1
|
Liu J, Wang L, Xie M, Zhao W, Sun J, Jin Y, Liu M, Zhao J, Cheng L, Wen C, Bi X, Huang C. Varespladib attenuates Naja atra-induced acute liver injury via reversing Nrf2 signaling-mediated ferroptosis and mitochondrial dysfunction. Redox Rep 2025; 30:2507557. [PMID: 40399141 PMCID: PMC12096701 DOI: 10.1080/13510002.2025.2507557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025] Open
Abstract
Objective: To investigate the protective effects of varespladib against Naja atra-induced acute liver injury (ALI) and to elucidate the toxic mechanism of snake venom phospholipase A2 (SVPLA2)-induced hepatic oxidative stress, with a particular focus on the role of Nrf2 signaling and its downstream pathways.Methods: A combination of in vivo and in vitro models of N. atra envenomation was employed to assess liver injury, oxidative stress, and mitochondrial dysfunction. The interaction between SVPLA2 and Nrf2 was analyzed, and the effects of varespladib treatment on these processes were evaluated using histological analysis, biochemical assays, and molecular techniques targeting oxidative stress, ferroptosis, mitophagy, and apoptosis.Results: Varespladib significantly alleviated N. atra-induced ALI. SVPLA2 was found to directly bind to Nrf2, leading to severe oxidative stress. This oxidative stress initiated a cascade involving Nrf2-mediated ferroptosis, mitochondrial dysfunction, excessive mitophagy, and mitochondria-dependent apoptosis. Treatment with varespladib effectively reversed these pathological events by inhibiting SVPLA2 activity.Conclusion: Varespladib shows strong therapeutic potential for N. atra envenomation by targeting SVPLA2. Nrf2 was identified as a direct toxic target of SVPLA2, and Nrf2-mediated ferroptosis and mitochondrial dysfunction were key mechanisms underlying SVPLA2-induced hepatic injury.
Collapse
Affiliation(s)
- Jiahao Liu
- School of Basic Medicine Sciences, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Linfeng Wang
- School of Basic Medicine Sciences, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Mengxia Xie
- School of Basic Medicine Sciences, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Wenjie Zhao
- School of Basic Medicine Sciences, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Jiaqi Sun
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Yuji Jin
- Department of Basic Medicine, Jilin Medical University, Jilin, People’s Republic of China
| | - Meiling Liu
- School of Basic Medicine Sciences, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Jianqi Zhao
- School of Basic Medicine Sciences, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Lixia Cheng
- School of Basic Medicine Sciences, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Cheng Wen
- School of clinical medicine, Jilin Medical University, Jilin, People’s Republic of China
| | - Xiaowen Bi
- School of Basic Medicine Sciences, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Chunhong Huang
- School of Basic Medicine Sciences, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
2
|
Talukdar A, Giri S, Doley R. Kraits of Indian subcontinent: Natural history, risks, venom variation, lethality and treatment strategies - A comprehensive review. Toxicon 2025; 262:108406. [PMID: 40374096 DOI: 10.1016/j.toxicon.2025.108406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/30/2025] [Accepted: 05/11/2025] [Indexed: 05/17/2025]
Abstract
The World Health Organization (WHO) has re-classified "Snakebite" as a Neglected Tropical Disease in 2017, and estimated that as many as 5.4 million people suffer from snakebites every year. Out of this large number of snakebites, envenoming occurs in about 50 % of the cases, and the number of resulting deaths could be as high as 138,000. The genus Bungarus commonly known as kraits are medically important elapid snakes widely distributed in the Indian subcontinent, southern China and the Southeast Asian countries (except Philippines). The Indian subcontinent (India, Bangladesh, Bhutan, Nepal, Pakistan, Sri Lanka and Maldives) is home to 8-9 krait species, among which B. caeruleus and B. niger are highly venomous. This review presents the current state of knowledge on krait bites in the Indian subcontinent. The risk of envenomation by kraits, the venom lethality and krait bite management in the Indian subcontinent have been critically analyzed. Moreover, the issue of dry bites from kraits and their management has also been reviewed. Furthermore, critical aspects, such as knowledge of snakebite management among healthcare workers, clinical symptoms of snakebite patients, and treatment in healthcare facilities including antivenom administration and their clinical efficacy, have helped us in identifying the critical knowledge gaps. Proposed preventive measures will help to reduce krait bite associated mortality and morbidity. Moreover, development and accessibility to affordable treatment options may help in the effective management of krait bites.
Collapse
Affiliation(s)
- Amit Talukdar
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, Assam, 784028, India
| | - Surajit Giri
- Demow Rural Government Community Health Centre, Raichai, Konwar Dihingia Gaon, Sivasagar, Assam, India
| | - Robin Doley
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, Assam, 784028, India.
| |
Collapse
|
3
|
Kadler R, Morrison B, Yanagihara AA. Assessing the Utility of Broad-Acting Inhibitors as Therapeutics in Diverse Venoms. Toxins (Basel) 2025; 17:188. [PMID: 40278686 PMCID: PMC12031005 DOI: 10.3390/toxins17040188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/29/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
Examination of venom constituent bioactivities from diverse venomous animals shows certain highly conserved classes, including enzymes (e.g., phospholipases and metalloproteinases) and pore-forming proteins. While antivenoms targeting other unique and lethal venom components have proven to be life-saving, venom-enzyme-driven tissue damage and morbidity persists. Broad-acting enzyme inhibitors demonstrate the potential to augment antivenom approaches. In this study, we investigate the potential utility of certain broad-acting inhibitors in cubozoa for the first time. Fluorogenic assays were used to determine the phospholipase A2 (PLA2) and matrix metalloproteinase (MMP) activity of the Hawaiian box jellyfish, Alatina alata, and this was compared to representative elapid, viper, and bee venoms. In vitro, evaluation of selected small-molecule inhibitors demonstrated the ability and feasibility of the broad-acting therapeutic doxycycline, which inhibited the PLA2 and MMP activity of A. alata (approximately 50% reduction at 0.1 mM (95% CI 0.06-0.15) and 2.1 mM (95% CI 1.4-3.0), respectively), in addition to both snake venoms. Additionally, copper gluconate broadly inhibited the PLA2 activity of bee, snake, and jellyfish venoms. While all venoms are complex mixtures of bioactive molecules, these studies demonstrate that targeting common class components with broad-acting inhibitors shows promise in clinical and preclinical management.
Collapse
Affiliation(s)
- Raechel Kadler
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawai’i at Mānoa, Honolulu, HI 96822, USA;
| | - Breanna Morrison
- Department of Public Health, University of Birmingham, Birmingham B15 2TT, UK;
| | - Angel Anne Yanagihara
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawai’i at Mānoa, Honolulu, HI 96822, USA;
- Pacific Biosciences Research Center (PBRC), School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, HI 96822, USA
| |
Collapse
|
4
|
Ayesiga I, Okoro LN, Taremba C, Yeboah MO, Naab JTM, Anyango RM, Adekeye J, Kahwa I. Genetic variability in snake venom and its implications for antivenom development in sub-Saharan Africa. Trans R Soc Trop Med Hyg 2025; 119:400-406. [PMID: 39749534 DOI: 10.1093/trstmh/trae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/23/2024] [Accepted: 09/19/2024] [Indexed: 01/04/2025] Open
Abstract
Snake venom, a complex mixture of proteins, has attracted human attention for centuries due to its associated mortality, morbidity and other therapeutic properties. In sub-Saharan Africa (SSA), where snakebites pose a significant health risk, understanding the genetic variability of snake venoms is crucial for developing effective antivenoms. The wide geographic distribution of venomous snake species in SSA countries demonstrates the need to develop specific and broad antivenoms. However, the development of broad antivenoms has been hindered by different factors, such as antivenom cross-reactivity and polygenic paratopes. While specific antivenoms have been hindered by the numerous snake species across the SSA region, current antivenoms, such as SAIMR polyvalent and Premium Serums & Vaccines, exhibit varying degrees of cross-reactivity. Such ability to cross-react enables the antivenoms to target multiple components from the different snake species. The advent of biotechnological innovations, including recombinant antibodies, small-molecule drugs, monoclonal antibodies and synthetic antivenoms, presents options for eliminating limitations associated with traditional plasma-derived antivenoms. However, challenges still persist, especially in SSA, in addressing genetic variability, as evidenced by inadequate testing capacity and limited genomic research facilities. This comprehensive review explores the genetic variability of snake venoms in SSA, emphasizing the venom composition of various snake species and their interactions. This information is critical in developing multiple strategies during antivenom development. Finally, it offers information concerning the need for extensive collaborative engagements, technological advancements and comprehensive genomic evaluations to produce targeted and effective antivenoms.
Collapse
Affiliation(s)
- Innocent Ayesiga
- Department of Research, Ubora Foundation Africa, Kampala 759125, Uganda
| | - Lenz N Okoro
- Department of Community Medicine, David Umahi Federal University Teaching Hospital, Uburu, Ebonyi State 480101, Nigeria
| | - Chirigo Taremba
- National University of Science and Technology, Bulawayo 00000, Zimbabwe
| | - Michael O Yeboah
- School of Public Health, University of Port Harcourt, River State 500001, Nigeria
| | - Justine T M Naab
- School of Public Health, Kwame Nkrumah University of Science and Technology, Kumasi GA107, Ghana
| | - Ruphline M Anyango
- Department of Veterinary Tropical Medicine, University of Pretoria, Pretoria 0002, South Africa
| | - John Adekeye
- Virology clinic, Olabisi Onabanjo University Teaching Hospital, Sagamu, Ogun state 111103, Nigeria
| | - Ivan Kahwa
- Pharm-Biotechnology and Traditional Medicine Centre (PHARMBIOTRAC), Faculty of Medicine, Mbarara University of Science and Technology, Mbarara 40006, Uganda
| |
Collapse
|
5
|
Alvitigala BY, Dissanayake HA, Weeratunga PN, Padmaperuma PACD, Gooneratne LV, Gnanathasan CA. Haemotoxicity of snakes: a review of pathogenesis, clinical manifestations, novel diagnostics and challenges in management. Trans R Soc Trop Med Hyg 2025; 119:283-303. [PMID: 39749491 DOI: 10.1093/trstmh/trae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/29/2024] [Accepted: 08/29/2024] [Indexed: 01/04/2025] Open
Abstract
Haemotoxicity is the most common complication of systemic envenoming following snakebite, leading to diverse clinical syndromes ranging from haemorrhagic to prothrombotic manifestations. Key haematological abnormalities include platelet dysfunction, venom-induced consumption coagulopathy, anticoagulant coagulopathy and organ-threatening thrombotic microangiopathy. Diagnostic methods include the bedside whole blood clotting test, laboratory coagulation screening and other advanced methods such as thromboelastogram and clot strength analysis. The primary management strategies are venom neutralisation with antivenom and correction of coagulopathy with blood component transfusions, while options such as plasma exchange are utilised in certain cases. Recent advancements in understanding the pathogenesis of haemotoxicity have facilitated the development of new diagnostic and treatment modalities. This review summarises current knowledge on the pathogenesis, diagnosis, clinical and laboratory manifestations and treatment of the haematological effects of snake envenoming. Furthermore, it highlights important challenges concerning diagnosis and management. Addressing these challenges is crucial for achieving the WHO's goal of reducing deaths and disabilities caused by snakebites by 2030.
Collapse
Affiliation(s)
| | - Harsha A Dissanayake
- Department of Clinical Medicine, Faculty of Medicine, University of Colombo, P.O. 00800, Sri Lanka
| | - Praveen N Weeratunga
- Department of Clinical Medicine, Faculty of Medicine, University of Colombo, P.O. 00800, Sri Lanka
| | | | | | | |
Collapse
|
6
|
Abouyannis M, Nyambura YK, Ngome S, Riako D, Musyoki J, Muiruri C, Orindi B, Else L, Amara A, Dickinson L, Clare RH, Albulescu LO, Westhorpe AP, Kool J, Adetifa I, Ndungu FM, FitzGerald R, Khoo S, Lalloo DG, Casewell NR, Hamaluba M. Development of an oral regimen of unithiol for the treatment of snakebite envenoming: a phase 1 open-label dose-escalation safety trial and pharmacokinetic analysis in healthy Kenyan adults. EBioMedicine 2025; 113:105600. [PMID: 40020260 PMCID: PMC11919382 DOI: 10.1016/j.ebiom.2025.105600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 01/14/2025] [Accepted: 01/31/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Viperidae snakes are responsible for many of the 94,000 deaths caused by snakebite envenoming each year. The most pathological venom component of this globally diverse family of snakes are the zinc-dependent snake venom metalloproteinase (SVMP) enzymes, which can be inhibited by the metal chelator, unithiol. A short-course oral regimen, readily available and rapidly deployed ahead of hospital admission is needed. METHODS This open-label, phase 1 clinical trial assessed the safety of single ascending oral, multiple ascending oral, and single ascending intravenous doses of unithiol in 64 healthy adult volunteers from Kilifi County, Kenya. The multiple dose stage was informed by an interim safety and pharmacokinetic analysis, and predefined target plasma concentrations. Plasma concentrations of unithiol were measured using high-performance liquid chromatography-mass spectrometry, and safety was described by full adverse event reporting. FINDINGS 175 individuals were screened, and 64 (median age 30 years, IQR 25-38 years) received the study drug. There were no dose limiting toxicities or serious adverse events. There were 61 solicited adverse events, 17 related unsolicited adverse events, and 53 laboratory adverse events, all of mild or moderate severity. The maximum oral dose of 1500 mg was well tolerated and associated with the following pharmacokinetic parameters: Cmax 14.7 μg/mL, Tmax 2.9 h, T1/2 18.4 h, and AUC0-∞ 204.5 μg.h/mL. INTERPRETATION The phase 2 recommended dose (1500 mg loading dose, followed by 900 mg doses at 6-h and 24-h) has no safety concerns, and has promising pharmacokinetic properties for clinical use. Unithiol is affordable, stable at room temperature, and has the potential to be given orally in remote rural clinics. Its further development for snakebite indication is warranted. FUNDING Wellcome Trust, Bloomsbury Set, and Cures Within Reach.
Collapse
Affiliation(s)
- Michael Abouyannis
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool, UK; KEMRI-Wellcome Research Programme, Kilifi, Kenya.
| | | | - Samson Ngome
- KEMRI-Wellcome Research Programme, Kilifi, Kenya
| | - Debra Riako
- KEMRI-Wellcome Research Programme, Kilifi, Kenya
| | | | | | | | - Laura Else
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Alieu Amara
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Laura Dickinson
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Rachel H Clare
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Laura-Oana Albulescu
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Adam P Westhorpe
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jeroen Kool
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, the Netherlands
| | - Ifedayo Adetifa
- KEMRI-Wellcome Research Programme, Kilifi, Kenya; Department of Infectious Diseases Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Richard FitzGerald
- NIHR Royal Liverpool and Broadgreen CRF, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Saye Khoo
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK; NIHR Royal Liverpool and Broadgreen CRF, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - David G Lalloo
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Mainga Hamaluba
- KEMRI-Wellcome Research Programme, Kilifi, Kenya; Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Lim EQ, Ahemad N, Yap MKK. High-throughput virtual screening, pharmacophore modelling and antagonist effects of small molecule inhibitors against cytotoxin-induced cytotoxicity. J Biomol Struct Dyn 2025; 43:2014-2028. [PMID: 38100546 DOI: 10.1080/07391102.2023.2293275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
Cobra venom cytotoxins (CTX) cause dermonecrosis in envenomed patients who suffered from limb amputations due to the limitation of serotherapy-based antivenoms. This study aimed to identify small molecule inhibitors against CTX. A structure-based high-throughput virtual screening (HTVS) was conducted based on a conserved CTX, using the Natural Product Activity and Species Source (NPASS) screening library. The hits were valerenic acid, 1-oxo-2H-isoquinoline-4-carboxylic acid, acenaphthene, and 5-bromopyrrole-2-carboxamide, which interacted with contemporary antivenom binding site A and functional loops I-III of CTX, respectively, in molecular docking studies. Furthermore, molecular dynamic simulations were performed along with analysis of ligand fitness through their pharmacophore and pharmacokinetics properties. The antagonist effects of these hits on CTX-induced cytotoxicity were examined in human keratinocytes (HaCaT). Despite having a low binding affinity (KD = 14.45 × 10-4 M), acenaphthene demonstrated a significant increase of cell viability at 6 h and 24 h in experimental envenomed HaCaT. It also demonstrated the highest neutralization potency against CTX with a median effective concentration (EC50) of 0.05 mL/mg. Acenaphthene interacted with the functional loop II, which is the crucial cytotoxic site of CTX. It has an aromatic ring as its primary pharmacophoric feature, commonly used for rational drug design. In conclusion, acenaphthene could be a promising lead compound as a small molecule inhibitor.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- En Qi Lim
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Michelle Khai Khun Yap
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
- Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
8
|
Hussain SS, Kingsley JD. Metabolomics and proteomics: synergistic tools for understanding snake venom inhibition. Arch Toxicol 2025; 99:915-934. [PMID: 39760869 DOI: 10.1007/s00204-024-03947-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/17/2024] [Indexed: 01/07/2025]
Abstract
Snake envenomation presents a significant global health challenge, especially in rural areas of tropical and subtropical regions. Traditional antivenom therapies face limitations related to efficacy, availability, and specificity, prompting a need for novel approaches. Recent advancements in omics technologies, particularly metabolomics and proteomics, have enhanced our understanding of snake venom composition, toxicity, and potential therapeutic strategies. Metabolomics allows for the study of metabolic changes induced by venom, providing insights into disrupted pathways and possible inhibitors. Proteomics facilitates the identification and characterization of venom proteins, unveiling their interactions with therapeutic agents. Integrative databases such as the Snake Venom Database (SVDB) and STAB Profiles enhance this research by cataloging venom components and aiding in the analysis of venom-antivenom interactions. The combined application of metabolomics and proteomics has led to the identification of crucial metabolic pathways and protein targets essential for effective venom inhibition. This review explores current advances in these fields, emphasizing the role of omics in identifying novel inhibitors and developing next-generation antivenoms. The integrated approach of metabolomics and proteomics offers a comprehensive understanding of snake venom biology, paving the way for more effective and tailored therapeutic solutions for envenomation.
Collapse
Affiliation(s)
- Sana S Hussain
- Department of Integrative Biology, School of Bioscience and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - J Danie Kingsley
- Department of Integrative Biology, School of Bioscience and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
9
|
Castro-Amorim J, Pinto AV, Mukherjee AK, Ramos MJ, Fernandes PA. Beyond Fang's fury: a computational study of the enzyme-membrane interaction and catalytic pathway of the snake venom phospholipase A 2 toxin. Chem Sci 2025; 16:1974-1985. [PMID: 39759936 PMCID: PMC11694569 DOI: 10.1039/d4sc06511e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025] Open
Abstract
Snake venom-secreted phospholipases A2 (svPLA2s) are critical, highly toxic enzymes present in almost all snake venoms. Upon snakebite envenomation, svPLA2s hydrolyze cell membrane phospholipids and induce pathological effects such as paralysis, myonecrosis, inflammation, or pain. Despite its central importance in envenomation, the chemical mechanism of svPLA2s is poorly understood, with detrimental consequences for the design of small-molecule snakebite antidotes, which is highly undesirable given the gravity of the epidemiological data that ranks snakebite as the deadliest neglected tropical disease. We study a member of the svPLA2 family, the Myotoxin-I, which is part of the venom of the Central American pit viper terciopelo (Bothrops asper), a ubiquitous but highly aggressive and dangerous species responsible for the most problematic snakebites in its habitat. Furthermore, PLA2 enzymes are a paradigm of interfacial enzymology, as the complex membrane-enzyme interaction is as important as is crucial for its catalytic process. Here, we explore the detailed interaction between svPLA2 and a 1 : 1 POPC/POPS membrane, and how enzyme binding affects membrane structure and dynamics. We further investigated the two most widely accepted reaction mechanisms for svPLA2s: the 'single-water mechanism' and the 'assisted-water mechanism', using umbrella sampling simulations at the PBE/MM level of theory. We demonstrate that both pathways are catalytically viable. While both pathways occur in two steps, the single-water mechanism yielded a lower activation free energy barrier (20.14 kcal mol-1) for POPC hydrolysis, consistent with experimental and computational values obtained for human PLA2. The reaction mechanisms are similar, albeit not identical, and can be generalized to svPLA2 from most viper species. Furthermore, our findings demonstrate that the sole small molecule inhibitor currently undergoing clinical trials for snakebite is a perfect transition state analog. Thus, understanding snake venom sPLA2 chemistry will help find new, effective small molecule inhibitors with anti-snake venom efficacy.
Collapse
Affiliation(s)
- Juliana Castro-Amorim
- LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal
| | - Alexandre V Pinto
- LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal
| | - Ashis K Mukherjee
- Institute of Advanced Study in Science and Technology Vigyan Path Garchuk, Paschim Boragaon Guwahati-781035 Assam India
| | - Maria J Ramos
- LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal
| | - Pedro A Fernandes
- LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal
| |
Collapse
|
10
|
Gutiérrez JM, R Casewell N, Laustsen AH. Progress and Challenges in the Field of Snakebite Envenoming Therapeutics. Annu Rev Pharmacol Toxicol 2025; 65:465-485. [PMID: 39088847 DOI: 10.1146/annurev-pharmtox-022024-033544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Snakebite envenoming kills and maims hundreds of thousands of people every year, especially in the rural settings of tropical regions. Envenomings are still treated with animal-derived antivenoms, which have prevented many lives from being lost but which are also medicines in need of innovation. Strides are being made to improve envenoming therapies, with promising efforts made toward optimizing manufacturing and quality aspects of existing antivenoms, accelerating research and development of recombinant antivenoms based on monoclonal antibodies, and repurposing of small-molecule inhibitors that block key toxins. Here, we review the most recent advances in these fields and discuss therapeutic opportunities and limitations for different snakebite treatment modalities. Finally, we discuss challenges related to preclinical and clinical evaluation, regulatory pathways, large-scale manufacture, and distribution and access that need to be addressed to fulfill the goals of the World Health Organization's global strategy to prevent and control snakebite envenoming.
Collapse
Affiliation(s)
- José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica;
| | - Nicholas R Casewell
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom;
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark;
| |
Collapse
|
11
|
Isbister GK, Chiew AL, Buckley NA, Soderstrom J, Brown SG, Jenkins S, Isoardi KZ. Real world delays in antivenom administration: patient, snake or hospital factors (ASP-33). Clin Toxicol (Phila) 2025; 63:10-15. [PMID: 39652374 DOI: 10.1080/15563650.2024.2433125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 01/16/2025]
Abstract
OBJECTIVE Early antivenom administration is essential for effective treatment. We investigated the delays in antivenom administration. METHODS We reviewed snakebites from the Australian Snakebite Project (2006-2021) given antivenom, presenting to hospital within 12 h. We extracted demographics, snake type, time of bite, hospital arrival, blood collection, antivenom treatment and hospital transfer. RESULTS There were 2,169 patients recruited to Australian Snakebite Project 1,132 patients received antivenom within 12 h of the bite, and 1,019 of these were envenomated: median age 41 years (IQR: 24-57 years); 738 (72%) males. A pressure bandage was applied in 950 (93%), a median of 15 min (IQR: 5-30 min) post-bite. Specific snakes were identified by venom assays in 855 patients (80%), including 328 brown snakes (32%), 173 tiger snakes (17%), 74 rough-scaled snakes (7%), 85 red-bellied black snakes (8%), 49 taipans (5%) and 26 death adders (3%). Seventy-seven patients (7%) received antivenom without envenomation. The median length of hospital stay was 41 h (IQR: 24-67 h). The median time to hospital was 60 min (IQR: 30-105 min), to first blood tests was 90 min (IQR: 59-154 min) and to antivenom was 235 min (IQR: 155-345 min). There was a median delay in blood tests of 20 min (IQR: 10-37 min) and a median delay to antivenom of 147 min (IQR: 84-249 min). Non-specific systemic symptoms occurred in 641 (63%) patients, which occurred a median of 24 min (IQR: 10-60 min) post-bite, which was at a median of 180 min (IQR: 106 to 275 min) prior to antivenom administration. Time to antivenom in the 314 transferred patients was similar to those not transferred. Time to antivenom was significantly shorter for 189 patients given antivenom prior to transfer, median 183 min (IQR: 110-270 min), compared to 130 patients given antivenom after transfer, median 363 min (IQR: 289-513 min; P <0.001). DISCUSSION Antivenom administration was delayed on average by 2.5 h after hospital presentation, despite three-quarters arriving in hospital within 3 h, the optimal time for antivenom administration. Patients requiring transfer received antivenom in a similar time, but earlier if administered prior to transfer, highlighting the possible benefits of pragmatic clinical decision-making prior to blood tests. CONCLUSION We found the leading cause of delays to antivenom administration after patients arrive in hospital was waiting for blood results. Systemic symptoms occurred early in most cases and could be given greater weight in decisions about early antivenom.
Collapse
Affiliation(s)
- Geoffrey K Isbister
- Clinical Toxicology Research Group, University of Newcastle, Newcastle, Australia
- Department of Clinical Toxicology, Calvary Mater Newcastle, Newcastle, Australia
- New South Wales Poison Information Centre, Childrens Hospital Westmead, Sydney, Australia
| | - Angela L Chiew
- New South Wales Poison Information Centre, Childrens Hospital Westmead, Sydney, Australia
- Department of Clinical Toxicology, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Nicholas A Buckley
- Department of Clinical Toxicology, Calvary Mater Newcastle, Newcastle, Australia
- New South Wales Poison Information Centre, Childrens Hospital Westmead, Sydney, Australia
- Pharmacology, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | | | - Simon Ga Brown
- Aeromedical and Retrieval Medicine, Ambulance Tasmania, Tasmania, Australia
| | - Shane Jenkins
- Clinical Toxicology Research Group, University of Newcastle, Newcastle, Australia
| | - Katherine Z Isoardi
- Clinical Toxicology Research Group, University of Newcastle, Newcastle, Australia
- New South Wales Poison Information Centre, Childrens Hospital Westmead, Sydney, Australia
- Clinical Toxicology Unit, Princess Alexandra Hospital, Brisbane, Australia
| |
Collapse
|
12
|
Chowdhury A, Fry BG, Samuel SP, Bhalla A, Vaiyapuri S, Bhargava P, Carter RW, Lewin MR. In vitro anticoagulant effects of Bungarus venoms on human plasma which are effectively neutralized by the PLA 2-inhibitor varespladib. Toxicon 2024; 252:108178. [PMID: 39547452 DOI: 10.1016/j.toxicon.2024.108178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/31/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Bungarus (krait) envenomings are well-known for their life-threatening neurotoxic effects. However, their impact on coagulation remains largely unexplored experimentally or clinically. This study, examined the effect of begins to examine venoms from four Bungarus species-B. caeruleus, B. candidus, B. fasciatus, and B. flaviceps on human platelet poor plasma coagulation parameters using thromboelastography and coagulation inhibition assays. B. flaviceps completely inhibited clotting, while B. caeruleus only delayed clot formation. In contrast, B. candidus and B. fasciatus did not affect clotting. Subsequent examinations into the anticoagulant biochemical mechanisms demonstrated divergent pathophysiological pathways. B. caeruleus venom anticoagulant effects were prevented by the addition of an excess of phospholipids, with anticoagulation thereby the result of phospholipid depletion. In contrast B. flaviceps anticoagulation was not affected by the addition of an excess of phospholipids. Further investigations demonstrated that B. flaviceps mediates its anticoagulant toxicity through the inactivation of coagulation enzymes. The anticoagulant effects of both B. flaviceps and B. caeruleus were nullified by varespladib, a phospholipase A2 (PLA2) inhibitor, revealing the toxin class involved. These results uncover previously unrecognized and unexplored anticoagulant effects of Bungarus venoms.
Collapse
Affiliation(s)
- Abhinandan Chowdhury
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD, 4072, Australia; Department of Biochemistry & Microbiology, North South University, Dhaka, Bangladesh
| | - Bryan G Fry
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Stephen P Samuel
- Ophirex, Inc., Corte Madera, CA, 94925, USA; California Academy of Sciences, San Francisco, CA, 94118, USA
| | - Ashish Bhalla
- Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Parul Bhargava
- Department of Pathology and Laboratory Medicine, University of San Francisco, California, USA
| | | | - Matthew R Lewin
- Ophirex, Inc., Corte Madera, CA, 94925, USA; California Academy of Sciences, San Francisco, CA, 94118, USA.
| |
Collapse
|
13
|
Mitra A, Pandijothi V, Paul S. Computational insight into the peptide-based inhibition of α-cobratoxin. Phys Chem Chem Phys 2024; 26:28274-28287. [PMID: 39499553 DOI: 10.1039/d4cp03408b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Snakebite envenoming results in the death of thousands of people each year and has been classified as a neglected tropical disease by the World Health Organization (WHO). The toxins released into the bloodstream of the victim bind to the nicotinic acetylcholine receptor and restrict transmission of nerve impulses leading to paralysis and cardiac arrest. Conventional antibody-based treatments often have adverse side effects or are difficult to perform. Hence, efforts are underway to devise alternative forms of treatment that address these therapeutic shortcomings. Peptide-based inhibitors have recently gained attention due to their high specificity and ease of preparation. Here, we explore the mechanism of a peptide inhibitor of α-cobratoxin using all-atom molecular dynamics (MD) simulations. We also quantify the energetics of the toxin-peptide dissociation process using the non-equilibrium steered MD technique. Our study reveals that the inhibitor migrates close to Loop-II of α-cobratoxin and alters its dimerization tendency. From energy studies, we found that the peptide first binds to one unit of α-cobratoxin in a particular orientation, followed by the binding of a second toxin molecule, which effectively masks the residues that interact with the nicotinic acetylcholine receptor. Our work provides atomic-level insight into the inhibition process that can be utilized in the future design of inhibitors with superior binding capabilities.
Collapse
Affiliation(s)
- Aritra Mitra
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India.
| | - Viswas Pandijothi
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India.
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India.
| |
Collapse
|
14
|
Berg P, Theart F, van Driel M, Saaiman EL, Mavoungou LB. Snakebite envenoming in Africa remains widely neglected and demands multidisciplinary attention. Nat Commun 2024; 15:9598. [PMID: 39505859 PMCID: PMC11541957 DOI: 10.1038/s41467-024-54070-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024] Open
Abstract
Snakebite envenoming causes a significant public health burden in Africa. In this Comment, the authors describe the limitations of current snakebite control measures and emphasise the need for more funding to reduce future harm.
Collapse
Affiliation(s)
- Philipp Berg
- Erongo Park, Omaruru, Namibia.
- AfriMed e.V., Mühlheim, Germany.
| | - Francois Theart
- Namibian Snakebite Interest Group, Windhoek, Namibia
- Namibia University of Science and Technology, Windhoek, Namibia
| | | | | | - Lise-Bethy Mavoungou
- Institut National de Recherche en Sciences Exactes et Naturelles (IRSEN), Brazzaville, République du Congo
| |
Collapse
|
15
|
Arens DK, Rose MA, Salazar EM, Harvey MA, Huh EY, Ford AA, Thompson DW, Sanchez EE, Hwang YY. Doxycycline-Mediated Inhibition of Snake Venom Phospholipase and Metalloproteinase. Mil Med 2024; 189:e2430-e2438. [PMID: 38748405 DOI: 10.1093/milmed/usae184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/15/2024] [Accepted: 04/01/2024] [Indexed: 11/06/2024] Open
Abstract
INTRODUCTION Warfighters are exposed to life-threatening injuries daily and according to the Joint Trauma System Military Clinical Practice Guideline-Global Snake Envenomation Management snakebites are a concerning threat in all theaters of operation. Snake venom is a complex mixture of toxins including phospholipases A2 (PLA2) and snake venom metalloproteinases (SVMP) that produce myotoxic, hemotoxic, and cytotoxic injuries. Antibody-based antivenom is the standard of care but new approaches including small-molecule inhibitors have gained attention in recent years. Doxycycline is an effective inhibitor of human metalloproteinases and PLA2. The enzymatic activities of 3 phylogenetically distinct snakes: Agkistrodon piscivorus, Naja kaouthia, and Daboia russelii were tested under inhibitory conditions using doxycycline. MATERIALS AND METHODS Enzymatic activity of PLA2 and SVMP was measured in N. kaouthia, D. russelii, and A. piscivorus venom alone and with doxycycline using EnzChek Phospholipase A2 and Gelatinase Assay Kits. A 1-way ANOVA with Tukey's post-hoc test was used to conduct comparative analysis. The median lethal dose of the venoms, the effective dose of doxycycline, and creatine kinase (CK) inhibition levels were measured in a murine model with adult Bagg Albino (BALB/c) mice using intramuscular injections. Median lethal and effective doses were determined using Spearman-Karber's method and a 1-way ANOVA with Tukey's post-hoc test was used to compare CK inhibition levels. RESULTS Phospholipases A2 activity was reduced to 1.5% to 44.0% in all 3 venoms in a dose-dependent manner using 0.32, 0.16, and 0.08 mg/mL doxycycline when compared to venom-only controls (P < .0001) (Fig. 1A). Snake venom metalloproteinases activity was reduced to 4% to 62% in all 3 venoms in a dose-dependent manner using 0.32, 0.16, and 0.08 mg/mL doxycycline (P < .0001) (Fig. 1B). The lethal dose (LD50) values of the venoms in the murine model were calculated as follows: A. piscivorus = 20.29 mg/kg (Fig. 2A), N. kaouthia = 0.38 mg/kg (Fig. 2B), and D. russelii = 7.92 mg/kg (Fig. 2C). The effective dose (ED50) of doxycycline in A. piscivorus was calculated to be 20.82 mg/kg and 72.07 mg/kg when treating D. russelii venom. No ED50 could be calculated when treating N. kaouthia venom (Fig. 3). Creatine kinase activity was significantly decreased in all 3 venoms treated with doxycycline (P < .0001) (Fig. 4). CONCLUSION Doxycycline reduced PLA2- and SVMP-related lethality, particularly in A. piscivorus envenomings and in a limited capacity with D. russelii revealing its promise as a treatment for snakebites. In addition, CK activity, a common indicator of muscle damage was inhibited in mice that received doxycycline-treated venom. The doxycycline concentrations identified in the ED50 studies correspond to 1,456 to 5,061 mg dosages for a 70 kg human. Factors including venom yield and snake species would affect the actual dosage needed. Studies into high-dose doxycycline safety and its effectiveness against several snake species is needed to fully translate its use into humans. Based on this work, doxycycline could be used as a treatment en route to higher echelons of care, providing protection from muscle damage and reducing lethality in different snake species.
Collapse
Affiliation(s)
- Daniel K Arens
- Maxillofacial Injury and Disease, Naval Medical Research Unit San Antonio, JBSA FT Sam Houston, TX 78234, USA
| | - Meaghan A Rose
- Maxillofacial Injury and Disease, Naval Medical Research Unit San Antonio, JBSA FT Sam Houston, TX 78234, USA
| | - Emelyn M Salazar
- National Natural Toxins Research Center, Texas A&M University-Kingsville, Kingsville, TX 78363, USA
| | - Merideth A Harvey
- National Natural Toxins Research Center, Texas A&M University-Kingsville, Kingsville, TX 78363, USA
| | - Eun Y Huh
- Maxillofacial Injury and Disease, Naval Medical Research Unit San Antonio, JBSA FT Sam Houston, TX 78234, USA
| | - April A Ford
- Maxillofacial Injury and Disease, Naval Medical Research Unit San Antonio, JBSA FT Sam Houston, TX 78234, USA
| | - Daniel W Thompson
- Maxillofacial Injury and Disease, Naval Medical Research Unit San Antonio, JBSA FT Sam Houston, TX 78234, USA
| | - Elda E Sanchez
- National Natural Toxins Research Center, Texas A&M University-Kingsville, Kingsville, TX 78363, USA
- Chemistry Department, Texas A&M University-Kingsville, Kingsville, TX 78363, USA
| | - Yoon Y Hwang
- Maxillofacial Injury and Disease, Naval Medical Research Unit San Antonio, JBSA FT Sam Houston, TX 78234, USA
| |
Collapse
|
16
|
Edge RJ, Marriott AE, Stars EL, Patel RN, Wilkinson MC, King LDW, Slagboom J, Tan CH, Ratanabanangkoon K, Draper SJ, Ainsworth S. Plug and play virus-like particles for the generation of anti-toxin antibodies. Toxicon X 2024; 23:100204. [PMID: 39280983 PMCID: PMC11401359 DOI: 10.1016/j.toxcx.2024.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/08/2024] [Accepted: 08/18/2024] [Indexed: 09/18/2024] Open
Abstract
Snakebite is a major global health concern, for which antivenom remains the only approved treatment to neutralise the harmful effects of the toxins. However, some medically important toxins are poorly immunogenic, resulting in reduced efficacy of the final product. Boosting the immunogenicity of these toxins in the commercial antivenom immunising mixtures could be an effective strategy to improve the final dose efficacy, and displaying snake antigens on Virus-like particles (VLPs) is one method for this. However, despite some applications in the field of snakebite, VLPs have yet to be explored in methods that could be practical at an antivenom manufacturing scale. Here we describe the utilisation of a "plug and play" VLP system to display immunogenic linear peptide epitopes from three finger toxins (3FTxs) and generate anti-toxin antibodies. Rabbits were immunised with VLPs displaying individual consensus linear epitopes and their antibody responses were characterised by immunoassay. Of the three experimental consensus sequences, two produced antibodies capable of recognising the consensus peptides, whilst only one of these could also recognise native whole toxins. Further characterisation of antibodies raised against this peptide demonstrated a sub-class specific response, and that these were able to elicit partially neutralising antibody responses, resulting in increased survival times in a murine snakebite envenoming model.
Collapse
Affiliation(s)
- Rebecca J Edge
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Amy E Marriott
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Emma L Stars
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Rohit N Patel
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Mark C Wilkinson
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Lloyd D W King
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, United Kingdom
| | - Julien Slagboom
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081HV, the Netherlands
| | - Choo Hock Tan
- School of Medicine, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, 300, Taiwan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300, Taiwan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Kavi Ratanabanangkoon
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Simon J Draper
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, United Kingdom
| | - Stuart Ainsworth
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| |
Collapse
|
17
|
Misson Mindrebo LE, Mindrebo JT, Tran Q, Wilkinson MC, Smith JM, Verma M, Casewell NR, Lander GC, Jardine JG. Importance of the Cysteine-Rich Domain of Snake Venom Prothrombin Activators: Insights Gained from Synthetic Neutralizing Antibodies. Toxins (Basel) 2024; 16:361. [PMID: 39195771 PMCID: PMC11360484 DOI: 10.3390/toxins16080361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Snake venoms are cocktails of biologically active molecules that have evolved to immobilize prey, but can also induce a severe pathology in humans that are bitten. While animal-derived polyclonal antivenoms are the primary treatment for snakebites, they often have limitations in efficacy and can cause severe adverse side effects. Building on recent efforts to develop improved antivenoms, notably through monoclonal antibodies, requires a comprehensive understanding of venom toxins. Among these toxins, snake venom metalloproteinases (SVMPs) play a pivotal role, particularly in viper envenomation, causing tissue damage, hemorrhage and coagulation disruption. One of the current challenges in the development of neutralizing monoclonal antibodies against SVMPs is the large size of the protein and the lack of existing knowledge of neutralizing epitopes. Here, we screened a synthetic human antibody library to isolate monoclonal antibodies against an SVMP from saw-scaled viper (genus Echis) venom. Upon characterization, several antibodies were identified that effectively blocked SVMP-mediated prothrombin activation. Cryo-electron microscopy revealed the structural basis of antibody-mediated neutralization, pinpointing the non-catalytic cysteine-rich domain of SVMPs as a crucial target. These findings emphasize the importance of understanding the molecular mechanisms of SVMPs to counter their toxic effects, thus advancing the development of more effective antivenoms.
Collapse
Affiliation(s)
- Laetitia E. Misson Mindrebo
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA; (L.E.M.M.); (Q.T.)
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative, New York, NY 10004, USA
| | - Jeffrey T. Mindrebo
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA; (J.T.M.); (G.C.L.)
| | - Quoc Tran
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA; (L.E.M.M.); (Q.T.)
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative, New York, NY 10004, USA
| | - Mark C. Wilkinson
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (M.C.W.); (N.R.C.)
| | | | - Megan Verma
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA; (L.E.M.M.); (Q.T.)
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative, New York, NY 10004, USA
| | - Nicholas R. Casewell
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (M.C.W.); (N.R.C.)
| | - Gabriel C. Lander
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA; (J.T.M.); (G.C.L.)
| | - Joseph G. Jardine
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA; (L.E.M.M.); (Q.T.)
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative, New York, NY 10004, USA
| |
Collapse
|
18
|
Fu K, Zhao J, Zhong L, Xu H, Yu X, Bi X, Huang C. Dual therapy with phospholipase and metalloproteinase inhibitors from Sinonatrix annularis alleviated acute kidney and liver injury caused by multiple snake venoms. Biomed Pharmacother 2024; 177:116967. [PMID: 38908206 DOI: 10.1016/j.biopha.2024.116967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024] Open
Abstract
Snakebite envenomation often induces acute kidney injury (AKI) and acute liver injury (ALI), leading to augmented injuries and poor rehabilitation. Phospholipase A2 (PLA2) and metalloproteinase (SVMP) present in venom are responsible for the envenomation-associated events. In this study, mice envenomed with Deinagkistrodon acutus, Naja atra, or Agkistrodon halys pallas venom exhibited typical AKI and ALI symptoms, including significantly increased plasma levels of myoglobin, free hemoglobin, uric acid, aspartate aminotransferase, and alanine aminotransferase and upregulated expression of kidney NGAL and KIM-1. These effects were significantly inhibited when the mice were pretreated with natural inhibitors of PLA2 and SVMP isolated from Sinonatrix annularis (SaPLIγ and SaMPI). The inhibitors protected the physiological structural integrity of the renal tubules and glomeruli, alleviating inflammatory infiltration and diffuse hemorrhage in the liver. Furthermore, the dual therapy alleviated oxidative stress and apoptosis in the kidneys and liver by mitigating mitochondrial damage, thereby effectively reducing the lethal effect of snake venom in the inhibitor-treated mouse model. This study showed that dual therapy with inhibitors of metalloproteinase and phospholipase can effectively prevent ALI and AKI caused by snake bites. Our findings suggest that intrinsic inhibitors present in snakes are prospective therapeutic agents for multi-organ injuries caused by snake envenoming.
Collapse
Affiliation(s)
- Kepu Fu
- School of Basic Medical Sciences, Jiangxi Medical college, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jianqi Zhao
- School of Basic Medical Sciences, Jiangxi Medical college, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Lipeng Zhong
- Clinical Laboratory Center, The First Affiliated Hospital, Jiangxi Medical college, Nanchang University, Nanchang, Jiangxi 330209, China
| | - Haiyan Xu
- Blood Transfusion Department, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China
| | - Xinhui Yu
- School of Basic Medical Sciences, Jiangxi Medical college, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiaowen Bi
- School of Basic Medical Sciences, Jiangxi Medical college, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Chunhong Huang
- School of Basic Medical Sciences, Jiangxi Medical college, Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
19
|
Nandana MB, Bharatha M, Praveen R, Nayaka S, Vishwanath BS, Rajaiah R. Dimethyl ester of bilirubin ameliorates Naja naja snake venom-induced lung toxicity in mice via inhibiting NLRP3 inflammasome and MAPKs activation. Toxicon 2024; 244:107757. [PMID: 38740099 DOI: 10.1016/j.toxicon.2024.107757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Naja naja snake bite causes thousands of deaths worldwide in a year. N. naja envenomed victims exhibit both local and systemic reactions that potentially lead to death. In clinical practice, pulmonary complications in N. naja envenomation are commonly encountered. However, the molecular mechanisms underlying N. naja venom-induced lung toxicity remain unknown. Here, we reasoned that N. naja venom-induced lung toxicity is prompted by NLRP3 inflammasome and MAPKs activation in mice. Treatment with dimethyl ester of bilirubin (BD1), significantly inhibited the N. naja venom-induced activation of NLRP3 inflammasome and MAPKs both in vivo and in vitro (p < 0.05). Further, BD1 reduced N. naja venom-induced recruitment of inflammatory cells, and hemorrhage in the lung toxicity examined by histopathology. BD1 also diminished N. naja venom-induced local toxicities in paw edema and myotoxicity in mice. Furthermore, BD1 was able to enhance the survival time against N. naja venom-induced mortality in mice. In conclusion, the present data showed that BD1 alleviated N. naja venom-induced lung toxicity by inhibiting NLRP3 inflammasome and MAPKs activation. Small molecule inhibitors that intervene in venom-induced toxicities may have therapeutic applications complementing anti-snake venom.
Collapse
Affiliation(s)
- Manuganahalli B Nandana
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India; Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India
| | - Madeva Bharatha
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India
| | - Raju Praveen
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India
| | - Spandan Nayaka
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India
| | - Bannikuppe S Vishwanath
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India.
| | - Rajesh Rajaiah
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India.
| |
Collapse
|
20
|
Smith CF, Modahl CM, Ceja Galindo D, Larson KY, Maroney SP, Bahrabadi L, Brandehoff NP, Perry BW, McCabe MC, Petras D, Lomonte B, Calvete JJ, Castoe TA, Mackessy SP, Hansen KC, Saviola AJ. Assessing Target Specificity of the Small Molecule Inhibitor MARIMASTAT to Snake Venom Toxins: A Novel Application of Thermal Proteome Profiling. Mol Cell Proteomics 2024; 23:100779. [PMID: 38679388 PMCID: PMC11154231 DOI: 10.1016/j.mcpro.2024.100779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/09/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024] Open
Abstract
New treatments that circumvent the pitfalls of traditional antivenom therapies are critical to address the problem of snakebite globally. Numerous snake venom toxin inhibitors have shown promising cross-species neutralization of medically significant venom toxins in vivo and in vitro. The development of high-throughput approaches for the screening of such inhibitors could accelerate their identification, testing, and implementation and thus holds exciting potential for improving the treatments and outcomes of snakebite envenomation worldwide. Energetics-based proteomic approaches, including thermal proteome profiling and proteome integral solubility alteration (PISA) assays, represent "deep proteomics" methods for high throughput, proteome-wide identification of drug targets and ligands. In the following study, we apply thermal proteome profiling and PISA methods to characterize the interactions between venom toxin proteoforms in Crotalus atrox (Western Diamondback Rattlesnake) and the snake venom metalloprotease (SVMP) inhibitor marimastat. We investigate its venom proteome-wide effects and characterize its interactions with specific SVMP proteoforms, as well as its potential targeting of non-SVMP venom toxin families. We also compare the performance of PISA thermal window and soluble supernatant with insoluble precipitate using two inhibitor concentrations, providing the first demonstration of the utility of a sensitive high-throughput PISA-based approach to assess the direct targets of small molecule inhibitors for snake venom.
Collapse
Affiliation(s)
- Cara F Smith
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | - Cassandra M Modahl
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, UK
| | - David Ceja Galindo
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | - Keira Y Larson
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | - Sean P Maroney
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | - Lilyrose Bahrabadi
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | - Nicklaus P Brandehoff
- Rocky Mountain Poison and Drug Center, Denver Health and Hospital Authority, Denver, Colorado, USA
| | - Blair W Perry
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Maxwell C McCabe
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | - Daniel Petras
- CMFI Cluster of Excellence, University of Tuebingen, Tuebingen, Germany; Department of Biochemistry, University of California Riverside, Riverside, California, USA
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Juan J Calvete
- Evolutionary and Translational Venomics Laboratory, Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Todd A Castoe
- Department of Biology, The University of Texas Arlington, Texas, USA
| | - Stephen P Mackessy
- Department of Biological Sciences, University of Northern Colorado, Greeley, Colorado, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA.
| |
Collapse
|
21
|
Geng H, Li R, Teng L, Yu C, Wang W, Gao K, Li A, Liu S, Xing R, Yu H, Li P. Exploring the Efficacy of Hydroxybenzoic Acid Derivatives in Mitigating Jellyfish Toxin-Induced Skin Damage: Insights into Protective and Reparative Mechanisms. Mar Drugs 2024; 22:205. [PMID: 38786596 PMCID: PMC11122885 DOI: 10.3390/md22050205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
The escalation of jellyfish stings has drawn attention to severe skin reactions, underscoring the necessity for novel treatments. This investigation assesses the potential of hydroxybenzoic acid derivatives, specifically protocatechuic acid (PCA) and gentisic acid (DHB), for alleviating Nemopilema nomurai Nematocyst Venom (NnNV)-induced injuries. By employing an in vivo mouse model, the study delves into the therapeutic efficacy of these compounds. Through a combination of ELISA and Western blot analyses, histological examinations, and molecular assays, the study scrutinizes the inflammatory response, assesses skin damage and repair mechanisms, and investigates the compounds' ability to counteract venom effects. Our findings indicate that PCA and DHB significantly mitigate inflammation by modulating critical cytokines and pathways, altering collagen ratios through topical application, and enhancing VEGF and bFGF levels. Furthermore, both compounds demonstrate potential in neutralizing NnNV toxicity by inhibiting metalloproteinases and phospholipase-A2, showcasing the viability of small-molecule compounds in managing toxin-induced injuries.
Collapse
Affiliation(s)
- Hao Geng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.G.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongfeng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.G.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Lichao Teng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.G.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunlin Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.G.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Wenjie Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.G.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Gao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.G.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Aoyu Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.G.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.G.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.G.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.G.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.G.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
22
|
Antivenom slithers back to life. Nat Biotechnol 2024; 42:537-538. [PMID: 38570693 DOI: 10.1038/s41587-024-02221-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
|
23
|
Bittenbinder MA, van Thiel J, Cardoso FC, Casewell NR, Gutiérrez JM, Kool J, Vonk FJ. Tissue damaging toxins in snake venoms: mechanisms of action, pathophysiology and treatment strategies. Commun Biol 2024; 7:358. [PMID: 38519650 PMCID: PMC10960010 DOI: 10.1038/s42003-024-06019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
Snakebite envenoming is an important public health issue responsible for mortality and severe morbidity. Where mortality is mainly caused by venom toxins that induce cardiovascular disturbances, neurotoxicity, and acute kidney injury, morbidity is caused by toxins that directly or indirectly destroy cells and degrade the extracellular matrix. These are referred to as 'tissue-damaging toxins' and have previously been classified in various ways, most of which are based on the tissues being affected (e.g., cardiotoxins, myotoxins). This categorisation, however, is primarily phenomenological and not mechanistic. In this review, we propose an alternative way of classifying cytotoxins based on their mechanistic effects rather than using a description that is organ- or tissue-based. The mechanisms of toxin-induced tissue damage and their clinical implications are discussed. This review contributes to our understanding of fundamental biological processes associated with snakebite envenoming, which may pave the way for a knowledge-based search for novel therapeutic options.
Collapse
Affiliation(s)
- Mátyás A Bittenbinder
- Naturalis Biodiversity Center, 2333 CR, Leiden, The Netherlands
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, The Netherlands
| | - Jory van Thiel
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, Liverpool, United Kingdom
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Howard Hughes Medical Institute and Department of Biology, University of Maryland, College Park, MD, 20742, USA
| | - Fernanda C Cardoso
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
- Centre for Innovations in Peptide and Protein Science, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, Liverpool, United Kingdom
| | - José-María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica.
| | - Jeroen Kool
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands.
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, The Netherlands.
| | - Freek J Vonk
- Naturalis Biodiversity Center, 2333 CR, Leiden, The Netherlands
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
24
|
Borri J, Gutiérrez JM, Knudsen C, Habib AG, Goldstein M, Tuttle A. Landscape of toxin-neutralizing therapeutics for snakebite envenoming (2015-2022): Setting the stage for an R&D agenda. PLoS Negl Trop Dis 2024; 18:e0012052. [PMID: 38530781 PMCID: PMC10965046 DOI: 10.1371/journal.pntd.0012052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Progress in snakebite envenoming (SBE) therapeutics has suffered from a critical lack of data on the research and development (R&D) landscape. A database characterising this information would be a powerful tool for coordinating and accelerating SBE R&D. To address this need, we aimed to identify and categorise all active investigational candidates in development for SBE and all available or marketed products. METHODOLOGY/PRINCIPAL FINDINGS In this landscape study, publicly available data and literature were reviewed to canvas the state of the SBE therapeutics market and research pipeline by identifying, characterising, and validating all investigational drug and biologic candidates with direct action on snake venom toxins, and all products available or marketed from 2015 to 2022. We identified 127 marketed products and 196 candidates in the pipeline, describing a very homogenous market of similar but geographically bespoke products and a diverse but immature pipeline, as most investigational candidates are at an early stage of development, with only eight candidates in clinical development. CONCLUSIONS/SIGNIFICANCE Further investment and research is needed to address the shortfalls in products already on the market and to accelerate R&D for new therapeutics. This should be accompanied by efforts to converge on shared priorities and reshape the current SBE R&D ecosystem to ensure translation of innovation and access.
Collapse
Affiliation(s)
- Juliette Borri
- Policy Cures Research, Sydney, New South Wales, Australia
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | | | - Abdulrazaq G. Habib
- Infectious and Tropical Diseases Unit, Department of Medicine, Bayero University, Kano, Nigeria
| | - Maya Goldstein
- Policy Cures Research, Sydney, New South Wales, Australia
| | - Andrew Tuttle
- Policy Cures Research, Sydney, New South Wales, Australia
| |
Collapse
|
25
|
Slagboom J, Lewis AH, Schouten WM, van Haperen R, Veltman M, Bittenbinder MA, Vonk FJ, Casewell NR, Grosveld F, Drabek D, Kool J. High throughput identification of human monoclonal antibodies and heavy-chain-only antibodies to treat snakebite. Toxicon X 2024; 21:100185. [PMID: 38425752 PMCID: PMC10901844 DOI: 10.1016/j.toxcx.2024.100185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/12/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Snakebite envenoming is a priority Neglected Tropical Disease that causes an estimated 81,000-135,000 fatalities each year. The development of a new generation of safer, affordable, and accessible antivenom therapies is urgently needed. With this goal in mind, rigorous characterisation of the specific toxins in snake venom is key to generating novel therapies for snakebite. Monoclonal antibodies directed against venom toxins are emerging as potentially strong candidates in the development of new snakebite diagnostics and treatment. Venoms comprise many different toxins of which several are responsible for their pathological effects. Due to the large variability of venoms within and between species, formulations of combinations of human antibodies are proposed as the next generation antivenoms. Here a high-throughput screening method employing antibody-based ligand fishing of venom toxins in 384 filter-well plate format has been developed to determine the antibody target/s The approach uses Protein G beads for antibody capture followed by exposure to a full venom or purified toxins to bind their respective ligand toxin(s). This is followed by a washing/centrifugation step to remove non-binding toxins and an in-well tryptic digest. Finally, peptides from each well are analysed by nanoLC-MS/MS and subsequent Mascot database searching to identify the bound toxin/s for each antibody under investigation. The approach was successfully validated to rapidly screen antibodies sourced from hybridomas, derived from venom-immunised mice expressing either regular human antibodies or heavy-chain-only human antibodies (HCAbs).
Collapse
Affiliation(s)
- Julien Slagboom
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081HV, the Netherlands
| | - Abigail H. Lewis
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081HV, the Netherlands
| | - Wietse M. Schouten
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081HV, the Netherlands
| | - Rien van Haperen
- Department of Cell Biology and Genetics, Faculty of Medicine, Erasmus Medical Center Rotterdam, 3000 DR, Rotterdam, the Netherlands
- Harbour BioMed, Erasmus Medical Center Rotterdam, 3000 DR, Rotterdam, the Netherlands
| | - Mieke Veltman
- Department of Cell Biology and Genetics, Faculty of Medicine, Erasmus Medical Center Rotterdam, 3000 DR, Rotterdam, the Netherlands
- Harbour BioMed, Erasmus Medical Center Rotterdam, 3000 DR, Rotterdam, the Netherlands
| | - Mátyás A. Bittenbinder
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081HV, the Netherlands
- Naturalis Biodiversity Center, 2333 CR, Leiden, the Netherlands
| | - Freek J. Vonk
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081HV, the Netherlands
- Naturalis Biodiversity Center, 2333 CR, Leiden, the Netherlands
| | - Nicholas R. Casewell
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Frank Grosveld
- Department of Cell Biology and Genetics, Faculty of Medicine, Erasmus Medical Center Rotterdam, 3000 DR, Rotterdam, the Netherlands
- Harbour BioMed, Erasmus Medical Center Rotterdam, 3000 DR, Rotterdam, the Netherlands
| | - Dubravka Drabek
- Department of Cell Biology and Genetics, Faculty of Medicine, Erasmus Medical Center Rotterdam, 3000 DR, Rotterdam, the Netherlands
- Harbour BioMed, Erasmus Medical Center Rotterdam, 3000 DR, Rotterdam, the Netherlands
| | - Jeroen Kool
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081HV, the Netherlands
| |
Collapse
|
26
|
Uko SO, Malami I, Ibrahim KG, Lawal N, Bello MB, Abubakar MB, Imam MU. Revolutionizing snakebite care with novel antivenoms: Breakthroughs and barriers. Heliyon 2024; 10:e25531. [PMID: 38333815 PMCID: PMC10850593 DOI: 10.1016/j.heliyon.2024.e25531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024] Open
Abstract
Snakebite envenoming (SBE) is a global public health concern, primarily due to the lack of effective antivenom for treating snakebites inflicted by medically significant venomous snakes prevalent across various geographic locations. The rising demand for safe, cost-effective, and potent snakebite treatments highlights the urgent need to develop alternative therapeutics targeting relevant toxins. This development could provide promising discoveries to create novel recombinant solutions, leveraging human monoclonal antibodies, synthetic peptides and nanobodies. Such technologies as recombinant DNA, peptide and epitope mapping phage display etc) have the potential to exceed the traditional use of equine polyclonal antibodies, which have long been used in antivenom production. Recombinant antivenom can be engineered to target certain toxins that play a critical role in snakebite pathology. This approach has the potential to produce antivenom with improved efficacy and safety profiles. However, there are limitations and challenges associated with these emerging technologies. Therefore, identifying the limitations is critical for overcoming the associated challenges and optimizing the development of recombinant antivenoms. This review is aimed at presenting a thorough overview of diverse technologies used in the development of recombinant antivenom, emphasizing their limitations and offering insights into prospects for advancing recombinant antivenoms.
Collapse
Affiliation(s)
- Samuel Odo Uko
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Nigeria
- Department of Biochemistry and Molecular Biology, Faculty of Chemical and Life Sciecnes, Usmanu Danfodiyo University Sokoto, Nigeria
| | - Ibrahim Malami
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Nigeria
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University Sokoto, Nigeria
| | - Kasimu Ghandi Ibrahim
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, P. O. Box 2000, Zarqa, 13110, Jordan
| | - Nafiu Lawal
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Nigeria
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University Sokoto, Nigeria
| | - Muhammad Bashir Bello
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Nigeria
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University Sokoto, Nigeria
- Vaccine Development Unit, Infectious Disease Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Murtala Bello Abubakar
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Nigeria
- Department of Physiology, College of Health Sciences, Usmanu Danfodiyo University Sokoto, Nigeria
- Department of Physiology, College of Medicine and Health Sciences, Baze University, Abuja, Nigeria
| | - Mustapha Umar Imam
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Nigeria
- Department of Medical Biochemistry, College of Health Sciences, Usmanu Danfodiyo University Sokoto, Nigeria
| |
Collapse
|
27
|
Pucca MB, Camphora AL. The potential risks of equine serum therapy in transmitting new infectious diseases: lessons from a post-pandemic era. Front Public Health 2024; 12:1366929. [PMID: 38420034 PMCID: PMC10899399 DOI: 10.3389/fpubh.2024.1366929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Affiliation(s)
- Manuela B. Pucca
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Campus Araraquara, São Paulo, Brazil
| | - Ana Lucia Camphora
- Independent Researcher on Intersections of Modern and Contemporary Equine Cultures, Rio de Janeiro, Brazil
| |
Collapse
|
28
|
Bin Haidar H, Almeida JR, Williams J, Guo B, Bigot A, Senthilkumaran S, Vaiyapuri S, Patel K. Differential effects of the venoms of Russell's viper and Indian cobra on human myoblasts. Sci Rep 2024; 14:3184. [PMID: 38326450 PMCID: PMC10850160 DOI: 10.1038/s41598-024-53366-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/31/2024] [Indexed: 02/09/2024] Open
Abstract
Local tissue damage following snakebite envenoming remains a poorly researched area. To develop better strategies to treat snakebites, it is critical to understand the mechanisms through which venom toxins induce envenomation effects including local tissue damage. Here, we demonstrate how the venoms of two medically important Indian snakes (Russell's viper and cobra) affect human skeletal muscle using a cultured human myoblast cell line. The data suggest that both venoms affect the viability of myoblasts. Russell's viper venom reduced the total number of cells, their migration, and the area of focal adhesions. It also suppressed myogenic differentiation and induced muscle atrophy. While cobra venom decreased the viability, it did not largely affect cell migration and focal adhesions. Cobra venom affected the formation of myotubes and induced atrophy. Cobra venom-induced atrophy could not be reversed by small molecule inhibitors such as varespladib (a phospholipase A2 inhibitor) and prinomastat (a metalloprotease inhibitor), and soluble activin type IIb receptor (a molecule used to promote regeneration of skeletal muscle), although the antivenom (raised against the Indian 'Big Four' snakes) has attenuated the effects. However, all these molecules rescued the myotubes from Russell's viper venom-induced atrophy. This study demonstrates key steps in the muscle regeneration process that are affected by both Indian Russell's viper and cobra venoms and offers insights into the potential causes of clinical features displayed in envenomed victims. Further research is required to investigate the molecular mechanisms of venom-induced myotoxicity under in vivo settings and develop better therapies for snakebite-induced muscle damage.
Collapse
Affiliation(s)
- Husain Bin Haidar
- School of Biological Sciences, University of Reading, Reading, RG6 6UB, UK
- Kuwait Cancer Control Centre, Ministry of Health, Kuwait City, Kuwait
| | - José R Almeida
- School of Pharmacy, University of Reading, Reading, RG6 6UB, UK
| | - Jarred Williams
- School of Pharmacy, University of Reading, Reading, RG6 6UB, UK
| | - Bokai Guo
- School of Biological Sciences, University of Reading, Reading, RG6 6UB, UK
| | - Anne Bigot
- INSERM, CNRS, Institute of Myology, Centre of Research in Myology, Sorbonne Universities, UPMC University Paris, Paris, France
| | | | | | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, RG6 6UB, UK.
| |
Collapse
|
29
|
Serino-Silva C, Bittencourt Rodrigues CF, Miyamoto JG, Hatakeyama DM, Kavazoi VK, Da Rocha MMT, Tanaka AS, Tashima AK, de Morais-Zani K, Grego KF, Tanaka-Azevedo AM. Proteomics and life-history variability of Endogenous Phospholipases A2 Inhibitors (PLIs) in Bothrops jararaca plasma. PLoS One 2024; 19:e0295806. [PMID: 38319909 PMCID: PMC10846723 DOI: 10.1371/journal.pone.0295806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/29/2023] [Indexed: 02/08/2024] Open
Abstract
In Brazil, the genus Bothrops is responsible for most ophidian accidents. Snake venoms have a wide variety of proteins and peptides exhibiting a broad repertoire of pharmacological and toxic effects that elicit systemic injury and characteristic local effects. The snakes' natural resistance to envenomation caused by the presence of inhibitory compounds on their plasma have been extensively studied. However, the presence of these inhibitors in different developmental stages is yet to be further discussed. The aim of this study was to evaluate the ontogeny of Bothrops jararaca plasma inhibitor composition and, to this end, plasma samples of B. jararaca were obtained from different developmental stages (neonates, youngs, and adults) and sexes (female and male). SDS-PAGE, Western blotting, affinity chromatography, and mass spectrometry were performed to analyze the protein profile and interaction between B. jararaca plasma and venom proteins. In addition, the presence of γBjPLI, a PLA2 inhibitor previously identified and characterized in B. jararaca serum, was confirmed by Western blotting. According to our results, 9-17% of plasma proteins were capable of binding to venom proteins in the three developmental stages. The presence of different endogenous inhibitors and, more specifically, different PLA2 inhibitor (PLI) classes and antihemorrhagic factors were confirmed in specimens of B. jararaca from newborn by mass spectrometry. For the first time, the αPLI and βPLI were detected in B. jararaca plasma, although low or no ontogenetic and sexual correlation were found. The γPLI were more abundant in adult female, than in neonate and young female, but similar to neonate, young and adult male according to the results of mass spectrometry analysis. Our results suggest that there are proteins in the plasma of these animals that can help counteract the effects of self-envenomation from birth.
Collapse
Affiliation(s)
- Caroline Serino-Silva
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, SP, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia (PPIB—IPT, IBU and USP), Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Caroline Fabri Bittencourt Rodrigues
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, SP, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia (PPIB—IPT, IBU and USP), Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | | | - Daniela Miki Hatakeyama
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, SP, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia (PPIB—IPT, IBU and USP), Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Victor Koiti Kavazoi
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, SP, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia (PPIB—IPT, IBU and USP), Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | | | - Aparecida Sadae Tanaka
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Alexandre Keiji Tashima
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
30
|
Clare RH, Dawson CA, Westhorpe A, Albulescu LO, Woodley CM, Mosallam N, Chong DJW, Kool J, Berry NG, O’Neill PM, Casewell NR. Snakebite drug discovery: high-throughput screening to identify novel snake venom metalloproteinase toxin inhibitors. Front Pharmacol 2024; 14:1328950. [PMID: 38273820 PMCID: PMC10808794 DOI: 10.3389/fphar.2023.1328950] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
Snakebite envenoming results in ∼100,000 deaths per year, with close to four times as many victims left with life-long sequelae. Current antivenom therapies have several limitations including high cost, variable cross-snake species efficacy and a requirement for intravenous administration in a clinical setting. Next-generation snakebite therapies are being widely investigated with the aim to improve cost, efficacy, and safety. In recent years several small molecule drugs have shown considerable promise for snakebite indication, with oral bioavailability particularly promising for community delivery rapidly after a snakebite. However, only two such drugs have entered clinical development for snakebite. To offset the risk of attrition during clinical trials and to better explore the chemical space for small molecule venom toxin inhibitors, here we describe the first high throughput drug screen against snake venom metalloproteinases (SVMPs)-a pathogenic toxin family responsible for causing haemorrhage and coagulopathy. Following validation of a 384-well fluorescent enzymatic assay, we screened a repurposed drug library of 3,547 compounds against five geographically distinct and toxin variable snake venoms. Our drug screen resulted in the identification of 14 compounds with pan-species inhibitory activity. Following secondary potency testing, four SVMP inhibitors were identified with nanomolar EC50s comparable to the previously identified matrix metalloproteinase inhibitor marimastat and superior to the metal chelator dimercaprol, doubling the current global portfolio of SVMP inhibitors. Following analysis of their chemical structure and ADME properties, two hit-to-lead compounds were identified. These clear starting points for the initiation of medicinal chemistry campaigns provide the basis for the first ever designer snakebite specific small molecules.
Collapse
Affiliation(s)
- Rachel H. Clare
- Department of Tropical Disease Biology, Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Charlotte A. Dawson
- Department of Tropical Disease Biology, Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Adam Westhorpe
- Department of Tropical Disease Biology, Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Laura-Oana Albulescu
- Department of Tropical Disease Biology, Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Nada Mosallam
- Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
| | - Daniel J. W. Chong
- Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
| | - Jeroen Kool
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Neil G. Berry
- Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
| | - Paul M. O’Neill
- Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
| | - Nicholas R. Casewell
- Department of Tropical Disease Biology, Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
31
|
Albulescu LO, Westhorpe A, Clare RH, Woodley CM, James N, Kool J, Berry NG, O’Neill PM, Casewell NR. Optimizing drug discovery for snakebite envenoming via a high-throughput phospholipase A2 screening platform. Front Pharmacol 2024; 14:1331224. [PMID: 38273832 PMCID: PMC10808766 DOI: 10.3389/fphar.2023.1331224] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Snakebite envenoming is a neglected tropical disease that causes as many as 1.8 million envenomings and 140,000 deaths annually. To address treatment limitations that exist with current antivenoms, the search for small molecule drug-based inhibitors that can be administered as early interventions has recently gained traction. Snake venoms are complex mixtures of proteins, peptides and small molecules and their composition varies substantially between and within snake species. The phospholipases A2 (PLA2) are one of the main pathogenic toxin classes found in medically important viper and elapid snake venoms, yet varespladib, a drug originally developed for the treatment of acute coronary syndrome, remains the only PLA2 inhibitor shown to effectively neutralise venom toxicity in vitro and in vivo, resulting in an extremely limited drug portfolio. Here, we describe a high-throughput drug screen to identify novel PLA2 inhibitors for repurposing as snakebite treatments. We present method optimisation of a 384-well plate, colorimetric, high-throughput screening assay that allowed for a throughput of ∼2,800 drugs per day, and report on the screening of a ∼3,500 post-phase I repurposed drug library against the venom of the Russell's viper, Daboia russelii. We further explore the broad-spectrum inhibitory potential and efficacy of the resulting top hits against a range of medically important snake venoms and demonstrate the utility of our method in determining drug EC50s. Collectively, our findings support the future application of this method to fully explore the chemical space to discover novel PLA2-inhibiting drugs of value for preventing severe pathology caused by snakebite envenoming.
Collapse
Affiliation(s)
- Laura-Oana Albulescu
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Adam Westhorpe
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Rachel H. Clare
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Nivya James
- Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
| | - Jeroen Kool
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Neil G. Berry
- Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
| | - Paul M. O’Neill
- Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
| | - Nicholas R. Casewell
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
32
|
Carvalho ÉDS, Souza ARDN, Melo DFC, de Farias AS, Macedo BBDO, Sartim MA, Caggy MC, Rodrigues BDA, Ribeiro GS, Reis HN, Araújo FQ, da Silva IM, Sachett A, Sampaio VDS, Balieiro AADS, Zamuner SR, Vissoci JRN, Cabral LN, Monteiro WM, Sachett JDAG. Photobiomodulation Therapy to Treat Snakebites Caused by Bothrops atrox: A Randomized Clinical Trial. JAMA Intern Med 2024; 184:70-80. [PMID: 38048090 PMCID: PMC10696517 DOI: 10.1001/jamainternmed.2023.6538] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/08/2023] [Indexed: 12/05/2023]
Abstract
Importance Bothrops venom acts almost immediately at the bite site and causes tissue damage. Objective To investigate the feasibility and explore the safety and efficacy of low-level laser therapy (LLLT) in reducing the local manifestations of B atrox envenomations. Design, Setting, and Participants This was a double-blind randomized clinical trial conducted at Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, in Manaus, Brazil. A total of 60 adult participants were included from November 2020 to March 2022, with 30 in each group. Baseline characteristics on admission were similarly distributed between groups. Data analysis was performed from August to December 2022. Intervention The intervention group received LLLT combined with regular antivenom treatment. The laser used was a gallium arsenide laser with 4 infrared laser emitters and 4 red laser emitters, 4 J/cm2 for 40 seconds at each application point. Main Outcomes and Measures Feasibility was assessed by eligibility, recruitment, and retention rates; protocol fidelity; and patients' acceptability. The primary efficacy outcome of this study was myolysis estimated by the value of creatine kinase (U/L) on the third day of follow-up. Secondary efficacy outcomes were (1) pain intensity, (2) circumference measurement ratio, (3) extent of edema, (4) difference between the bite site temperature and that of the contralateral limb, (5) need for the use of analgesics, (6) frequency of secondary infections, and (7) necrosis. These outcomes were measured 48 hours after admission. Disability assessment was carried out from 4 to 6 months after patients' discharge. P values for outcomes were adjusted with Bonferroni correction. Results A total of 60 patients (mean [SD] age, 43.2 [15.3] years; 8 female individuals [13%] and 52 male individuals [87%]) were included. The study was feasible, and patient retention and acceptability were high. Creatine kinase was significantly lower in the LLLT group (mean [SD], 163.7 [160.0] U/L) 48 hours after admission in relation to the comparator (412.4 [441.3] U/L) (P = .03). Mean (SD) pain intensity (2.9 [2.7] vs 5.0 [2.4]; P = .004), circumference measurement ratio (6.6% [6.6%] vs 17.1% [11.6%]; P < .001), and edema extent (25.8 [15.0] vs 40.1 [22.7] cm; P = .002) were significantly lower in the LLLT group in relation to the comparator. No difference was observed between the groups regarding the mean difference between the bite site temperature and the contralateral limb. Secondary infections, necrosis, disability outcomes, and the frequency of need for analgesics were similar in both groups. No adverse event was observed. Conclusions and Relevance The data from this randomized clinical trial suggest that the use of LLLT was feasible and safe in a hospital setting and effective in reducing muscle damage and the local inflammatory process caused by B atrox envenomations. Trial Registration Brazilian Registry of Clinical Trials Identifier: RBR-4qw4vf.
Collapse
Affiliation(s)
- Érica da Silva Carvalho
- School of Health Sciences, Universidade do Estado do Amazonas, Manaus, Brazil
- Department of Teaching and Research, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil
| | - Andrea Renata do Nascimento Souza
- School of Health Sciences, Universidade do Estado do Amazonas, Manaus, Brazil
- Department of Teaching and Research, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil
| | - Dessana Francis Chehuan Melo
- Department of Teaching and Research, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil
- School of Medicine, Universidade Federal do Amazonas, Manaus, Brazil
| | - Altair Seabra de Farias
- School of Health Sciences, Universidade do Estado do Amazonas, Manaus, Brazil
- Department of Teaching and Research, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil
| | | | - Marco Aurélio Sartim
- School of Health Sciences, Universidade do Estado do Amazonas, Manaus, Brazil
- Department of Teaching and Research, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil
- Universidade Nilton Lins, Manaus, Brazil
| | - Mariela Costa Caggy
- School of Health Sciences, Universidade do Estado do Amazonas, Manaus, Brazil
| | | | | | - Heloísa Nunes Reis
- School of Health Sciences, Universidade do Estado do Amazonas, Manaus, Brazil
| | | | - Iran Mendonça da Silva
- School of Health Sciences, Universidade do Estado do Amazonas, Manaus, Brazil
- Department of Teaching and Research, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil
| | - André Sachett
- School of Health Sciences, Universidade do Estado do Amazonas, Manaus, Brazil
- Department of Teaching and Research, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil
| | - Vanderson de Souza Sampaio
- School of Health Sciences, Universidade do Estado do Amazonas, Manaus, Brazil
- Department of Teaching and Research, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil
| | | | | | | | - Lioney Nobre Cabral
- School of Health Sciences, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Wuelton Marcelo Monteiro
- School of Health Sciences, Universidade do Estado do Amazonas, Manaus, Brazil
- Department of Teaching and Research, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil
| | - Jacqueline de Almeida Gonçalves Sachett
- School of Health Sciences, Universidade do Estado do Amazonas, Manaus, Brazil
- Department of Teaching and Research, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil
- Department of Teaching and Research, Fundação Alfredo da Matta, Manaus, Brazil
| |
Collapse
|
33
|
Kumar A, Madni ZK, Chaturvedi S, Salunke DM. Recombinant human scFv antibody fragments against phospholipase A2 from Naja naja and Echis carinatus snake venoms: In vivo neutralization and mechanistic insights. Mol Immunol 2024; 165:55-67. [PMID: 38154407 DOI: 10.1016/j.molimm.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/07/2023] [Accepted: 12/17/2023] [Indexed: 12/30/2023]
Abstract
Snake envenomation results in a range of clinical sequelae, and widely used animal-based conventional antivenoms exhibit several limitations including the adverse immunological effects in human snake bite victims. Therefore, human monoclonal anti-snake venom antibodies or fragments can be an alternate therapy for overcoming the existing limitations. We developed venom-neutralizing humanized scFv antibodies and analyzed biochemical mechanisms associated with the inhibition of toxicity. Tomlinson I and J human scFv antibody libraries were screened against Naja naja and Echis carinatus venoms, and seven unique scFv antibodies were obtained. Further, specific toxins of snake venom interacting with each of these scFvs were identified, and phospholipase A2 (PLA2) was found to be prominently captured by the phage-anchored scFv antibodies. Our study indicated PLA2 to be one of the abundant toxins in Naja naja and Echis carinatus venom samples. The scFvs binding to PLA2 were used to perform in vivo survival assay using the mouse model and in vitro toxin inhibition assays. scFv N194, which binds to acidic PLA2, protected 50% of mice treated with Naja naja venom. Significant prolongation of survival time and 16% survival were observed in Echis carinatus venom-challenged mice treated with scFv E113 and scFv E10, respectively. However, a combination comprised of an equal amount of two scFvs, E113 and E10, both interacting with basic PLA2, exhibited synergistically enhanced survival of 33% in Echis carinatus venom-challenged mice. No such synergistically enhanced survival was observed in the case of combinatorial treatment with anti-Naja naja scFvs, N194, and N248. These scFvs demonstrated partial inhibition of venom-induced myotoxicity, and E113 also inhibited hemolysis by 50%, which corroborates the enhanced survival during combinatorial treatment in Echis carinatus venom-challenged mice.
Collapse
Affiliation(s)
- Amit Kumar
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Zaid Kamal Madni
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shivam Chaturvedi
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Dinakar M Salunke
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
34
|
Thumtecho S, Burlet NJ, Ljungars A, Laustsen AH. Towards better antivenoms: navigating the road to new types of snakebite envenoming therapies. J Venom Anim Toxins Incl Trop Dis 2023; 29:e20230057. [PMID: 38116472 PMCID: PMC10729942 DOI: 10.1590/1678-9199-jvatitd-2023-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
Snakebite envenoming is a significant global health challenge, and for over a century, traditional plasma-derived antivenoms from hyperimmunized animals have been the primary treatment against this infliction. However, these antivenoms have several inherent limitations, including the risk of causing adverse reactions when administered to patients, batch-to-batch variation, and high production costs. To address these issues and improve treatment outcomes, the development of new types of antivenoms is crucial. During this development, key aspects such as improved clinical efficacy, enhanced safety profiles, and greater affordability should be in focus. To achieve these goals, modern biotechnological methods can be applied to the discovery and development of therapeutic agents that can neutralize medically important toxins from multiple snake species. This review highlights some of these agents, including monoclonal antibodies, nanobodies, and selected small molecules, that can achieve broad toxin neutralization, have favorable safety profiles, and can be produced on a large scale with standardized manufacturing processes. Considering the inherent strengths and limitations related to the pharmacokinetics of these different agents, a combination of them might be beneficial in the development of new types of antivenom products with improved therapeutic properties. While the implementation of new therapies requires time, it is foreseeable that the application of biotechnological advancements represents a promising trajectory toward the development of improved therapies for snakebite envenoming. As research and development continue to advance, these new products could emerge as the mainstay treatment in the future.
Collapse
Affiliation(s)
- Suthimon Thumtecho
- Division of Toxicology, Department of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nick J. Burlet
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anne Ljungars
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
35
|
Hall SR, Rasmussen SA, Crittenden E, Dawson CA, Bartlett KE, Westhorpe AP, Albulescu LO, Kool J, Gutiérrez JM, Casewell NR. Repurposed drugs and their combinations prevent morbidity-inducing dermonecrosis caused by diverse cytotoxic snake venoms. Nat Commun 2023; 14:7812. [PMID: 38097534 PMCID: PMC10721902 DOI: 10.1038/s41467-023-43510-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/11/2023] [Indexed: 12/17/2023] Open
Abstract
Morbidity from snakebite envenoming affects approximately 400,000 people annually. Tissue damage at the bite-site often leaves victims with catastrophic life-long injuries and is largely untreatable by current antivenoms. Repurposed small molecule drugs that inhibit specific snake venom toxins show considerable promise for tackling this neglected tropical disease. Using human skin cell assays as an initial model for snakebite-induced dermonecrosis, we show that the drugs 2,3-dimercapto-1-propanesulfonic acid (DMPS), marimastat, and varespladib, alone or in combination, inhibit the cytotoxicity of a broad range of medically important snake venoms. Thereafter, using preclinical mouse models of dermonecrosis, we demonstrate that the dual therapeutic combinations of DMPS or marimastat with varespladib significantly inhibit the dermonecrotic activity of geographically distinct and medically important snake venoms, even when the drug combinations are delivered one hour after envenoming. These findings strongly support the future translation of repurposed drug combinations as broad-spectrum therapeutics for preventing morbidity caused by snakebite.
Collapse
Affiliation(s)
- Steven R Hall
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Sean A Rasmussen
- Department of Pathology and Laboratory Medicine, Queen Elizabeth II Health Sciences Centre and Dalhousie University, 7th Floor of MacKenzie Building, 5788 University Avenue, Halifax, NS, B3H 1V8, Canada
| | - Edouard Crittenden
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Charlotte A Dawson
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Keirah E Bartlett
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Adam P Westhorpe
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Laura-Oana Albulescu
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Jeroen Kool
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, The Netherlands
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, PO Box 11501-2060, San José, Costa Rica
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
- Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
36
|
Sampat GH, Hiremath K, Dodakallanavar J, Patil VS, Harish DR, Biradar P, Mahadevamurthy RK, Barvaliya M, Roy S. Unraveling snake venom phospholipase A 2: an overview of its structure, pharmacology, and inhibitors. Pharmacol Rep 2023; 75:1454-1473. [PMID: 37926795 DOI: 10.1007/s43440-023-00543-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023]
Abstract
Snake bite is a neglected disease that affects millions of people worldwide. WHO reported approximately 5 million people are bitten by various species of snakes each year, resulting in nearly 1 million deaths and an additional three times cases of permanent disability. Snakes utilize the venom mainly for immobilization and digestion of their prey. Snake venom is a composition of proteins and enzymes which is responsible for its diverse pharmacological action. Snake venom phospholipase A2 (SvPLA2) is an enzyme that is present in every snake species in different quantities and is known to produce remarkable functional diversity and pharmacological action like inflammation, necrosis, myonecrosis, hemorrhage, etc. Arachidonic acid, a precursor to eicosanoids, such as prostaglandins and leukotrienes, is released when SvPLA2 catalyzes the hydrolysis of the sn-2 positions of membrane glycerophospholipids, which is responsible for its actions. Polyvalent antivenom produced from horses or lambs is the standard treatment for snake envenomation, although it has many drawbacks. Traditional medical practitioners treat snake bites using plants and other remedies as a sustainable alternative. More than 500 plant species from more than 100 families reported having venom-neutralizing abilities. Plant-derived secondary metabolites have the ability to reduce the venom's adverse consequences. Numerous studies have documented the ability of plant chemicals to inhibit the enzymes found in snake venom. Research in recent years has shown that various small molecules, such as varespladib and methyl varespladib, effectively inhibit the PLA2 toxin. In the present article, we have overviewed the knowledge of snake venom phospholipase A2, its classification, and the mechanism involved in the pathophysiology of cytotoxicity, myonecrosis, anticoagulation, and inflammation clinical application and inhibitors of SvPLA2, along with the list of studies carried out to evaluate the potency of small molecules like varespladib and secondary metabolites from the traditional medicine for their anti-PLA2 effect.
Collapse
Affiliation(s)
- Ganesh H Sampat
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Kashinath Hiremath
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Jagadeesh Dodakallanavar
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Vishal S Patil
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Darasaguppe R Harish
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India.
| | - Prakash Biradar
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India.
| | | | - Manish Barvaliya
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
| | - Subarna Roy
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
| |
Collapse
|
37
|
Werner RM, Soffa AN. Considerations for the development of a field-based medical device for the administration of adjunctive therapies for snakebite envenoming. Toxicon X 2023; 20:100169. [PMID: 37661997 PMCID: PMC10474190 DOI: 10.1016/j.toxcx.2023.100169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/27/2023] [Accepted: 08/12/2023] [Indexed: 09/05/2023] Open
Abstract
The timely administration of antivenom is the most effective method currently available to reduce the burden of snakebite envenoming (SBE), a neglected tropical disease that most often affects rural agricultural global populations. There is increasing interest in the development of adjunctive small molecule and biologic therapeutics that target the most problematic venom components to bridge the time-gap between initial SBE and the administration antivenom. Unique combinations of these therapeutics could provide relief from the toxic effects of regional groupings of medically relevant snake species. The application a PRISMA/PICO literature search methodology demonstrated an increasing interest in the rapid administration of therapies to improve patient symptoms and outcomes after SBE. Advice from expert interviews and considerations regarding the potential routes of therapy administration, anatomical bite location, and species-specific venom delivery have provided a framework to identify ideal metrics and potential hurdles for the development of a field-based medical device that could be used immediately after SBE to deliver adjunctive therapies. The use of subcutaneous (SC) or intramuscular (IM) injection were identified as potential routes of administration of both small molecule and biologic therapies. The development of a field-based medical device for the delivery of adjunctive SBE therapies presents unique challenges that will require a collaborative and transdisciplinary approach to be successful.
Collapse
|
38
|
Menzies SK, Arinto-Garcia R, Amorim FG, Cardoso IA, Abada C, Crasset T, Durbesson F, Edge RJ, El-Kazzi P, Hall S, Redureau D, Stenner R, Boldrini-França J, Sun H, Roldão A, Alves PM, Harrison RA, Vincentelli R, Berger I, Quinton L, Casewell NR, Schaffitzel C. ADDovenom: Thermostable Protein-Based ADDomer Nanoparticles as New Therapeutics for Snakebite Envenoming. Toxins (Basel) 2023; 15:673. [PMID: 38133177 PMCID: PMC10747859 DOI: 10.3390/toxins15120673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Snakebite envenoming can be a life-threatening medical emergency that requires prompt medical intervention to neutralise the effects of venom toxins. Each year up to 138,000 people die from snakebites and threefold more victims suffer life-altering disabilities. The current treatment of snakebite relies solely on antivenom-polyclonal antibodies isolated from the plasma of hyperimmunised animals-which is associated with numerous deficiencies. The ADDovenom project seeks to deliver a novel snakebite therapy, through the use of an innovative protein-based scaffold as a next-generation antivenom. The ADDomer is a megadalton-sized, thermostable synthetic nanoparticle derived from the adenovirus penton base protein; it has 60 high-avidity binding sites to neutralise venom toxins. Here, we outline our experimental strategies to achieve this goal using state-of-the-art protein engineering, expression technology and mass spectrometry, as well as in vitro and in vivo venom neutralisation assays. We anticipate that the approaches described here will produce antivenom with unparalleled efficacy, safety and affordability.
Collapse
Affiliation(s)
- Stefanie K. Menzies
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Raquel Arinto-Garcia
- iBET, Instituto de Biologia Experimental e Technológica, Apartado 12, 2781-901 Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Fernanda Gobbi Amorim
- Mass Spectrometry Laboratory, MolSys Research Unit, Allée du six Aout 11, Quartier Agora, Liège Université, 4000 Liège, Belgium
| | - Iara Aimê Cardoso
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Camille Abada
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Thomas Crasset
- Mass Spectrometry Laboratory, MolSys Research Unit, Allée du six Aout 11, Quartier Agora, Liège Université, 4000 Liège, Belgium
| | - Fabien Durbesson
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, 13009 Marseille, France
| | - Rebecca J. Edge
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Priscila El-Kazzi
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, 13009 Marseille, France
| | - Sophie Hall
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
- Max Planck Bristol Centre for Minimal Biology, Cantock’s Close, Bristol BS8 1TS, UK
| | - Damien Redureau
- Mass Spectrometry Laboratory, MolSys Research Unit, Allée du six Aout 11, Quartier Agora, Liège Université, 4000 Liège, Belgium
| | - Richard Stenner
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
- Max Planck Bristol Centre for Minimal Biology, Cantock’s Close, Bristol BS8 1TS, UK
| | - Johara Boldrini-França
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
- Max Planck Bristol Centre for Minimal Biology, Cantock’s Close, Bristol BS8 1TS, UK
| | - Huan Sun
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
- Max Planck Bristol Centre for Minimal Biology, Cantock’s Close, Bristol BS8 1TS, UK
| | - António Roldão
- iBET, Instituto de Biologia Experimental e Technológica, Apartado 12, 2781-901 Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Paula M. Alves
- iBET, Instituto de Biologia Experimental e Technológica, Apartado 12, 2781-901 Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Robert A. Harrison
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Renaud Vincentelli
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, 13009 Marseille, France
| | - Imre Berger
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
- Max Planck Bristol Centre for Minimal Biology, Cantock’s Close, Bristol BS8 1TS, UK
| | - Loïc Quinton
- Mass Spectrometry Laboratory, MolSys Research Unit, Allée du six Aout 11, Quartier Agora, Liège Université, 4000 Liège, Belgium
| | - Nicholas R. Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Christiane Schaffitzel
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
39
|
Patel RN, Clare RH, Ledsgaard L, Nys M, Kool J, Laustsen AH, Ulens C, Casewell NR. An in vitro assay to investigate venom neurotoxin activity on muscle-type nicotinic acetylcholine receptor activation and for the discovery of toxin-inhibitory molecules. Biochem Pharmacol 2023; 216:115758. [PMID: 37604290 PMCID: PMC10570928 DOI: 10.1016/j.bcp.2023.115758] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
Snakebite envenoming is a neglected tropical disease that causes over 100,000 deaths annually. Envenomings result in variable pathologies, but systemic neurotoxicity is among the most serious and is currently only treated with difficult to access and variably efficacious commercial antivenoms. Venom-induced neurotoxicity is often caused by α-neurotoxins antagonising the muscle-type nicotinic acetylcholine receptor (nAChR), a ligand-gated ion channel. Discovery of therapeutics targeting α-neurotoxins is hampered by relying on binding assays that do not reveal restoration of receptor activity or more costly and/or lower throughput electrophysiology-based approaches. Here, we report the validation of a screening assay for nAChR activation using immortalised TE671 cells expressing the γ-subunit containing muscle-type nAChR and a fluorescent dye that reports changes in cell membrane potential. Assay validation using traditional nAChR agonists and antagonists, which either activate or block ion fluxes, was consistent with previous studies. We then characterised antagonism of the nAChR by a variety of elapid snake venoms that cause muscle paralysis in snakebite victims, before defining the toxin-inhibiting activities of commercial antivenoms, and new types of snakebite therapeutic candidates, namely monoclonal antibodies, decoy receptors, and small molecules. Our findings show robust evidence of assay uniformity across 96-well plates and highlight the amenability of this approach for the future discovery of new snakebite therapeutics via screening campaigns. The described assay therefore represents a useful first-step approach for identifying α-neurotoxins and their inhibitors in the context of snakebite envenoming, and it should provide wider value for studying modulators of nAChR activity from other sources.
Collapse
Affiliation(s)
- Rohit N Patel
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, L3 5QA, UK; Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, L3 5QA, UK
| | - Rachel H Clare
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, L3 5QA, UK; Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, L3 5QA, UK
| | - Line Ledsgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mieke Nys
- Laboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, Belgium
| | - Jeroen Kool
- AIMMS Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Netherlands
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Chris Ulens
- Laboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, Belgium
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, L3 5QA, UK; Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, L3 5QA, UK.
| |
Collapse
|
40
|
Fu K, Cao L, Tang Y, Zhao J, Xiong K, Hong C, Huang C. The anti-myotoxic effects and mechanisms of Sinonatrix annularis serum and a novel plasma metalloproteinase inhibitor towards Deinagkistrodon acutus envenomation. Toxicol Lett 2023; 388:13-23. [PMID: 37805084 DOI: 10.1016/j.toxlet.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Non-venomous snakes commonly evolve natural resistance to venom to escape predators. Sinonatrix annularis serum has been shown to inhibit Deinagkistrodon acutus venom-induced hemorrhage and upregulation of serum CK, CK-MB, LDH, AST and ALT levels. Using TMT-labeled proteomics analysis, 168 proteins were found to be altered significantly in the envenomed gastrocnemius muscle and categorized into pathways such as complement and coagulation cascades, leukocyte transendothelial migration, and JAK/STAT signaling. These alterations were mitigated by S. annularis serum. Subsequently, a novel metalloproteinase inhibitor, SaMPI, was isolated from S. annularis serum by two-step chromatography. It showed strong antidotal effects against D. acutus envenomation, including inhibition of subcutaneous bleeding caused by crude venom and DaMP (a metalloproteinase derived from D. acutus) activity in a 1:1 ratio. Histology and immunoblotting analyses demonstrated that SaMPI mitigated myonecrosis, reduced neutrophil infiltration and local inflammatory factor release, and retarded JAK/STAT and MAPK signaling activation. Analysis of the SaMPI gene cloned by 5'-RACE revealed a shared sequence identity of 58-79% with other SVMP inhibitors. These findings demonstrate the protective effects of SaMPI and indicate its potential value as a candidate for viper bite adjuvant therapy.
Collapse
Affiliation(s)
- Kepu Fu
- College of Basic Medical Sciences, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Liyun Cao
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, Nanchang 330038, Jiangxi, China
| | - Yitao Tang
- College of Basic Medical Sciences, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Jianqi Zhao
- College of Basic Medical Sciences, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Kejia Xiong
- College of Basic Medical Sciences, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Congjiang Hong
- Department of Breast Surgery, Ganxi Cancer Hospital, Pingxiang 337099, Jiangxi, China
| | - Chunhong Huang
- College of Basic Medical Sciences, Nanchang University, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
41
|
Sørensen CV, Almeida JR, Bohn MF, Rivera-de-Torre E, Schoffelen S, Voldborg BG, Ljungars A, Vaiyapuri S, Laustsen AH. Discovery of a human monoclonal antibody that cross-neutralizes venom phospholipase A 2s from three different snake genera. Toxicon 2023; 234:107307. [PMID: 37783315 DOI: 10.1016/j.toxicon.2023.107307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Despite the considerable global impact of snakebite envenoming, available treatments remain suboptimal. Here, we report the discovery of a broadly-neutralizing human monoclonal antibody, using a phage display-based cross-panning strategy, capable of reducing the cytotoxic effects of venom phospholipase A2s from three different snake genera from different continents. This highlights the potential of utilizing monoclonal antibodies to develop more effective, safer, and globally accessible polyvalent antivenoms that can be widely used to treat snakebite envenoming.
Collapse
Affiliation(s)
- Christoffer V Sørensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark.
| | - José R Almeida
- School of Pharmacy, University of Reading, Reading, RG6 6UB, United Kingdom
| | - Markus-Frederik Bohn
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Esperanza Rivera-de-Torre
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Sanne Schoffelen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Bjørn G Voldborg
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Anne Ljungars
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Sakthivel Vaiyapuri
- School of Pharmacy, University of Reading, Reading, RG6 6UB, United Kingdom.
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark.
| |
Collapse
|
42
|
Castro-Amorim J, Oliveira A, Mukherjee AK, Ramos MJ, Fernandes PA. Unraveling the Reaction Mechanism of Russell's Viper Venom Factor X Activator: A Paradigm for the Reactivity of Zinc Metalloproteinases? J Chem Inf Model 2023; 63:4056-4069. [PMID: 37092784 PMCID: PMC10336966 DOI: 10.1021/acs.jcim.2c01156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 04/25/2023]
Abstract
Snake venom metalloproteinases (SVMPs) are important drug targets against snakebite envenoming, the neglected tropical disease with the highest mortality worldwide. Here, we focus on Russell's viper (Daboia russelii), one of the "big four" snakes of the Indian subcontinent that, together, are responsible for ca. 50,000 fatalities annually. The "Russell's viper venom factor X activator" (RVV-X), a highly toxic metalloproteinase, activates the blood coagulation factor X (FX), leading to the prey's abnormal blood clotting and death. Given its tremendous public health impact, the WHO recognized an urgent need to develop efficient, heat-stable, and affordable-for-all small-molecule inhibitors, for which a deep understanding of the mechanisms of action of snake's principal toxins is fundamental. In this study, we determine the catalytic mechanism of RVV-X by using a density functional theory/molecular mechanics (DFT:MM) methodology to calculate its free energy profile. The results showed that the catalytic process takes place via two steps. The first step involves a nucleophilic attack by an in situ generated hydroxide ion on the substrate carbonyl, yielding an activation barrier of 17.7 kcal·mol-1, while the second step corresponds to protonation of the peptide nitrogen and peptide bond cleavage with an energy barrier of 23.1 kcal·mol-1. Our study shows a unique role played by Zn2+ in catalysis by lowering the pKa of the Zn2+-bound water molecule, enough to permit the swift formation of the hydroxide nucleophile through barrierless deprotonation by the formally much less basic Glu140. Without the Zn2+ cofactor, this step would be rate-limiting.
Collapse
Affiliation(s)
- Juliana Castro-Amorim
- LAQV,
REQUIMTE, Departamento de Química e Bioquímica, Faculdade
de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal
| | - Ana Oliveira
- LAQV,
REQUIMTE, Departamento de Química e Bioquímica, Faculdade
de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal
| | - Ashis K. Mukherjee
- Institute
of Advanced Study in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati 781035, Assam, India
| | - Maria J. Ramos
- LAQV,
REQUIMTE, Departamento de Química e Bioquímica, Faculdade
de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal
| | - Pedro A. Fernandes
- LAQV,
REQUIMTE, Departamento de Química e Bioquímica, Faculdade
de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal
| |
Collapse
|
43
|
Tiwari N, Jaimini A, Jain GK, Aggarwal G, Mittal G. Evaluation of three different 99mTc-based mock-venom agents for lymphoscintigraphy studies in preclinical models of peripheral snakebite envenomation. J Pharmacol Toxicol Methods 2023:107280. [PMID: 37295617 DOI: 10.1016/j.vascn.2023.107280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
Snakebite envenomation is one of the major public health concerns across many countries; with the WHO designating it as a 'priority neglected tropical disease' and stressing for a need to develop novel therapeutic strategies to reduce death and disability rate by end of 2030. Since a major component of venom; the high molecular weight (HMw) toxins enter the bloodstream through lymphatic system, research is focusing on modulating the lymphatic flow rate after topical application of suitable drug candidates. Present study compared the suitability of three radiopharmaceutical agents, namely 99mTc-Sulfur colloid (SC), 99mTc-Phytate (Phy) and 99mTc-Human serum albumin (HSA), to be used as mock-venom agent in studying modulation in lymphatic flow rate in preclinical models of peripheral snakebite envenomation using lymphoscintigraphy studies. The study was performed in 72 Sprague Dawley rats; divided into six groups of 12 rats each. Control groups were given intradermal injection (1.29-1.48 MBq in 100 μl normal saline) of either 99mTc-Phy/ 99mTc-SC/ 99mTc-HSA into the tail as 'mock-venom'. In respective test groups, commercially available topical formulation (Anobliss® Cream) containing Nifedipine (Nif; 0.3% w/w) and Lidocaine (Lid; 1.5% w/w) was applied topically over the animals' lower body (tail and hind limbs) immediately within 20s of administering intradermal injection of the radiopharmaceutical. Any modulation in lymph transit time from periphery to systemic circulation was assessed using lymphoscintigraphy by taking dynamic gamma-scintigraphy images of 60s each till 1 h post-injection of the test radiopharmaceuticals. Significant difference in movement of the three radiopharmaceuticals was noted in terms of their lymphatic movement. 99mTc-Phy did not show significant travel through the lymphatics and the liver was faintly visualized in control as well as test intervention groups. In case of 99mTc-SC, significant changes in movement of the radiotracer after topical application of Nif/Lid in the test intervention groups were clearly noted in comparison to control (P < 0.05). Multiple numbers of lymph nodes (LNs) could be clearly visualized in control (5 ± 1 LNs) and test intervention groups (3 ± 1 LNs). Liver uptake was more prominent in control animals and it reduced significantly in test intervention groups. On the other hand, 99mTc-HSA showed lesser number of lymph nodes and higher accumulation in liver as compared to 99mTc-SC, suggesting very fast movement of this radiopharmaceutical. Results indicates that 99mTc-SC could be used as a suitable agent to mimic lymphatic transit behavior of HMw toxin components of snake venom and could therefore be used as a model in studying the effect of any test pharmacological intervention in modulating lymphatic transit rate. Additional advantage could be a significant reduction in the need for sacrificing large number of animals, particularly during initial screening phase of drug development cycle.
Collapse
Affiliation(s)
- Nidhi Tiwari
- Department of Combat Sciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research & Development Organisation, New Delhi 110054, India; Delhi Pharmaceutical Sciences and Research University (DPSRU), Pushp Vihar, New Delhi 110017, India
| | - Abhinav Jaimini
- Department of Combat Sciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research & Development Organisation, New Delhi 110054, India
| | - Gaurav Kumar Jain
- Delhi Pharmaceutical Sciences and Research University (DPSRU), Pushp Vihar, New Delhi 110017, India
| | - Geeta Aggarwal
- Delhi Pharmaceutical Sciences and Research University (DPSRU), Pushp Vihar, New Delhi 110017, India
| | - Gaurav Mittal
- Department of Combat Sciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research & Development Organisation, New Delhi 110054, India.
| |
Collapse
|
44
|
The secretory phenotypes of envenomed cells: Insights into venom cytotoxicity. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:193-230. [PMID: 36707202 DOI: 10.1016/bs.apcsb.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Snake envenomation is listed as Category A Neglected Tropical Diseases (NTD) by World Health Organization, indicates a severe public health problem. The global figures for envenomation cases are estimated to be more than 1.8 million annually. Even if the affected victims survive the envenomation, they might suffer from permanent morbidity due to local envenomation. One of the most prominent local envenomation is dermonecrosis. Dermonecrosis is a pathophysiological outcome of envenomation that often causes disability in the victims due to surgical amputations, deformities, contracture, and chronic ulceration. The key venom toxins associated with this local symptom are mainly attributed to substantial levels of enzymatic and non-enzymatic toxins as well as their possible synergistic actions. Despite so, the severity of the local tissue damage is based on macroscopic observation of the bite areas. Furthermore, limited knowledge is known about the key biomarkers involved in the pathogenesis of dermonecrosis. The current immunotherapy with antivenom is also ineffective against dermonecrosis. These local effects eventually end up as sequelae. There is also a global shortage of toxins-targeted therapeutics attributed to inadequate knowledge of the actual molecular mechanisms of cytotoxicity. This chapter discusses the characterization of secretory phenotypes of dermonecrosis as an advanced tool to indicate its severity and pathogenesis in envenomation. Altogether, the secretory phenotypes of envenomed cells and tissues represent the precise characteristics of dermonecrosis caused by venom toxins.
Collapse
|
45
|
In Vitro Efficacy of Antivenom and Varespladib in Neutralising Chinese Russell's Viper ( Daboia siamensis) Venom Toxicity. Toxins (Basel) 2023; 15:toxins15010062. [PMID: 36668882 PMCID: PMC9864994 DOI: 10.3390/toxins15010062] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
The venom of the Russell's viper (Daboia siamensis) contains neurotoxic and myotoxic phospholipase A2 toxins which can cause irreversible damage to motor nerve terminals. Due to the time delay between envenoming and antivenom administration, antivenoms may have limited efficacy against some of these venom components. Hence, there is a need for adjunct treatments to circumvent these limitations. In this study, we examined the efficacy of Chinese D. siamensis antivenom alone, and in combination with a PLA2 inhibitor, Varespladib, in reversing the in vitro neuromuscular blockade in the chick biventer cervicis nerve-muscle preparation. Pre-synaptic neurotoxicity and myotoxicity were not reversed by the addition of Chinese D. siamensis antivenom 30 or 60 min after venom (10 µg/mL). The prior addition of Varespladib prevented the neurotoxic and myotoxic activity of venom (10 µg/mL) and was also able to prevent further reductions in neuromuscular block and muscle twitches when added 60 min after venom. The addition of the combination of Varespladib and antivenom 60 min after venom failed to produce further improvements than Varespladib alone. This demonstrates that the window of time in which antivenom remains effective is relatively short compared to Varespladib and small-molecule inhibitors may be effective in abrogating some activities of Chinese D. siamensis venom.
Collapse
|
46
|
Immunoprofiling of Equine Plasma against Deinagkistrodon acutus in Taiwan: Key to Understanding Differential Neutralization Potency in Immunized Horses. Trop Med Infect Dis 2023; 8:tropicalmed8010051. [PMID: 36668958 PMCID: PMC9866385 DOI: 10.3390/tropicalmed8010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
Snakebite envenoming is a public health issue linked to high mortality and morbidity rates worldwide. Although antivenom has been the mainstay treatment for envenomed victims receiving medical care, the diverse therapeutic efficacy of the produced antivenom is a major limitation. Deinagkistrodon acutus is a venomous snake that poses significant concern of risks to human life in Taiwan, and successful production of antivenom against D. acutus envenoming remains a considerable challenge. Among groups of horses subjected to immunization schedules, few or none subsequently meet the quality required for further scale-up harvesting. The determinants underlying the variable immune responses of horses to D. acutus venom are currently unknown. In this study, we assessed the immunoprofiles of high-potency and low-potency horse plasma against D. acutus venom and explored the conspicuous differences between these two groups. Based on the results of liquid chromatography with tandem mass spectrometry (LC-MS/MS), acutolysin A was identified as the major component of venom proteins that immunoreacted differentially with the two plasma samples. Our findings indicate underlying differences in antivenoms with variable neutralization efficacies, and may provide valuable insights for improvement of antivenom production in the future.
Collapse
|
47
|
Alsolaiss J, Alomran N, Hawkins L, Casewell NR. Commercial Antivenoms Exert Broad Paraspecific Immunological Binding and In Vitro Inhibition of Medically Important Bothrops Pit Viper Venoms. Toxins (Basel) 2022; 15:1. [PMID: 36668821 PMCID: PMC9862972 DOI: 10.3390/toxins15010001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Snakebite envenoming is a life threatening neglected tropical disease that represents a considerable public health concern in the tropics. Viperid snakes of the genus Bothrops are among those of greatest medical importance in Latin America, and they frequently cause severe systemic haemotoxicity and local tissue destructive effects in human victims. Although snakebite antivenoms can be effective therapeutics, their efficacy is undermined by venom toxin variation among snake species. In this study we investigated the extent of paraspecific venom cross-reactivity exhibited by three distinct anti-Bothrops antivenoms (Soro antibotrópico-crotálico, BothroFav and PoliVal-ICP) against seven different Bothrops pit viper venoms from across Latin America. We applied a range of in vitro assays to assess the immunological binding and recognition of venom toxins by the antivenoms and their inhibitory activities against specific venom functionalities. Our findings demonstrated that, despite some variations, the monovalent antivenom BothroFav and the polyvalent antivenoms Soro antibotrópico-crotálico and PoliVap-ICP exhibited extensive immunological recognition of the distinct toxins found in the different Bothrops venoms, with Soro antibotrópico-crotálico generally outperformed by the other two products. In vitro functional assays revealed outcomes largely consistent with the immunological binding data, with PoliVap-ICP and BothroFav exhibiting the greatest inhibitory potencies against procoagulant and fibrinogen-depleting venom activities, though Soro antibotrópico-crotálico exhibited potent inhibition of venom metalloproteinase activities. Overall, our findings demonstrate broad levels of antivenom paraspecificity, with in vitro immunological binding and functional inhibition often highly comparable between venoms used to manufacture the antivenoms and those from related species, even in the case of the monovalent antivenom BothroFav. Our findings suggest that the current clinical utility of these antivenoms could possibly be expanded to other parts of Latin America that currently suffer from a lack of specific snakebite therapies.
Collapse
Affiliation(s)
- Jaffer Alsolaiss
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
- Tropical Disease Biology Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Nessrin Alomran
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
- Tropical Disease Biology Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Laura Hawkins
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
- Tropical Disease Biology Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Nicholas R. Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
- Tropical Disease Biology Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| |
Collapse
|
48
|
Quiroz S, Henao Castañeda IC, Granados J, Patiño AC, Preciado LM, Pereañez JA. Inhibitory Effects of Varespladib, CP471474, and Their Potential Synergistic Activity on Bothrops asper and Crotalus durissus cumanensis Venoms. Molecules 2022; 27:8588. [PMID: 36500682 PMCID: PMC9737558 DOI: 10.3390/molecules27238588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Snakebite is a neglected tropical disease that causes extensive mortality and morbidity in rural communities. Antivenim sera are the currently approved therapy for snake bites; however, they have some therapeutic limitations that have been extensively documented. Recently, small molecule toxin inhibitors have received significant attention as potential alternatives or co-adjuvant to immunoglobulin-based snakebite therapies. Thus, in this study, we evaluated the inhibitory effects of the phospholipase A2 inhibitor varespladib and the metalloproteinase inhibitor CP471474 and their synergistic effects on the lethal, edema-forming, hemorrhagic, and myotoxic activities of Bothrops asper and Crotalus durissus cumanensis venoms from Colombia. Except for the preincubation assay of the lethal activity with B. asper venom, the mixture showed the best inhibitory activity. Nevertheless, the mix did not display statistically significant differences to varespladib and CP471474 used separately in all assays. In preincubation assays, varespladib showed the best inhibitory activity against the lethal effect induced by B. asper venom. However, in independent injection assays, the mix of the compounds partially inhibited the lethal activity of both venoms (50%). In addition, in the assays to test the inhibition of edema-forming activity, the mixture exhibited the best inhibitory activity, followed by Varespladib, but without statistically significant differences (p > 0.05). The combination also decreased the myotoxic activity of evaluated venoms. In these assays, the mix showed statistical differences regarding CP471474 (p < 0.05). The mixture also abolished the hemorrhagic activity of B. asper venom in preincubation assays, with no statistical differences to CP471474. Finally, the mixture showed inhibition in studies with independent administration in a time-dependent manner. To propose a mode of action of varespladib and CP471474, molecular docking was performed. PLA2s and SVMPs from tested venoms were used as targets. In all cases, our molecular modeling results suggested that inhibitors may occupy the substrate-binding cleft of the enzymes, which was supported by specific interaction with amino acids from the active site, such as His48 for PLA2s and Glu143 for the metalloproteinase. In addition, varespladib and CP471474 also showed interaction with residues from the hydrophobic channel in PLA2s and substrate binding subsites in the SVMP. Our results suggest a synergistic action of the mixed inhibitors and show the potential of varespladib, CP471474, and their mixture to generate new treatments for snakebite envenoming with application in the field or as antivenom co-adjuvants.
Collapse
Affiliation(s)
- Sara Quiroz
- Research Group in Toxinology, Pharmaceutical, and Food Alternatives, Pharmaceutical and Food Sciences Faculty, University of Antioquia, Medellín 50010, Colombia
| | - Isabel C. Henao Castañeda
- Research Group in Marine Natural Products, Pharmaceutical and Food Sciences Faculty, University of Antioquia, Medellín 050010, Colombia
| | - Johan Granados
- Research Group in Pharmaceutical Promotion and Prevention, Universidad de Antioquia, Medellín 050010, Colombia
| | - Arley Camilo Patiño
- Research Group in Toxinology, Pharmaceutical, and Food Alternatives, Pharmaceutical and Food Sciences Faculty, University of Antioquia, Medellín 50010, Colombia
| | - Lina María Preciado
- Research Group in Toxinology, Pharmaceutical, and Food Alternatives, Pharmaceutical and Food Sciences Faculty, University of Antioquia, Medellín 50010, Colombia
| | - Jaime Andrés Pereañez
- Research Group in Toxinology, Pharmaceutical, and Food Alternatives, Pharmaceutical and Food Sciences Faculty, University of Antioquia, Medellín 50010, Colombia
| |
Collapse
|
49
|
Lewin MR, Carter RW, Matteo IA, Samuel SP, Rao S, Fry BG, Bickler PE. Varespladib in the Treatment of Snakebite Envenoming: Development History and Preclinical Evidence Supporting Advancement to Clinical Trials in Patients Bitten by Venomous Snakes. Toxins (Basel) 2022; 14:783. [PMID: 36422958 PMCID: PMC9695340 DOI: 10.3390/toxins14110783] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
The availability of effective, reliably accessible, and affordable treatments for snakebite envenoming is a critical and long unmet medical need. Recently, small, synthetic toxin-specific inhibitors with oral bioavailability used in conjunction with antivenom have been identified as having the potential to greatly improve outcomes after snakebite. Varespladib, a small, synthetic molecule that broadly and potently inhibits secreted phospholipase A2 (sPLA2s) venom toxins has renewed interest in this class of inhibitors due to its potential utility in the treatment of snakebite envenoming. The development of varespladib and its oral dosage form, varespladib-methyl, has been accelerated by previous clinical development campaigns to treat non-envenoming conditions related to ulcerative colitis, rheumatoid arthritis, asthma, sepsis, and acute coronary syndrome. To date, twenty-nine clinical studies evaluating the safety, pharmacokinetics (PK), and efficacy of varespladib for non-snakebite envenoming conditions have been completed in more than 4600 human subjects, and the drugs were generally well-tolerated and considered safe for use in humans. Since 2016, more than 30 publications describing the structure, function, and efficacy of varespladib have directly addressed its potential for the treatment of snakebite. This review summarizes preclinical findings and outlines the scientific support, the potential limitations, and the next steps in the development of varespladib's use as a snakebite treatment, which is now in Phase 2 human clinical trials in the United States and India.
Collapse
Affiliation(s)
- Matthew R. Lewin
- Division of Research, Ophirex, Inc., Corte Madera, CA 94925, USA
- Center for Exploration and Travel Health, California Academy of Sciences, San Francisco, CA 94118, USA
| | | | - Isabel A. Matteo
- Center for Exploration and Travel Health, California Academy of Sciences, San Francisco, CA 94118, USA
| | | | - Sunita Rao
- Division of Research, Ophirex, Inc., Corte Madera, CA 94925, USA
| | - Bryan G. Fry
- Venom Evolution Lab, School of Biological Science, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Philip E. Bickler
- Center for Exploration and Travel Health, California Academy of Sciences, San Francisco, CA 94118, USA
- Department of Anesthesia and Perioperative Care, University of California San Francisco School of Medicine, San Francisco, CA 94143, USA
| |
Collapse
|
50
|
Arrahman A, Kazandjian TD, Still KBM, Slagboom J, Somsen GW, Vonk FJ, Casewell NR, Kool J. A Combined Bioassay and Nanofractionation Approach to Investigate the Anticoagulant Toxins of Mamba and Cobra Venoms and Their Inhibition by Varespladib. Toxins (Basel) 2022; 14:736. [PMID: 36355986 PMCID: PMC9695013 DOI: 10.3390/toxins14110736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 01/26/2023] Open
Abstract
Envenomation by elapid snakes primarily results in neurotoxic symptoms and, consequently, are the primary focus of therapeutic research concerning such venoms. However, mounting evidence suggests these venoms can additionally cause coagulopathic symptoms, as demonstrated by some Asian elapids and African spitting cobras. This study sought to investigate the coagulopathic potential of venoms from medically important elapids of the genera Naja (true cobras), Hemachatus (rinkhals), and Dendroaspis (mambas). Crude venoms were bioassayed for coagulant effects using a plasma coagulation assay before RPLC/MS was used to separate and identify venom toxins in parallel with a nanofractionation module. Subsequently, coagulation bioassays were performed on the nanofractionated toxins, along with in-solution tryptic digestion and proteomics analysis. These experiments were then repeated on both crude venoms and on the nanofractionated venom toxins with the addition of either the phospholipase A2 (PLA2) inhibitor varespladib or the snake venom metalloproteinase (SVMP) inhibitor marimastat. Our results demonstrate that various African elapid venoms have an anticoagulant effect, and that this activity is significantly reduced for cobra venoms by the addition of varespladib, though this inhibitor had no effect against anticoagulation caused by mamba venoms. Marimastat showed limited capacity to reduce anticoagulation in elapids, affecting only N. haje and H. haemachatus venom at higher doses. Proteomic analysis of nanofractionated toxins revealed that the anticoagulant toxins in cobra venoms were both acidic and basic PLA2s, while the causative toxins in mamba venoms remain uncertain. This implies that while PLA2 inhibitors such as varespladib and metalloproteinase inhibitors such as marimastat are viable candidates for novel snakebite treatments, they are not likely to be effective against mamba envenomings.
Collapse
Affiliation(s)
- Arif Arrahman
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
- Faculty of Pharmacy, Universitas Indonesia, Kampus Baru UI, Depok 16424, Indonesia
| | - Taline D. Kazandjian
- Centre for Snakebite Research and Interventions. Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Kristina B. M. Still
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| | - Julien Slagboom
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| | - Govert W. Somsen
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| | - Freek J. Vonk
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
- Naturalis Biodiversity Centre, Darwinweg 2, 2333 CR Leiden, The Netherlands
| | - Nicholas R. Casewell
- Centre for Snakebite Research and Interventions. Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Jeroen Kool
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| |
Collapse
|