1
|
Chen XL, Cheng ZY, Zheng ZY, Yu SQ, Liu BQ, Zhao CY, Liang JQ, Zheng C, Huang X, Gong HY. Double [8]Helicene Featuring a Dibenzo[ g, p]chrysene Core: Synthesis and Chiroptical Response. Org Lett 2025; 27:4940-4945. [PMID: 40314254 DOI: 10.1021/acs.orglett.5c01261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Double [8]helicene 1, featuring a dibenzo[g,p]chrysene core, was synthesized via the Scholl reaction, and its structure was unambiguously confirmed by single-crystal X-ray diffraction analysis of its dicationic salt [1-Cl]2+·(SbCl6-)2. The compound exhibits red fluorescence with an emission maximum at 618 nm (λem) and a quantum yield of 16.2%, highlighting its potential in optoelectronic applications. Furthermore, circular dichroism (CD) and circularly polarized luminescence (CPL) measurements reveal notable chiroptical activity, with absorption and emission dissymmetry factors of |gabs| = 5.11 × 10-3 and |glum| = 7.1 × 10-4, respectively.
Collapse
Affiliation(s)
- Xu-Lang Chen
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, People's Republic of China
| | - Zhao-Yi Cheng
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, People's Republic of China
| | - Zi-You Zheng
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, People's Republic of China
| | - Si-Qian Yu
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, People's Republic of China
| | - Bai-Qiang Liu
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, People's Republic of China
| | - Cai-Yue Zhao
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, People's Republic of China
| | - Jia-Qi Liang
- College of Chemistry, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing 100875, People's Republic of China
| | - Chunyang Zheng
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, People's Republic of China
| | - Xiaohuan Huang
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, People's Republic of China
| | - Han-Yuan Gong
- College of Chemistry, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing 100875, People's Republic of China
| |
Collapse
|
2
|
Liu S, Díaz-Fernández M, Zhang M, Huang F, Chen Y, Yang Y, Marín-Beloqui JM, Lan J, You J, Casado J, Zhang C. Azuperylene: The Nonalternant Isomer of Perylene. Angew Chem Int Ed Engl 2025:e202505897. [PMID: 40357573 DOI: 10.1002/anie.202505897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 05/12/2025] [Accepted: 05/12/2025] [Indexed: 05/15/2025]
Abstract
The isoelectronic isomer of perylene, hereafter called as azuperylene, has been prepared. Electronic structure analysis reveals that the new isomer can be described as a union of two antiparallel azulenes in which the azulene-type aromatic character of the starting azulene is partially retained. Four 2,8-dialkoxy (i.e., ethoxy, n-butoxy, n-hexyloxy, and n-octyloxy) functionalized derivatives of the new isomer core have been prepared. The solid-state structures of the new compounds have been resolved showing exceptional herringbone π-π stacking ideal for charge transport. Organic field-effect transistors on sublimated substrates display an excellent hole transport mobility up to 1.03 cm2 V-1 s-1 that largely surpasses that of perylene and reveals the great potential for charge transport of this new class of nonbenzenoid compounds.
Collapse
Affiliation(s)
- Shengpei Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P.R. China
| | - Marcos Díaz-Fernández
- Department of Physical Chemistry, University of Malaga, Campus de Teatinos s/n, Málaga, 29071, Spain
| | - Menglin Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P.R. China
| | - Fei Huang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P.R. China
| | - Yong Chen
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P.R. China
| | - Yudong Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P.R. China
| | - José Manuel Marín-Beloqui
- Department of Physical Chemistry, University of Malaga, Campus de Teatinos s/n, Málaga, 29071, Spain
| | - Jingbo Lan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P.R. China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P.R. China
| | - Juan Casado
- Department of Physical Chemistry, University of Malaga, Campus de Teatinos s/n, Málaga, 29071, Spain
| | - Cheng Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P.R. China
| |
Collapse
|
3
|
Chen XL, Yu SQ, Cheng ZY, Zheng ZY, Chen AN, Bai J, Liang JQ, Zheng C, Huang X, Gong HY. Synthesis and Chiroptical Properties of a Saddle-Shaped Quadruple Helicene with a Cyclooctatetrapyrrole Core. Org Lett 2025; 27:3511-3516. [PMID: 40152778 DOI: 10.1021/acs.orglett.5c00294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
A quadruple helicene with a cyclooctatetrapyrrole core was synthesized via a simple Ullmann reaction. Its single-crystal structure exhibits a saddle shape. The compound shows fluorescence emission with λem = 575 nm and good chiroptical properties, including a dissymmetric absorption factor (|gabs|) of 5.84 × 10-3 and a dissymmetric emission factor (|glum|) of 1.21 × 10-2.
Collapse
Affiliation(s)
- Xu-Lang Chen
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| | - Si-Qian Yu
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| | - Zhao-Yi Cheng
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| | - Zi-You Zheng
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| | - An-Na Chen
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| | - Jinku Bai
- College of Chemistry, Beijing Normal University, No. 19, Xin Jie Kou Wai St, Hai Dian District, Beijing 100875, P. R. China
| | - Jia-Qi Liang
- College of Chemistry, Beijing Normal University, No. 19, Xin Jie Kou Wai St, Hai Dian District, Beijing 100875, P. R. China
| | - Chunyang Zheng
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| | - Xiaohuan Huang
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| | - Han-Yuan Gong
- College of Chemistry, Beijing Normal University, No. 19, Xin Jie Kou Wai St, Hai Dian District, Beijing 100875, P. R. China
| |
Collapse
|
4
|
Wang D, Wang S, Dong Y, Wu X, Shen J, Feng S, Wang Z, Huang W. An Opto-Iontronic Cholesteric Liquid Crystalline Retina for Multimodal Circularly Polarized Neuromorphic Vision. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419747. [PMID: 40025907 DOI: 10.1002/adma.202419747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/31/2025] [Indexed: 03/04/2025]
Abstract
Circularly polarized light (CPL) is fundamental to phase-controlled imaging, quantum optics, and optical computing. Conventional CPL detection, relying on polarizers and quarter-wave plates, complicates device design and reduces sensitivity. Among emerging CPL detectors, organic field-effect transistors (OFET) with helical organic semiconductors are highly promising due to their compact structures but suffer tedious synthesis, low dissymmetric factors (gph < 0.1), and high operating voltages (> 50 V). To address these issues, an opto-iontronic cholesteric liquid crystalline (i-CLC) film is developed that is both electrically and photonically active, serving as the dielectric in phototransistors. The well-defined cholesteric structure and broadly tunable pitches of the i-CLC film enable it to detect CPL with an excellent "handedness" selectivity across a broad spectrum. Moreover, its ionic nature provides a high capacitance (up to 580 nF cm- 2 @20 Hz). The resulting flexible CPL detectors achieve an unprecedentedly high dissymmetry factor (gph = 1.33) at low operating voltages (< 5 V), showcasing significant potential in optical communication and data encryption. Furthermore, leveraging high gph, they can perform in-sensor computing for highly accurate semantic segmentation using fused multimodal visual inputs (e.g., circularly polarized and ordinary light), achieving an accuracy of 75.73% and a mean intersection over the union of 0.3982, surpassing the performance of non-CPL photodetectors. Additionally, it optimizes power consumption by a factor of 102 compared to most conventional visual processing systems, offering a groundbreaking hardware solution for high-performance neuromorphic CPL vision.
Collapse
Affiliation(s)
- Donghui Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Shaocong Wang
- Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong SAR, 25809, P. R. China
| | - Yu Dong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Xiaosong Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Jinghui Shen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Shiyu Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Zhongrui Wang
- Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong SAR, 25809, P. R. China
| | - Weiguo Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
5
|
Tsujimura S, Akiyoshi R, Saeki A, Yoshinari N, Eguchi D, Tamai N, Yamada H, Shimono S, Nakamura Y, Ogasawara K, Tanaka D. Chirality and Polarity Modulation in Semiconductive Zinc(II) Coordination Polymers Containing Thiolate-Based Ligands. Inorg Chem 2025; 64:5755-5763. [PMID: 40062906 DOI: 10.1021/acs.inorgchem.5c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Recently, chiral semiconductors have attracted considerable attention owing to their potential applicability in optoelectronics and spintronics. In this study, homochiral and heterochiral semiconductive Zn(II) coordination polymers [Zn(tbbt)((X)-mba)2]·solvent (H2tbbt = 4,4'-thiobisbenzenethiol, mba = methylbenzylamine, X = R, S, rac) were systematically synthesized. Single-crystal X-ray diffraction analyses revealed that KGF-57(R) and KGF-57(S) (KGF = Kwansei Gakuin framework), of type [Zn(tbbt)((X)-mba)2]·(X)-mba, obtained from enantiopure (R)-mba and (S)-mba isomers, exhibited chiral-nonpolar homochiral one-dimensional (1D) structures with mba lattice solvents, comprising left- and right-handed helical chains, respectively. Conversely, when using (rac)-mba, two heterochiral 1D architectures were obtained depending on synthetic temperature and solvent. Specifically, KGF-57(rac) of type [Zn(tbbt)((rac)-mba)2]·(rac)-mba·nH2O exhibited an achiral-nonpolar heterochiral 1D structure with (rac)-mba and H2O lattice solvents, containing alternately aligned left-handed helical chains with (R)-mba and right-handed helical chains with (S)-mba. Conversely, KGF-58(rac) with the formula [Zn(tbbt)((rac)-mba)2] formed an achiral-polar assembly without mba lattice solvents. This structure is composed of zigzag chains with either (R)-mba or (S)-mba in a heterochiral arrangement. Time-resolved microwave conductivity measurements and first-principles calculations revealed that a series of Zn(II) coordination polymers exhibited photoconductivity originating from the Zn-thiolate-based skeleton. Furthermore, by exchanging the mba ligands coordinated to 1D Zn-thiolate chains, a reversible structural conversion accompanied by chirality and polarity variation was achieved.
Collapse
Affiliation(s)
- Shion Tsujimura
- School of Science, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan
| | - Ryohei Akiyoshi
- School of Science, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan
| | - Akinori Saeki
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nobuto Yoshinari
- Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Daichi Eguchi
- School of Science, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan
| | - Naoto Tamai
- School of Science, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan
| | - Hiroki Yamada
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Seiya Shimono
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Yuiga Nakamura
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Kazuyoshi Ogasawara
- School of Science, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan
| | - Daisuke Tanaka
- School of Science, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan
| |
Collapse
|
6
|
Jiang H, Zhang Y, An L, Tan Q, Dai X, Chen Y, Chen W, Cai H, Fu J, Zúñiga-Pérez J, Li Z, Teng J, Chen Y, Qiu CW, Gao W. Chiral light detection with centrosymmetric-metamaterial-assisted valleytronics. NATURE MATERIALS 2025:10.1038/s41563-025-02155-4. [PMID: 40108418 DOI: 10.1038/s41563-025-02155-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 01/27/2025] [Indexed: 03/22/2025]
Abstract
The full-range, high-sensitivity and integratable detection of circularly polarized light (CPL) is critically important for quantum information processing, advanced imaging systems and optical sensing technologies. However, mainstream CPL detectors rely on chiral absorptive materials, and thus suffer from limited response wavelengths, low responsivity and poor discrimination ratios. Here we present a chiral light detector by utilizing valley materials to observe the spin angular momentum carried by chiral light. Delicately designed centrosymmetric metamaterials that can preserve the sign of optical spin angular momentum and greatly enhance its intensity in the near field are harnessed as a medium to inject polarized electrons into valley materials, which are then detected by the valley Hall effect. This enables high-sensitivity infrared CPL detection at room temperature by valleytronic transistors, and the detection wavelength is extended to the infrared. This approach opens pathways for chiral light detection and provides insights into potential applications of valleytronics in optoelectronic sensing.
Collapse
Affiliation(s)
- Hao Jiang
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Yan Zhang
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Liheng An
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Qinghai Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Anhui Province Key Laboratory of Integrated Circuit Science and Technology, University of Science and Technology of China, Hefei, People's Republic of China
| | - Xuran Dai
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yinzhu Chen
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Weijin Chen
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Hongbing Cai
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jintao Fu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, People's Republic of China
| | - Jesús Zúñiga-Pérez
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
- MajuLab, International Research Laboratory IRL 3654, CNRS, Université Côte d'Azur, Sorbonne Université, National University of Singapore, Nanyang Technological University, Singapore, Singapore
| | - Zhiwei Li
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jinghua Teng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yang Chen
- Chinese Academy of Sciences Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, People's Republic of China.
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.
| | - Weibo Gao
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.
- School of Electrical and Electronic engineering, Nanyang Technological University, Singapore, Singapore.
- Center for Quantum Technologies, Nanyang Technological University, Singapore, Singapore.
- National Centre for Advanced Integrated Photonics (NCAIP) Singapore, Nanyang Technological University, Singapore, Singapore.
- Quantum Science and Engineering Centre (QSec), Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
7
|
Gao K, Lee SH, Zhao W, Ahn J, Kim TW, Li Z, Zhuo H, Wang Z, Zheng X, Yan Y, Chang G, Ma W, Zhang M, Long G, Oh JH, Shang X. Reversal of chirality in solutions and aggregates of chiral tetrachlorinated diperylene diimides towards efficient circularly polarized light detection. MATERIALS HORIZONS 2025; 12:1903-1912. [PMID: 39688194 DOI: 10.1039/d4mh01435a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Helicenes exhibit promise as active layer materials for circularly polarized light (CPL) detectors due to their strong chiroptical activity. However, their practical application is limited by the complicated synthesis and loosely solid-state packing. This study introduces a chiral induction strategy towards the synthesis of helicene derivatives, chiral tetrachlorinated diperylene diimides ((SSSS)-4CldiPDI or (RRRR)-4CldiPDI). When incorporating the chiral (S/R)-1-cyclohexylethyl (Cy) substituents, the chirality is directly transferred to the π-aromatic core and forms the PP- or MM-helicene subunit. Notably, (SSSS)-Cy induces preferred PP helicity while (RRRR)-Cy leads to the MM helicity in the monomers. However, these molecules exhibit reversed chirality in crystals, where (SSSS)-Cy controls MM helicity and (RRRR)-Cy induces PP helicity. Theoretical calculations reveal that the (SSSS)-PP structure demonstrates lower energy distribution in monomers, whereas the (SSSS)-MM structure exhibits lower energy in crystals. Then, the CPL detection based on n-type PDI-helicene derivatives is achieved by using (SSSS)-4CldiPDI or (RRRR)-4CldiPDI crystals. The maximum photocurrent dissymmetry factor gph of +0.16 for (RRRR)-4CldiPDI and -0.15 for (SSSS)-4CldiPDI is obtained. Our work demonstrates a novel chiral induction strategy for designing helicene-based materials with both high dissymmetry factor and large charge carrier mobility, which offers great potential for the advancement of CPL detection.
Collapse
Affiliation(s)
- Ke Gao
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Sang Hyuk Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Wenkai Zhao
- Tianjin Key Lab for Rare Earth Materials and Applications, Smart Sensing Interdisciplinary Science Center, Renewable Energy Conversion and Storage Center (RECAST), School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China.
| | - Jaeyong Ahn
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Tae Woo Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Zhenping Li
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Huagui Zhuo
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Zhiwei Wang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Xinglong Zheng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Yang Yan
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Gang Chang
- Instrumental Analysis Center of Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Guankui Long
- Tianjin Key Lab for Rare Earth Materials and Applications, Smart Sensing Interdisciplinary Science Center, Renewable Energy Conversion and Storage Center (RECAST), School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China.
| | - Joon Hak Oh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Xiaobo Shang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| |
Collapse
|
8
|
Kumar Behera P, Yadav K, Roy M, Shankar Rao DS, Kumar Pandey U, Sudhakar Achalkumar A. Solution Processable Se-annulated Swallow Tail Perylene Bisimide Exhibiting Room Temperature Columnar Phase and Efficient Ambipolar Charge Carrier Mobility. Chemistry 2025; 31:e202402557. [PMID: 39670313 DOI: 10.1002/chem.202402557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/14/2024]
Abstract
This study presents a selenium-annulated perylene bisimide (PBI-SeST) stabilizing room temperature columnar hexagonal phase with exceptionally low clearing temperature. The synthesis of this Se-annulated PBI (PBI-SeST) was accomplished using the reductive Cadogan cyclization method, with the introduction of swallow tails to reduce the clearing temperature and improve solubility. In addition, the charge carrier mobility of the Se-bay annulated PBI is assessed by space charge limited current (SCLC) technique and juxtaposed with PBI as well as nitrogen and sulphur-bay-annulated PBIs. It is noteworthy that all these PBIs exhibited ambipolar charge carrier mobility, a characteristic that diverges from the prevailing literature where predominantly electron transport behavior was observed for PBIs. This distinguishes them as an exclusive category of solution-processable, self-assembling organic semiconductors.
Collapse
Affiliation(s)
- Paresh Kumar Behera
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Kajal Yadav
- Department of Electrical Engineering, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, 201314, India
| | - Mrinmoy Roy
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - D S Shankar Rao
- Centre for Nano and Soft Matter Sciences, Arkavathi Campus, Survey No.7, Shivanapura, Dasanapura Hobli, Bengaluru, 562162, India
| | - Upendra Kumar Pandey
- Department of Electrical Engineering, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, 201314, India
| | - Ammathnadu Sudhakar Achalkumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
- Centre for Sustainable Polymers, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| |
Collapse
|
9
|
Albano G, Bertuolo M, Zinna F, Taddeucci A, Jávorfi T, Hussain R, Farinola GM, Pescitelli G, Punzi A, Siligardi G, Di Bari L. Unravelling the origin of strong non-reciprocal chiroptical features in thin films of a chiral diketopyrrolo[3,4- c]pyrrole dye. NANOSCALE 2025; 17:5128-5140. [PMID: 39873441 DOI: 10.1039/d4nr04956j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
The development of chiral organic materials with strong non-reciprocal chiroptical features may have major implications for cutting-edge technological applications. In this work, a new ad hoc synthesized chiral 1,4-diketo-3,6-dithienylpyrrolo[3,4-c]pyrrole dye, bearing two (S)-3,7-dimethyl-1-octyl alkyl chains on the lactam moieties and functionalized with two lateral 9-anthracenyl π-conjugated units, exhibited strong non-reciprocal chiroptical properties in thin films, with some important differences between samples prepared by drop casting and spin coating. A detailed study was performed to unravel the intimate structure-property relationship, involving computational analysis, different microscopy techniques and synchrotron radiation Mueller matrix polarimetry imaging (SR-MMPi) investigation. Through SR-MMPi, exploiting the highly collimated synchrotron radiation (SR) light of Diamond Light Source B23 beamline, we determined the size of the linear contributions responsible for the strong non-reciprocal features, and how they manifest in the various 2D chiral meso-domains.
Collapse
Affiliation(s)
- Gianluigi Albano
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy.
| | - Marco Bertuolo
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy.
| | - Francesco Zinna
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy.
| | - Andrea Taddeucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy.
- Diamond Light Source, Ltd, Chilton, Didcot OX11 0DE, UK
| | - Tamás Jávorfi
- Diamond Light Source, Ltd, Chilton, Didcot OX11 0DE, UK
| | | | - Gianluca M Farinola
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", via Edoardo Orabona 4, 70126 Bari, Italy
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy.
| | - Angela Punzi
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", via Edoardo Orabona 4, 70126 Bari, Italy
| | | | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy.
| |
Collapse
|
10
|
Sun Z, Tang H, Wang L, Cao D. Advances in Chiral Macrocycles: Molecular Design and Applications. Chemistry 2025; 31:e202404217. [PMID: 39673369 DOI: 10.1002/chem.202404217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/16/2024]
Abstract
Chiral macrocycles have recently emerged as promising materials for enantioselective recognition, asymmetric catalysis, and circularly polarized luminescence (CPL) due to their terminal-free structure, preorganized chiral cavities, and unique host-guest and self-assembly properties. This review summarizes recent advances in the design and synthesis of chiral macrocycles with central, axial, helical, and planar chirality, each imparting distinct structural and chiroptical characteristics. We highlight key strategies for constructing these macrocycles and their applications in optoelectronic and catalytic systems. Emphasis is placed on the balance between rigidity and flexibility in macrocycle design, essential for effective molecular recognition, adaptable catalysis, and CPL. We conclude with perspectives on future opportunities, anticipating ongoing developments in chiral macrocycle research.
Collapse
Affiliation(s)
- Zhihong Sun
- State Key Laboratory of Luminescent Materials and Devices, Department of Chemistry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Hao Tang
- State Key Laboratory of Luminescent Materials and Devices, Department of Chemistry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Lingyun Wang
- State Key Laboratory of Luminescent Materials and Devices, Department of Chemistry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Derong Cao
- State Key Laboratory of Luminescent Materials and Devices, Department of Chemistry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
11
|
Wang R, Qian B, Xu Y, Zhao D, Chen Q, Wei Y, Zhang C, Liang W, Jiang YB, Zhang HJ, Lin J. Self-Assembled Bent Perylenediimides. Angew Chem Int Ed Engl 2025; 64:e202421871. [PMID: 39578966 DOI: 10.1002/anie.202421871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 11/24/2024]
Abstract
The properties of π-functional materials are predominantly influenced by both their molecular structures and interactions between π-systems. Recent advancements have focused on modifying the geometry or topology of π-molecules from planar to nonplanar conformations to tailor molecular properties. However, the interactions among nonplanar π-molecules remain largely unexplored, likely due to the significant reduction in contact surfaces arising from their curved structures. Herein, we investigated the electro-optical properties and π-stacking behaviors of a series of bent perylenediimides (B-PDIs) with gradual changes in bending angles, achieved by altering the lengths of linear alkyl chains connecting the two nitrogen positions of each PDI. Curvature-dependent self-assembly of these bent PDIs is observed, which is primarily driven by dipole-dipole interactions rather than dispersion forces. More importantly, fine-tuning intermolecular coupling through bending enables excited-state symmetry-breaking charge separation in [n]B-PDIs (n = 16, 12) in the crystalline solid state.
Collapse
Affiliation(s)
- Rui Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P. R. China
| | - Baiyang Qian
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P. R. China
| | - Yuchuan Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Di Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P. R. China
| | - Qiqi Chen
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P. R. China
| | - Yifei Wei
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P. R. China
| | - Cankun Zhang
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, P. R. China
| | - WanZhen Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yun-Bao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P. R. China
| | - Hui-Jun Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P. R. China
| | - Jianbin Lin
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
12
|
Zou X, Gan N, Gao Y, Gu L, Huang W. Organic Circularly Polarized Room-Temperature Phosphorescence: Strategies, Applications and Challenges. Angew Chem Int Ed Engl 2025; 64:e202417906. [PMID: 39548951 DOI: 10.1002/anie.202417906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Indexed: 11/18/2024]
Abstract
Organic circularly polarized luminescence (CPL) plays crucial roles in chemistry and biology for the potential in chiral recognition, asymmetric catalysis, 3D displays, and biological probes. The long-lived luminescence, large Stokes shift, and unique chiroptical properties make organic circularly polarized room-temperature phosphorescence (CPP) a new research hotspot in recent years. Nevertheless, achieving high-performance organic CPP is still challenging due to the sensitivity and complexity of integrating triplet excitons and polarization within organic materials. This review summarizes the latest advances in organic CPP, ranging from design strategies and photophysical properties to underlying luminescence mechanisms and potential applications. Specifically, the design strategies for generating CPP are systemically categorized and discussed according to the interactions between chiral units and chromophores. The applications of organic CPP in organic light-emitting diodes, sensing, chiral recognition, afterglow displays, and information encryption are also illustrated. In addition, we present the current challenges and perspectives on developing organic CPP. We expect this review to provide some instructive design principles to fabricate high-performance organic CPP materials, offering an in-depth understanding of the luminescence mechanism and paving the way toward diverse practical applications.
Collapse
Affiliation(s)
- Xin Zou
- Frontiers Science Center for Flexible Electronics (FSCFE), Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Nan Gan
- Frontiers Science Center for Flexible Electronics (FSCFE), Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yaru Gao
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore, 117543
| | - Long Gu
- Frontiers Science Center for Flexible Electronics (FSCFE), Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
13
|
Bertuolo M, Zinna F, Aronica LA, Pescitelli G, Di Bari L, Albano G. Strong Non-Reciprocal Chiroptical Properties in Thin Films of Chiral Alkylthio-Decorated 1,4-Phenylene/Thiophene Dyes. Chem Asian J 2025; 20:e202401160. [PMID: 39436970 DOI: 10.1002/asia.202401160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024]
Abstract
In the context of chiral π-conjugated materials, the use of enantiopure alkylthio appendages represents a valid alternative to conventional alkoxy groups: sulphur atom is bigger and more electron-rich than oxygen, thus allowing for higher polarizability, greater flexibility, larger bulkiness and lower structural anisotropy. In light of these considerations, here we report two new chiral alkylthio-decorated 1,4-phenylene/thiophene dyes, obtained by simple synthetic strategies involving Pd-catalyzed cross-coupling protocols, looking for strong non-reciprocal chiroptical features in thin films. In particular, for the chiral alkylthio-decorated 1,4-phenylene-bis(thiophenylpropynone) (Thio-PTPO) dye, which proved to be the most promising for our purpose, a detailed investigation in thin films was carried out, involving optical and chiroptical spectroscopies in absorption and emission, as well as optical microscopy techniques.
Collapse
Affiliation(s)
- Marco Bertuolo
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Francesco Zinna
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Laura Antonella Aronica
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Gianluigi Albano
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| |
Collapse
|
14
|
Pramatha SR, Srideep D, Pattnaik U, Sahu R, Suresh DI, Yadav AC, Muduli C, Reddy SK, Senanayak SP, Venkata Rao K. Secondary nucleation guided noncovalent synthesis of dendritic homochiral superstructures via growth on and from surface. Nat Commun 2024; 15:10808. [PMID: 39737948 DOI: 10.1038/s41467-024-55107-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
Secondary nucleation is an emerging approach for synthesizing higher-order supramolecular polymers with exciting topologies. However, a detailed understanding of growth processes and the synthesis of homochiral superstructures is yet to be demonstrated. Here, we report the non-covalent synthesis of dendritic homochiral superstructures using NIR triimide dyes as building blocks via a secondary nucleation elongation process. Detailed analysis of kinetics and temporal evolution of morphology indicates that the formation of dendritic homochiral superstructures proceeds via growth on the surface and growth from the surface of the seeds. The combination of these two processes leads to the formation of elegant homochiral superstructures with a size of ~0.4 mm2, having a superhelix at the center and helical fibres as branches. Moreover, these dendritic homochiral superstructures exhibit significantly high chiro-optical photoresponse with the magnitude of gfactor reaching a value as high as 0.55 - 0.6. Thus, our results provide insights into the growth process of homochiral superstructures with dendritic topology, which can be critically important for the design and optimization of chiral-selective optoelectronic devices leveraging controlled self-assembly.
Collapse
Affiliation(s)
- Sai Rachana Pramatha
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India
| | - Dasari Srideep
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India
| | - Udaijit Pattnaik
- Nanoelectronics and Device Physics Lab, School of Physical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, OCC of HBNI, Jatni, Khurdha, Odisha, India
| | - Rahul Sahu
- Centre for Computational and Data Science, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Devamrutha Ilayidathu Suresh
- Nanoelectronics and Device Physics Lab, School of Physical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, OCC of HBNI, Jatni, Khurdha, Odisha, India
| | - Aditya Chandrakant Yadav
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India
| | - Chinmayee Muduli
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, India
| | - Sandeep K Reddy
- Centre for Computational and Data Science, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Satyaprasad P Senanayak
- Nanoelectronics and Device Physics Lab, School of Physical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, OCC of HBNI, Jatni, Khurdha, Odisha, India.
| | - Kotagiri Venkata Rao
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India.
| |
Collapse
|
15
|
Izquierdo-García P, Fernández-García JM, Perles J, Martín N. Enantiomerically Pure Helical Bilayer Nanographenes: A Straightforward Chemical Approach. J Am Chem Soc 2024; 146:34943-34949. [PMID: 39642941 DOI: 10.1021/jacs.4c14544] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
The semiconductor properties of nanosized graphene fragments, known as molecular nanographenes, position them as exceptional candidates for next-generation optoelectronics. In addition to their remarkable optical and electronic features, chiral nanographenes exhibit high dissymmetry factors in circular dichroism and circularly polarized luminescence measurements. However, the synthesis of enantiomerically pure nanographenes remains a significant challenge. Typically, these materials are synthesized in their racemic form, followed by separation of the enantiomers using high-performance liquid chromatography (HPLC). While effective, this method often requires expensive instrumentation, extensive optimization of separation conditions, and typically yields analytical quantities of the desired samples. An alternative approach is the enantioselective synthesis of chiral molecular nanographenes; however, to date, only two examples have been documented in the literature. In this work, we present a straightforward chemical method for the chiral resolution of helical bilayer nanographenes. This approach enables the effective and scalable preparation of enantiomerically pure nanographenes while avoiding the need for HPLC. The incorporation of a BINOL core into the polyarene precursor facilitates the separation of diastereomers through esterification with enantiomerically pure camphorsulfonyl chloride. Following the separation of the diastereomers by standard chromatographic column, the hydrolysis of the camphorsulfonyl group yields enantiomerically pure nanographene precursors. The subsequent graphitization, achieved through the Scholl reaction, occurs in an enantiospecific manner and with the concomitant formation of a furan ring and a heterohelicene moiety. The absolute configurations of the final enantiomers, P-oxa[9]HBNG and M-oxa[9]HBNG, have been determined using X-ray diffraction. Additionally, electrochemical, photophysical, and chiroptical properties have been thoroughly evaluated.
Collapse
Affiliation(s)
- Patricia Izquierdo-García
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jesús M Fernández-García
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Josefina Perles
- Laboratorio DRX Monocristal, SIdI, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Nazario Martín
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
- IMDEA-Nanociencia, C/Faraday, 9, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
16
|
Li L, Xu K, Qi T. D-π-A Type [7]Helicene-like Imide Derivatives with Tunable Photophysical Properties and Circularly Polarized Luminescence. Chemistry 2024; 30:e202403292. [PMID: 39367805 DOI: 10.1002/chem.202403292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/07/2024]
Abstract
Helicenes and their derivatives show great application prospects as circularly polarized luminescence (CPL) materials, but their fluorescence quantum yields (ΦFLs) need a breakthrough urgently. Herein, we reported a series of D-π-A type helical luminescent emitters by combining the [7]helicene-like imide acceptor with five different donors. The obtained five emitters display blue-to-orange luminescence and markedly enhanced ΦFL. Notably, TPA-NiBTI exhibits the maximum ΦFL in solution, while TPE-NiBTI achieves a maximum ΦFL in the solid state. Their two pairs of enantiomers, (P/M)-TPA-NiBTI and (P/M)-TPE-NiBTI, exhibit remarkable CPL activities, and their doped PS film both displayed doubled ΦFLs. Among them, [(P/M)-TPE-NiBTI]-doped PS film exhibits the maximum luminescence dissymmetry factor (|glum|) value of 9.0×10-4 and the maximum ΦFL of 22 %. This molecular design strategy presents a promising approach to improving the ΦFL of helicene derivatives, thereby facilitating their potential application into chiral optoelectronic devices.
Collapse
Affiliation(s)
- Linkuo Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Kunhan Xu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Ting Qi
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| |
Collapse
|
17
|
Yang WW, Ren ZH, Feng J, Lv ZB, Cheng X, Zhang J, Du D, Chi C, Shen JJ. A Deep-Red Emissive Sulfur-Doped Double [7]Helicene Photosensitizer: Synthesis, Structure and Chiral Optical Properties. Angew Chem Int Ed Engl 2024; 63:e202412681. [PMID: 39115363 DOI: 10.1002/anie.202412681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Indexed: 10/26/2024]
Abstract
Doping of polycyclic conjugated hydrocarbons (PCHs) with sulfur atoms is becoming more and more important as a means of creating unique functional materials. Recently, thiophene-containing multiple helicenes have garnered enormous attention due to their intriguing electronic and (chir)optical properties compared with carbohelicenes. However, the efficient synthesis of thiopyran-containing multiple helicenes and the underlying sulfur doping mechanisms are rather unexplored. Herein, the synthesis and structural analysis of a thiopyran-containing double [7]helicene 3 are reported. X-ray crystallographic analysis reveals 3 and its dication with C2-symmetric propeller-shape structures and compact interactions in the solid state. 3 exhibits deep-red to near-infrared (NIR) fluorescence emission. Tunable aromaticity of the central benzene ring and thiopyran rings is found by chemical oxidation, which is further confirmed by nucleus-independent chemical shift (NICS), anisotropy of the induced current density (ACID) and harmonic oscillator model of aromaticity (HOMA) analysis. Furthermore, the chiral and photosensitizing characters of 3 are investigated. The excellent deep-red to NIR fluorescence, circularly polarized luminescence (CPL) and photosensitizing activities suggest that 3 can be used as an outstanding photosensitizer in photodynamic therapy (PDT) and bioimaging, especially paving the way for future CPL-PDT and CPL-bio-probe applications.
Collapse
Affiliation(s)
- Wen-Wen Yang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China
| | - Zi-Heng Ren
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China
| | - Jiao Feng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China
| | - Zhi-Bang Lv
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China
| | - Xingwen Cheng
- School of the Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China
| | - Jianming Zhang
- School of the Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China
| | - Daolin Du
- Jingjiang College, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China
| | - Chunyan Chi
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Jun-Jian Shen
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China
| |
Collapse
|
18
|
Xiao Y, Shi A, Yang G, Yu Y, Nie Q, Qi S, Xiang C, Zhang T. Induced Circularly Polarized Luminescence From 0D Quantum Dots by 2D Chiral Nanosheets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404913. [PMID: 39235369 DOI: 10.1002/smll.202404913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/09/2024] [Indexed: 09/06/2024]
Abstract
Materials with circularly polarized luminescence (CPL) exhibit great application potential in biological scenes such as cell imaging, optical probes, etc. However, most developed materials are non-aqueous and toxic, which seriously restricts their compatibility with the life systems. Thus, it is necessary to explore a water-based CPL system with high biocompatibility so that to promote the biologic application process. Herein, a facile and efficient route to achieve the CPL properties of a functional aqueous solution is demonstrated by the combination of 0D quantum dots (QDs) and 2D chiral nanosheets. Benefited by the specific absorption ability of nanosheets for left/right-handed CPL, the QDs adsorbed onto the surface of nanosheets through hydrogen bond interactions showed apparent CPL features. In addition, this system has a good extensibility as the CPL property can be effectively regulated by changing the kind of emissive QDs. More importantly, this water-based nano-composite with facile fabrication process (one-step mixing) is suitable for the real applications, which is undoubtedly beneficial for the further progress of functional CPL materials.
Collapse
Affiliation(s)
- Yuqi Xiao
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315336, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Aiyan Shi
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315336, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Smart Materials for Architecture Research Lab, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, P. R. China
| | - Guojian Yang
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315336, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Smart Materials for Architecture Research Lab, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, P. R. China
| | - Yang Yu
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing, 314001, P. R. China
| | - Quan Nie
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315336, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Shuyan Qi
- Institute of Biomedical Engineering, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Chaoyu Xiang
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315336, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Ting Zhang
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315336, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| |
Collapse
|
19
|
Jin K, Xiao Z, Xie H, Shen X, Wang J, Chen X, Wang Z, Zhao Z, Yan K, Ding Y, Ding L. Tether-entangled conjugated helices. Chem Sci 2024; 15:d4sc04796f. [PMID: 39355229 PMCID: PMC11440437 DOI: 10.1039/d4sc04796f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
A new design concept, tether-entangled conjugated helices (TECHs), is introduced for helical polyaromatic molecules. TECHs consist of a linear polyaromatic ladder backbone and periodically entangling tethers with the same planar chirality. By limiting the length of tether, all tethers synchronously bend and twist the backbone with the same manner, and change it into a helical ribbon with a determinate helical chirality. The 3D helical features are customizable via modular synthesis by using two types of synthons, the planar chiral tethering unit (C 2 symmetry) and the docking unit (C 2h symmetry), and no post chiral resolution is needed. Moreover, TECHs possess persistent chiral properties due to the covalent locking of helical configuration by tethers. Concave-type and convex-type oligomeric TECHs are prepared as a proof-of-concept. Unconventional double-helix π-dimers are observed in the single crystals of concave-type TECHs. Theoretical studies indicate the smaller binding energies in double-helix π-dimers than conventional planar π-dimers. A concentration-depend emission is found for concave-type TECHs, probably due to the formation of double-helix π-dimers in the excited state. All TECHs show strong circularly polarized luminescence (CPL) with dissymmetric factors (|g lum|) generally over 10-3. Among them, the (P)-T4-tBu shows the highest |g lum| of 1.0 × 10-2 and a high CPL brightness of 316 M-1 cm-1.
Collapse
Affiliation(s)
- Ke Jin
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zuo Xiao
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Huidong Xie
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xingxing Shen
- College of Chemical Engineering, Hebei Normal University of Science and Technology Qinhuangdao 066004 China
| | - Jizheng Wang
- Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Xiangyu Chen
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences Beijing 101400 China
| | - Zhijie Wang
- Institute of Semiconductors, Chinese Academy of Sciencess Beijing 100083 China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou 510640 China
| | - Keyou Yan
- School of Environment and Energy, South China University of Technology Guangzhou 510006 China
| | - Yong Ding
- Beijing Key Laboratory of Novel Thin-Film Solar Cells, North China Electric Power University Beijing 102206 China
| | - Liming Ding
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
20
|
Liu M, Li C, Liao G, Zhao F, Yao C, Wang N, Yin X. Narrowband Blue Circularly Polarized Luminescence Emitter Based on BN-Doped Benzo[6]helicene with Stimuli-Responsive Properties. Chemistry 2024; 30:e202402257. [PMID: 38955898 DOI: 10.1002/chem.202402257] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
Boron-doped helicenes, known for their unique electronic and photophysical properties, are of great interest for numerous applications. This research introduces two new azabora[6]helicenes, H[6]BN1 and H[6]BN2, synthesized through an efficient method. These molecules have boron and nitrogen atoms in opposing positions, enhancing their distinctive attributes. Both helicenes show excellent emission properties, with H[6]BN1 and H[6]BN2 exhibiting narrowband blue fluorescence and circularly polarized luminescence (CPL), achieving glum values of 4~5×10-4 which is beneficial for chiroptical applications. The addition of a donor group, 3, 6-di-tert-butyl-9H-carbazole, in H[6]BN2 improves luminescence, likely due to enhanced molecular orbital overlap and electron delocalization. H[6]BN1's needle-like single crystals exhibit mechanochromism, changing luminescent color from yellow to green under mechanical stress, which is promising for stimulus-responsive materials. In conclusion, this study presents a novel class of BN[6]helicenes with superior chiroptical properties. Their combination of electronic features and mechanochromism makes them ideal for advanced chiroptical materials, expanding the potential of helicene-based compounds and offering new directions for the synthesis of molecules with specific chiroptical characteristics.
Collapse
Affiliation(s)
- Meiyan Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Chenglong Li
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Guanming Liao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Fenggui Zhao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Chunxia Yao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Nan Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Xiaodong Yin
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| |
Collapse
|
21
|
Zhao S, Jiang Y, Fu Y, Chen W, Zhang Q, He L, Huang C, Liu Y, Zeng XC, Chai Y. Chaperone solvent-assisted assembly of polymers at the interface of two immiscible liquids. Nat Commun 2024; 15:7423. [PMID: 39198431 PMCID: PMC11358526 DOI: 10.1038/s41467-024-51657-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
The assembly of polymers at liquid-liquid interfaces offers a promising strategy for fabricating two-dimensional polymer films. However, a significant challenge arises when the polymers lack inherent interfacial traction. In response, we introduce an approach termed chaperone solvent-assisted assembly. This approach utilizes a target polymer, X, along with three solvents: α, β, and γ. α and β are poor solvents for X and immiscible with each other, while γ is a good solvent for X and miscible with both α and β, thus serving as the chaperone solvent. The cross-interface diffusion of γ induces the assembly of interfacially nonactive X at the α-β interface, and this mechanism is verified through systematic in situ and ex situ studies. We show that chaperone solvent-assisted assembly is versatile and reliable for the interfacial assembly of polymers, including those that are interfacially nonactive. Several practical applications based on chaperone solvent-assisted assembly are also demonstrated.
Collapse
Affiliation(s)
- Sai Zhao
- Department of Physics, The City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- City University of Hong Kong Shenzhen Research Institute, 8 Yuexing 1st Road, Gaoxin District, Shenzhen, China
| | - Yongkang Jiang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuchen Fu
- Department of Physics, The City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- City University of Hong Kong Shenzhen Research Institute, 8 Yuexing 1st Road, Gaoxin District, Shenzhen, China
| | - Wei Chen
- Department of Physics, The City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- City University of Hong Kong Shenzhen Research Institute, 8 Yuexing 1st Road, Gaoxin District, Shenzhen, China
| | - Qinrong Zhang
- Department of Biomedical Engineering, The City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Liulin He
- Department of Physics, The City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- City University of Hong Kong Shenzhen Research Institute, 8 Yuexing 1st Road, Gaoxin District, Shenzhen, China
| | - Changxiong Huang
- Department of Materials Science and Engineering, The City University of Hong Kong, Kowloon, Hong Kong, 999077, China.
| | - Yao Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Xiao Cheng Zeng
- Department of Materials Science and Engineering, The City University of Hong Kong, Kowloon, Hong Kong, 999077, China.
| | - Yu Chai
- Department of Physics, The City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China.
- City University of Hong Kong Shenzhen Research Institute, 8 Yuexing 1st Road, Gaoxin District, Shenzhen, China.
| |
Collapse
|
22
|
Albano G, Portus L, Martinelli E, Pescitelli G, Di Bari L. Impact of Temperature on the Chiroptical Properties of Thin Films of Chiral Thiophene-based Oligomers. Chempluschem 2024; 89:e202300667. [PMID: 38339881 DOI: 10.1002/cplu.202300667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/12/2024]
Abstract
According to the theoretical model based on the Mueller matrix approach, the experimental electronic circular dichroism (ECD) for thin films of chiral organic dyes can be expressed as the sum of several contributions, two of which are the most significant: 1) an intrinsic component (CDiso) invariant upon sample orientation, reflecting the molecular and/or supramolecular chirality, due to 3D-chiral nanoscopic structures; 2) a non-reciprocal component (LDLB) which inverts its sign upon sample flipping, which arises from the interaction of linear dichroism and linear birefringence in locally anisotropic domains, expression of 2D-chiral micro/mesoscopic structures. In this work, we followed in parallel through ECD and differential scanning calorimetry (DSC) the temperature evolution of the supramolecular arrangements of thin films of five structurally related chiral thiophene-based oligomers with different LDLB/CDiso ratio. By increasing the temperature, regardless of phase transitions observed by DSC analysis, systems with strong CDiso revealed no changes in the ECD spectrum, while compounds with dominant LDLB contribution underwent a gradual (and reversible) reduction of (apparent) ECD signals. These findings demonstrated that the concomitant occurrence of intrinsic and non-reciprocal components in the ECD spectrum of thin films of chiral organic dyes is strictly correlated with solid-state organizations of different stability.
Collapse
Affiliation(s)
- Gianluigi Albano
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Lorenzo Portus
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Elisa Martinelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| |
Collapse
|
23
|
Nowak-Król A, Geppert PT, Naveen KR. Boron-containing helicenes as new generation of chiral materials: opportunities and challenges of leaving the flatland. Chem Sci 2024; 15:7408-7440. [PMID: 38784742 PMCID: PMC11110153 DOI: 10.1039/d4sc01083c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
Increased interest in chiral functional dyes has stimulated activity in the field of boron-containing helicenes over the past few years. Despite the fact that the introduction of boron endows π-conjugated scaffolds with attractive electronic and optical properties, boron helicenes have long remained underdeveloped compared to other helicenes containing main group elements. The main reason was the lack of reliable synthetic protocols to access these scaffolds. The construction of boron helicenes proceeds against steric strain, and thus the methods developed for planar systems have sometimes proven ineffective in their synthesis. Recent advances in the general boron chemistry and the synthesis of strained derivatives have opened the way to a wide variety of boron-containing helicenes. Although the number of helically chiral derivatives is still limited, these compounds are currently at the forefront of emissive materials for circularly-polarized organic light-emitting diodes (CP-OLEDs). Yet the design of good emitters is not a trivial task. In this perspective, we discuss a number of requirements that must be met to provide an excellent emissive material. These include chemical and configurational stability, emission quantum yields, luminescence dissymmetry factors, and color purity. Understanding of these parameters and some structure-property relationships should aid in the rational design of superior boron helicenes. We also present the main achievements in their synthesis and point out niches in this area, e.g. stereoselective synthesis, necessary to accelerate the development of this fascinating class of compounds and to realize their potential in OLED devices and in other fields.
Collapse
Affiliation(s)
- Agnieszka Nowak-Król
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Patrick T Geppert
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Kenkera Rayappa Naveen
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
24
|
Chen K, Liu Y, Wang Z, Hu S, Zhao Y, Wang W, Liu G, Wang Z, Jiang W. Longitudinal Extension of Double π-Helix Enables Near-Infrared Amplified Dissymmetry and Chiroptical Response. J Am Chem Soc 2024; 146:13499-13508. [PMID: 38696816 DOI: 10.1021/jacs.4c02914] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Near-infrared (NIR) circularly polarized light absorbing or emitting holds great promise for highly sensitive and precise bioimaging, biosensing, and photodetectors. Aiming at designing NIR chiral molecular systems with amplified dissymmetry and robust chiroptical response, herein, we present a series of double π-helical dimers with longitudinally extended π-entwined substructures via Ullmann or Yamamoto homocoupling reactions. Circular dichroism (CD) spectra revealed an approximate linear bathochromic shift with the rising number of naphthalene subunits, indicating a red to NIR chiroptical response. Particularly, the terrylene diimide-entwined dimers exhibited the strongest CD intensities, with the maximal |Δε| reaching up to 393 M-1 cm-1 at 666 nm for th-TDI[2]; and a record-high chiroptical response (|ΔΔε|) between the neutral and dianionic species of 520 M-1 cm-1 at 833 nm for th-TDI[2]Cl was achieved upon further reduction to its dianionic state. Time-dependent density functional theory (TDDFT) calculations suggested that the pronounced intensification of the CD spectra originated from a simultaneous enhancement of both electric (μ) and magnetic (m) transition dipole moments, ultimately leading to an overall increase in the rotatory strength (R). Notably, the circularly polarized luminescence (CPL) brightness (BCPL) reached 77 M-1 cm-1 for th-TDI[2]Cl, among the highest values reported for NIR-CPL emitters. Furthermore, all chiral dianions exhibited excellent air stability under ambient conditions with half-life times of up to 10 days in N-methylpyrrolidone (NMP), which is significant for future biological applications and chiroptic switches.
Collapse
Affiliation(s)
- Kai Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yujian Liu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhaolong Wang
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shunlong Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yilun Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Guogang Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhaohui Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wei Jiang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
25
|
Zhang T, Zhang Y, He Z, Yang T, Hu X, Zhu T, Zhang Y, Tang Y, Jiao J. Recent Advances of Chiral Isolated and Small Organic Molecules: Structure and Properties for Circularly Polarized Luminescence. Chem Asian J 2024; 19:e202400049. [PMID: 38450996 DOI: 10.1002/asia.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024]
Abstract
This paper explores recent advancements in the field of circularly polarized luminescence (CPL) exhibited by small and isolated organic molecules. The development and application of small CPL molecule are systematically reviewed through eight different chiral skeleton sections. Investigating the intricate interplay between molecular structure and CPL properties, the paper aims at providing and enlighting novel strategies for CPL-based applications.
Collapse
Affiliation(s)
- Tingwei Zhang
- School of Chemistry and Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Yue Zhang
- School of Chemistry and Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Zhiyuan He
- School of Chemistry and Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Tingjun Yang
- School of Chemistry and Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Xu Hu
- School of Chemistry and Chemical Engineering at, Shaanxi Normal University, Xi'an, 710062, P.R. China
| | - Tengfei Zhu
- Engineering Research Center of Oil and Gas Field Chemistry, Xi'an Shiyou University, Xi'an, 710065, China
| | - Yanfeng Zhang
- School of Chemistry and Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Yuhai Tang
- School of Chemistry and Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Jiao Jiao
- School of Chemistry and Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| |
Collapse
|
26
|
Qin L, Xie J, Wu B, Hong H, Yang S, Ma Z, Li C, Zhang G, Zhang XS, Liu K, Zhang D. Axially Chiral Nonbenzenoid Nanographene with Second Harmonic Generation Property. J Am Chem Soc 2024; 146:12206-12214. [PMID: 38637324 DOI: 10.1021/jacs.4c03007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Chiral nanographenes (NGs) have garnered significant interest as optoelectronic materials in recent years. While helically chiral NGs have been extensively studied, axially chiral NGs have only witnessed limited examples, with no prior reports of axially chiral nonbenzenoid NGs. Herein we report an axially chiral nonbenzenoid nanographene featuring six pentagons and four heptagons. This compound, denoted as 2, was efficiently synthesized via an efficient Pd-catalyzed aryl silane homocoupling reaction. The presence of two bulky 3,5-di-tert-butylphenyl groups around the axis connecting the two nonbenzenoid PAH (AHR) segments endows 2 with atropisomeric chirality and high racemization energy barrier, effectively preventing racemization of both R- and S-enantiomers at room temperature. Optically pure R-2 and S-2 were obtained by chiral HPLC separation, and they exhibit circular dichroism (CD) activity at wavelengths up to 660 nm, one of the longest wavelengths with CD responses reported for the chiral NGs. Interestingly, racemic 2 forms a homoconfiguration π-dimer in the crystal lattice, belonging to the I222 chiral space group. Consequently, this unique structure renders crystals of 2 with a second harmonic generation (SHG) response, distinguishing it from all the reported axially chiral benzenoid NGs. Moreover, R-2 and S-2 also exhibit SHG-CD properties.
Collapse
Affiliation(s)
- Liyuan Qin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jin Xie
- School of Physics, Peking University, Beijing 100871, P. R. China
| | - Botao Wu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Hao Hong
- School of Physics, Peking University, Beijing 100871, P. R. China
| | - Suyu Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zhuangzhuang Ma
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450000, P. R. China
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xi-Sha Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kaihui Liu
- School of Physics, Peking University, Beijing 100871, P. R. China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
27
|
Guo WC, Zhao WL, Tan KK, Li M, Chen CF. B,N-Embedded Hetero[9]helicene Toward Highly Efficient Circularly Polarized Electroluminescence. Angew Chem Int Ed Engl 2024; 63:e202401835. [PMID: 38380835 DOI: 10.1002/anie.202401835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/22/2024]
Abstract
The intrinsic helical π-conjugated skeleton makes helicenes highly promising for circularly polarized electroluminescence (CPEL). Generally, carbon helicenes undergo low external quantum efficiency (EQE), while the incorporation of a multi-resonance thermally activated delayed fluorescence (MR-TADF) BN structure has led to an improvement. However, the reported B,N-embedded helicenes all show low electroluminescence dissymmetry factors (gEL), typically around 1×10-3. Therefore, the development of B,N-embedded helicenes with both a high EQE and gEL value is crucial for achieving highly efficient CPEL. Herein, a facile approach to synthesize B,N-embedded hetero[9]helicenes, BN[9]H, is presented. BN[9]H shows a bright photoluminescence with a maximum at 578 nm with a high luminescence dissymmetry factor (|glum|) up to 5.8×10-3, attributed to its inherited MR-TADF property and intrinsic helical skeleton. Furthermore, circularly polarized OLED devices incorporating BN[9]H as an emitter show a maximum EQE of 35.5 %, a small full width at half-maximum of 48 nm, and, more importantly, a high |gEL| value of 6.2×10-3. The Q-factor (|EQE×gEL|) of CP-OLEDs is determined to be 2.2×10-3, which is the highest among helicene analogues. This work provides a new approach for the synthesis of higher helicenes and paves a new way for the construction of highly efficient CPEL materials.
Collapse
Affiliation(s)
- Wei-Chen Guo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100084, China
| | - Wen-Long Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100084, China
| | - Ke-Ke Tan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100084, China
| | - Meng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100084, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100084, China
| |
Collapse
|
28
|
Bai Q, Huang X, Du S, Guo Y, Li C, Li W, Li J, Gu C. Multiple-polarization-sensitive photodetector Based on a plasmonic metasurface. NANOSCALE 2024. [PMID: 38625084 DOI: 10.1039/d4nr00808a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
On-chip polarization-sensitive photodetectors are highly desired for ultra-compact optoelectronic systems. It has been demonstrated that polarization-sensitive photodetection can be realized using intrinsic chiral and anisotropy materials. However, these photodetectors can only realize the detection of either circularly polarized light (CPL) or linear polarized light (LPL) and are not applicable to multiple-polarization-sensitive photodetection. Herein, we experimentally demonstrate a metasurface-integrated semiconductor to realize multiple-polarization-sensitive photodetection at visible wavelengths. This device is composed of a MoSe2 monolayer on an H-shaped plasmonic nanostructure. The geometric chirality and anisotropy of the H-shaped nanostructure result in CPL and LPL resolved optical responses. By integrating a plasmonic metasurface with monolayer MoSe2, we converted polarization-sensitive optical absorption to the polarization-sensitive photocurrent of the device through the photoconductive effect. Polarization-sensitive photocurrent responses to both CPL and LPL are systematically investigated, which demonstrate a high photocurrent circular dichroism (CD) of 0.35 at a wavelength of 810 nm and photocurrent linear polarization (LP) of 0.4 at a wavelength of 633 nm. Our results provide a potential pathway to realize multiple-polarization-sensitive applications in medicine analysis, biology, and remote sensing.
Collapse
Affiliation(s)
- Qinghu Bai
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.
- School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xin Huang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.
- School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Shuo Du
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.
- School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Yang Guo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.
- School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Chensheng Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.
- School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Wei Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.
- School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Junjie Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.
- Songshan Lake Materials Laboratory, Dongguan 523808, People's Republic of China
| | - Changzhi Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.
- School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
29
|
Wang Q, Bao J, Zhang Y, Wang Y, Qiu D, Yang J, Zhang J, Gao H, Wu Y, Dong H, Yang H, Wei Z. High-Performance Organic Narrow Dual-Band Circular Polarized Light Detection for Encrypted Communications and Color Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312396. [PMID: 38198647 DOI: 10.1002/adma.202312396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Conventional circularly polarized light (CPL) detectors necessitate several optical elements, posing difficulties in achieving miniature and integrated devices. Recently developed organic CPL detectors require no additional optical elements but usually suffer from low detectivity or low asymmetry factor (g-factor). Here, an organic CPL detector with excellent detectivity and a high g-factor is fabricated. By employing an inverted quasi-planar heterojunction (IPHJ) structure and incorporating an additional liquid crystal film, a CPL detector with an outstanding g-factor of 1.62 is developed. Unfavorable charge injection is effectively suppressed by the IPHJ structure, which reduces the dark current of the organic photodetector. Consequently, a left CPL detectivity of 6.16 × 1014 Jones at 640 nm is realized, surpassing all of the latest photodiode-type CPL detectors. Adopting a liquid crystal film with adjustable wavelengths of selectively reflected light, the hybrid device achieves narrow dual-band CPL detection, varying from 530 to 640 nm, with a half-maximum full width below 90 nm. Notably, the device achieves excellent stability of 260 000 on/off cycles without attenuation. To the best of the authors' knowledge, all these features have rarely been reported in previous work. The CPL detector arrays are also demonstrated for encrypted communications and color imaging.
Collapse
Affiliation(s)
- Qingkai Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinying Bao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yajie Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yuheng Wang
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Dingding Qiu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jiaxin Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solid, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Hanfei Gao
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuchen Wu
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solid, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Huai Yang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
30
|
Kwon Y, Jung J, Lee WB, Oh JH. Axially Chiral Organic Semiconductors for Visible-Blind UV-Selective Circularly Polarized Light Detection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308262. [PMID: 38311579 PMCID: PMC11005684 DOI: 10.1002/advs.202308262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/23/2023] [Indexed: 02/06/2024]
Abstract
Technologies that detect circularly polarized light (CPL), particularly in the UV region, have significant potential for various applications, including bioimaging and optical communication. However, a major challenge in directly sensing CPL arises from the conflicting requirements of planar structures for efficient charge transport and distorted structures for effective interaction with CPL. Here, a novel design of an axially chiral n-type organic semiconductor is presented to surmount the challenge, in which a binaphthyl group results in a high dissymmetry factor at the molecular level, while maintaining excellent electron-transporting characteristics through the naphthalene diimide group. Experimental and computational methods reveal different stacking behaviors in homochiral and heterochiral assemblies, yielding different structures: Nanowires and nanoparticles, respectively. Especially, the homochiral assemblies exhibit effective π-π stacking between naphthalene diimides despite axial chirality. Thus, phototransistors fabricated using enantiomers exhibit a high maximum electron mobility of 0.22 cm2 V-1 s-1 and a detectivity of 3.9 × 1012 Jones, alongside the CPL distinguishing ability with a dissymmetry factor of responsivity of 0.05. Furthermore, the material possesses a wide bandgap, contributing to its excellent visible-blind UV-selective detection. These findings highlight the new strategy for compact CPL detectors, coupled with the demonstration of less-explored n-type and UV region phototransistors.
Collapse
Affiliation(s)
- Yejin Kwon
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Je‐Yeon Jung
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Won Bo Lee
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Joon Hak Oh
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| |
Collapse
|
31
|
Wen W, Liu G, Wei X, Huang H, Wang C, Zhu D, Sun J, Yan H, Huang X, Shi W, Dai X, Dong J, Jiang L, Guo Y, Wang H, Liu Y. Biomimetic nanocluster photoreceptors for adaptative circular polarization vision. Nat Commun 2024; 15:2397. [PMID: 38493210 PMCID: PMC10944536 DOI: 10.1038/s41467-024-46646-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
Nanoclusters with atomically precise structures and discrete energy levels are considered as nanoscale semiconductors for artificial intelligence. However, nanocluster electronic engineering and optoelectronic behavior have remained obscure and unexplored. Hence, we create nanocluster photoreceptors inspired by mantis shrimp visual systems to satisfy the needs of compact but multi-task vision hardware and explore the photo-induced electronic transport. Wafer-scale arrayed photoreceptors are constructed by a nanocluster-conjugated molecule heterostructure. Nanoclusters perform as an in-sensor charge reservoir to tune the conductance levels of artificial photoreceptors by a light valve mechanism. A ligand-assisted charge transfer process takes place at nanocluster interface and it features an integration of spectral-dependent visual adaptation and circular polarization recognition. This approach is further employed for developing concisely structured, multi-task, and compact artificial visual systems and provides valuable guidelines for nanocluster neuromorphic devices.
Collapse
Affiliation(s)
- Wei Wen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guocai Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofang Wei
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haojie Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chong Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Danlei Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianzhe Sun
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huijuan Yan
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xin Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenkang Shi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojuan Dai
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jichen Dong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lang Jiang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunlong Guo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hanlin Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
32
|
Penty S, Orton GRF, Black DJ, Pal R, Zwijnenburg MA, Barendt TA. A Chirally Locked Bis-perylene Diimide Macrocycle: Consequences for Chiral Self-Assembly and Circularly Polarized Luminescence. J Am Chem Soc 2024; 146:5470-5479. [PMID: 38355475 PMCID: PMC10910538 DOI: 10.1021/jacs.3c13191] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Macrocycles containing chiral organic dyes are highly valuable for the development of supramolecular circularly polarized luminescent (CPL) materials, where a preorganized chiral framework is conducive to directing π-π self-assembly and delivering a strong and persistent CPL signal. Here, perylene diimides (PDIs) are an excellent choice for the organic dye component because, alongside their tunable photophysical and self-assembly properties, functionalization of the PDI's core yields a twisted, chiral π-system, capable of CPL. However, configurationally stable PDI-based macrocycles are rare, and those that are also capable of π-π self-assembly beyond dimers are unprecedented, both of which are advantageous for robust self-assembled chiroptical materials. In this work, we report the first bay-connected bis-PDI macrocycle that is configurationally stable (ΔG⧧ > 155 kJ mol-1). We use this chirally locked macrocycle to uncover new knowledge of chiral PDI self-assembly and to perform new quantitative CPL imaging of the resulting single-crystal materials. As such, we discover that the chirality of a 1,7-disubstituted PDI provides a rational route to designing H-, J- and concomitant H- and J-type self-assembled materials, important arrangements for optimizing (chir)optical and charge/energy transport properties. Indeed, we reveal that CPL is amplified in the single crystals of our chiral macrocycle by quantifying the degree of emitted light circular polarization from such materials for the first time using CPL-Laser Scanning Confocal Microscopy.
Collapse
Affiliation(s)
- Samuel
E. Penty
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Georgia R. F. Orton
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Dominic J. Black
- Department
of Chemistry, University of Durham, South Road, Durham DH1 3LE, U.K.
| | - Robert Pal
- Department
of Chemistry, University of Durham, South Road, Durham DH1 3LE, U.K.
| | - Martijn A. Zwijnenburg
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Timothy A. Barendt
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| |
Collapse
|
33
|
Eichelmann R, Jeudy P, Schneider L, Zerhoch J, Mayer PR, Ballmann J, Deschler F, Gade LH. Chiral Bay-Alkynylated Tetraazaperylenes: Photophysics and Chiroptical Properties. Org Lett 2024; 26:1172-1177. [PMID: 38300988 DOI: 10.1021/acs.orglett.3c04257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Fully bay-alkynylated octaazaperopyrene dioxide (OAPPDO) derivatives were accessible through Stille cross coupling reaction of the corresponding bay-chlorinated derivatives. This steric congestion of the bay area led to helically chiral fluorophores, and chiral resolution of two derivatives allowed the investigation of their chiroptical properties as well as their kinetics of enantiomerization and the related thermodynamic parameters depending on the size of the terminal alkynyl substituent. An increase of the latter resulted in stable OAPPDO atropisomers at room temperature. The dynamics of the photoexcited states of two of the OAPPDO derivatives were investigated by transient absorption (TA) and time-resolved photoluminescence (tr-PL) spectroscopy.
Collapse
Affiliation(s)
- Robert Eichelmann
- Anorganisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Pierre Jeudy
- Anorganisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Lars Schneider
- Physikalisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Jonathan Zerhoch
- Physikalisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Paula R Mayer
- Anorganisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Joachim Ballmann
- Anorganisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Felix Deschler
- Physikalisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Lutz H Gade
- Anorganisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
34
|
Abstract
The properties of functional materials based on organic π-conjugated systems are governed extensively by intermolecular interactions between π-molecules. To establish clear relationships between supramolecular structures and functional properties, it is essential to attain structurally well-defined π-stacks, particularly in solution, as this enables the collection of valuable spectroscopic data. However, precise control and fine-tuning of π-stacks pose significant challenges due to the weak and bidirectional nature of π-π stacking interactions. This article introduces the concept of "frustrated π-stacking," strategically balancing attractive (π-π interaction) and repulsive (steric hindrance) forces in self-assembly to exert control over the sizes, sequences of π-stacks, and slip-stacked structures. These research efforts contribute to a deeper understanding of the correlation between π-stacks and their properties, thereby providing useful insights for the development of molecular materials with the desired performance.
Collapse
Affiliation(s)
- Hui-Jun Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, P. R. China.
| | - Yifei Wei
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, P. R. China.
| | - Jianbin Lin
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, P. R. China.
| |
Collapse
|
35
|
Gabbani A, Taddeucci A, Bertuolo M, Pineider F, Aronica LA, Di Bari L, Pescitelli G, Zinna F. Magnetic Circular Dichroism Elucidates Molecular Interactions in Aggregated Chiral Organic Materials. Angew Chem Int Ed Engl 2024; 63:e202313315. [PMID: 37962845 DOI: 10.1002/anie.202313315] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/20/2023] [Accepted: 11/14/2023] [Indexed: 11/15/2023]
Abstract
Chiral materials formed by aggregated organic compounds play a fundamental role in chiral optoelectronics, photonics and spintronics. Nonetheless, a precise understanding of the molecular interactions involved remains an open problem. Here we introduce magnetic circular dichroism (MCD) as a new tool to elucidate molecular interactions and structural parameters of a supramolecular system. A detailed analysis of MCD together with electronic circular dichroism spectra combined to ab initio calculations unveils essential information on the geometry and energy levels of a self-assembled thin film made of a carbazole di-bithiophene chiral molecule. This approach can be extended to a generality of chiral organic materials and can help rationalizing the fundamental interactions leading to supramolecular order. This in turn could enable a better understanding of structure-property relationships, resulting in a more efficient material design.
Collapse
Affiliation(s)
- Alessio Gabbani
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56124, Pisa, Italy
- Department of Physics and Astronomy, University of Florence, via Sansone 1, 50019, Sesto Fiorentino, FI, Italy
| | - Andrea Taddeucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56124, Pisa, Italy
- Current affiliation: Diamond Light Source Ltd., Fermi Avenue, Chilton, Didcot OX11 0DE, UK
| | - Marco Bertuolo
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56124, Pisa, Italy
| | - Francesco Pineider
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56124, Pisa, Italy
- Department of Physics and Astronomy, University of Florence, via Sansone 1, 50019, Sesto Fiorentino, FI, Italy
| | - Laura Antonella Aronica
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56124, Pisa, Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56124, Pisa, Italy
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56124, Pisa, Italy
| | - Francesco Zinna
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56124, Pisa, Italy
| |
Collapse
|
36
|
Song I, You L, Chen K, Lee WJ, Mei J. Chiroptical Switching of Electrochromic Polymer Thin Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307057. [PMID: 37897242 DOI: 10.1002/adma.202307057] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/17/2023] [Indexed: 10/30/2023]
Abstract
The interaction between light and chiroptical polymers plays a crucial role in chiroptics, spintronics, and chiral-spin selectivity. Despite considerable successes in creating dissymmetric polymer films, the elucidation of chiroptical activities under electrochemical switching remains unexplored. Here homogeneous chiral electrochromics is reported using chiral assembly of conjugated polymers through a transient solidification process with molecular chiral templates. In their neutral state, the chiral electrochromic polymers directly produce a remarkably dissymmetric polarization-dependent transmittance. The circular dichroism (CD) and dissymmetric transmission can be tuned by adjusting the doping level of the electrochemically active polymer films. Under high levels of oxidation, the chiroptical activities are reversed with strong bleaching in the visible, leading to formation of monosignate CD spectra over the infrared region. The matching between circular polarization handedness and chirality of chiroptical polymers makes a distinct impact on optical contrast and color switching dynamics due to the flipped chiroptical activities through polymer redox reactions. The differential circularly polarized transmission in the chiral see-through display can make a well-resolved color change in human eyes, demonstrating proof-of-concept devices for 3D imaging and information encryption. This work serves as a foundation to develop advanced on-chip fabrication of circular polarization-multiplexed display in flexible and highly integrated platforms.
Collapse
Affiliation(s)
- Inho Song
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Liyan You
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Ke Chen
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Won-June Lee
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Jianguo Mei
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
37
|
Weng GG, Xu K, Hou T, Huang XD, Qin MF, Bao SS, Zheng LM. Enhancing the Circularly Polarized Luminescence of Europium Coordination Polymers by Doping a Chromophore Ligand into Superhelices. Inorg Chem 2023; 62:21044-21052. [PMID: 38051505 DOI: 10.1021/acs.inorgchem.3c02806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Lanthanide-based molecular materials showing efficient circularly polarized luminescence (CPL) activity with a high quantum yield are attractive due to their potential applications in data storage, optical sensors, and 3D displays. Herein we present an innovative method to achieve enhanced CPL activity and a high quantum yield by doping a chromophore ligand into a coordination polymer superhelix. A series of homochiral europium(III) phosphonates with a helical morphology were prepared with the molecular formula S-, R-[Eu(cyampH)3-3n(nempH)3n]·3H2O (S/R-Eu-n, n = 0-5%). The doping of chromophore ligand S- or R-nempH2 into superhelices of S/R-Eu-0% not only turned on the CPL activity with the dissymmetry factor |glum| on the order of 10-3 but also increased the quantum yield by about 14-fold. This work may shed light on the development of efficient CPL-active lanthanide-based coordination polymers for applications.
Collapse
Affiliation(s)
- Guo-Guo Weng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- Key Laboratory of Jiangxi University for Functional Materials Chemistry, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, P. R. China
| | - Kui Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Ting Hou
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Xin-Da Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Ming-Feng Qin
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| |
Collapse
|
38
|
Wang X, Hua X, Zhang H, Wu L, Yuan C, Liu Z, Zhang HL, Shao X. Transforming Hetera-Buckybowls into Chiral Conjugated Polycycles Incorporating Epoxycyclooctadiene: a Two-Step Approach. Chemistry 2023; 29:e202303085. [PMID: 37877318 DOI: 10.1002/chem.202303085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 10/26/2023]
Abstract
Chiral π-conjugated polycycles have garnered increasing attention due to versatile applications in optoelectronic materials and biological sciences. In this study, we report the synthesis of chiral π-conjugated polycycles incorporating a chiral epoxycyclooctadiene moiety. Our synthetic strategy capitalizes on the novel reactions of hetera-buckybowl triselenasumanene (TSS) and is achieved in two-step manner. Firstly, the TSS is regio-selectively transformed into its ortho-quinone form. Subsequently, the nucleophilic addition reactions of TSS ortho-quinone by phenylethynides are metal ion-dependent. When utilizing (phenylethynyl)magnesium bromide as the nucleophile, two phenylethynyls are furnished onto the edged benzene ring of TSS. When the nucleophile is (phenylethynyl)lithium, a cascade of nucleophilic addition, intermolecular electron-transfer, ring-opening, and tetradehydro-Diels-Alder (TDDA) reactions occur sequentially in one-pot, ultimately affording chiral π-conjugated polycycles featuring the epoxycyclooctadiene moiety as an integral part of their backbones. This work represents a step forward in the synthesis of chiral π-conjugated polycycles using TSS as synthon.
Collapse
Affiliation(s)
- Xue Wang
- Research Centre for Free Radical Chemistry of Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, China
| | - Xinqiang Hua
- Research Centre for Free Radical Chemistry of Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, China
| | - Haomin Zhang
- Research Centre for Free Radical Chemistry of Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, China
| | - Lingxi Wu
- Research Centre for Free Radical Chemistry of Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, China
| | - Chengshan Yuan
- Research Centre for Free Radical Chemistry of Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, China
| | - Zitong Liu
- Research Centre for Free Radical Chemistry of Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, China
| | - Hao-Li Zhang
- Research Centre for Free Radical Chemistry of Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, China
| | - Xiangfeng Shao
- Research Centre for Free Radical Chemistry of Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, China
| |
Collapse
|
39
|
Han H, Choi JH, Ahn J, Lee H, Choi C, Jung W, Yeom J, Hwang DK, Sung BJ, Lim JA. Chiral Diketopyrrolopyrrole-Based Conjugated Polymers with Intramolecular Rotation-Isomeric Conformation Asymmetry for Near-Infrared Circularly Polarized Light-Sensing Organic Phototransistors. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38032109 DOI: 10.1021/acsami.3c13976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Recent advances in chiral nanomaterials interacting with circularly polarized (CP) light open new expectations for optoelectronics in various research fields such as quantum- and biology-related technology. To fully utilize the great potential of chiral optoelectronic devices, the development of chiral optoelectronic devices that function in the near-infrared (NIR) region is required. Herein, we demonstrate a NIR-absorbing, chiroptical, low-band-gap polymer semiconductor for high-performance NIR CP light phototransistors. A newly synthesized diketopyrrolopyrrole-based donor-acceptor-type chiral π-conjugated polymer with an asymmetric alkyl side chain exhibits strong chiroptical activity in a wavelength range of 700-1000 nm. We found that the attachment of an enantiomerically pure stereogenic alkyl substituent to the π-conjugated chromophore backbone led to strong chiroptical activity through symmetry breaking of the π-conjugation of the backbone in a molecular rotational motion while maintaining the coplanar backbone conformation for efficient charge transport. The NIR CP light-sensing phototransistors based on a chiral π-conjugated polymer photoactive single channel layer exhibit a high photoresponsivity of 26 A W-1 under NIR CP light irradiation at 920 nm, leading to excellent NIR CP light distinguishability. This study will provide a rationale and strategy for designing chiral π-conjugated polymers for high-performance NIR chiral optoelectronics.
Collapse
Affiliation(s)
- Hyemi Han
- Center for Optoelectronic Materials and Devices, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jong Ho Choi
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Jongtae Ahn
- Center for Optoelectronic Materials and Devices, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hanna Lee
- Center for Optoelectronic Materials and Devices, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Changsoon Choi
- Center for Optoelectronic Materials and Devices, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Wookjin Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jihyeon Yeom
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Do Kyung Hwang
- Center for Optoelectronic Materials and Devices, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Nanoscience and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Bong June Sung
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Jung Ah Lim
- Center for Optoelectronic Materials and Devices, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Nanoscience and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| |
Collapse
|
40
|
Saal F, Swain A, Schmiedel A, Holzapfel M, Lambert C, Ravat P. Push-pull [7]helicene diimide: excited-state charge transfer and solvatochromic circularly polarised luminescence. Chem Commun (Camb) 2023; 59:14005-14008. [PMID: 37941499 DOI: 10.1039/d3cc04470j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
In this communication we describe a helically chiral push-pull molecule named 9,10-dimethoxy-[7]helicene diimide, displaying fluorescence (FL) and circularly polarised luminescence (CPL) over nearly the entire visible spectrum dependent on solvent polarity. The synthesised molecule exhibits an unusual solvent polarity dependence of FL quantum yield and nonradiative rate constant, as well as remarkable gabs and glum values along with high configurational stability.
Collapse
Affiliation(s)
- Fridolin Saal
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, D-97074 Würzburg, Germany.
| | - Asim Swain
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, D-97074 Würzburg, Germany.
| | - Alexander Schmiedel
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, D-97074 Würzburg, Germany.
| | - Marco Holzapfel
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, D-97074 Würzburg, Germany.
| | - Christoph Lambert
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, D-97074 Würzburg, Germany.
| | - Prince Ravat
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, D-97074 Würzburg, Germany.
| |
Collapse
|
41
|
Albano G, Taddeucci A, Pescitelli G, Di Bari L. Spatially Resolved Chiroptical Spectroscopies Emphasizing Recent Applications to Thin Films of Chiral Organic Dyes. Chemistry 2023; 29:e202301982. [PMID: 37515814 DOI: 10.1002/chem.202301982] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 07/31/2023]
Abstract
Instrumental techniques able to identify and structurally characterize the aggregation states in thin films of chiral organic π-conjugated materials, from the first-order supramolecular arrangement up to the microscopic and mesoscopic scale, are very helpful for clarifying structure-property relationships. Chiroptical imaging is currently gaining a central role, for its ability of mapping local supramolecular structures in thin films. The present review gives an overview of electronic circular dichroism imaging (ECDi), circularly polarized luminescence imaging (CPLi), and vibrational circular dichroism imaging (VCDi), with a focus on their applications on thin films of chiral organic dyes as case studies.
Collapse
Affiliation(s)
- Gianluigi Albano
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Andrea Taddeucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
- Diamond Light Source, Ltd., Chilton, Didcot, OX11 0DE, UK
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| |
Collapse
|
42
|
Freixas VM, Rouxel JR, Nam Y, Tretiak S, Govind N, Mukamel S. X-ray and Optical Circular Dichroism as Local and Global Ultrafast Chiral Probes of [12]Helicene Racemization. J Am Chem Soc 2023; 145:21012-21019. [PMID: 37704187 DOI: 10.1021/jacs.3c07032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Chirality is a fundamental molecular property that plays a crucial role in biophysics and drug design. Optical circular dichroism (OCD) is a well-established chiral spectroscopic probe in the UV-visible regime. Chirality is most commonly associated with a localized chiral center. However, some compounds such as helicenes (Figure 1) are chiral due to their screwlike global structure. In these highly conjugated systems, some electric and magnetic allowed transitions are distributed across the entire molecule, and OCD thus probes the global molecular chirality. Recent advances in X-ray sources, in particular the control of their polarization and spatial profiles, have enabled X-ray circular dichroism (XCD), which, in contrast to OCD, can exploit the localized and element-specific nature of X-ray electronic transitions. XCD therefore is more sensitive to local structures, and the chirality probed with it can be referred to as local. During the racemization of helicene, between opposite helical structures, the screw handedness can flip locally, making the molecule globally achiral while retaining a local handedness. Here, we use the racemization mechanism of [12]helicene as a model to demonstrate the capabilities of OCD and XCD as time-dependent probes for global and local chiralities, respectively. Our simulations demonstrate that XCD provides an excellent spectroscopic probe for the time-dependent local chirality of molecules.
Collapse
Affiliation(s)
- Victor M Freixas
- Department of Chemistry and Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Jérémy R Rouxel
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Yeonsig Nam
- Department of Chemistry and Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Sergei Tretiak
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Niranjan Govind
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Shaul Mukamel
- Department of Chemistry and Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
43
|
Lee H, Hwang JH, Song SH, Han H, Han S, Suh BL, Hur K, Kyhm J, Ahn J, Cho JH, Hwang DK, Lee E, Choi C, Lim JA. Chiroptical Synaptic Heterojunction Phototransistors Based on Self-Assembled Nanohelix of π-Conjugated Molecules for Direct Noise-Reduced Detection of Circularly Polarized Light. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304039. [PMID: 37501319 PMCID: PMC10520648 DOI: 10.1002/advs.202304039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Indexed: 07/29/2023]
Abstract
High-performance chiroptical synaptic phototransistors are successfully demonstrated using heterojunctions composed of a self-assembled nanohelix of a π-conjugated molecule and a metal oxide semiconductor. To impart strong chiroptical activity to the device, a diketopyrrolopyrrole-based π-conjugated molecule decorated with chiral glutamic acid is newly synthesized; this molecule is capable of supramolecular self-assembly through noncovalent intermolecular interactions. In particular, nanohelix formed by intertwinded fibers with strong and stable chiroptical activity in a solid-film state are obtained through hydrogen-bonding-driven, gelation-assisted self-assembly. Phototransistors based on interfacial charge transfer at the heterojunction from the chiroptical nanohelix to the metal oxide semiconductor show excellent chiroptical detection with a high photocurrent dissymmetry factor of 1.97 and a high photoresponsivity of 218 A W-1 . The chiroptical phototransistor demonstrates photonic synapse-like, time-dependent photocurrent generation, along with persistent photoconductivity, which is attributed to the interfacial charge trapping. Through the advantage of synaptic functionality, a trained convolutional neural network successfully recognizes noise-reduced circularly polarized images of handwritten alphabetic characters with better than 89.7% accuracy.
Collapse
Affiliation(s)
- Hanna Lee
- Center for Opto‐Electronic Materials and DevicesKorea Institute of Science and TechnologySeoul02792Republic of Korea
- Department of Chemical and Biomolecular EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Jun Ho Hwang
- School of Materials Science and EngineeringGwangju Institute of Science and TechnologyGwangju61005Republic of Korea
| | - Seung Ho Song
- Center for Opto‐Electronic Materials and DevicesKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Hyemi Han
- Center for Opto‐Electronic Materials and DevicesKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Seo‐Jung Han
- Chemical and Biological Integrative Research CenterKorea Institute of Science and TechnologySeoul02792Republic of Korea
- Division of Bio‐Medical Science and TechnologyKIST SchoolUniversity of Science and Technology of KoreaSeoul02792Republic of Korea
| | - Bong Lim Suh
- Extreme Materials Research CenterKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Kahyun Hur
- Extreme Materials Research CenterKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Jihoon Kyhm
- Technology Support CenterKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Jongtae Ahn
- Center for Opto‐Electronic Materials and DevicesKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Jeong Ho Cho
- Department of Chemical and Biomolecular EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Do Kyung Hwang
- Center for Opto‐Electronic Materials and DevicesKorea Institute of Science and TechnologySeoul02792Republic of Korea
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
- Division of Nano and Information TechnologyKIST SchoolUniversity of Science and TechnologySeoul02792Republic of Korea
| | - Eunji Lee
- School of Materials Science and EngineeringGwangju Institute of Science and TechnologyGwangju61005Republic of Korea
| | - Changsoon Choi
- Center for Opto‐Electronic Materials and DevicesKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Jung Ah Lim
- Center for Opto‐Electronic Materials and DevicesKorea Institute of Science and TechnologySeoul02792Republic of Korea
- Division of Nano and Information TechnologyKIST SchoolUniversity of Science and TechnologySeoul02792Republic of Korea
| |
Collapse
|
44
|
Gámez-Valenzuela S, Torres-Moya I, Sánchez A, Donoso B, López Navarrete JT, Ruiz Delgado MC, Prieto P, Ponce Ortiz R. Extended π-Conjugation and Structural Planarity Effects of Symmetrical D-π-A-π-D Naphthalene and Perylene Diimide Semiconductors on n-type Electrical Properties. Chemistry 2023; 29:e202301639. [PMID: 37265227 DOI: 10.1002/chem.202301639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/03/2023]
Abstract
A series of donor-π-acceptor-π-donor (D-π-A-π-D) compounds based on naphthalendiimide (NDI) and perylenediimide (PDI) central cores combined with triphenylamine and phenylcarbazole donor groups have been synthesized, characterized and tested in top-contact/bottom gate organic field-effect transistors (OFETs). The results showed high electron mobilities, up to 0.3 cm2 V-1 s-1 , in the case of NDI derivatives and moderate values of around 10-3 cm2 V-1 s-1 for PDI-based semiconductors. Quantum chemical calculations were performed in order to support the experimental data. The results suggest that adequate molecular characteristics and larger crystalline domains in NDI vs. PDI semiconducting films may be the reasons behind the enhanced electrical properties of NDI derivatives. Furthermore, when the lateral donor substituents are triphenylamine groups, the mobilities were slightly higher in comparison to phenylcarbazole donor groups due to an improved electron-donating character. Other characterization techniques, such as AFM, X-ray diffraction or spectroelectrochemistry, among others, have been performed to analyze supramolecular order, charge carriers' nature and stability, parameters closely related to charge transport characteristics.
Collapse
Affiliation(s)
- Sergio Gámez-Valenzuela
- Department of Physical Chemistry, University of Malaga Campus de Teatinos s/n, Malaga, 29071, Spain
| | - Iván Torres-Moya
- Department of Inorganic, Organic Chemistry and Biochemistry University of Castilla-La Mancha-IRICA, Faculty of Science and Chemical Technologies, Ciudad Real, 13071, Spain
- Department of Organic Chemistry, University of Murcia Campus of Espinardo, Murcia, 30005, Spain
| | - Abelardo Sánchez
- Department of Inorganic, Organic Chemistry and Biochemistry University of Castilla-La Mancha-IRICA, Faculty of Science and Chemical Technologies, Ciudad Real, 13071, Spain
| | - Beatriz Donoso
- Department of Inorganic, Organic Chemistry and Biochemistry University of Castilla-La Mancha-IRICA, Faculty of Science and Chemical Technologies, Ciudad Real, 13071, Spain
| | | | - M Carmen Ruiz Delgado
- Department of Physical Chemistry, University of Malaga Campus de Teatinos s/n, Malaga, 29071, Spain
| | - Pilar Prieto
- Department of Inorganic, Organic Chemistry and Biochemistry University of Castilla-La Mancha-IRICA, Faculty of Science and Chemical Technologies, Ciudad Real, 13071, Spain
| | - Rocío Ponce Ortiz
- Department of Physical Chemistry, University of Malaga Campus de Teatinos s/n, Malaga, 29071, Spain
| |
Collapse
|
45
|
Lahane TK, Sharma S, Desu M, Ando Y, Pandey SS, Singh V. Enhancing the Performance of Organic Phototransistors Based on Oriented Floating Films of P3HT Assisted by Al-Island Deposition. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5249. [PMID: 37569953 PMCID: PMC10419503 DOI: 10.3390/ma16155249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/13/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023]
Abstract
The fabrication of high-performance Organic Phototransistors (OPTs) by depositing Al-islands atop Poly(3-hexylthiophene) (P3HT) thin film coated using the unidirectional floating-film transfer method (UFTM) has been realized. Further, the effect of Al-island thickness on the OPTs' performance has been intensively investigated using X-ray photoelectron spectroscopy, X-ray Diffraction, Atomic force microscopy and UV-Vis spectroscopy analysis. Under the optimized conditions, OPTs' mobility and on-off ratio were found to be 2 × 10-2 cm2 V-1 s-1 and 3 × 104, respectively. Further, the device exhibited high photosensitivity of 105, responsivity of 339 A/W, detectivity of 3 × 1014 Jones, and external quantum efficiency of 7.8 × 103% when illuminated with a 525 nm LED laser (0.3 mW/cm2).
Collapse
Affiliation(s)
- Tejswini K. Lahane
- Molecular and Nanoelectronics Research Group (MNRG), Department of Electrical Engineering, IIT Indore, Indore 453552, Madhya Pradesh, India;
| | - Shubham Sharma
- Graduate School of Life Science and System Engineering, Kyushu Institute of Technology, 2-4, Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan; (S.S.); (M.D.); (Y.A.)
| | - Moulika Desu
- Graduate School of Life Science and System Engineering, Kyushu Institute of Technology, 2-4, Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan; (S.S.); (M.D.); (Y.A.)
| | - Yoshito Ando
- Graduate School of Life Science and System Engineering, Kyushu Institute of Technology, 2-4, Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan; (S.S.); (M.D.); (Y.A.)
| | - Shyam S. Pandey
- Graduate School of Life Science and System Engineering, Kyushu Institute of Technology, 2-4, Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan; (S.S.); (M.D.); (Y.A.)
| | - Vipul Singh
- Molecular and Nanoelectronics Research Group (MNRG), Department of Electrical Engineering, IIT Indore, Indore 453552, Madhya Pradesh, India;
| |
Collapse
|
46
|
Mahlmeister B, Schembri T, Stepanenko V, Shoyama K, Stolte M, Würthner F. Enantiopure J-Aggregate of Quaterrylene Bisimides for Strong Chiroptical NIR-Response. J Am Chem Soc 2023. [PMID: 37285519 DOI: 10.1021/jacs.3c03367] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Chiral polycyclic aromatic hydrocarbons can be tailored for next-generation photonic materials by carefully designing their molecular as well as supramolecular architectures. Hence, excitonic coupling can boost the chiroptical response in extended aggregates but is still challenging to achieve by pure self-assembly. Whereas most reports on these potential materials cover the UV and visible spectral range, systems in the near infrared (NIR) are underdeveloped. We report a new quaterrylene bisimide derivative with a conformationally stable twisted π-backbone enabled by the sterical congestion of a fourfold bay-arylation. Rendering the π-subplanes accessible by small imide substituents allows for a slip-stacked chiral arrangement by kinetic self-assembly in low polarity solvents. The well dispersed solid-state aggregate reveals a sharp optical signature of strong J-type excitonic coupling in both absorption (897 nm) and emission (912 nm) far in the NIR region and reaches absorption dissymmetry factors up to 1.1 × 10-2. The structural elucidation was achieved by atomic force microscopy and single-crystal X-ray analysis which we combined to derive a structural model of a fourfold stranded enantiopure superhelix. We could deduce that the role of phenyl substituents is not only granting stable axial chirality but also guiding the chromophore into a chiral supramolecular arrangement needed for strong excitonic chirality.
Collapse
Affiliation(s)
- Bernhard Mahlmeister
- Center for Nanosystems Chemistry (CNC) & Bavarian Polymer Institute (BPI), Universität Würzburg, 97074 Würzburg, Germany
| | - Tim Schembri
- Center for Nanosystems Chemistry (CNC) & Bavarian Polymer Institute (BPI), Universität Würzburg, 97074 Würzburg, Germany
| | - Vladimir Stepanenko
- Institut für Organische Chemie, Universität Würzburg, 97074 Würzburg, Germany
| | - Kazutaka Shoyama
- Institut für Organische Chemie, Universität Würzburg, 97074 Würzburg, Germany
| | - Matthias Stolte
- Center for Nanosystems Chemistry (CNC) & Bavarian Polymer Institute (BPI), Universität Würzburg, 97074 Würzburg, Germany
- Institut für Organische Chemie, Universität Würzburg, 97074 Würzburg, Germany
| | - Frank Würthner
- Center for Nanosystems Chemistry (CNC) & Bavarian Polymer Institute (BPI), Universität Würzburg, 97074 Würzburg, Germany
- Institut für Organische Chemie, Universität Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
47
|
Zhu X, Gao C, Ren Y, Zhang X, Li E, Wang C, Yang F, Wu J, Hu W, Chen H. High-Contrast Bidirectional Optoelectronic Synapses based on 2D Molecular Crystal Heterojunctions for Motion Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301468. [PMID: 37014930 DOI: 10.1002/adma.202301468] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/29/2023] [Indexed: 06/16/2023]
Abstract
Light-stimulated optoelectronic synaptic devices are fundamental compositions of the neuromorphic vision system. However, there are still huge challenges to achieving both bidirectional synaptic behaviors under light stimuli and high performance. Herein, a bilayer 2D molecular crystal (2DMC) p-n heterojunction is developed to achieve high-performance bidirectional synaptic behaviors. The 2DMC heterojunction-based field effect transistor (FET) devices exhibit typical ambipolar properties and remarkable responsivity (R) of 3.58×104 A W-1 under weak light as low as 0.008 mW cm-2 . Excitatory and inhibitory synaptic behaviors are successfully realized by the same light stimuli under different gate voltages. Moreover, a superior contrast ratio (CR) of 1.53×103 is demonstrated by the ultrathin and high-quality 2DMC heterojunction, which transcends previous optoelectronic synapses and enables application for the motion detection of the pendulum. Furthermore, a motion detection network based on the device is developed to detect and recognize classic motion vehicles in road traffic with an accuracy exceeding 90%. This work provides an effective strategy for developing high-contrast bidirectional optoelectronic synapses and shows great potential in the intelligent bionic device and future artificial vision.
Collapse
Affiliation(s)
- Xiaoting Zhu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Changsong Gao
- National and Local United Engineering Lab of Flat Panel Display Technology, Institute of Optoelectronic Display, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Yiwen Ren
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| | - Xianghong Zhang
- National and Local United Engineering Lab of Flat Panel Display Technology, Institute of Optoelectronic Display, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Enlong Li
- National and Local United Engineering Lab of Flat Panel Display Technology, Institute of Optoelectronic Display, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Congyong Wang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
| | - Fangxu Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| | - Jishan Wu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Wenping Hu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| | - Huipeng Chen
- National and Local United Engineering Lab of Flat Panel Display Technology, Institute of Optoelectronic Display, Fuzhou University, Fuzhou, 350108, P. R. China
| |
Collapse
|
48
|
Song I, Ahn J, Ahn H, Lee SH, Mei J, Kotov NA, Oh JH. Helical polymers for dissymmetric circularly polarized light imaging. Nature 2023; 617:92-99. [PMID: 37138111 DOI: 10.1038/s41586-023-05877-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/22/2023] [Indexed: 05/05/2023]
Abstract
Control of the spin angular momentum (SAM) carried in a photon provides a technologically attractive element for next-generation quantum networks and spintronics1-5. However, the weak optical activity and inhomogeneity of thin films from chiral molecular crystals result in high noise and uncertainty in SAM detection. Brittleness of thin molecular crystals represents a further problem for device integration and practical realization of chiroptical quantum devices6-10. Despite considerable successes with highly dissymmetric optical materials based on chiral nanostructures11-13, the problem of integration of nanochiral materials with optical device platforms remains acute14-16. Here we report a simple yet powerful method to fabricate chiroptical flexible layers via supramolecular helical ordering of conjugated polymer chains. Their multiscale chirality and optical activity can be varied across the broad spectral range by chiral templating with volatile enantiomers. After template removal, chromophores remain stacked in one-dimensional helical nanofibrils producing a homogeneous chiroptical layer with drastically enhanced polarization-dependent absorbance, leading to well-resolved detection and visualization of SAM. This study provides a direct path to scalable realization of on-chip detection of the spin degree of freedom of photons necessary for encoded quantum information processing and high-resolution polarization imaging.
Collapse
Affiliation(s)
- Inho Song
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Jaeyong Ahn
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Hyungju Ahn
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sang Hyuk Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Jianguo Mei
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Nicholas A Kotov
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Chemical Engineering, Biointerface Institute, University of Michigan, Ann Arbor, MI, USA.
| | - Joon Hak Oh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
49
|
Tian X, Shoyama K, Mahlmeister B, Brust F, Stolte M, Würthner F. Naphthalimide-Annulated [ n]Helicenes: Red Circularly Polarized Light Emitters. J Am Chem Soc 2023; 145:9886-9894. [PMID: 37083394 DOI: 10.1021/jacs.3c03441] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Two [n]heliceno-bis(naphthalimides) 1 and 2 (n = 5 and 6, respectively) where two electron-accepting naphthalimide moieties are attached at both ends of helicene core were synthesized by effective two-step strategy, and their enantiomers could be resolved by chiral stationary-phase high-performance liquid chromatography (HPLC). The single-crystal X-ray diffraction analysis of enantiopure fractions of 1 and 2 confirmed their helical structure, and together with experimental and calculated circular dichroism (CD) spectra, the absolute configuration was unambiguously assigned. Both 1 and 2 exhibit high molar extinction coefficients for the S0-S1 transition and high fluorescence quantum yields (73% for 1 and 69% for 2), both being outstanding for helicene derivatives. The red circularly polarized luminescence (CPL) emission up to 615 nm for 2 with CPL brightness (BCPL) up to 66.5 M-1 cm-1 demonstrates its potential for applications in chiral optoelectronics. Time-dependent density functional theory (TD-DFT) calculations unambiguously showed that the large transition magnetic dipole moment |m| of 2 is responsible for its high absorbance dissymmetry (gabs) and luminescence dissymmetry (glum) factor.
Collapse
Affiliation(s)
- Xiaoqi Tian
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Kazutaka Shoyama
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Bernhard Mahlmeister
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| | - Felix Brust
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| | - Matthias Stolte
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| |
Collapse
|
50
|
Liu Y, Xing P. Circularly Polarized Light Responsive Materials: Design Strategies and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300968. [PMID: 36934302 DOI: 10.1002/adma.202300968] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Circularly polarized light (CPL) with the end of optical vector traveling along circumferential trajectory shows left- and right-handedness, which transmits chiral information to materials via complicated CPL-matter interactions. Materials with circular dichroism respond to CPL illumination selectively with differential outputs that can be used to design novel photodetectors. Racemic or achiral compounds under CPL go through photodestruction, photoresolution, and asymmetric synthesis pathways to generate enantiomeric bias and optical activity. By this strategy, helical polymers and chiral inorganic plasmonic nanostructures are synthesized directly, and their intramolecular folding and subsequent self-assembly are photomodulable as well. In the aggregated state of self-assembly and liquid crystal phase, helical sense of the dynamic molecular packing is sensitive to enantiomeric bias brought by CPL, enabling the chiral amplification to supramolecular scale. In this review, the application-guided design strategies of CPL-responsive materials are aimed to be systematically summarized and discussed. Asymmetric synthesis, resolution, and property-modulation of small organic compounds, polymers, inorganic nanoparticles, supramolecular assemblies and liquid crystals are highlighted based on the important developments during the last decades. Besides, applications of light-matter interactions including CPL detection and biomedical applications are also referred.
Collapse
Affiliation(s)
- Yiping Liu
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|