 1-xM xO 2 (M = Zr, Nb, Ta): Computational and Experimental Study of the Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16373-16398. [PMID: 38502743 PMCID: PMC10995909 DOI: 10.1021/acsami.4c01408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/05/2024] [Indexed: 03/21/2024]
Abstract
We use computations and experiments to determine the effect of substituting zirconium, niobium, and tantalum within rutile RuO2 on the structure, oxygen evolution reaction (OER) mechanism and activity, and electrochemical stability. Calculated electronic structures altered by Zr, Nb, and Ta show surface regions of electron density depletion and accumulation, along with anisotropic lattice parameter shifts dependent on the substitution site, substituent, and concentration. Consistent with theory, X-ray photoelectron spectroscopy experiments show shifts in binding energies of O-2s, O-2p, and Ru-4d peaks due to the substituents. Experimentally, the substituted materials showed the presence of two phases with a majority phase that contains the metal substituent within the rutile phase and a second, smaller-percentage RuO2 phase. Our experimental analysis of OER activity shows Zr, Nb, and Ta substituents at 12.5 atom % induce lower activity relative to RuO2, which agrees with computing the average of all sites; however, Zr and Ta substitution at specific sites yields higher theoretical OER activity than RuO2, with Zr substitution suggesting an alternative OER mechanism. Metal dissolution predictions show the involvement of cooperative interactions among multiple surface sites and the electrolyte. Zr substitution at specific sites increases activation barriers for Ru dissolution, however, with Zr surface dissolution rates comparable to those of Ru. Experimental OER stability analysis shows lower Ru dissolution from synthesized RuO2 and Zr-substituted RuO2 compared to commercial RuO2 and comparable amounts of Zr and Ru dissolved from Zr-substituted RuO2, aligned with our calculations.
Collapse
Affiliation(s)
- Francisco Ospina-Acevedo
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Luis A. Albiter
- Materials
Science, Engineering and Commercialization Program, Texas State University, San Marcos, Texas 78666, United States
| | - Kathleen O. Bailey
- Department
of Chemistry and Biochemistry, Texas State
University, San Marcos, Texas 78666, United States
| | | | - Christopher P. Rhodes
- Materials
Science, Engineering and Commercialization Program, Texas State University, San Marcos, Texas 78666, United States
- Department
of Chemistry and Biochemistry, Texas State
University, San Marcos, Texas 78666, United States
| | - Perla B. Balbuena
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
28
|
Zhang Z, Ma X, Li Y, Ma N, Wang M, Liu W, Peng J, Liu Y, Li Y. Heterovalent Metal Pair Sites on Metal-Organic Framework Ordered Macropores for Multimolecular Co-Activation. J Am Chem Soc 2024; 146:8425-8434. [PMID: 38488481 DOI: 10.1021/jacs.3c14296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The precise design of catalytic metal centers with multiple chemical states to facilitate sophisticated reactions involving multimolecular activation is highly desirable but challenging. Herein, we report an ordered macroporous catalyst with heterovalent metal pair (HMP) sites comprising CuII-CuI on the basis of a microporous metal-organic framework (MOF) system. This macroporous HMP catalyst with proximity heterovalent dual copper sites, whose distance is controlled to ∼2.6 Å, on macropore surface exhibits a co-activation behavior of ethanol at CuII and alkyne at CuI, and avoids microporous restriction, thereby promoting additive-free alkyne hydroboration reaction. The desired yield enhances dramatically compared with the pristine MOF and ordered macroporous MOF both with solely isovalent CuII-CuII sites. Density functional theory calculations reveal that the Cu-HMP sites can stabilize the Bpin-CuII-CuI-alkyne intermediate and facilitate C-B bond formation, resulting in a smooth alkyne hydroboration process. This work provides new perspectives to design multimolecular activation catalysts for sophisticated matter transformations.
Collapse
Affiliation(s)
- Zhong Zhang
- School of Chemistry, Dalian University of Technology Dalian 116024, China
| | - Xujiao Ma
- School of Chemistry, Dalian University of Technology Dalian 116024, China
| | - Yameng Li
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Nana Ma
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Ming Wang
- School of Chemistry, Dalian University of Technology Dalian 116024, China
| | - Wei Liu
- School of Chemistry, Dalian University of Technology Dalian 116024, China
| | - Jiahui Peng
- School of Chemistry, Dalian University of Technology Dalian 116024, China
| | - Yiwei Liu
- School of Chemistry, Dalian University of Technology Dalian 116024, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
29
|
Chen X, Lv H, Wu X. Electrocatalytic Mechanism and Sabatier Principle in C 2N-Supported Atomically Dispersed Catalysts for the Sulfur Reduction Reaction in Lithium-Sulfur Batteries. J Phys Chem Lett 2024:3425-3433. [PMID: 38506831 DOI: 10.1021/acs.jpclett.4c00474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The sluggish kinetics of the sulfur reduction reaction (SRR) impedes the practical application of lithium-sulfur batteries (LSBs). Electrocatalysts are necessary to expedite the conversion of polysulfides. Here, we systematically investigate the chemical mechanisms and size dependence of catalytic activities toward the SRR from Li2S4 to Li2S on single-, double-, and triple-atom catalysts supported on C2N (Mn@C2N, where M is a 3d transitional metal and n = 1-3) as model systems by using first-principles calculations and a comprehensive electrocatalytic model. Our results reveal that the adsorption strength of the LiS• intermediate is identified as an optimal descriptor for catalytic activity. M1@C2N exhibits superior stability and exceptional activity compared to those of the other two catalyst types. Cu1@C2N exhibits the lowest overpotential of 0.426 V. Li embedding or a prelithiation strategy verifies the therein Sabatier principle. This work emphasizes the precise control of the active site structure and microenvironment in catalytic SRR and offers guidance for the design of electrocatalysts for metal-sulfur batteries.
Collapse
Affiliation(s)
- Xingjia Chen
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Material Sciences, CAS Key Laboratory of Materials for Energy Conversion, and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Haifeng Lv
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Material Sciences, CAS Key Laboratory of Materials for Energy Conversion, and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaojun Wu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Material Sciences, CAS Key Laboratory of Materials for Energy Conversion, and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
30
|
Zhang M, Zhang S, Guo X, Xun Z, Wang L, Liu Y, Mou W, Qin T, Xu Z, Wang L, Chen X, Liu B, Peng X. Fast, portable, selective, and ratiometric determination of ochratoxin A (OTA) by a fluorescent supramolecular sensor. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133104. [PMID: 38071774 DOI: 10.1016/j.jhazmat.2023.133104] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/16/2023] [Accepted: 11/25/2023] [Indexed: 02/08/2024]
Abstract
Ochratoxin A (OTA), a mycotoxin found in various food items, possesses significant health risks due to its carcinogenic and toxic properties. Thus, detecting OTA is crucial to ensure food safety. Among the reported analytical methods, there has yet to be one that achieves fast, selective, and portable detection of OTA. In this study, we explore a novel supramolecular sensor, DOCE@ALB, utilizing human serum albumin as the host and a flavonoid fluorescent indicator as the guest. On the basis of indicator displacement assay, this sensor boasts an ultra-fast response time of just 5 s, high sensitivity with a limit of detection at 0.39 ppb, exceptional selectivity, and a noticeable ratiometric fluorescence response to OTA. This discernible color change and portability of the sensor make it suitable for on-site OTA detection in real food samples, including flour, beer, and wine, simply using a smartphone. In comparison to previously reported methods, our approach has showcased notable advantages in both response time and portability, addressing a critical need for food safety and regulatory compliance.
Collapse
Affiliation(s)
- Mingyuan Zhang
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, China
| | - Shiwei Zhang
- Shenzhen Academy of Metrology and Quality Inspection, Shenzhen 518060, China
| | - Xindong Guo
- Guangzhou Quality Supervision and Testing Institute, Guangzhou City Research Center of Risk Dynamic Detection and Early Warning for Food Safety, Guangzhou City, Key Laboratory of Detection Technology for Food Safety, Guangzhou 511447, China
| | - Zhiqing Xun
- Guangzhou Quality Supervision and Testing Institute, Guangzhou City Research Center of Risk Dynamic Detection and Early Warning for Food Safety, Guangzhou City, Key Laboratory of Detection Technology for Food Safety, Guangzhou 511447, China
| | - Lingling Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yamin Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Weijie Mou
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, China
| | - Tianyi Qin
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Zhongyong Xu
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, China
| | - Lei Wang
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, China
| | - Xiaoqiang Chen
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, China
| | - Bin Liu
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, China.
| | - Xiaojun Peng
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
31
|
Gallego M, Corma A, Boronat M. An alternative catalytic cycle for selective methane oxidation to methanol with Cu clusters in zeolites. Phys Chem Chem Phys 2024; 26:5914-5921. [PMID: 38293901 DOI: 10.1039/d3cp05802f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The partial oxidation of methane to methanol catalyzed by Cu-exchanged zeolites involves at present a three-step procedure that requires changing reaction conditions along the catalytic cycle. In this work we present an alternative catalytic cycle for selective methane conversion to methanol using as active species small Cu5 clusters supported on CHA zeolite. Periodic DFT calculations show that molecular O2 is easily activated on Cu5 clusters producing bi-coordinated O atoms able to dissociate homolytically a CH bond from CH4 and to react with the radical-like non-adsorbed methyl intermediate formed producing methanol, while competitive overoxidation to CO2 is energetically disfavored. The present mechanistic study opens a new avenue to design catalytic materials based on their ability to stabilize radical species.
Collapse
Affiliation(s)
- Mario Gallego
- Instituto de Tecnología Química, Universitat Politècnica de València - Consejo Superior de Investigaciones Científicas, Av de los Naranjos s/n, 46022 Valencia, Spain.
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politècnica de València - Consejo Superior de Investigaciones Científicas, Av de los Naranjos s/n, 46022 Valencia, Spain.
| | - Mercedes Boronat
- Instituto de Tecnología Química, Universitat Politècnica de València - Consejo Superior de Investigaciones Científicas, Av de los Naranjos s/n, 46022 Valencia, Spain.
| |
Collapse
|
32
|
Wijerathne A, Sawyer A, Daya R, Paolucci C. Competition between Mononuclear and Binuclear Copper Sites across Different Zeolite Topologies. JACS AU 2024; 4:197-215. [PMID: 38274255 PMCID: PMC10806779 DOI: 10.1021/jacsau.3c00632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024]
Abstract
A key challenge for metal-exchanged zeolites is the determination of metal cation speciation and nuclearity under synthesis and reaction conditions. Copper-exchanged zeolites, which are widely used in automotive emissions control and potential catalysts for partial methane oxidation, have in particular evidenced a wide variety of Cu structures that are observed to change with exposure conditions, zeolite composition, and topology. Here, we develop predictive models for Cu cation speciation and nuclearity in CHA, MOR, BEA, AFX, and FER zeolite topologies using interatomic potentials, quantum chemical calculations, and Monte Carlo simulations to interrogate this vast configurational and compositional space. Model predictions are used to rationalize experimentally observed differences between Cu-zeolites in a wide-body of literature, including nuclearity populations, structural variations, and methanol per Cu yields. Our results show that both topological features and commonly observed Al-siting biases in MOR zeolites increase the population of binuclear Cu sites, explaining the small population of mononuclear Cu sites observed in these materials relative to other zeolites such as CHA and BEA. Finally, we used a machine learning classification model to determine the preference to form mononuclear or binuclear Cu sites at different Al configurations in 200 zeolites in the international zeolite database. Model results reveal several zeolite topologies at extreme ends of the mononuclear vs binuclear spectrum, highlighting synthetic options for realization of zeolites with strong Cu nuclearity preferences.
Collapse
Affiliation(s)
- Asanka Wijerathne
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Allison Sawyer
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Rohil Daya
- Cummins
Inc, Columbus, Indiana 47201, United States
| | - Christopher Paolucci
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| |
Collapse
|
33
|
Song W, Xiao C, Ding J, Huang Z, Yang X, Zhang T, Mitlin D, Hu W. Review of Carbon Support Coordination Environments for Single Metal Atom Electrocatalysts (SACS). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301477. [PMID: 37078970 DOI: 10.1002/adma.202301477] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/08/2023] [Indexed: 05/03/2023]
Abstract
This topical review focuses on the distinct role of carbon support coordination environment of single-atom catalysts (SACs) for electrocatalysis. The article begins with an overview of atomic coordination configurations in SACs, including a discussion of the advanced characterization techniques and simulation used for understanding the active sites. A summary of key electrocatalysis applications is then provided. These processes are oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), nitrogen reduction reaction (NRR), and carbon dioxide reduction reaction (CO2 RR). The review then shifts to modulation of the metal atom-carbon coordination environments, focusing on nitrogen and other non-metal coordination through modulation at the first coordination shell and modulation in the second and higher coordination shells. Representative case studies are provided, starting with the classic four-nitrogen-coordinated single metal atom (MN4 ) based SACs. Bimetallic coordination models including homo-paired and hetero-paired active sites are also discussed, being categorized as emerging approaches. The theme of the discussions is the correlation between synthesis methods for selective doping, the carbon structure-electron configuration changes associated with the doping, the analytical techniques used to ascertain these changes, and the resultant electrocatalysis performance. Critical unanswered questions as well as promising underexplored research directions are identified.
Collapse
Affiliation(s)
- Wanqing Song
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Caixia Xiao
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jia Ding
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Zechuan Huang
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xinyi Yang
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Tao Zhang
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - David Mitlin
- Materials Science Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712-1591, USA
| | - Wenbin Hu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
34
|
Xiao Y, Hu S, Miao Y, Gong F, Chen J, Wu M, Liu W, Chen S. Recent Progress in Hot Spot Regulated Strategies for Catalysts Applied in Li-CO 2 Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305009. [PMID: 37641184 DOI: 10.1002/smll.202305009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/23/2023] [Indexed: 08/31/2023]
Abstract
As a high energy density power system, lithium-carbon dioxide (Li-CO2 ) batteries play an important role in addressing the fossil fuel crisis issues and alleviating the greenhouse effect. However, the sluggish transformation kinetic of CO2 and the difficult decomposition of discharge products impede the achievement of large capacity, small overpotential, and long life span of the batteries, which require exploring efficient catalysts to resolve these problems. In this review, the main focus is on the hot spot regulation strategies of the catalysts, which include the modulation of the active sites, the designing of microstructure, and the construction of composition. The recent progress of promising catalysis with hot spot regulated strategies is systematically addressed. Critical challenges are also presented and perspectives to provide useful guidance for the rational design of highly efficient catalysts for practical advanced Li-CO2 batteries are proposed.
Collapse
Affiliation(s)
- Ying Xiao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shilin Hu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yue Miao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Fenglian Gong
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jun Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Mingxuan Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wei Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shimou Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
35
|
Li X, Mitchell S, Fang Y, Li J, Perez-Ramirez J, Lu J. Advances in heterogeneous single-cluster catalysis. Nat Rev Chem 2023; 7:754-767. [PMID: 37814032 DOI: 10.1038/s41570-023-00540-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 10/11/2023]
Abstract
Heterogeneous single-cluster catalysts (SCCs) comprising atomically precise and isolated metal clusters stabilized on appropriately chosen supports offer exciting prospects for enabling novel chemical reactions owing to their broad structural diversity with unparalled opportunities for engineering their properties. Although the pioneering work revealed intriguing performance trends of size-selected metal clusters deposited on supports, synthetic and analytical challenges hindered a thorough understanding of surface chemistry under realistic conditions. This Review underscores the importance of considering the cluster environment in SCCs, encompassing the development of robust metal-support interactions, precise control over the ligand sphere, the influence of reaction media and dynamic behaviour, to uncover new reactivities. Through examples, we illustrate the criticality of tailoring the entire catalytic ensemble in SCCs to achieve stable and selective performance with practically relevant metal coverages. This expansion in application scope transcends from model reactions to complex and technically relevant reactions. Furthermore, we provide a perspective on the opportunities and future directions for SCC design within this rapidly evolving field.
Collapse
Affiliation(s)
- Xinzhe Li
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Sharon Mitchell
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Yiyun Fang
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Jun Li
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing, China.
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, China.
| | - Javier Perez-Ramirez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
36
|
Fernandes GFS, Machado FBC, Ferrão LFA. Electronic Structure of Small Isolated and Supported Manganese Oxide Clusters. J Phys Chem A 2023; 127:8773-8781. [PMID: 37839039 DOI: 10.1021/acs.jpca.3c01644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
In the present work, possible molecular models of the isolated manganese oxides and supported Mn3Ox/Al2O3 structures were built based on small clusters of passivated MnOx. The support was represented as a simplified model of the alumina tetramer cluster based on small fragments of AlOxHy. Combinations of MnOxHy and AlOxHy clusters were made to form both the isolated and supported manganese oxides clusters. The electronic structure of these systems was characterized by ab initio methods (DFT and CASPT2). It was observed that the vertical excitation energy of the isolated and supported Mn3OxHy clusters is significantly lower than that of the alumina cluster model, while both the isolated and supported Mn3OxHy wave function characters are qualitatively similar with respect to the ground state and electronic transition processes, suggesting that the alumina cluster behaves as an inert support, since there is little contribution of this component in the description of the low-lying electronic states. The present study also reports for the first time the spectroscopic parameters of several clusters containing the manganese transition metal atom.
Collapse
Affiliation(s)
- Gabriel F S Fernandes
- Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos,SP 12228-900, Brasil
| | - Francisco B C Machado
- Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos,SP 12228-900, Brasil
| | - Luiz F A Ferrão
- Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos,SP 12228-900, Brasil
| |
Collapse
|
37
|
Zeng L, Zhao Z, Huang Q, Zhou C, Chen W, Wang K, Li M, Lin F, Luo H, Gu Y, Li L, Zhang S, Lv F, Lu G, Luo M, Guo S. Single-Atom Cr-N 4 Sites with High Oxophilicity Interfaced with Pt Atomic Clusters for Practical Alkaline Hydrogen Evolution Catalysis. J Am Chem Soc 2023; 145:21432-21441. [PMID: 37728051 DOI: 10.1021/jacs.3c06863] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Although dispersing Pt atomic clusters (ACs) on a conducting support is a promising way to minimize the Pt amount required in hydrogen evolution reaction (HER), the catalytic mass activity and durability of Pt ACs are often unsatisfactory for alkaline HER due to their unfavorable water dissociation and challenges in stabilizing them against agglomeration and detachment. Herein, we report a class of single-atom Cr-N4 sites with high oxophilicity interfaced with Pt ACs on mesoporous carbon for achieving a highly active and stable alkaline HER in an anion-exchange-membrane water electrolyzer (AEMWE). The as-made catalyst achieves the highest reported Pt mass activity (37.6 times higher than commercial Pt/C) and outstanding operational stability. Experimental and theoretical studies elucidate that the formation of a unique Pt-Cr quasi-covalent bonding interaction at the interface of Cr-N4 sites and Pt ACs effectively suppresses the migration and thermal vibration of Pt atoms to stabilize Pt ACs and contributes to the greatly enhanced catalytic stability. Moreover, oxophilic Cr-N4 sites adjacent to Pt ACs with favorable adsorption of hydroxyl species facilitate nearly barrierless water dissociation and thus enhance the HER activity. An AEMWE using this catalyst (with only 50 μgPt cm-2) can operate stably at an industrial-level current density of 500 mA cm-2 at 1.8 V for >100 h with a small degradation rate of 90 μV h-1.
Collapse
Affiliation(s)
- Lingyou Zeng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Zhonglong Zhao
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Qizheng Huang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Chenhui Zhou
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Wenxing Chen
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Kai Wang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Menggang Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Fangxu Lin
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Heng Luo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yu Gu
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lu Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shipeng Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Fan Lv
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Gang Lu
- Department of Physics and Astronomy, California State University Northridge, Northridge, California 91330, United States
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| |
Collapse
|
38
|
Wang J, Rozycki MT, Tong X, White MG. Aggregation of Size-Selected Oxide Clusters Deposited onto Au(111). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13481-13492. [PMID: 37695694 DOI: 10.1021/acs.langmuir.3c01220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Kinetic Monte Carlo (kMC) simulations along with density functional theory (DFT) calculations were used to investigate the aggregation of size-selected Nb3Oy (y = 5, 6, 7) clusters deposited onto the Au(111) surface. Recent STM experiments showed that the cluster binding sites and sizes of the cluster assemblies on the Nb3Oy/Au(111) surfaces strongly depend on the stoichiometry of the clusters, i.e., the oxygen-to-niobium ratio. To better understand the origins of these differences, kMC simulations of the nucleation and growth of cluster assemblies were performed using energy barriers for diffusion and intercluster interactions estimated from DFT calculations of cluster binding and dimerization energies, respectively. Comparisons of the kMC simulations with STM images of the as-deposited Nb3Oy/Au(111) surfaces at RT and after high temperature annealing were used to further optimize the energetics and gauge the importance of nearest neighbor interactions. The kMC simulations demonstrate that the assembly of Nb3Oy clusters on Au(111) are largely controlled by the magnitude of the barriers for diffusion and interparticle-bond formation, while changes at higher temperatures are sensitive to the binding energies between nearest neighbors. Simulations for the Nb3O5 and Nb3O6 clusters, which exhibit smaller cluster assembly sizes in STM, required larger diffusion barriers as well as different barriers for interparticle binding, which reflected differences in DFT calculated dimerization energies. The results demonstrate the effectiveness of combined DFT and kMC calculations for understanding how the stoichiometry affects the aggregation of small oxide clusters on a metal surface.
Collapse
Affiliation(s)
- Jason Wang
- Department of Chemistry, Stony Book University, Stony Brook, New York 11794, United States
| | - Matthew Toledo Rozycki
- Department of Chemistry, Stony Book University, Stony Brook, New York 11794, United States
| | - Xiao Tong
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Michael G White
- Department of Chemistry, Stony Book University, Stony Brook, New York 11794, United States
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
39
|
Adhikari A, Chhetri K, Rai R, Acharya D, Kunwar J, Bhattarai RM, Jha RK, Kandel D, Kim HY, Kandel MR. (Fe-Co-Ni-Zn)-Based Metal-Organic Framework-Derived Electrocatalyst for Zinc-Air Batteries. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2612. [PMID: 37764640 PMCID: PMC10534837 DOI: 10.3390/nano13182612] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Zinc-air batteries (ZABs) have garnered significant interest as a viable substitute for lithium-ion batteries (LIBs), primarily due to their impressive energy density and low cost. However, the efficacy of zinc-air batteries is heavily dependent on electrocatalysts, which play a vital role in enhancing reaction efficiency and stability. This scholarly review article highlights the crucial significance of electrocatalysts in zinc-air batteries and explores the rationale behind employing Fe-Co-Ni-Zn-based metal-organic framework (MOF)-derived hybrid materials as potential electrocatalysts. These MOF-derived electrocatalysts offer advantages such as abundancy, high catalytic activity, tunability, and structural stability. Various synthesis methods and characterization techniques are employed to optimize the properties of MOF-derived electrocatalysts. Such electrocatalysts exhibit excellent catalytic activity, stability, and selectivity, making them suitable for applications in ZABs. Furthermore, they demonstrate notable capabilities in the realm of ZABs, encompassing elevated energy density, efficacy, and prolonged longevity. It is imperative to continue extensively researching and developing this area to propel the advancement of ZAB technology forward and pave the way for its practical implementation across diverse fields.
Collapse
Affiliation(s)
- Anup Adhikari
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal; (A.A.); (J.K.)
| | - Kisan Chhetri
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea; (D.A.); (H.Y.K.)
| | - Rajan Rai
- Department of Chemistry, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu 44618, Nepal;
| | - Debendra Acharya
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea; (D.A.); (H.Y.K.)
| | - Jyotendra Kunwar
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal; (A.A.); (J.K.)
| | - Roshan Mangal Bhattarai
- Department of Chemical Engineering, Jeju National University, Jeju 690-756, Republic of Korea;
| | | | | | - Hak Yong Kim
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea; (D.A.); (H.Y.K.)
| | - Mani Ram Kandel
- Department of Chemistry, Amrit Campus, Tribhuvan University, Kathmandu 44613, Nepal
| |
Collapse
|
40
|
Han YC, Yi J, Pang B, Wang N, Li XC, Yao T, Novoselov KS, Tian ZQ. Graphene-confined ultrafast radiant heating for high-loading subnanometer metal cluster catalysts. Natl Sci Rev 2023; 10:nwad081. [PMID: 37404853 PMCID: PMC10317146 DOI: 10.1093/nsr/nwad081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 07/06/2023] Open
Abstract
Thermally activated ultrafast diffusion, collision and combination of metal atoms comprise the fundamental processes of synthesizing burgeoning subnanometer metal clusters for diverse applications. However, so far, no method has allowed the kinetically controllable synthesis of subnanometer metal clusters without compromising metal loading. Herein, we have developed, for the first time, a graphene-confined ultrafast radiant heating (GCURH) method for the synthesis of high-loading metal cluster catalysts in microseconds, where the impermeable and flexible graphene acts as a diffusion-constrained nanoreactor for high-temperature reactions. Originating from graphene-mediated ultrafast and efficient laser-to-thermal conversion, the GCURH method is capable of providing a record-high heating and cooling rate of ∼109°C/s and a peak temperature above 2000°C, and the diffusion of thermally activated atoms is spatially limited within the confinement of the graphene nanoreactor. As a result, due to the kinetics-dominant and diffusion-constrained condition provided by GCURH, subnanometer Co cluster catalysts with high metal loading up to 27.1 wt% have been synthesized by pyrolyzing a Co-based metal-organic framework (MOF) in microseconds, representing one of the highest size-loading combinations and the quickest rate for MOF pyrolysis in the reported literature. The obtained Co cluster catalyst not only exhibits an extraordinary activity similar to that of most modern multicomponent noble metal counterparts in the electrocatalytic oxygen evolution reaction, but is also highly convenient for catalyst recycling and refining due to its single metal component. Such a novel GCURH technique paves the way for the kinetically regulated, limited diffusion distance of thermally activated atoms, which in turn provides enormous opportunities for the development of sophisticated and environmentally sustainable metal cluster catalysts.
Collapse
Affiliation(s)
| | | | | | - Ning Wang
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Xu-Cheng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Graphene Industry and Engineering Research Institute, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Tao Yao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | | | | |
Collapse
|
41
|
Liu S, Jiang Y, Liu P, Yi Y, Hou D, Li Y, Liang X, Wang Y, Li Z, He J, Rong H, Wang D, Zhang J. Single-Atom Gadolinium Nano-Contrast Agents with High Stability for Tumor T1 Magnetic Resonance Imaging. ACS NANO 2023; 17:8053-8063. [PMID: 37092888 DOI: 10.1021/acsnano.2c09664] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Gadolinium chelates for tumor magnetic resonance imaging (MRI) face challenges such as inadequate sensitivity, lack of selectivity, and risk of Gd leakage. This study presents a single-atom Gd nano-contrast agent (Gd-SA) that enhances tumor MRI. Isolated Gd atoms coordinated by six N atoms and two O atoms are atomically dispersed on a hollow carbon nanosphere, allowing the maximum utilization of Gd atoms with reduced risk of toxic Gd ion leakage. Owning to the large surface area and fast exchange of relaxed water molecules, Gd-SA shows excellent T1-weighted magnetic resonance enhancement with a r1 value of 11.05 mM-1 s-1 at 7 T, which is 3.6 times that of the commercial gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA). In vivo MRI results show that the Gd-SA has a higher spatial resolution and a wider imaging time window for tumors than Gd-DTPA, with low hematological, hepatic, and nephric toxicities. These advantages demonstrate the great potential of single-atom Gd-based nanomaterials as safe, efficient, and long-term MRI contrast agents for cancer diagnosis.
Collapse
Affiliation(s)
- Shange Liu
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuxing Jiang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Pengcheng Liu
- Tianjin University of Technology, Tianjin 300384, China
| | - Yu Yi
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Dayong Hou
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - You Li
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiao Liang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yifan Wang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhi Li
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jia He
- Tianjin University of Technology, Tianjin 300384, China
| | - Hongpan Rong
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiatao Zhang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
42
|
Zhang J, Pan Y, Feng D, Cui L, Zhao S, Hu J, Wang S, Qin Y. Mechanistic Insight into the Synergy between Platinum Single Atom and Cluster Dual Active Sites Boosting Photocatalytic Hydrogen Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300902. [PMID: 36977472 DOI: 10.1002/adma.202300902] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/06/2023] [Indexed: 06/18/2023]
Abstract
In the energy transition context, the design and synthesis of high-performance Pt-based photocatalysts with low Pt content and ultrahigh atom-utilization efficiency for hydrogen production are essential. Herein, a facile approach for decorating atomically dispersed Pt cocatalysts having single-atom (SA) and atomic cluster (C) dual active sites on CdS nanorods (PtSA+C /CdS) via atomic layer deposition is reported. The size of the cocatalyst and the spatial intimacy of the cocatalyst active sites are precisely engineered at the atomic scale. The PtSA+C /CdS photocatalysts show the optimized photocatalytic hydrogen evolution activity, achieving a reaction rate of 80.4 mmol h-1 g-1 , which is 1.6- and 7.3-fold higher than those of the PtSA /CdS and PtNP /CdS photocatalysts, respectively. Thorough characterization and theoretical calculations reveal that the enhanced photocatalytic activity is due to a remarkable synergy between SAs and atomic clusters as dual active sites, which are responsible for water adsorption-dissociation and hydrogen desorption, respectively. A similar synergetic effect is found in a representative Pt/TiO2 system, indicating the generality of the strategy. This study demonstrates the significance of the synergy between active sites for enhancing the reaction efficiency, opening a new avenue for the rational design of atomically dispersed photocatalysts with high efficiency.
Collapse
Affiliation(s)
- Jiankang Zhang
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Yukun Pan
- College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, P. R. China
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China
| | - Dan Feng
- Analytical & Testing Center, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Lin Cui
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Shichao Zhao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China
| | - Jinlong Hu
- Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P. R. China
| | - Sen Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China
| | - Yong Qin
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China
| |
Collapse
|
43
|
Wu Z, Yang P, Li Q, Xiao W, Li Z, Xu G, Liu F, Jia B, Ma T, Feng S, Wang L. Microwave Synthesis of Pt Clusters on Black TiO 2 with Abundant Oxygen Vacancies for Efficient Acidic Electrocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2023; 62:e202300406. [PMID: 36754865 DOI: 10.1002/anie.202300406] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/10/2023]
Abstract
Oxygen vacancies-enriched black TiO2 is one promising support for enhancing hydrogen evolution reaction (HER). Herein, oxygen vacancies enriched black TiO2 supported sub-nanometer Pt clusters (Pt/TiO2 -OV ) with metal support interactions is designed through solvent-free microwave and following low-temperature electroless approach for the first time. High-temperature and strong reductants are not required and then can avoid the aggregation of decorated Pt species. Experimental and theoretical calculation verify that the created oxygen vacancies and Pt clusters exhibit synergistic effects for optimizing the reaction kinetics. Based on it, Pt/TiO2 -OV presents remarkable electrocatalytic performance with 18 mV to achieve 10 mA cm-2 coupled with small Tafel slope of 12 mV dec-1 . This work provides quick synthetic strategy for preparing black titanium dioxide based nanomaterials.
Collapse
Affiliation(s)
- Zexing Wu
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Pengfei Yang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Qichang Li
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Weiping Xiao
- College of Science, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Zhenjiang Li
- College of Materials Science and Engineering, Key Laboratory of Polymer Material Advanced Manufacturing's Technology of Shandong Province, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Guangrui Xu
- College of Materials Science and Engineering, Key Laboratory of Polymer Material Advanced Manufacturing's Technology of Shandong Province, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Fusheng Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Baohua Jia
- School of Science, STEM College, RMIT University, Australia
| | - Tianyi Ma
- School of Science, STEM College, RMIT University, Australia
| | - Shouhua Feng
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| |
Collapse
|
44
|
Zhao R, Chen Y, Xiang H, Guan Y, Yang C, Zhang Q, Li Y, Cong Y, Li X. Two-Dimensional Ordered Double-Transition Metal Carbides for the Electrochemical Nitrogen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6797-6806. [PMID: 36705631 DOI: 10.1021/acsami.2c19911] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The electrochemical nitrogen reduction reaction (NRR) provides a green and sustainable strategy as an alternative to the Haber-Bosch process. The development of electrocatalysts with low overpotential, high selectivity, and fast reaction kinetics remains a significant challenge. Here, density functional theory computations are carried out to systematically predict the prospect of 18 two-dimensional (2D) ordered double-transition metal carbides (MXenes) as NRR electrocatalysts. Our results revealed that the basal plane of Mo2Nb2C3 MXene exhibited the most outstanding catalytic activity while effectively suppressed the hydrogen evolution reaction with an overpotential of 0.48 V. The exposed Mo3 moiety moderately regulating the electron transfer between reaction intermediates is answerable for the high activity. Finally, our finding broadens the horizon of 2D materials as NRR electrocatalysts.
Collapse
Affiliation(s)
- Rong Zhao
- School of Chemistry and Chemical Engineering, Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan430081, China
| | - Yongting Chen
- School of Chemistry and Chemical Engineering, Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan430081, China
| | - Hui Xiang
- School of Chemistry and Chemical Engineering, Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan430081, China
| | - Yunfeng Guan
- School of Chemistry and Chemical Engineering, Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan430081, China
| | - Chenfan Yang
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, College of Materials Science and Engineering, Hunan University, Changsha410082, China
| | - Qin Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan430081, China
| | - Yanjun Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan430081, China
| | - Ye Cong
- School of Chemistry and Chemical Engineering, Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan430081, China
| | - Xuanke Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan430081, China
| |
Collapse
|
45
|
Endohedral group-14 clusters Au@X12 (X = Ge, Sn, Pb) and their anions: a first-principles study. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
46
|
An X, Wei T, Ding P, Liu LM, Xiong L, Tang J, Ma J, Wang F, Liu H, Qu J. Sodium-Directed Photon-Induced Assembly Strategy for Preparing Multisite Catalysts with High Atomic Utilization Efficiency. J Am Chem Soc 2023; 145:1759-1768. [PMID: 36607337 DOI: 10.1021/jacs.2c10690] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Integrating different reaction sites offers new prospects to address the difficulties in single-atom catalysis, but the precise regulation of active sites at the atomic level remains challenging. Here, we demonstrate a sodium-directed photon-induced assembly (SPA) strategy for boosting the atomic utilization efficiency of single-atom catalysts (SACs) by constructing multifarious Au sites on TiO2 substrate. Na+ was employed as the crucial cement to direct Au single atoms onto TiO2, while the light-induced electron transfer from excited TiO2 to Au(Na+) ensembles contributed to the self-assembly formation of Au nanoclusters. The synergism between plasmonic near-field and Schottky junction enabled the cascade electron transfer for charge separation, which was further enhanced by oxygen vacancies in TiO2. Our dual-site photocatalysts exhibited a nearly 2 orders of magnitude improvement in the hydrogen evolution activity under simulated solar light, with a striking turnover frequency (TOF) value of 1533 h-1 that exceeded other Au/TiO2-based photocatalysts reported. Our SPA strategy can be easily extended to prepare a wide range of metal-coupled nanostructures with enhanced performance for diverse catalytic reactions. Thus, this study provides a well-defined platform to extend the boundaries of SACs for multisite catalysis through harnessing metal-support interactions.
Collapse
Affiliation(s)
- Xiaoqiang An
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Tingcha Wei
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.,MIIT Key Laboratory of Aerospace Information Materials and Physics, College of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Peijia Ding
- School of Physics, Beihang University, Beijing 100191, China
| | - Li-Min Liu
- School of Physics, Beihang University, Beijing 100191, China
| | - Lunqiao Xiong
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| | - Junwang Tang
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| | - Jiani Ma
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shanxi Normal University, Xi'an 710119, China
| | - Feng Wang
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 581 83, Sweden
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
47
|
Wang Y, Wang J, Wei J, Wang C, Wang H, Yang X. Catalytic Mechanisms and Active Species of Benzene Hydroxylation Reaction System Based on Fe-Based Enzyme-Mimetic Structure. Catal Letters 2022. [DOI: 10.1007/s10562-022-04238-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
48
|
Gallego M, Corma A, Boronat M. Influence of the zeolite support on the catalytic properties of confined metal clusters: a periodic DFT study of O 2 dissociation on Cu n clusters in CHA. Phys Chem Chem Phys 2022; 24:30044-30050. [PMID: 36472457 DOI: 10.1039/d2cp04915e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The catalytic properties of sub-nanometer Cun clusters are modified by interactions with inorganic supports used for their stabilization. In this work, the reactivity towards O2 dissociation of Cu5 and Cu7 clusters confined within the cavities of the CHA zeolite is theoretically investigated by means of periodic DFT calculations. Increasing the Al content in the zeolite framework not only modifies the cluster morphology, but also leads to a decrease in the electronic density available on the supported Cun clusters, which in turn leads to higher activation energies for O2 dissociation. Together with the cluster size and shape, the Si/Al ratio in the zeolite support appears as a potential parameter to finely tune the stability and oxidation properties of Cu-based catalysts.
Collapse
Affiliation(s)
- Mario Gallego
- Instituto de Tecnología Química, Universitat Politècnica de València - Consejo Superior de Investigaciones Científicas. Av de los Naranjos s/n, Valencia 46022, Spain.
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politècnica de València - Consejo Superior de Investigaciones Científicas. Av de los Naranjos s/n, Valencia 46022, Spain.
| | - Mercedes Boronat
- Instituto de Tecnología Química, Universitat Politècnica de València - Consejo Superior de Investigaciones Científicas. Av de los Naranjos s/n, Valencia 46022, Spain.
| |
Collapse
|
49
|
Li S, Yang Y, Wang S, Gao Y, Song Z, Chen L, Chen Z. Advances in metal graphitic nanocapsules for biomedicine. EXPLORATION (BEIJING, CHINA) 2022; 2:20210223. [PMID: 37324797 PMCID: PMC10191027 DOI: 10.1002/exp.20210223] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/21/2022] [Indexed: 06/16/2023]
Abstract
Metal graphitic nanocapsules have the advantages of both graphitic and metal nanomaterials, showing great promise in biomedicine. On one hand, the chemically inert graphitic shells are able to protect the metal core from external environments, quench the fluorescence signal from the biological system, offer robust platform for targeted molecules or drugs loading, and act as stable Raman labels or internal standard molecule. On the other hand, the metal cores with different compositions, sizes, and morphologies show unique physicochemical properties, and further broaden their biomedical functions. In this review, we firstly introduce the preparation, classification, and properties of metal graphitic nanocapsules, then summarize the recent progress of their applications in biodetection, bioimaging, and therapy. Challenges and their development prospects in biomedicine are eventually discussed in detail. We expect the versatile metal graphitic nanocapsules will advance the development of future clinical biomedicine.
Collapse
Affiliation(s)
- Shengkai Li
- Molecular Science and Biomedicine Laboratory (MBL)State Key Laboratory of Chemo/Bio‐Sensing and ChemometricsCollege of Chemistry and Chemical EngineeringAptamer Engineering Center of Hunan ProvinceHunan Provincial Key Laboratory of Biomacromolecular Chemical BiologyHunan UniversityChangshaChina
| | - Yanxia Yang
- Molecular Science and Biomedicine Laboratory (MBL)State Key Laboratory of Chemo/Bio‐Sensing and ChemometricsCollege of Chemistry and Chemical EngineeringAptamer Engineering Center of Hunan ProvinceHunan Provincial Key Laboratory of Biomacromolecular Chemical BiologyHunan UniversityChangshaChina
| | - Shen Wang
- Molecular Science and Biomedicine Laboratory (MBL)State Key Laboratory of Chemo/Bio‐Sensing and ChemometricsCollege of Chemistry and Chemical EngineeringAptamer Engineering Center of Hunan ProvinceHunan Provincial Key Laboratory of Biomacromolecular Chemical BiologyHunan UniversityChangshaChina
| | - Yang Gao
- College of Materials Science and EngineeringHunan Province Key Laboratory for Advanced Carbon Materials and Applied TechnologyHunan UniversityChangshaChina
| | - Zhiling Song
- Key Laboratory of Optic‐Electric Sensing and Analytical Chemistry for Life ScienceMOEShandong Key Laboratory of Biochemical AnalysisCollege of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdaoChina
| | - Long Chen
- Faculty of Science and TechnologyUniversity of MacauMacau SARChina
| | - Zhuo Chen
- Molecular Science and Biomedicine Laboratory (MBL)State Key Laboratory of Chemo/Bio‐Sensing and ChemometricsCollege of Chemistry and Chemical EngineeringAptamer Engineering Center of Hunan ProvinceHunan Provincial Key Laboratory of Biomacromolecular Chemical BiologyHunan UniversityChangshaChina
| |
Collapse
|
50
|
Chemical engineering and the sustainable oil palm biomass industry—Recent advances and perspectives for the future. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|