1
|
Sinke L, Beekman M, Raz Y, Gehrmann T, Moustakas I, Boulinguiez A, Lakenberg N, Suchiman E, Bogaards FA, Bizzarri D, van den Akker EB, Waldenberger M, Butler‐Browne G, Trollet C, de Groot CPGM, Heijmans BT, Slagboom PE. Tissue-specific methylomic responses to a lifestyle intervention in older adults associate with metabolic and physiological health improvements. Aging Cell 2025; 24:e14431. [PMID: 39618079 PMCID: PMC11984676 DOI: 10.1111/acel.14431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/24/2024] [Accepted: 11/14/2024] [Indexed: 04/12/2025] Open
Abstract
Across the lifespan, diet and physical activity profiles substantially influence immunometabolic health. DNA methylation, as a tissue-specific marker sensitive to behavioral change, may mediate these effects through modulation of transcription factor binding and subsequent gene expression. Despite this, few human studies have profiled DNA methylation and gene expression simultaneously in multiple tissues or examined how molecular levels react and interact in response to lifestyle changes. The Growing Old Together (GOTO) study is a 13-week lifestyle intervention in older adults, which imparted health benefits to participants. Here, we characterize the DNA methylation response to this intervention at over 750 thousand CpGs in muscle, adipose, and blood. Differentially methylated sites are enriched for active chromatin states, located close to relevant transcription factor binding sites, and associated with changing expression of insulin sensitivity genes and health parameters. In addition, measures of biological age are consistently reduced, with decreases in grimAge associated with observed health improvements. Taken together, our results identify responsive molecular markers and demonstrate their potential to measure progression and finetune treatment of age-related risks and diseases.
Collapse
Affiliation(s)
- Lucy Sinke
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CentreLeidenThe Netherlands
| | - Marian Beekman
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CentreLeidenThe Netherlands
| | - Yotam Raz
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CentreLeidenThe Netherlands
| | - Thies Gehrmann
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CentreLeidenThe Netherlands
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied MicrobiologyUniversity of AntwerpAntwerpBelgium
| | - Ioannis Moustakas
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CentreLeidenThe Netherlands
- Sequencing Analysis Support Core, Department of Biomedical Data SciencesLeiden University Medical CenterLeidenThe Netherlands
| | - Alexis Boulinguiez
- Myology Center for Research, U974Sorbonne Université, INSERM, AIM, GH Pitié Salpêtrière Bat BabinskiParisFrance
| | - Nico Lakenberg
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CentreLeidenThe Netherlands
| | - Eka Suchiman
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CentreLeidenThe Netherlands
| | - Fatih A. Bogaards
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CentreLeidenThe Netherlands
- Division of Human NutritionWageningen University and ResearchWageningenThe Netherlands
| | - Daniele Bizzarri
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CentreLeidenThe Netherlands
- Delft Bioinformatics Lab, Pattern Recognition and BioinformaticsDelftThe Netherlands
| | - Erik B. van den Akker
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CentreLeidenThe Netherlands
- Delft Bioinformatics Lab, Pattern Recognition and BioinformaticsDelftThe Netherlands
| | - Melanie Waldenberger
- Research Unit Molecular Epidemiology, Institute of EpidemiologyHelmholtz Munich, German Research Center for Environmental HealthNeuherbergGermany
- German Center for Cardiovascular Research (DZHK)Partner Site Munich Heart AllianceMunichGermany
| | - Gillian Butler‐Browne
- Myology Center for Research, U974Sorbonne Université, INSERM, AIM, GH Pitié Salpêtrière Bat BabinskiParisFrance
| | - Capucine Trollet
- Myology Center for Research, U974Sorbonne Université, INSERM, AIM, GH Pitié Salpêtrière Bat BabinskiParisFrance
| | - C. P. G. M. de Groot
- Division of Human NutritionWageningen University and ResearchWageningenThe Netherlands
| | - Bastiaan T. Heijmans
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CentreLeidenThe Netherlands
| | - P. Eline Slagboom
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CentreLeidenThe Netherlands
| |
Collapse
|
2
|
Guiraud A, Couturier N, Christin E, Castellano L, Daura M, Kretz-Remy C, Janin A, Ghasemizadeh A, Del Carmine P, Monteiro L, Rotard L, Sanchez C, Jacquemond V, Burny C, Janczarski S, Durieux AC, Arnould D, Romero NB, Bui MT, Buchman VL, Julien L, Bitoun M, Gache V. SH3KBP1 promotes skeletal myofiber formation and functionality through ER/SR architecture integrity. EMBO Rep 2025; 26:2166-2191. [PMID: 40065183 PMCID: PMC12019163 DOI: 10.1038/s44319-025-00413-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 04/25/2025] Open
Abstract
Dynamic changes in the arrangement of myonuclei and the organization of the sarcoplasmic reticulum are important determinants of myofiber formation and muscle function. To find factors associated with muscle integrity, we perform an siRNA screen and identify SH3KBP1 as a new factor controlling myoblast fusion, myonuclear positioning, and myotube elongation. We find that the N-terminus of SH3KBP1 binds to dynamin-2 while the C-terminus associates with the endoplasmic reticulum through calnexin, which in turn control myonuclei dynamics and ER integrity, respectively. Additionally, in mature muscle fibers, SH3KBP1 contributes to the formation of triads and modulates the Excitation-Contraction Coupling process efficiency. In Dnm2R465W/+ mice, a model for centronuclear myopathy (CNM), depletion of Sh3kbp1 expression aggravates CNM-related atrophic phenotypes and impaired autophagic flux in mutant skeletal muscle fiber. Altogether, our results identify SH3KBP1 as a new regulator of myofiber integrity and function.
Collapse
MESH Headings
- Animals
- Mice
- Muscle Fibers, Skeletal/metabolism
- Dynamin II/metabolism
- Dynamin II/genetics
- Sarcoplasmic Reticulum/metabolism
- Humans
- Endoplasmic Reticulum/metabolism
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Myopathies, Structural, Congenital/genetics
- Myopathies, Structural, Congenital/metabolism
- Myopathies, Structural, Congenital/pathology
- Muscle, Skeletal/metabolism
- Protein Binding
- Myoblasts/metabolism
Collapse
Affiliation(s)
- Alexandre Guiraud
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Nathalie Couturier
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Emilie Christin
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Léa Castellano
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Marine Daura
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Carole Kretz-Remy
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Alexandre Janin
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Alireza Ghasemizadeh
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Peggy Del Carmine
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Laloe Monteiro
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Ludivine Rotard
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Colline Sanchez
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Vincent Jacquemond
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Claire Burny
- Laboratoire de Biologie et Modélisation de la Cellule, ENS de Lyon, Lyon, CEDEX 07, France
| | - Stéphane Janczarski
- Laboratoire de Biologie et Modélisation de la Cellule, ENS de Lyon, Lyon, CEDEX 07, France
| | - Anne-Cécile Durieux
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université de Lyon, Université Jean Monnet, Saint Etienne, France
| | - David Arnould
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université de Lyon, Université Jean Monnet, Saint Etienne, France
| | - Norma Beatriz Romero
- Unité de Morphologie Neuromusculaire, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France
| | - Mai Thao Bui
- Unité de Morphologie Neuromusculaire, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France
| | - Vladimir L Buchman
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Laura Julien
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, F-75013, Paris, France
| | - Marc Bitoun
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, F-75013, Paris, France
| | - Vincent Gache
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France.
| |
Collapse
|
3
|
Lessenger AT, Skotheim JM, Swaffer MP, Feldman JL. Somatic polyploidy supports biosynthesis and tissue function by increasing transcriptional output. J Cell Biol 2025; 224:e202403154. [PMID: 39652010 PMCID: PMC11627111 DOI: 10.1083/jcb.202403154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/27/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
Cell size and biosynthetic capacity generally increase with increased DNA content. Somatic polyploidy has therefore been proposed to be an adaptive strategy to increase cell size in specialized tissues with high biosynthetic demands. However, if and how DNA concentration limits cellular biosynthesis in vivo is not well understood. Here, we show that polyploidy in the Caenorhabditis elegans intestine is critical for cell growth and yolk biosynthesis, a central role of this organ. Artificially lowering the DNA/cytoplasm ratio by reducing polyploidization in the intestine gave rise to smaller cells with dilute mRNA. Highly expressed transcripts were more sensitive to this mRNA dilution, whereas lowly expressed genes were partially compensated-in part by loading more RNA Polymerase II on the remaining genomes. Polyploidy-deficient animals produced fewer and slower-growing offspring, consistent with reduced synthesis of highly expressed yolk proteins. DNA-dilute cells had normal total protein concentration, which we propose is achieved by increasing the expression of translational machinery at the expense of specialized, cell-type-specific proteins.
Collapse
Affiliation(s)
| | - Jan M. Skotheim
- Department of Biology, Stanford University, Stanford, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
| | - Mathew P. Swaffer
- Department of Biology, Stanford University, Stanford, CA, USA
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
4
|
Hansson KA. Multinucleation as a buffer against gene expression noise in syncytial myofibres. J Physiol 2025; 603:1013-1016. [PMID: 39865299 DOI: 10.1113/jp288218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 12/12/2024] [Indexed: 01/28/2025] Open
Affiliation(s)
- Kenth-Arne Hansson
- Norwegian University College of Health Sciences, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Wu S, Lu J. Liposome-Enabled Nanomaterials for Muscle Regeneration. SMALL METHODS 2025:e2402154. [PMID: 39967365 DOI: 10.1002/smtd.202402154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/08/2025] [Indexed: 02/20/2025]
Abstract
Muscle regeneration is a vital biological process that is crucial for maintaining muscle function and integrity, particularly for the treatment of muscle diseases such as sarcopenia and muscular dystrophy. Generally, muscular tissues can self-repair and regenerate under various conditions, including acute or chronic injuries, aging, and genetic mutation. However, regeneration becomes challenging beyond a certain threshold, particularly in severe muscle injuries or progressive diseases. In recent years, liposome-based nanotechnologies have shown potential as promising therapeutic strategies for muscle regeneration. Liposomes offer an adaptable platform for targeted drug delivery due to their cell membrane-like structure and excellent biocompatibility. They can enhance drug solubility, stability, and targeted delivery while minimizing systemic side effects by different mechanisms. This review summarizes recent advancements, discusses current applications and mechanisms, and highlights challenges and future directions for possible clinical translation of liposome-based nanomaterials in the treatment of muscle diseases. It is hoped this review offers new insights into the development of liposome-enabled nanomedicine to address current limitations.
Collapse
Affiliation(s)
- Shuang Wu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Jianqin Lu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
- Clinical and Translational Oncology Program, The University of Arizona Cancer Center, Tucson, AZ, 85721, USA
- BIO5 Institute, The University of Arizona, Tucson, AZ, 85721, USA
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
6
|
Chung JD, Porrello ER, Lynch GS. Muscle regeneration and muscle stem cells in metabolic disease. Free Radic Biol Med 2025; 227:52-63. [PMID: 39581389 DOI: 10.1016/j.freeradbiomed.2024.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 11/05/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024]
Abstract
Skeletal muscle has a high regenerative capacity due to its resident adult muscle stem cells (MuSCs), which can repair damaged tissue by forming myofibres de novo. Stem cell dependent regeneration is critical for maintaining skeletal muscle health, and different conditions can draw heavily on MuSC support to preserve muscle function, including metabolic diseases such as diabetes. The global incidence and burden of diabetes is increasing, and skeletal muscle is critical for maintaining systemic metabolic homeostasis and improving outcomes for diabetic patients. Thus, poor muscle health in diabetes, termed diabetic myopathy, is an important complication that must be addressed. The health of MuSCs is also affected by diabetes, responsible for the poor muscle regenerative capacity and contributing to the functional decline in diabetic patients. Here, we review the impact of diabetes and metabolic disease on MuSCs and skeletal muscle, including potential mechanisms for impaired muscle regeneration and MuSC dysfunction, and how these deficits could be addressed.
Collapse
Affiliation(s)
- Jin D Chung
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, 3010, VIC, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, VIC, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, 3052, VIC, Australia
| | - Enzo R Porrello
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, 3010, VIC, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, VIC, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, 3052, VIC, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, 3010, VIC, Australia
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, 3010, VIC, Australia.
| |
Collapse
|
7
|
Borowik AK, Murach KA, Miller BF. The expanding roles of myonuclei in adult skeletal muscle health and function. Biochem Soc Trans 2024; 52:1-14. [PMID: 39700019 DOI: 10.1042/bst20241637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024]
Abstract
Skeletal muscle cells (myofibers) require multiple nuclei to support a cytoplasmic volume that is larger than other mononuclear cell types. It is dogmatic that mammalian resident myonuclei rely on stem cells (specifically satellite cells) for adding new DNA to muscle fibers to facilitate cytoplasmic expansion that occurs during muscle growth. In this review, we discuss the relationship between cell size and supporting genetic material. We present evidence that myonuclei may undergo DNA synthesis as a strategy to increase genetic material in myofibers independent from satellite cells. We then describe the details of our experiments that demonstrated that mammalian myonuclei can replicate DNA in vivo. Finally, we present our findings in the context of expanding knowledge about myonuclear heterogeneity, myonuclear mobility and shape. We also address why myonuclear replication is potentially important and provide future directions for remaining unknowns. Myonuclear DNA replication, coupled with new discoveries about myonuclear transcription, morphology, and behavior in response to stress, may provide opportunities to leverage previously unappreciated skeletal muscle biological processes for therapeutic targets that support muscle mass, function, and plasticity.
Collapse
Affiliation(s)
- Agnieszka K Borowik
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, U.S.A
| | - Kevin A Murach
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, U.S.A
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, U.S.A
- Oklahoma City VA Medical Center, Oklahoma City, OK, U.S.A
| |
Collapse
|
8
|
Ghasemizadeh A, Gache V. [Myonuclear domain settings by microtubules and MACF1]. Med Sci (Paris) 2024; 40 Hors série n° 1:64-68. [PMID: 39555882 DOI: 10.1051/medsci/2024134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Skeletal myofibers are syncytia made from the fusion of dozens or hundreds of mononuclear progenitor cells. Along myogenesis, the arriving nuclei from the progenitor cells have a long journey before being positioned at the periphery of a mature myofiber. Once at the periphery, nuclei are regularly spaced and each nucleus is transcriptionally responsible for its surrounding proportion of cytoplasm, known as the myonuclear domain. Disruption of these domains can be observed in various myopathies, suggesting their importance for skeletal muscle functionality. However, little is known about mechanisms regulating the myonuclear domain stability and organization. Here we take the example of MACF1, a microtubule-associated protein, as an essential actor in myonuclear domain organization, to highlight the potential role of microtubules and their associated proteome network for the stability of these domains and hence for proper myofiber functionality.
Collapse
Affiliation(s)
- Alireza Ghasemizadeh
- Pathophysiology and Genetics of Neuron and Muscle (PGNM), Institut NeuroMyoGène (INMG, CNRS UMR5261, Inserm U1315), Université Claude Bernard Lyon 1, France - Institut Mondor de Recherche Biomédicale (IMRB, Inserm U955), Université Paris-Est Créteil, France
| | - Vincent Gache
- Pathophysiology and Genetics of Neuron and Muscle (PGNM), Institut NeuroMyoGène (INMG, CNRS UMR5261, Inserm U1315), Université Claude Bernard Lyon 1, France
| |
Collapse
|
9
|
Sun C, Swoboda CO, Morales FM, Calvo C, Petrany MJ, Parameswaran S, VonHandorf A, Weirauch MT, Lepper C, Millay DP. Lineage tracing of nuclei in skeletal myofibers uncovers distinct transcripts and interplay between myonuclear populations. Nat Commun 2024; 15:9372. [PMID: 39477931 PMCID: PMC11526147 DOI: 10.1038/s41467-024-53510-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/10/2024] [Indexed: 11/02/2024] Open
Abstract
Multinucleated skeletal muscle cells need to acquire additional nuclei through fusion with activated skeletal muscle stem cells when responding to both developmental and adaptive growth stimuli. A fundamental question in skeletal muscle biology has been the reason underlying this need for new nuclei in cells that already harbor hundreds of nuclei. Here we utilize nuclear RNA-sequencing approaches and develop a lineage tracing strategy capable of defining the transcriptional state of recently fused nuclei and distinguishing this state from that of pre-existing nuclei. Our findings reveal the presence of conserved markers of newly fused nuclei both during development and after a hypertrophic stimulus in the adult. However, newly fused nuclei also exhibit divergent gene expression that is determined by the myogenic environment to which they fuse. Moreover, accrual of new nuclei through fusion is required for nuclei already resident in adult myofibers to mount a normal transcriptional response to a load-inducing stimulus. We propose a model of mutual regulation in the control of skeletal muscle development and adaptations, where newly fused and pre-existing myonuclear populations influence each other to maintain optimal functional growth.
Collapse
Affiliation(s)
- Chengyi Sun
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Casey O Swoboda
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Fabian Montecino Morales
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Cristofer Calvo
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Michael J Petrany
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sreeja Parameswaran
- Division of Human Genetics, Center for Autoimmune Genetics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Andrew VonHandorf
- Division of Human Genetics, Center for Autoimmune Genetics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthew T Weirauch
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Human Genetics, Center for Autoimmune Genetics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Christoph Lepper
- Department of Physiology & Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
10
|
Kawata S, Seki S, Nishiura A, Kitaoka Y, Iwamori K, Fukada SI, Kogo M, Tanaka S. Preservation of masseter muscle until the end stage in the SOD1G93A mouse model for ALS. Sci Rep 2024; 14:24279. [PMID: 39414899 PMCID: PMC11484890 DOI: 10.1038/s41598-024-74669-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) progressively impairs motor neurons, leading to muscle weakness and loss of voluntary muscle control. This study compared the effects of SOD1 mutation on masticatory and limb muscles from disease onset to death in ALS model mice. Notably, limb muscles begin to atrophy soon after ALS-like phenotype appear, whereas masticatory muscles maintain their volume and function in later stages. Our analysis showed that, unlike limb muscles, masticatory muscles retain their normal structure and cell makeup throughout most of the disease course. We found an increase in the number of muscle satellite cells (SCs), which are essential for muscle repair, in masticatory muscles. In addition, we observed no reduction in the number of muscle nuclei and no muscle fibre-type switching in masticatory muscles. This indicates that masticatory muscles have a higher resistance to ALS-related damage than limb muscles, likely because of differences in cell composition and repair mechanisms. Understanding why masticatory muscles are less affected by ALS could lead to the development of new treatments. This study highlights the importance of studying different muscle groups in ALS to clarify disease aetiology and mechanisms.
Collapse
Affiliation(s)
- Sou Kawata
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Soju Seki
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Akira Nishiura
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshihiro Kitaoka
- University California, Los Angeles, School of Dentistry, Section of Biosystems and Function, Laboratory of Neuropharmacology, 714 Tiverton Los Angeles, CA 90095, United States
| | - Kanako Iwamori
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - So-Ichiro Fukada
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mikihiko Kogo
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Susumu Tanaka
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
11
|
Martínez Mir C, Pisterzi P, De Poorter I, Rilou M, van Kranenburg M, Heijs B, Alemany A, Sage F, Geijsen N. Spatial multi-omics in whole skeletal muscle reveals complex tissue architecture. Commun Biol 2024; 7:1272. [PMID: 39369093 PMCID: PMC11455876 DOI: 10.1038/s42003-024-06949-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024] Open
Abstract
Myofibers are large multinucleated cells that have long thought to have a rather simple organization. Single-nucleus transcriptomics, spatial transcriptomics and spatial metabolomics analysis have revealed distinct transcription profiles in myonuclei related to myofiber type. However, the use of local tissue collection or dissociation methods have obscured the spatial organization. To elucidate the full tissue architecture, we combine two spatial omics, RNA tomography and mass spectrometry imaging. This enables us to map the spatial transcriptomic, metabolomic and lipidomic organization of the whole murine tibialis anterior muscle. Our findings on heterogeneity in fiber type proportions are validated with multiplexed immunofluorescence staining in tibialis anterior, extensor digitorum longus and soleus. Our results demonstrate unexpectedly strong regionalization of gene expression, metabolic differences and variable myofiber type proportion along the proximal-distal axis. These new insights in whole-tissue level organization reconcile sometimes conflicting results coming from previous studies relying on local sampling methods.
Collapse
Affiliation(s)
- Clara Martínez Mir
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden Node, Leiden, The Netherlands
| | - Paola Pisterzi
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden Node, Leiden, The Netherlands
| | - Isabel De Poorter
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden Node, Leiden, The Netherlands
| | - Maria Rilou
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden Node, Leiden, The Netherlands
| | - Melissa van Kranenburg
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden Node, Leiden, The Netherlands
| | - Bram Heijs
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden Node, Leiden, The Netherlands
- Center of Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
- Bruker Daltonics GmbH & Co. KG, Bremen, Germany
| | - Anna Alemany
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden Node, Leiden, The Netherlands
| | - Fanny Sage
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333, Leiden, The Netherlands.
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden Node, Leiden, The Netherlands.
| | - Niels Geijsen
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333, Leiden, The Netherlands.
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden Node, Leiden, The Netherlands.
| |
Collapse
|
12
|
Cumming KT, Reitzner SM, Hanslien M, Skilnand K, Seynnes OR, Horwath O, Psilander N, Sundberg CJ, Raastad T. Muscle memory in humans: evidence for myonuclear permanence and long-term transcriptional regulation after strength training. J Physiol 2024; 602:4171-4193. [PMID: 39159314 DOI: 10.1113/jp285675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 07/17/2024] [Indexed: 08/21/2024] Open
Abstract
The objective of this work was to investigate myonuclear permanence and transcriptional regulation as mechanisms for cellular muscle memory after strength training in humans. Twelve untrained men and women performed 10 weeks of unilateral elbow-flexor strength training followed by 16 weeks of de-training. Thereafter, 10 weeks' re-training was conducted with both arms: the previously trained arm and the contralateral untrained control arm. Muscle biopsies were taken from the trained arm before and after both training periods and from the control arm before and after re-training. Muscle biopsies were analysed for fibre cross-sectional area (fCSA), myonuclei and global transcriptomics (RNA sequencing). During the first training period, myonuclei increased in type 1 (13 ± 17%) and type 2 (33 ± 23%) fibres together with a 30 ± 43% non-significant increase in mixed fibre fCSA (P = 0.069). Following de-training, fCSA decreased in both fibre types, whereas myonuclei were maintained, resulting in 33% higher myonuclear number in previously trained vs. control muscle in type 2 fibres. Furthermore, in the previously trained muscle, three differentially expressed genes (DEGs; EGR1, MYL5 and COL1A1) were observed. Following re-training, the previously trained muscle showed larger type 2 fCSA compared to the control (P = 0.035). However, delta change in type 2 fCSA was not different between muscles. Gene expression was more dramatically changed in the control arm (1338 DEGs) than in the previously trained arm (822 DEGs). The sustained higher number of myonuclei in the previously trained muscle confirms myonuclear accretion and permanence in humans. Nevertheless, because of the unclear effect on the subsequent hypertrophy with re-training, the physiological benefit remains to be determined. KEY POINTS: Muscle memory is a cellular mechanism that describes the capacity of skeletal muscle fibres to respond differently to training stimuli if the stimuli have been previously encountered. This study overcomes past methodological limitations related to the choice of muscles and analytical procedures. We show that myonuclear number is increased after strength training and maintained during de-training. Increased myonuclear number and differentially expressed genes related to muscle performance and development in the previously trained muscle did not translate into a clearly superior responses during re-training. Because of the unclear effect on the subsequent hypertrophy and muscle strength gain with re-training, the physiological benefit remains to be determined.
Collapse
Affiliation(s)
- Kristoffer Toldnes Cumming
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
- Faculty of Health, Welfare and Organisation, Østfold University College, Fredrikstad, Norway
| | - Stefan Markus Reitzner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Marit Hanslien
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Kenneth Skilnand
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Olivier R Seynnes
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Oscar Horwath
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Niklas Psilander
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Carl Johan Sundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Learning, Informatics, Management and Ethics, Karolinska Institutet, Stockholm, Sweden
| | - Truls Raastad
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
13
|
Hyatt JPK, Lu EJ, McCall GE. Temporal expression of mitochondrial life cycle markers during acute and chronic overload of rat plantaris muscles. Front Physiol 2024; 15:1420276. [PMID: 39282091 PMCID: PMC11392739 DOI: 10.3389/fphys.2024.1420276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/06/2024] [Indexed: 09/18/2024] Open
Abstract
Skeletal muscle hypertrophy is generally associated with a fast-to-slow phenotypic adaptation in both human and rodent models. Paradoxically, this phenotypic shift is not paralleled by a concomitant increase in mitochondrial content and aerobic markers that would be expected to accompany a slow muscle phenotype. To understand the temporal response of the mitochondrial life cycle (i.e., biogenesis, oxidative phosphorylation, fission/fusion, and mitophagy/autophagy) to hypertrophic stimuli, in this study, we used the functional overload (FO) model in adult female rats and examined the plantaris muscle responses at 1 and 10 weeks. As expected, the absolute plantaris muscle mass increased by ∼12 and 26% at 1 and 10 weeks following the FO procedure, respectively. Myosin heavy-chain isoform types I and IIa significantly increased by 116% and 17%, respectively, in 10-week FO plantaris muscles. Although there was a general increase in protein markers associated with mitochondrial biogenesis in acute FO muscles, this response was unexpectedly sustained under 10-week FO conditions after muscle hypertrophy begins to plateau. Furthermore, the early increase in mito/autophagy markers observed under acute FO conditions was normalized by 10 weeks, suggesting a cellular environment favoring mitochondrial biogenesis to accommodate the aerobic demands of the plantaris muscle. We also observed a significant increase in the expression of mitochondrial-, but not nuclear-, encoded oxidative phosphorylation (OXPHOS) proteins and peptides (i.e., humanin and MOTS-c) under chronic, but not acute, FO conditions. Taken together, the temporal response of markers related to the mitochondrial life cycle indicates a pattern of promoting biogenesis and mitochondrial protein expression to support the energy demands and/or enhanced neural recruitment of chronically overloaded skeletal muscle.
Collapse
Affiliation(s)
- Jon-Philippe K Hyatt
- College of Integrative Sciences and Arts, Arizona State University, Tempe, AZ, United States
| | - Emilie J Lu
- College of Integrative Sciences and Arts, Arizona State University, Tempe, AZ, United States
| | - Gary E McCall
- Department of Exercise Science, University of Puget Sound, Tacoma, WA, United States
| |
Collapse
|
14
|
Korb A, Tajbakhsh S, Comai GE. Functional specialisation and coordination of myonuclei. Biol Rev Camb Philos Soc 2024; 99:1164-1195. [PMID: 38477382 DOI: 10.1111/brv.13063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 03/14/2024]
Abstract
Myofibres serve as the functional unit for locomotion, with the sarcomere as fundamental subunit. Running the entire length of this structure are hundreds of myonuclei, located at the periphery of the myofibre, juxtaposed to the plasma membrane. Myonuclear specialisation and clustering at the centre and ends of the fibre are known to be essential for muscle contraction, yet the molecular basis of this regionalisation has remained unclear. While the 'myonuclear domain hypothesis' helped explain how myonuclei can independently govern large cytoplasmic territories, novel technologies have provided granularity on the diverse transcriptional programs running simultaneously within the syncytia and added a new perspective on how myonuclei communicate. Building upon this, we explore the critical cellular and molecular sources of transcriptional and functional heterogeneity within myofibres, discussing the impact of intrinsic and extrinsic factors on myonuclear programs. This knowledge provides new insights for understanding muscle development, repair, and disease, but also opens avenues for the development of novel and precise therapeutic approaches.
Collapse
Affiliation(s)
- Amaury Korb
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| | - Shahragim Tajbakhsh
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| | - Glenda E Comai
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| |
Collapse
|
15
|
Feng L, Chen Z, Bian H. Skeletal muscle: molecular structure, myogenesis, biological functions, and diseases. MedComm (Beijing) 2024; 5:e649. [PMID: 38988494 PMCID: PMC11234433 DOI: 10.1002/mco2.649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024] Open
Abstract
Skeletal muscle is an important motor organ with multinucleated myofibers as its smallest cellular units. Myofibers are formed after undergoing cell differentiation, cell-cell fusion, myonuclei migration, and myofibril crosslinking among other processes and undergo morphological and functional changes or lesions after being stimulated by internal or external factors. The above processes are collectively referred to as myogenesis. After myofibers mature, the function and behavior of skeletal muscle are closely related to the voluntary movement of the body. In this review, we systematically and comprehensively discuss the physiological and pathological processes associated with skeletal muscles from five perspectives: molecule basis, myogenesis, biological function, adaptive changes, and myopathy. In the molecular structure and myogenesis sections, we gave a brief overview, focusing on skeletal muscle-specific fusogens and nuclei-related behaviors including cell-cell fusion and myonuclei localization. Subsequently, we discussed the three biological functions of skeletal muscle (muscle contraction, thermogenesis, and myokines secretion) and its response to stimulation (atrophy, hypertrophy, and regeneration), and finally settled on myopathy. In general, the integration of these contents provides a holistic perspective, which helps to further elucidate the structure, characteristics, and functions of skeletal muscle.
Collapse
Affiliation(s)
- Lan‐Ting Feng
- Department of Cell Biology & National Translational Science Center for Molecular MedicineNational Key Laboratory of New Drug Discovery and Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| | - Zhi‐Nan Chen
- Department of Cell Biology & National Translational Science Center for Molecular MedicineNational Key Laboratory of New Drug Discovery and Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| | - Huijie Bian
- Department of Cell Biology & National Translational Science Center for Molecular MedicineNational Key Laboratory of New Drug Discovery and Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| |
Collapse
|
16
|
Scepanovic G, Fernandez-Gonzalez R. Should I shrink or should I grow: cell size changes in tissue morphogenesis. Genome 2024; 67:125-138. [PMID: 38198661 DOI: 10.1139/gen-2023-0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Cells change shape, move, divide, and die to sculpt tissues. Common to all these cell behaviours are cell size changes, which have recently emerged as key contributors to tissue morphogenesis. Cells can change their mass-the number of macromolecules they contain-or their volume-the space they encompass. Changes in cell mass and volume occur through different molecular mechanisms and at different timescales, slow for changes in mass and rapid for changes in volume. Therefore, changes in cell mass and cell volume, which are often linked, contribute to the development and shaping of tissues in different ways. Here, we review the molecular mechanisms by which cells can control and alter their size, and we discuss how changes in cell mass and volume contribute to tissue morphogenesis. The role that cell size control plays in developing embryos is only starting to be elucidated. Research on the signals that control cell size will illuminate our understanding of the cellular and molecular mechanisms that drive tissue morphogenesis.
Collapse
Affiliation(s)
- Gordana Scepanovic
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
- Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Rodrigo Fernandez-Gonzalez
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
- Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| |
Collapse
|
17
|
Lessenger AT, Swaffer MP, Skotheim JM, Feldman JL. Somatic polyploidy supports biosynthesis and tissue function by increasing transcriptional output. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586714. [PMID: 38585999 PMCID: PMC10996643 DOI: 10.1101/2024.03.25.586714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Cell size and biosynthetic capacity generally increase with increased DNA content. Polyploidy has therefore been proposed to be an adaptive strategy to increase cell size in specialized tissues with high biosynthetic demands. However, if and how DNA concentration limits cellular biosynthesis in vivo is not well understood, and the impacts of polyploidy in non-disease states is not well studied. Here, we show that polyploidy in the C. elegans intestine is critical for cell growth and yolk biosynthesis, a central role of this organ. Artificially lowering the DNA/cytoplasm ratio by reducing polyploidization in the intestine gave rise to smaller cells with more dilute mRNA. Highly-expressed transcripts were more sensitive to this mRNA dilution, whereas lowly-expressed genes were partially compensated - in part by loading more RNA Polymerase II on the remaining genomes. DNA-dilute cells had normal total protein concentration, which we propose is achieved by increasing production of translational machinery at the expense of specialized, cell-type specific proteins.
Collapse
|
18
|
Bachman JF, Chakkalakal JV. Satellite cells in the growth and maintenance of muscle. Curr Top Dev Biol 2024; 158:1-14. [PMID: 38670701 DOI: 10.1016/bs.ctdb.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Embryonic skeletal muscle growth is contingent upon a population of somite derived satellite cells, however, the contribution of these cells to early postnatal skeletal muscle growth remains relatively high. As prepubertal postnatal development proceeds, the activity and contribution of satellite cells to skeletal muscle growth diminishes. Eventually, at around puberty, a population of satellite cells escapes terminal commitment, continues to express the paired box transcription factor Pax7, and reside in a quiescent state orbiting the myofiber periphery adjacent to the basal lamina. After adolescence, some satellite cell contributions to muscle maintenance and adaptation occur, however, their necessity is reduced relative to embryonic, early postnatal, and prepubertal growth.
Collapse
Affiliation(s)
| | - Joe V Chakkalakal
- Departments of Orthopedic Surgery and Cell Biology, Duke University School of Medicine, Durham NC, USA.
| |
Collapse
|
19
|
Di Marco G, Gherardi G, De Mario A, Piazza I, Baraldo M, Mattarei A, Blaauw B, Rizzuto R, De Stefani D, Mammucari C. The mitochondrial ATP-dependent potassium channel (mitoK ATP) controls skeletal muscle structure and function. Cell Death Dis 2024; 15:58. [PMID: 38233399 PMCID: PMC10794173 DOI: 10.1038/s41419-024-06426-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024]
Abstract
MitoKATP is a channel of the inner mitochondrial membrane that controls mitochondrial K+ influx according to ATP availability. Recently, the genes encoding the pore-forming (MITOK) and the regulatory ATP-sensitive (MITOSUR) subunits of mitoKATP were identified, allowing the genetic manipulation of the channel. Here, we analyzed the role of mitoKATP in determining skeletal muscle structure and activity. Mitok-/- muscles were characterized by mitochondrial cristae remodeling and defective oxidative metabolism, with consequent impairment of exercise performance and altered response to damaging muscle contractions. On the other hand, constitutive mitochondrial K+ influx by MITOK overexpression in the skeletal muscle triggered overt mitochondrial dysfunction and energy default, increased protein polyubiquitination, aberrant autophagy flux, and induction of a stress response program. MITOK overexpressing muscles were therefore severely atrophic. Thus, the proper modulation of mitoKATP activity is required for the maintenance of skeletal muscle homeostasis and function.
Collapse
Affiliation(s)
- Giulia Di Marco
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Gaia Gherardi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Agnese De Mario
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ilaria Piazza
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Andrea Mattarei
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Bert Blaauw
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine, Padova, Italy
- Myology Center (CIR-Myo), University of Padova, Padova, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Myology Center (CIR-Myo), University of Padova, Padova, Italy
| | - Diego De Stefani
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Cristina Mammucari
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
- Myology Center (CIR-Myo), University of Padova, Padova, Italy.
| |
Collapse
|
20
|
Sun C, Swoboda CO, Petrany MJ, Parameswaran S, VonHandorf A, Weirauch MT, Lepper C, Millay DP. Lineage tracing of newly accrued nuclei in skeletal myofibers uncovers distinct transcripts and interplay between nuclear populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554609. [PMID: 37662191 PMCID: PMC10473681 DOI: 10.1101/2023.08.24.554609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Multinucleated skeletal muscle cells have an obligatory need to acquire additional nuclei through fusion with activated skeletal muscle stem cells when responding to both developmental and adaptive growth stimuli. A fundamental question in skeletal muscle biology has been the reason underlying this need for new nuclei in syncytial cells that already harbor hundreds of nuclei. To begin to answer this long-standing question, we utilized nuclear RNA-sequencing approaches and developed a lineage tracing strategy capable of defining the transcriptional state of recently fused nuclei and distinguishing this state from that of pre-existing nuclei. Our findings reveal the presence of conserved markers of newly fused nuclei both during development and after a hypertrophic stimulus in the adult. However, newly fused nuclei also exhibit divergent gene expression that is determined by the myogenic environment to which they fuse. Moreover, accrual of new nuclei through fusion is required for nuclei already resident in adult myofibers to mount a normal transcriptional response to a load-inducing stimulus. We propose a model of mutual regulation in the control of skeletal muscle development and adaptations, where newly fused and pre-existing myonuclear populations influence each other to maintain optimal functional growth.
Collapse
Affiliation(s)
- Chengyi Sun
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Casey O. Swoboda
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Michael J. Petrany
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Sreeja Parameswaran
- Division of Human Genetics, Center for Autoimmune Genetics and Etiology (CAGE), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Andrew VonHandorf
- Division of Human Genetics, Center for Autoimmune Genetics and Etiology (CAGE), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Matthew T. Weirauch
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Human Genetics, Center for Autoimmune Genetics and Etiology (CAGE), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Christoph Lepper
- Department of Physiology & Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Douglas P. Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
21
|
Kamiya M, Kimura N, Umezawa N, Hasegawa H, Yasuda S. Muscle fiber necroptosis in pathophysiology of idiopathic inflammatory myopathies and its potential as target of novel treatment strategy. Front Immunol 2023; 14:1191815. [PMID: 37483632 PMCID: PMC10361824 DOI: 10.3389/fimmu.2023.1191815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Idiopathic inflammatory myopathies (IIMs), which are a group of chronic and diverse inflammatory diseases, are primarily characterized by weakness in the proximal muscles that progressively leads to persistent disability. Current treatments of IIMs depend on nonspecific immunosuppressive agents (including glucocorticoids and immunosuppressants). However, these therapies sometimes fail to regulate muscle inflammation, and some patients suffer from infectious diseases and other adverse effects related to the treatment. Furthermore, even after inflammation has subsided, muscle weakness persists in a significant proportion of the patients. Therefore, the elucidation of pathophysiology of IIMs and development of a better therapeutic strategy that not only alleviates muscle inflammation but also improves muscle weakness without increment of opportunistic infection is awaited. Muscle fiber death, which has been formerly postulated as "necrosis", is a key histological feature of all subtypes of IIMs, however, its detailed mechanisms and contribution to the pathophysiology remained to be elucidated. Recent studies have revealed that muscle fibers of IIMs undergo necroptosis, a newly recognized form of regulated cell death, and promote muscle inflammation and dysfunction through releasing inflammatory mediators such as damage-associated molecular patterns (DAMPs). The research on murine model of polymyositis, a subtype of IIM, revealed that the inhibition of necroptosis or HMGB1, one of major DAMPs released from muscle fibers undergoing necroptosis, ameliorated muscle inflammation and recovered muscle weakness. Furthermore, not only the necroptosis-associated molecules but also PGAM5, a mitochondrial protein, and reactive oxygen species have been shown to be involved in muscle fiber necroptosis, indicating the multiple target candidates for the treatment of IIMs acting through necroptosis regulation. This article overviews the research on muscle injury mechanisms in IIMs focusing on the contribution of necroptosis in their pathophysiology and discusses the potential treatment strategy targeting muscle fiber necroptosis.
Collapse
|
22
|
Dungan CM, Wells JM, Murach KA. The life and times of cellular senescence in skeletal muscle: friend or foe for homeostasis and adaptation? Am J Physiol Cell Physiol 2023; 325:C324-C331. [PMID: 37335024 PMCID: PMC10393344 DOI: 10.1152/ajpcell.00553.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
A gradual decline in skeletal muscle mass and function is closely tied to increased mortality and disease risk during organismal aging. Exercise training is the most effective way to enhance muscle health, but the adaptive response to exercise as well as muscle repair potential is blunted in older individuals. Numerous mechanisms contribute to the loss of muscle mass and plasticity as aging progresses. An emerging body of recent evidence implicates an accumulation of senescent ("zombie") cells in muscle as a contributing factor to the aging phenotype. Senescent cells cannot divide but can release inflammatory factors and create an unfavorable environment for homeostasis and adaptation. On balance, some evidence indicates that cells with senescent characteristics can be beneficial for the muscle adaptive process, specifically at younger ages. Emerging evidence also suggests that multinuclear muscle fibers could become senescent. In this review, we summarize current literature on the prevalence of senescent cells in skeletal muscle and highlight the consequences of senescent cell removal on muscle mass, function, and adaptability. We examine key limitations in the field of senescence specifically in skeletal muscle and identify areas of research that require future investigation.NEW & NOTEWORTHY There is evidence to suggest that senescent "zombie" cells may or may not accrue in aging skeletal muscle. When muscle is perturbed regardless of age, senescent-like cells do appear, and the benefits of removing them could be age-dependent. More work is needed to determine the magnitude of accumulation and source of senescent cells in muscle. Regardless, pharmacological senolytic treatment of aged muscle is beneficial for adaptation.
Collapse
Affiliation(s)
- Cory M Dungan
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, Texas, United States
| | - Jaden M Wells
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, Texas, United States
| | - Kevin A Murach
- Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| |
Collapse
|
23
|
Hansson KA, Eftestøl E. Scaling of nuclear numbers and their spatial arrangement in skeletal muscle cell size regulation. Mol Biol Cell 2023; 34:pe3. [PMID: 37339435 PMCID: PMC10398882 DOI: 10.1091/mbc.e22-09-0424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/29/2023] [Accepted: 04/28/2023] [Indexed: 06/22/2023] Open
Abstract
Many cells display considerable functional plasticity and depend on the regulation of numerous organelles and macromolecules for their maintenance. In large cells, organelles also need to be carefully distributed to supply the cell with essential resources and regulate intracellular activities. Having multiple copies of the largest eukaryotic organelle, the nucleus, epitomizes the importance of scaling gene products to large cytoplasmic volumes in skeletal muscle fibers. Scaling of intracellular constituents within mammalian muscle fibers is, however, poorly understood, but according to the myonuclear domain hypothesis, a single nucleus supports a finite amount of cytoplasm and is thus postulated to act autonomously, causing the nuclear number to be commensurate with fiber volume. In addition, the orderly peripheral distribution of myonuclei is a hallmark of normal cell physiology, as nuclear mispositioning is associated with impaired muscle function. Because underlying structures of complex cell behaviors are commonly formalized by scaling laws and thus emphasize emerging principles of size regulation, the work presented herein offers more of a unified conceptual platform based on principles from physics, chemistry, geometry, and biology to explore cell size-dependent correlations of the largest mammalian cell by means of scaling.
Collapse
Affiliation(s)
- Kenth-Arne Hansson
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, 2624 Lillehammer, Norway
| | - Einar Eftestøl
- Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| |
Collapse
|
24
|
Furrer R, Hawley JA, Handschin C. The molecular athlete: exercise physiology from mechanisms to medals. Physiol Rev 2023; 103:1693-1787. [PMID: 36603158 PMCID: PMC10110736 DOI: 10.1152/physrev.00017.2022] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Human skeletal muscle demonstrates remarkable plasticity, adapting to numerous external stimuli including the habitual level of contractile loading. Accordingly, muscle function and exercise capacity encompass a broad spectrum, from inactive individuals with low levels of endurance and strength to elite athletes who produce prodigious performances underpinned by pleiotropic training-induced muscular adaptations. Our current understanding of the signal integration, interpretation, and output coordination of the cellular and molecular mechanisms that govern muscle plasticity across this continuum is incomplete. As such, training methods and their application to elite athletes largely rely on a "trial-and-error" approach, with the experience and practices of successful coaches and athletes often providing the bases for "post hoc" scientific enquiry and research. This review provides a synopsis of the morphological and functional changes along with the molecular mechanisms underlying exercise adaptation to endurance- and resistance-based training. These traits are placed in the context of innate genetic and interindividual differences in exercise capacity and performance, with special consideration given to aging athletes. Collectively, we provide a comprehensive overview of skeletal muscle plasticity in response to different modes of exercise and how such adaptations translate from "molecules to medals."
Collapse
Affiliation(s)
| | - John A Hawley
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | | |
Collapse
|
25
|
Cadart C, Bartz J, Oaks G, Liu MZ, Heald R. Polyploidy in Xenopus lowers metabolic rate by decreasing total cell surface area. Curr Biol 2023; 33:1744-1752.e7. [PMID: 37080197 PMCID: PMC10184464 DOI: 10.1016/j.cub.2023.03.071] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/22/2023] [Accepted: 03/24/2023] [Indexed: 04/22/2023]
Abstract
Although polyploidization is frequent in development, cancer, and evolution, impacts on animal metabolism are poorly understood. In Xenopus frogs, the number of genome copies (ploidy) varies across species and can be manipulated within a species. Here, we show that triploid tadpoles contain fewer, larger cells than diploids and consume oxygen at a lower rate. Drug treatments revealed that the major processes accounting for tadpole energy expenditure include cell proliferation, biosynthesis, and maintenance of plasma membrane potential. While inhibiting cell proliferation did not abolish the oxygen consumption difference between diploids and triploids, treatments that altered cellular biosynthesis or electrical potential did. Combining these results with a simple mathematical framework, we propose that the decrease in total cell surface area lowered production and activity of plasma membrane components including the Na+/K+ ATPase, reducing energy consumption in triploids. Comparison of Xenopus species that evolved through polyploidization revealed that metabolic differences emerged during development when cell size scaled with genome size. Thus, ploidy affects metabolism by altering the cell surface area to volume ratio in a multicellular organism.
Collapse
Affiliation(s)
- Clotilde Cadart
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA.
| | - Julianne Bartz
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Gillian Oaks
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Martin Ziyuan Liu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Rebecca Heald
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA.
| |
Collapse
|
26
|
Lim S, Lee DE, Morena da Silva F, Koopmans PJ, Vechetti IJ, von Walden F, Greene NP, Murach KA. MicroRNA control of the myogenic cell transcriptome and proteome: the role of miR-16. Am J Physiol Cell Physiol 2023; 324:C1101-C1109. [PMID: 36971422 PMCID: PMC10191132 DOI: 10.1152/ajpcell.00071.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
MicroRNAs (miRs) control stem cell biology and fate. Ubiquitously expressed and conserved miR-16 was the first miR implicated in tumorigenesis. miR-16 is low in muscle during developmental hypertrophy and regeneration. It is enriched in proliferating myogenic progenitor cells but is repressed during differentiation. The induction of miR-16 blocks myoblast differentiation and myotube formation, whereas knockdown enhances these processes. Despite a central role for miR-16 in myogenic cell biology, how it mediates its potent effects is incompletely defined. In this investigation, global transcriptomic and proteomic analyses after miR-16 knockdown in proliferating C2C12 myoblasts revealed how miR-16 influences myogenic cell fate. Eighteen hours after miR-16 inhibition, ribosomal protein gene expression levels were higher relative to control myoblasts and p53 pathway-related gene abundance was lower. At the protein level at this same time point, miR-16 knockdown globally upregulated tricarboxylic acid (TCA) cycle proteins while downregulating RNA metabolism-related proteins. miR-16 inhibition induced specific proteins associated with myogenic differentiation such as ACTA2, EEF1A2, and OPA1. We extend prior work in hypertrophic muscle tissue and show that miR-16 is lower in mechanically overloaded muscle in vivo. Our data collectively point to how miR-16 is implicated in aspects of myogenic cell differentiation. A deeper understanding of the role of miR-16 in myogenic cells has consequences for muscle developmental growth, exercise-induced hypertrophy, and regenerative repair after injury, all of which involve myogenic progenitors.
Collapse
Affiliation(s)
- Seongkyun Lim
- Department of Health, Human Performance, and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, United States
| | - David E Lee
- Department of Health, Human Performance, and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, United States
| | - Francielly Morena da Silva
- Department of Health, Human Performance, and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, United States
| | - Pieter J Koopmans
- Department of Health, Human Performance, and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, United States
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, Arkansas, United States
| | - Ivan J Vechetti
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States
| | - Ferdinand von Walden
- Neuropediatrics, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Nicholas P Greene
- Department of Health, Human Performance, and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, United States
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, Arkansas, United States
| | - Kevin A Murach
- Department of Health, Human Performance, and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, United States
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, Arkansas, United States
| |
Collapse
|
27
|
Jacobs N, Mos D, Bloemers FW, van der Laarse WJ, Jaspers RT, van der Zwaard S. Low myoglobin concentration in skeletal muscle of elite cyclists is associated with low mRNA expression levels. Eur J Appl Physiol 2023:10.1007/s00421-023-05161-z. [PMID: 36877252 DOI: 10.1007/s00421-023-05161-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/14/2023] [Indexed: 03/07/2023]
Abstract
Myoglobin is essential for oxygen transport to the muscle fibers. However, measurements of myoglobin (Mb) protein concentrations within individual human muscle fibers are scarce. Recent observations have revealed surprisingly low Mb concentrations in elite cyclists, however it remains unclear whether this relates to Mb translation, transcription and/or myonuclear content. The aim was to compare Mb concentration, Mb messenger RNA (mRNA) expression levels and myonuclear content within muscle fibers of these elite cyclists with those of physically-active controls. Muscle biopsies were obtained from m. vastus lateralis in 29 cyclists and 20 physically-active subjects. Mb concentration was determined by peroxidase staining for both type I and type II fibers, Mb mRNA expression level was determined by quantitative PCR and myonuclear domain size (MDS) was obtained by immunofluorescence staining. Average Mb concentrations (mean ± SD: 0.38 ± 0.04 mM vs. 0.48 ± 0.19 mM; P = 0.014) and Mb mRNA expression levels (0.067 ± 0.019 vs. 0.088 ± 0.027; P = 0.002) were lower in cyclists compared to controls. In contrast, MDS and total RNA per mg muscle were not different between groups. Interestingly, in cyclists compared to controls, Mb concentration was only lower for type I fibers (P < 0.001), but not for type II fibers (P > 0.05). In conclusion, the lower Mb concentration in muscle fibers of elite cyclists is partly explained by lower Mb mRNA expression levels per myonucleus and not by a lower myonuclear content. It remains to be determined whether cyclists may benefit from strategies that upregulate Mb mRNA expression levels, particularly in type I fibers, to enhance their oxygen supply.
Collapse
Affiliation(s)
- Nina Jacobs
- Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
- Laboratory for Myology, Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Daniek Mos
- Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
- Laboratory for Myology, Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Frank W Bloemers
- Department for Trauma Surgery, Amsterdam UMC, Amsterdam, The Netherlands
| | | | - Richard T Jaspers
- Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
- Laboratory for Myology, Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Stephan van der Zwaard
- Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.
- Laboratory for Myology, Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
28
|
Balachandra S, Sarkar S, Amodeo AA. The Nuclear-to-Cytoplasmic Ratio: Coupling DNA Content to Cell Size, Cell Cycle, and Biosynthetic Capacity. Annu Rev Genet 2022; 56:165-185. [PMID: 35977407 PMCID: PMC10165727 DOI: 10.1146/annurev-genet-080320-030537] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Though cell size varies between different cells and across species, the nuclear-to-cytoplasmic (N/C) ratio is largely maintained across species and within cell types. A cell maintains a relatively constant N/C ratio by coupling DNA content, nuclear size, and cell size. We explore how cells couple cell division and growth to DNA content. In some cases, cells use DNA as a molecular yardstick to control the availability of cell cycle regulators. In other cases, DNA sets a limit for biosynthetic capacity. Developmentally programmed variations in the N/C ratio for a given cell type suggest that a specific N/C ratio is required to respond to given physiological demands. Recent observations connecting decreased N/C ratios with cellular senescence indicate that maintaining the proper N/C ratio is essential for proper cellular functioning. Together, these findings suggest a causative, not simply correlative, role for the N/C ratio in regulating cell growth and cell cycle progression.
Collapse
Affiliation(s)
- Shruthi Balachandra
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA; ,
| | - Sharanya Sarkar
- Department of Microbiology and Immunology, Dartmouth College, Hanover, New Hampshire, USA;
| | - Amanda A Amodeo
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA; ,
| |
Collapse
|
29
|
Eftestøl E, Ochi E, Juvkam IS, Hansson KA, Gundersen K. A juvenile climbing exercise establishes a muscle memory boosting the effects of exercise in adult rats. Acta Physiol (Oxf) 2022; 236:e13879. [PMID: 36017589 DOI: 10.1111/apha.13879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 01/29/2023]
Abstract
AIM Investigate whether juvenile exercise could induce a long-term muscle memory, boosting the effects of exercise in adults. METHODS We devised a 5-week climbing exercise scheme with food reward administered to male juvenile rats (post-natal week 4-9). Subsequently, the animals were subjected to 10 weeks of detraining (week 9-19) without climbing and finally retraining during week 19-21. RESULTS The juvenile exercise increased fiber cross-sectional area (fCSA) by 21% (p = 0.0035), boosted nuclear accretion by 13% (p = 0.057), and reduced intraperitoneal fat content by 28% (p = 0.007) and body weight by 9% (p = 0.001). During detraining, the fCSA became similar in the animals that had been climbing compared to naive controls, but the elevated number of myonuclei induced by the climbing were maintained (15%, p = 0.033). When the naive rats were subjected to 2 weeks of adult exercise there was little effect on fCSA, while the previously trained rats displayed an increase of 19% (p = 0.0007). Similarly, when the rats were subjected to unilateral surgical overload in lieu of the adult climbing exercise, the increase in fCSA was 20% (p = 0.0039) in the climbing group, while there was no significant increase in naive rats when comparing to the contralateral leg. CONCLUSION This demonstrates that juvenile exercise can establish a muscle memory boosting the effects of adult exercise. The juvenile climbing exercise with food reward also led to leaner animals with lower body weight. These differences were to some extent maintained throughout the adult detraining period in spite of all animals being fed ad libitum, indicating a form of body weight memory.
Collapse
Affiliation(s)
- Einar Eftestøl
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Eisuke Ochi
- Department of Biosciences, University of Oslo, Oslo, Norway.,Faculty of Bioscience and Applied Chemistry, Hosei University, Tokyo, Japan
| | - Inga S Juvkam
- Department of Biosciences, University of Oslo, Oslo, Norway
| | | | | |
Collapse
|
30
|
Rader EP, Baker BA. Elevated muscle mass accompanied by transcriptional and nuclear alterations several months following cessation of resistance-type training in rats. Physiol Rep 2022; 10:e15476. [PMID: 36259109 PMCID: PMC9579736 DOI: 10.14814/phy2.15476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023] Open
Abstract
Rodent studies investigating long-term effects following termination of hypertrophy-inducing loading have predominantly involved exposures such as synergist ablation and weighted wheel running or ladder climbing. This research yielded a spectrum of results regarding the extent of detraining in terms of muscle mass and myonuclei number. The studies were also limited in their lack of sensitive performance measures and indirect relatedness to resistance training. Our research group developed and validated a relevant rat model of resistance-type training that induces increased muscle mass and performance. The aim of the present study was to determine to what extent these features persist 3 months following the termination of this training. While performance returned to baseline, muscle mass remained elevated by 17% and a shift in distribution to larger muscle fibers persisted. A 16% greater total RNA and heightened mRNA levels of ribosomal protein S6 kinases implicated preserved transcriptional output and ribosomal content. Remodeling of muscle fiber nuclei was consistent with these findings - increased nuclear number and a distribution shift to a more circular nuclear shape. These findings indicate that muscle mass detrains at a slower rate than performance and implicates multiple forms of myonuclear remodeling in muscle memory.
Collapse
Affiliation(s)
- Erik P. Rader
- Centers for Disease Control and PreventionNational Institute for Occupational Safety and HealthMorgantownWest VirginiaUSA
| | - Brent A. Baker
- Centers for Disease Control and PreventionNational Institute for Occupational Safety and HealthMorgantownWest VirginiaUSA
| |
Collapse
|
31
|
Moesgaard L, Jessen S, Mackey AL, Hostrup M. Myonuclear addition is associated with sex-specific fiber hypertrophy and occurs in relation to fiber perimeter not cross-sectional area. J Appl Physiol (1985) 2022; 133:732-741. [PMID: 35952346 DOI: 10.1152/japplphysiol.00235.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is unclear whether resistance training-induced myofiber hypertrophy is affected by sex, and whether myonuclear addition occurs in relation to the myonuclear domain and can contribute to explaining a potential sex-specific hypertrophic response. This study investigated the effect of 8 weeks of resistance training on myofiber hypertrophy and myonuclear addition in 12 males (28±7 years; mean±SD) and 12 females (27±7 years). Muscle biopsies were collected from m. vastus lateralis before and after the training intervention and analyzed by immunohistochemistry for fiber type and size, satellite cells, and myonuclei. Hypertrophy of type I fibers was greater in males than females (P<0.05), whereas hypertrophy of type II fibers was similar between sexes (P=0.158‒0.419). Expansion of the satellite cell pool (P=0.132‒0.667) and myonuclear addition (P=0.064‒0.228) did not differ significantly between sexes, irrespective of myofiber type. However, when individual responses to resistance training were assessed, myonuclear addition was strongly correlated with fiber hypertrophy (r=0.68‒0.85, P<0.001). While myofiber hypertrophy was accompanied by an increase in myonuclear domain (P<0.05), fiber perimeter per myonucleus remained constant throughout the study (P=0.096‒0.666). These findings indicate that myonuclear addition occurs in relation to the fiber perimeter per myonucleus, not the myonuclear domain, and has a substantial role in muscle hypertrophy, but does not fully explain greater hypertrophy of type I fibers in males than females.
Collapse
Affiliation(s)
- Lukas Moesgaard
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Søren Jessen
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Hostrup
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
32
|
Cadart C, Heald R. Scaling of biosynthesis and metabolism with cell size. Mol Biol Cell 2022; 33:pe5. [PMID: 35862496 PMCID: PMC9582640 DOI: 10.1091/mbc.e21-12-0627] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
Cells adopt a size that is optimal for their function, and pushing them beyond this limit can cause cell aging and death by senescence or reduce proliferative potential. However, by increasing their genome copy number (ploidy), cells can increase their size dramatically and homeostatically maintain physiological properties such as biosynthesis rate. Recent studies investigating the relationship between cell size and rates of biosynthesis and metabolism under normal, polyploid, and pathological conditions are revealing new insights into how cells attain the best function or fitness for their size by tuning processes including transcription, translation, and mitochondrial respiration. A new frontier is to connect single-cell scaling relationships with tissue and whole-organism physiology, which promises to reveal molecular and evolutionary principles underlying the astonishing diversity of size observed across the tree of life.
Collapse
Affiliation(s)
- Clotilde Cadart
- Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA 94720-3200
| | - Rebecca Heald
- Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA 94720-3200
| |
Collapse
|
33
|
Swanson DL, Zhang Y, Jimenez AG. Skeletal muscle and metabolic flexibility in response to changing energy demands in wild birds. Front Physiol 2022; 13:961392. [PMID: 35936893 PMCID: PMC9353400 DOI: 10.3389/fphys.2022.961392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 06/29/2022] [Indexed: 12/20/2022] Open
Abstract
Phenotypically plastic responses of animals to adjust to environmental variation are pervasive. Reversible plasticity (i.e., phenotypic flexibility), where adult phenotypes can be reversibly altered according to prevailing environmental conditions, allow for better matching of phenotypes to the environment and can generate fitness benefits but may also be associated with costs that trade-off with capacity for flexibility. Here, we review the literature on avian metabolic and muscle plasticity in response to season, temperature, migration and experimental manipulation of flight costs, and employ an integrative approach to explore the phenotypic flexibility of metabolic rates and skeletal muscle in wild birds. Basal (minimum maintenance metabolic rate) and summit (maximum cold-induced metabolic rate) metabolic rates are flexible traits in birds, typically increasing with increasing energy demands. Because skeletal muscles are important for energy use at the organismal level, especially to maximum rates of energy use during exercise or shivering thermogenesis, we consider flexibility of skeletal muscle at the tissue and ultrastructural levels in response to variations in the thermal environment and in workloads due to flight exercise. We also examine two major muscle remodeling regulatory pathways: myostatin and insulin-like growth factor -1 (IGF-1). Changes in myostatin and IGF-1 pathways are sometimes, but not always, regulated in a manner consistent with metabolic rate and muscle mass flexibility in response to changing energy demands in wild birds, but few studies have examined such variation so additional study is needed to fully understand roles for these pathways in regulating metabolic flexibility in birds. Muscle ultrastrutural variation in terms of muscle fiber diameter and associated myonuclear domain (MND) in birds is plastic and highly responsive to thermal variation and increases in workload, however, only a few studies have examined ultrastructural flexibility in avian muscle. Additionally, the relationship between myostatin, IGF-1, and satellite cell (SC) proliferation as it relates to avian muscle flexibility has not been addressed in birds and represents a promising avenue for future study.
Collapse
Affiliation(s)
- David L. Swanson
- Department of Biology, University of South Dakota, Vermillion, SD, United States
| | - Yufeng Zhang
- College of Health Science, University of Memphis, Memphis, TN, United States
| | - Ana Gabriela Jimenez
- Department of Biology, Colgate University, Hamilton, NY, United States
- *Correspondence: Ana Gabriela Jimenez,
| |
Collapse
|
34
|
Fukada SI, Higashimoto T, Kaneshige A. Differences in muscle satellite cell dynamics during muscle hypertrophy and regeneration. Skelet Muscle 2022; 12:17. [PMID: 35794679 PMCID: PMC9258228 DOI: 10.1186/s13395-022-00300-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/29/2022] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscle homeostasis and function are ensured by orchestrated cellular interactions among several types of cells. A noticeable aspect of skeletal muscle biology is the drastic cell-cell communication changes that occur in multiple scenarios. The process of recovering from an injury, which is known as regeneration, has been relatively well investigated. However, the cellular interplay that occurs in response to mechanical loading, such as during resistance training, is poorly understood compared to regeneration. During muscle regeneration, muscle satellite cells (MuSCs) rebuild multinuclear myofibers through a stepwise process of proliferation, differentiation, fusion, and maturation, whereas during mechanical loading-dependent muscle hypertrophy, MuSCs do not undergo such stepwise processes (except in rare injuries) because the nuclei of MuSCs become directly incorporated into the mature myonuclei. In this review, six specific examples of such differences in MuSC dynamics between regeneration and hypertrophy processes are discussed.
Collapse
Affiliation(s)
- So-Ichiro Fukada
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Tatsuyoshi Higashimoto
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Akihiro Kaneshige
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
| |
Collapse
|
35
|
Bachman JF, Chakkalakal JV. Insights into muscle stem cell dynamics during postnatal development. FEBS J 2022; 289:2710-2722. [PMID: 33811430 PMCID: PMC9947813 DOI: 10.1111/febs.15856] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/17/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022]
Abstract
During development, resident stem cell populations contribute to the growth and maturation of tissue and organs. In skeletal muscle, muscle stem cells, or satellite cells (SCs), are responsible for the maturation of postnatal myofibers. However, the role SCs play in later stages of postnatal growth, and thus, when they enter a mature quiescent state is controversial. Here, we discuss the current literature regarding the role SCs play in all stages of postnatal growth, from birth to puberty onset to young adulthood. We additionally highlight the implications of SC loss or dysfunction during developmental stages, both in the context of experimental paradigms and disease settings.
Collapse
Affiliation(s)
- John F Bachman
- Department of Pathology and Laboratory Medicine, Cell Biology of Disease Graduate Program, University of Rochester Medical Center, Rochester NY, United States.,Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester NY, United States
| | - Joe V Chakkalakal
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester NY, United States.,Department of Biomedical Engineering, University of Rochester, Rochester NY, United States.,Wilmot Cancer Institute, University of Rochester Medical Center, Rochester NY, United States.,Stem Cell and Regenerative Medicine Institute, and The Rochester Aging Research Center, University of Rochester Medical Center, Rochester NY, United States.,Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester NY, United States
| |
Collapse
|
36
|
Schwartz LM, Gundersen K. Cross Talk opposing view: Myonuclei do not undergo apoptosis during skeletal muscle atrophy. J Physiol 2022; 600:2081-2084. [PMID: 35388909 DOI: 10.1113/jp282381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Lawrence M Schwartz
- Department of Biology, Morrill Science Center, University of Massachusetts, Amherst, MA, USA
| | | |
Collapse
|
37
|
Attwaters M, Hughes SM. Cellular and molecular pathways controlling muscle size in response to exercise. FEBS J 2022; 289:1428-1456. [PMID: 33755332 DOI: 10.1111/febs.15820] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/27/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022]
Abstract
From the discovery of ATP and motor proteins to synaptic neurotransmitters and growth factor control of cell differentiation, skeletal muscle has provided an extreme model system in which to understand aspects of tissue function. Muscle is one of the few tissues that can undergo both increase and decrease in size during everyday life. Muscle size depends on its contractile activity, but the precise cellular and molecular pathway(s) by which the activity stimulus influences muscle size and strength remain unclear. Four correlates of muscle contraction could, in theory, regulate muscle growth: nerve-derived signals, cytoplasmic calcium dynamics, the rate of ATP consumption and physical force. Here, we summarise the evidence for and against each stimulus and what is known or remains unclear concerning their molecular signal transduction pathways and cellular effects. Skeletal muscle can grow in three ways, by generation of new syncytial fibres, addition of nuclei from muscle stem cells to existing fibres or increase in cytoplasmic volume/nucleus. Evidence suggests the latter two processes contribute to exercise-induced growth. Fibre growth requires increase in sarcolemmal surface area and cytoplasmic volume at different rates. It has long been known that high-force exercise is a particularly effective growth stimulus, but how this stimulus is sensed and drives coordinated growth that is appropriately scaled across organelles remains a mystery.
Collapse
Affiliation(s)
- Michael Attwaters
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, UK
| | - Simon M Hughes
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, UK
| |
Collapse
|
38
|
Viggars MR, Wen Y, Peterson CA, Jarvis JC. Automated cross-sectional analysis of trained, severely atrophied and recovering rat skeletal muscles using MyoVision 2.0. J Appl Physiol (1985) 2022; 132:593-610. [PMID: 35050795 DOI: 10.1152/japplphysiol.00491.2021] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The number of myonuclei within a muscle fiber is an important factor in muscle growth, but its regulation during muscle adaptation is not well understood. We aimed to elucidate the timecourse of myonuclear dynamics during endurance training, loaded and concentric resistance training, and nerve silencing-induced disuse atrophy with subsequent recovery. We modified tibialis anterior muscle activity in free-living rats with electrical stimulation from implantable pulse generators, or with implantable osmotic pumps delivering tetrodotoxin (TTX) to silence the motor nerve without transection. We used the updated, automated software MyoVision to measure fiber type-specific responses in whole tibialis anterior cross-sections (~8000 fibers each). Seven days of continuous low frequency stimulation (CLFS) reduced muscle mass (-12%), increased slower myosin isoforms and reduced IIX/IIB fibers (-32%) and substantially increased myonuclei especially in IIX/IIB fibers (55.5%). High load resistance training (Spillover), produced greater hypertrophy (~16%) in muscle mass and fiber cross-sectional area (CSA) than low load resistance training (concentric, ~6%) and was associated with myonuclear addition in all fiber types (35-46%). TTX-induced nerve silencing resulted in progressive loss in muscle mass, fiber CSA, and myonuclei per fiber cross-section (-50.7%, -53.7%, -40.7%, respectively at 14 days). Myonuclear loss occurred in a fiber type-independent manner, but subsequent recovery during voluntary habitual activity suggested that type IIX/IIB fibers contained more new myonuclei during recovery from severe atrophy. This study demonstrates the power and accuracy provided by the updated MyoVision software and introduces new models for studying myonuclear dynamics in training, detraining, retraining, repeated disuse, and recovery.
Collapse
Affiliation(s)
- Mark Robert Viggars
- Research Institute for Sport & Exercise Sciences, grid.4425.7Liverpool John Moores University, Liverpool, United Kingdom.,Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, United States.,Myology Institute, University of Florida, Gainesville, Florida, United States
| | - Yuan Wen
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States.,Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States.,MyoAnalytics, LLC, Lexington, Kentucky, United States
| | - Charlotte A Peterson
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States.,Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States
| | - Jonathan C Jarvis
- Research Institute for Sport & Exercise Sciences, grid.4425.7Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
39
|
Fukada SI. [Involvement of muscle stem cell in skeletal muscle hypertrophy induced by mechanical loading and drugs]. Nihon Yakurigaku Zasshi 2022; 157:23-25. [PMID: 34980805 DOI: 10.1254/fpj.21047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Skeletal muscle is the largest organ in our body, consisting of bundles of multinuclear cells called myofibers. Skeletal muscle is responsible for locomotion, metabolism, and life activities such as swallowing and respiration, and is also attracting attention as an endocrine organ. Skeletal muscle has two abilities, regeneration and adaptation, and the understanding of these mechanisms is expected to contribute to the development of therapies for muscle diseases such as muscular dystrophies and muscle atrophy. Skeletal muscle-specific stem cells, muscle satellite cells (MuSCs), are involved in these abilities. As well as other tissue stem cells, MuSCs are also maintained in a dormant state under steady-state conditions. However, when myofibers are damaged, they start to proliferate and eventually rebuilt new myofibers. While, muscle hypertrophy is one of the "adaptation", and MuSCs contribute to muscle hypertrophy by supplying new nuclei to myofibers. In contrast to studies of MuSCs during regeneration, the dynamics of MuSCs during hypertrophy had not been well studied. One reason is that the specific regulatory mechanisms of MuSC in hypertrophic muscle had not been elucidated. In addition to physical stimuli, drugs such as dopings, hormones, and myostatin inhibition are known to induce muscle hypertrophy. The necessity of MuSCs and new myonuclei in various model of muscle hypertrophy has been highly debated. In this review, we introduce the mechanism of MuSC proliferation specific to hypertrophic muscle, and outline the mechanism of muscle hypertrophy induced by exercise and drugs and the involvement of MuSCs.
Collapse
|
40
|
Yoon JH, Lee SM, Lee Y, Kim MJ, Yang JW, Choi JY, Kwak JY, Lee KP, Yang YR, Kwon KS. Alverine citrate promotes myogenic differentiation and ameliorates muscle atrophy. Biochem Biophys Res Commun 2022; 586:157-162. [PMID: 34847441 DOI: 10.1016/j.bbrc.2021.11.076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/18/2021] [Indexed: 11/25/2022]
Abstract
Sarcopenia is the age-related loss of muscle mass and function and no pharmacological medication has been approved for its treatment. We established an atrogin-1/MAFbx promoter assay to find drug candidates that inhibit myotube atrophy. Alverine citrate (AC) was identified using high-throughput screening of an existing drug library. AC is an established medicine for stomach and intestinal spasms. AC treatment increased myotube diameter and inhibited atrophy signals induced by either C26-conditioned medium or dexamethasone in cultured C2C12 myoblasts. AC also enhanced myoblast fusion through the upregulation of fusion-related genes during C2C12 myoblast differentiation. Oral administration of AC improves muscle mass and physical performance in aged mice, as well as hindlimb-disused mice. Taken together, our data suggest that AC may be a novel therapeutic candidate for improving muscle weakness, including sarcopenia.
Collapse
Affiliation(s)
- Jong Hyeon Yoon
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Seung-Min Lee
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | | | - Min Ju Kim
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Jae Won Yang
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea; Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Jeong Yi Choi
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Ju Yeon Kwak
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Kwang-Pyo Lee
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea; Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Yong Ryoul Yang
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Ki-Sun Kwon
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea; Aventi Inc., Daejeon, Republic of Korea.
| |
Collapse
|
41
|
Abstract
The avian pectoralis muscle demonstrates plasticity with regard to size, so that temperate birds facing winter conditions or birds enduring a migration bout tend to have significant increases in the size and mass of this tissue due to muscular hypertrophy. Myonuclear domain (MND), the volume of cytoplasm a myonuclei services, in the pectoralis muscle of birds seems to be altered during thermal stress or changing seasons. However, there is no information available regarding muscle DNA content or ploidy level within the avian pectoralis. Changes in muscle DNA content can be used in this tissue to aid in size and mass changes. Here, we hypothesized that long-distance migrants or temperate residents would use the process of endoreduplication to aid in altering muscle size. Mostly contradictory to our hypotheses, we found no differences in the mean muscle DNA content in any of the 62 species of birds examined in this study. We also found no correlations between mean muscle DNA content and other muscle structural measurements, such as the number of nuclei per millimeter of fiber, myonuclear domain, and fiber cross-sectional area. Thus, while avian muscle seems more phenotypically plastic than mammalian muscle, the biological processes surrounding myonuclear function may be more closely related to those seen in mammals.
Collapse
Affiliation(s)
- Ana Gabriela Jimenez
- Department of Biology, Colgate University, Hamilton, NY 13346, USA.,Department of Biology, Colgate University, Hamilton, NY 13346, USA
| | - Emily Gray Lencyk
- Department of Biology, Colgate University, Hamilton, NY 13346, USA.,Department of Biology, Colgate University, Hamilton, NY 13346, USA
| |
Collapse
|
42
|
Microtubule-based transport is essential to distribute RNA and nascent protein in skeletal muscle. Nat Commun 2021; 12:6079. [PMID: 34707124 PMCID: PMC8551216 DOI: 10.1038/s41467-021-26383-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 10/04/2021] [Indexed: 12/18/2022] Open
Abstract
While the importance of RNA localization in highly differentiated cells is well appreciated, basic principles of RNA localization in skeletal muscle remain poorly characterized. Here, we develop a method to detect and quantify single molecule RNA localization patterns in skeletal myofibers, and uncover a critical role for directed transport of RNPs in muscle. We find that RNAs localize and are translated along sarcomere Z-disks, dispersing tens of microns from progenitor nuclei, regardless of encoded protein function. We find that directed transport along the lattice-like microtubule network of myofibers becomes essential to achieve this localization pattern as muscle development progresses; disruption of this network leads to extreme accumulation of RNPs and nascent protein around myonuclei. Our observations suggest that global active RNP transport may be required to distribute RNAs in highly differentiated cells and reveal fundamental mechanisms of gene regulation, with consequences for myopathies caused by perturbations to RNPs or microtubules.
Collapse
|
43
|
Mizunoe Y, Kobayashi M, Saito H, Goto A, Migitaka R, Miura K, Okita N, Sudo Y, Tagawa R, Yoshida M, Umemori A, Nakagawa Y, Shimano H, Higami Y. Prolonged caloric restriction ameliorates age-related atrophy in slow and fast muscle fibers of rat soleus muscle. Exp Gerontol 2021; 154:111519. [PMID: 34416335 DOI: 10.1016/j.exger.2021.111519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 11/29/2022]
Abstract
Aging causes loss of skeletal muscle mass and function, which is called sarcopenia. While sarcopenia impairs the quality of life of older adults and is a major factor in long-term hospitalization, its detailed pathogenic mechanism and preventive measures remain to be identified. Caloric restriction (CR) suppresses age-related physiological and pathological changes in many species and prolongs the average and healthy life expectancy. It has recently been reported that CR suppresses the onset of sarcopenia; however, few studies have analyzed the effects of long-term CR on age-related skeletal muscle atrophy. Thus, we investigated the aging and CR effects on soleus (SOL) muscles of 9-, 24-, and 29-month-old ad libitum-fed rats (9AL, 24AL, and 29AL, respectively) and of 29-month-old CR (29CR) rats. The total muscle cross sectional area (mCSA) of the entire SOL muscle significantly decreased in the 29AL rats, but not in the 24AL rats, compared with the 9AL rats. SOL muscle of the 29AL rats exhibited marked muscle fiber atrophy and increases in the number of muscle fibers with a central nucleus, in fibrosis, and in adipocyte infiltration. Additionally, although the decrease in the single muscle fiber cross-sectional area (fCSA) and the muscle fibers' number occurred in both slow-type and fast-type muscle fibers, the degree of atrophy was more remarkable in the fast-type fibers. However, CR suppressed the muscle fiber atrophy observed in the 29AL rats' SOL muscle by preserving the mCSA and the number of muscle fibers that declined with aging, and by decreasing the number of muscle fibers with a central nucleus, fibrosis and denervated muscle fibers. Overall, these results revealed that advanced aging separately reduces the number and fCSA of each muscle fiber type, but long-term CR can ameliorate this age-related sarcopenic muscle atrophy.
Collapse
Affiliation(s)
- Yuhei Mizunoe
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masaki Kobayashi
- Laboratory of Molecular Pathology & Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Hiroki Saito
- Laboratory of Molecular Pathology & Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Akifumi Goto
- Laboratory of Molecular Pathology & Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Ryota Migitaka
- Laboratory of Molecular Pathology & Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Kumi Miura
- Laboratory of Molecular Pathology & Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Naoyuki Okita
- Division of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-onoda, Yamaguchi, Japan
| | - Yuka Sudo
- Laboratory of Molecular Pathology & Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Ryoma Tagawa
- Laboratory of Molecular Pathology & Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Miki Yoshida
- Laboratory of Molecular Pathology & Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Ai Umemori
- Laboratory of Molecular Pathology & Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Yoshimi Nakagawa
- Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan
| | - Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan; Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki, Japan; Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Yoshikazu Higami
- Laboratory of Molecular Pathology & Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan.
| |
Collapse
|
44
|
De Jesus AD, Jimenez AG. Effects of acute temperature increases on House sparrow (Passer domesticus) pectoralis muscle myonuclear domain. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 337:150-158. [PMID: 34516707 DOI: 10.1002/jez.2544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 11/09/2022]
Abstract
With rapid climate change, heat wave episodes have become more intense and more frequent. This poses a significant threat to animals, and forces them to manage these physiologically challenging conditions by adapting and/or moving. As an invasive species with a large niche breadth, House sparrows (Passer domesticus) exhibit high phenotypic flexibility that caters to seasonal changes in function and metabolism. For example, their pectoral muscle complex exhibits size and mass plasticity with winter and summer acclimation. Here, we investigated the effects of acute whole-organism heat stress to 43°C on cellular-level changes in House sparrow pectoralis muscle myonuclear domain (MND), the volumetric portion each nucleus is responsible for, that have gone overlooked in the current literature. House sparrows were separated into a control group, a heat-shocked group subjected to thermal stress at 43°C for 24 h, and a recovery group that was returned to room temperature for 24 h after experiencing the same temperature treatment. Here, we found that heat-shocked and recovery groups demonstrated a decrease in number of nuclei per millimeter of fiber and increase in MND, when compared with the control. We also found a significant positive correlation between fiber diameter and MND in the recovery group, suggesting the possibility that nuclei number constrains the extent of muscle fiber size. Together, these results show that acute heat shock alters House sparrow pectoralis muscle cellular physiology in a rigid way that could prove detrimental to long-term muscle integrity and performance.
Collapse
|
45
|
Jimenez AG, De Jesus AD. Do thermal acclimation and an acute heat challenge alter myonuclear domain of control- and fast-growing quail? J Therm Biol 2021; 100:103050. [PMID: 34503797 DOI: 10.1016/j.jtherbio.2021.103050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 01/23/2023]
Abstract
Efforts to determine physiological traits that may render species resilient or susceptible to changing global temperatures have accelerated in recent years. Temperature is of critical importance to biological function; thus, climate change has the potential to severely affect all levels of biological organization in many species. For example, increases in environmental temperatures may alter muscle structure and function in birds. Myonuclear domain (MND), an under-studied aspect of avian muscle physiology that changes in response to thermal stress, is defined as the amount of cytoplasm within a muscle fiber that each nucleus is responsible for servicing. Here, we used two random bred lines of Japanese quail (Coturnix japonica) representing examples of control and fast growth rates. We used a factorial design to administer four treatment combinations to each line - an initial period of either heat-stress acclimation (Acclimation) or no acclimation (Not acclimated) followed by either a heat-stress challenge (HS) or no challenge (NC) after week 8 of age - to determine the effects of thermal acclimation and acute thermal stress on quail MND. We found a significant interaction between line * final treatment with fast-growing, HS birds demonstrating the lowest numbers of nuclei per mm of fiber, and Acclimated control-growing birds showing the highest numbers of nuclei per mm of fiber. There was a significant effect of line on MND with the fast-growing line having larger MNDs. Initial treatment with Not Acclimated birds showed larger MNDs. Additionally, control growing quail demonstrated positive correlations with fiber size, whereas fast growing quail did not. This may mean that nuclei in larger fibers of fast-growing quail may be functioning maximally, and that increases in temperature may also demonstrate similar effects.
Collapse
|
46
|
Murach KA, Fry CS, Dupont-Versteegden EE, McCarthy JJ, Peterson CA. Fusion and beyond: Satellite cell contributions to loading-induced skeletal muscle adaptation. FASEB J 2021; 35:e21893. [PMID: 34480776 PMCID: PMC9293230 DOI: 10.1096/fj.202101096r] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022]
Abstract
Satellite cells support adult skeletal muscle fiber adaptations to loading in numerous ways. The fusion of satellite cells, driven by cell-autonomous and/or extrinsic factors, contributes new myonuclei to muscle fibers, associates with load-induced hypertrophy, and may support focal membrane damage repair and long-term myonuclear transcriptional output. Recent studies have also revealed that satellite cells communicate within their niche to mediate muscle remodeling in response to resistance exercise, regulating the activity of numerous cell types through various mechanisms such as secretory signaling and cell-cell contact. Muscular adaptation to resistance and endurance activity can be initiated and sustained for a period of time in the absence of satellite cells, but satellite cell participation is ultimately required to achieve full adaptive potential, be it growth, function, or proprioceptive coordination. While significant progress has been made in understanding the roles of satellite cells in adult muscle over the last few decades, many conclusions have been extrapolated from regeneration studies. This review highlights our current understanding of satellite cell behavior and contributions to adaptation outside of regeneration in adult muscle, as well as the roles of satellite cells beyond fusion and myonuclear accretion, which are gaining broader recognition.
Collapse
Affiliation(s)
- Kevin A Murach
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA.,Molecular Muscle Mass Regulation Laboratory, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, Arkansas, USA.,Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
| | - Christopher S Fry
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA.,Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Esther E Dupont-Versteegden
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA.,Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - John J McCarthy
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA.,Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Charlotte A Peterson
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA.,Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky, USA.,Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
47
|
Eftestøl E, Franchi MV, Kasper S, Flück M. JNK activation in TA and EDL muscle is load-dependent in rats receiving identical excitation patterns. Sci Rep 2021; 11:16405. [PMID: 34385505 PMCID: PMC8361015 DOI: 10.1038/s41598-021-94930-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/12/2021] [Indexed: 11/09/2022] Open
Abstract
As the excitation-contraction coupling is inseparable during voluntary exercise, the relative contribution of the mechanical and neural input on hypertrophy-related molecular signalling is still poorly understood. Herein, we use a rat in-vivo strength exercise model with an electrically-induced standardized excitation pattern, previously shown to induce a load-dependent increase in myonuclear number and hypertrophy, to study acute effects of load on molecular signalling. We assessed protein abundance and specific phosphorylation of the four protein kinases FAK, mTOR, p70S6K and JNK after 2, 10 and 28 min of a low- or high-load contraction, in order to assess the effects of load, exercise duration and muscle-type on their response to exercise. Specific phosphorylation of mTOR, p70S6K and JNK was increased after 28 min of exercise under the low- and high-load protocol. Elevated phosphorylation of mTOR and JNK was detectable already after 2 and 10 min of exercise, respectively, but greatest after 28 min of exercise, and JNK phosphorylation was highly load-dependent. The abundance of all four kinases was higher in TA compared to EDL muscle, p70S6K abundance was increased after exercise in a load-independent manner, and FAK and JNK abundance was reduced after 28 min of exercise in both the exercised and control muscles. In conclusion, the current study shows that JNK activation after a single resistance exercise is load-specific, resembling the previously reported degree of myonuclear accrual and muscle hypertrophy with repetition of the exercise stimulus.
Collapse
Affiliation(s)
- Einar Eftestøl
- Department of Biosciences, University of Oslo, Kristine Bonnevies hus, Blindernveien 31, 0371, Oslo, Norway.
| | - Martino V Franchi
- Laboratory for Muscle Plasticity, Department of Orthopaedics, University of Zürich, Zurich, Switzerland.,Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Stephanie Kasper
- Laboratory for Muscle Plasticity, Department of Orthopaedics, University of Zürich, Zurich, Switzerland
| | - Martin Flück
- Laboratory for Muscle Plasticity, Department of Orthopaedics, University of Zürich, Zurich, Switzerland
| |
Collapse
|
48
|
Young KG, Regnault TRH, Guglielmo CG. Extraordinarily rapid proliferation of cultured muscle satellite cells from migratory birds. Biol Lett 2021; 17:20210200. [PMID: 34403643 PMCID: PMC8370802 DOI: 10.1098/rsbl.2021.0200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/26/2021] [Indexed: 12/29/2022] Open
Abstract
Migratory birds experience bouts of muscle growth and depletion as they prepare for, and undertake prolonged flight. Our studies of migratory bird muscle physiology in vitro led to the discovery that sanderling (Calidris alba) muscle satellite cells proliferate more rapidly than other normal cell lines. Here we determined the proliferation rate of muscle satellite cells isolated from five migratory species (sanderling; ruff, Calidris pugnax; western sandpiper, Calidris mauri; yellow-rumped warbler, Setophaga coronata; Swainson's thrush, Catharus ustulatus) from two families (shorebirds and songbirds) and with different migratory strategies. Ruff and sanderling satellite cells exhibited rapid proliferation, with population doubling times of 9.3 ± 1.3 and 11.4 ± 2 h, whereas the remaining species' cell doubling times were greater than or equal to 24 h. The results indicate that the rapid proliferation of satellite cells is not associated with total migration distance but may be related to flight bout duration and interact with lifespan.
Collapse
Affiliation(s)
- Kevin G. Young
- Department of Biology, Advanced Facility for Avian Research, Western University, London, Ontario, Canada
| | - Timothy R. H. Regnault
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Children's Health Research Institute and Lawson Health Research Institute, London, Ontario, Canada
| | - Christopher G. Guglielmo
- Department of Biology, Advanced Facility for Avian Research, Western University, London, Ontario, Canada
| |
Collapse
|
49
|
Fukada SI, Nakamura A. Exercise/Resistance Training and Muscle Stem Cells. Endocrinol Metab (Seoul) 2021; 36:737-744. [PMID: 34372625 PMCID: PMC8419599 DOI: 10.3803/enm.2021.401] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/29/2021] [Indexed: 01/10/2023] Open
Abstract
Skeletal muscle has attracted attention as endocrine organ, because exercise-dependent cytokines called myokines/exerkines are released from skeletal muscle and are involved in systemic functions. While, local mechanical loading to skeletal muscle by exercise or resistance training alters myofiber type and size and myonuclear number. Skeletal muscle-resident stem cells, known as muscle satellite cells (MuSCs), are responsible for the increased number of myonuclei. Under steady conditions, MuSCs are maintained in a mitotically quiescent state but exit from that state and start to proliferate in response to high physical activity. Alterations in MuSC behavior occur when myofibers are damaged, but the lethal damage to myofibers does not seem to evoke mechanical loading-dependent MuSC activation and proliferation. Given that MuSCs proliferate without damage, it is unclear how the different behaviors of MuSCs are controlled by different physical activities. Recent studies demonstrated that myonuclear number reflects the size of myofibers; hence, it is crucial to know the properties of MuSCs and the mechanism of myonuclear accretion by MuSCs. In addition, the elucidation of mechanical load-dependent changes in muscle resident cells, including MuSCs, will be necessary for the discovery of new myokines/exerkines and understating skeletal muscle diseases.
Collapse
Affiliation(s)
- So-Ichiro Fukada
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Ayasa Nakamura
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| |
Collapse
|
50
|
Morgan J, Muntoni F. Changes in Myonuclear Number During Postnatal Growth -Implications for AAV Gene Therapy for Muscular Dystrophy. J Neuromuscul Dis 2021; 8:S317-S324. [PMID: 34334413 PMCID: PMC8673494 DOI: 10.3233/jnd-210683] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adult skeletal muscle is a relatively stable tissue, as the multinucleated muscle fibres contain post-mitotic myonuclei. During early postnatal life, muscle growth occurs by the addition of skeletal muscle stem cells (satellite cells) or their progeny to growing muscle fibres. In Duchenne muscular dystrophy, which we shall use as an example of muscular dystrophies, the muscle fibres lack dystrophin and undergo necrosis. Satellite-cell mediated regeneration occurs, to repair and replace the necrotic muscle fibres, but as the regenerated muscle fibres still lack dystrophin, they undergo further cycles of degeneration and regeneration.AAV gene therapy is a promising approach for treating Duchenne muscular dystrophy. But for a single dose of, for example, AAV coding for dystrophin, to be effective, the treated myonuclei must persist, produce sufficient dystrophin and a sufficient number of nuclei must be targeted. This latter point is crucial as AAV vector remains episomal and does not replicate in dividing cells. Here, we describe and compare the growth of skeletal muscle in rodents and in humans and discuss the evidence that myofibre necrosis and regeneration leads to the loss of viral genomes within skeletal muscle. In addition, muscle growth is expected to lead to the dilution of the transduced nuclei especially in case of very early intervention, but it is not clear if growth could result in insufficient dystrophin to prevent muscle fibre breakdown. This should be the focus of future studies.
Collapse
Affiliation(s)
- Jennifer Morgan
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK.,National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, UK
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK.,National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, UK
| |
Collapse
|