1
|
Chetty R, Delport A, Mthembu S, Veale CGL, Hewer R. Screening the Pandemic Response Box identifies novel ligands of the Staphylococcus aureus protein arginine kinase, McsB. Mol Biol Rep 2025; 52:446. [PMID: 40327182 PMCID: PMC12055656 DOI: 10.1007/s11033-025-10545-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND The protein arginine kinase, McsB, plays a pivotal role in the stress-response mechanism of gram-positive bacteria and represents a potential target to combat gram-positive pathogens. There are currently no recorded ligands or inhibitors reported for bacterial McsB. METHODS AND RESULTS We sought to identify novel ligands for the Staphylococcus aureus McsB by screening the Pandemic Response Box using thermal shift and cellular thermal shift assays. Six compounds were identified as McsB ligands, inducing positive shifts in the melting and aggregating temperature of the protein. Compounds MMV1593539 and MMV1782355 imparted the greatest stability to McsB across both assays. While none of the six McsB-targeting ligands yielded anti-bacterial effect against S. aureus under standard or heat stress conditions, MMV1634391, MMV1633968 and MMV1782213 effectively potentiated the activity of ciprofloxacin. Molecular docking and dynamic studies predict the ATP pocket of McsB as the likely binding site for MMV1593539 and MMV1782355. CONCLUSIONS Compounds MMV1593539 and MMV1782355 stabilised McsB in two thermal stability assays while returning the most favourable docking scores and retaining protein-ligand stability in molecular dynamics. These ligands signify promising candidates for future drug discovery efforts aimed at inhibiting or exploiting the protein arginine kinase, McsB.
Collapse
Affiliation(s)
- Ryan Chetty
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3201, South Africa
| | - Alexandré Delport
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3201, South Africa
| | - Sandile Mthembu
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3201, South Africa
| | - Clinton G L Veale
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa.
| | - Raymond Hewer
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3201, South Africa.
| |
Collapse
|
2
|
Woodland JG, Coertzen D, Wicht KJ, Hidalgo VF, Pasaje CFA, Godoy LC, Qahash T, Mmonwa MM, Dziwornu GA, Wambua L, Harries S, Korkor CM, Njoroge M, Krugmann L, Taylor D, Leshabane M, Langeveld H, Rabie T, Reader J, van der Watt M, Venter N, Erlank E, Aswat AS, Koekemoer LL, Yeo T, Jeon JH, Fidock DA, Gamo FJ, Wittlin S, Niles JC, Llinas M, Coulson LB, Birkholtz LM, Chibale K. The ATM Kinase Inhibitor AZD0156 Is a Potent Inhibitor of Plasmodium Phosphatidylinositol 4-Kinase (PI4Kβ) and Is an Attractive Candidate for Medicinal Chemistry Optimization Against Malaria. Angew Chem Int Ed Engl 2025:e202425206. [PMID: 40317875 DOI: 10.1002/anie.202425206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/13/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
New compounds targeting human malaria parasites are critical for effective malaria control and elimination. Here, we pursued the imidazoquinolinone AZD0156 (MMV1580483), a human ataxia-telangiectasia mutated (ATM) kinase inhibitor that completed Phase I clinical trials as an anticancer agent. We validated its in vitro activity against the two main forms of the Plasmodium falciparum parasite in the human host, viz. the asexual blood (symptomatic) stage and sexual gametocyte (transmission) stage. Resistance selection, cross-resistance, biochemical, and conditional knockdown studies revealed that AZD0156 inhibits P. falciparum phosphatidylinositol 4-kinase type III beta (PfPI4Kβ), a clinically-validated target for the treatment of malaria. Metabolic perturbations, fixed-ratio isobolograms, killing kinetics and morphological evaluation correlated AZD0156 inhibition with other known PI4Kβ inhibitors. The compound showed favorable in vivo pharmacokinetic properties and 81% antimalarial efficacy (4 × 50 mg kg-1) in a P. berghei mouse malaria infection model. Importantly, a cleaner biochemical profile was measured against human kinases (MAP4K4, MINK1) implicated in embryofoetal developmental toxicity associated with the PfPI4Kβ inhibitor MMV390048. This improved kinase selectivity profile and structural differentiation from other PI4Kβ inhibitors, together with its multistage antiplasmodial activity and favorable pharmacokinetic properties, makes AZD0156 an attractive candidate for target-based drug repositioning against malaria via a medicinal chemistry optimization approach.
Collapse
Affiliation(s)
- John G Woodland
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | - Dina Coertzen
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, 0028, South Africa
| | - Kathryn J Wicht
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | | | - Charisse Flerida A Pasaje
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Luiz C Godoy
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Tarrick Qahash
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, State College, PA, 16802, USA
- Huck Center for Malaria Research, Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Mmakwena M Mmonwa
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | - Godwin A Dziwornu
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | - Lynn Wambua
- South African Medical Research Council Drug Discovery and Development Research Unit, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | - Sarah Harries
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | - Constance M Korkor
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | - Mathew Njoroge
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | - Liezl Krugmann
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | - Dale Taylor
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | - Meta Leshabane
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, 0028, South Africa
| | - Henrico Langeveld
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, 0028, South Africa
| | - Tayla Rabie
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, 0028, South Africa
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, 0028, South Africa
| | - Mariëtte van der Watt
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, 0028, South Africa
| | - Nelius Venter
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, 2193, South Africa
| | - Erica Erlank
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, 2193, South Africa
| | - Ayesha S Aswat
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, 2193, South Africa
| | - Lizette L Koekemoer
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, 2193, South Africa
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jin H Jeon
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | | | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, Allschwil, 4123, Switzerland
- University of Basel, Basel, 4003, Switzerland
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Manuel Llinas
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, State College, PA, 16802, USA
- Huck Center for Malaria Research, Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Lauren B Coulson
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
| | - Lyn-Marié Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, 0028, South Africa
- Department of Biochemistry, Stellenbosch University, Stellenbosch, Matieland, 7602, South Africa
| | - Kelly Chibale
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| |
Collapse
|
3
|
do Nascimento Martinez L, da Silva MA, Fialho SN, Almeida ML, Dos Santos Ferreira A, de Jesus Gouveia A, do Nascimento WDSP, Dos Santos APDA, Rossi NRDLP, de Medeiros JF, Araújo NF, de Santana QLO, Kaiser CR, Ferreira SB, da Silva Araujo M, Teles CBG. In vitro and in silico evaluation of synthetic compounds derived from bi-triazoles against asexual and sexual forms of Plasmodium falciparum. Malar J 2025; 24:74. [PMID: 40038735 PMCID: PMC11881275 DOI: 10.1186/s12936-025-05297-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 02/15/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Despite advances in malaria chemotherapy, the disease continues to claim thousands of lives annually. Addressing this issue requires the discovery of new compounds to counteract resistance threatening the current therapeutic arsenal. In this context, bi-triazoles are substances with diverse biological activities, showing promise as lead compound to fight malaria. Triazoles are heterocyclic structures composed of five members, including three nitrogen atoms and two double bonds. Bi-triazoles, the focus of this study, are derivatives of triazoles consisting of two triazole rings (nitrogen heterocyclic) with isolated nuclei lacking a spacer and two substituents at each end. The goal of the present study was to assess the in vitro and in silico, antimalarial activity of bi-triazole compounds 14c, 14d, 13c, and 13d against asexual and sexual forms of Plasmodium falciparum. METHODS For in silico predictions, the software OSIRIS, Molinspiration, and ADMETlab were employed. To determine the 50% inhibitory concentration (IC50) on the asexual forms, the W2 clone was used, while the strain NF54 was used to assess inhibition of sexual forms. Cytotoxicity was evaluated using the HepG2 cell line, and haemolysis tests were conducted. Additionally, the selectivity index (SI) of each compound was calculated. RESULTS In silico analyses of physicochemical properties revealed that all compounds have favorable potential for drug development. Pharmacokinetics predictions also provided important, novel insights into this chemical class. Antimalarial activity tests showed that compounds 14d and 13d exhibited promising activity, with IC50 values of 3.1 and 4.4 µM, respectively. Antimalarial activity of compounds 14d and 13d may be related to the presence of methyl acetate in substituent R2 conjugated to the bi-triazole. None of the compounds demonstrated cytotoxic or haemolytic activity, with SI values above 51 for the three most active compounds, highlighting their selectivity. For the sexual forms, compounds 14c and 14d were classified as having a high potential to block malaria transmission. CONCLUSION Overall, the in vitro and in silico results showed that bi-triazole compounds may guide new biological investigation for malaria, enabling the identification and development of more active and selective antimalarial agents.
Collapse
Affiliation(s)
- Leandro do Nascimento Martinez
- Plataforma de Bioensaios de Malária E Leishmaniose (PBML), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil.
- Programa de Pós-Graduação Em Biologia Experimental (PGBIOEXP), Fundação Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil.
- Centro Universitário São Lucas -PVH/Afya, Porto Velho, RO, Brazil.
| | - Minelly Azevedo da Silva
- Instituto Federal de Educação, Ciência e Tecnologia de Rondônia - IFRO, Porto Velho, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Amazônia Legal - BIONORTE, Porto Velho, RO, Brazil
| | - Saara Neri Fialho
- Plataforma de Bioensaios de Malária E Leishmaniose (PBML), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil
- Centro Universitário São Lucas -PVH/Afya, Porto Velho, RO, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Amazônia Legal - BIONORTE, Porto Velho, RO, Brazil
| | - Marcinete Latorre Almeida
- Plataforma de Bioensaios de Malária E Leishmaniose (PBML), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Amazônia Legal - BIONORTE, Porto Velho, RO, Brazil
| | - Amália Dos Santos Ferreira
- Plataforma de Bioensaios de Malária E Leishmaniose (PBML), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil
| | - Aurileya de Jesus Gouveia
- Plataforma de Bioensaios de Malária E Leishmaniose (PBML), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil
| | - Welington da Silva Paula do Nascimento
- Plataforma de Bioensaios de Malária E Leishmaniose (PBML), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Amazônia Legal - BIONORTE, Porto Velho, RO, Brazil
| | | | | | - Jansen Fernandes de Medeiros
- Programa de Pós-Graduação Em Biologia Experimental (PGBIOEXP), Fundação Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil
- Plataforma de Infecção de Vetores da Malária (PIVEM/ Laboratório de Entomologia, Fundação Oswaldo Cruz, FIOCRUZ, UnidadeRondônia, Porto Velho, RO, Brazil
- Instituto Nacional de Epidemiologia da Amazônia Ocidental - EpiAmO, Porto Velho, RO, Brazil
| | - Natalie Ferreira Araújo
- LaSOPB - Laboratório de Síntese Orgânica e Prospecção Biológica, InstitutodeQuímica, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Quelli Larissa Oliveira de Santana
- LaSOPB - Laboratório de Síntese Orgânica e Prospecção Biológica, InstitutodeQuímica, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Carlos Roland Kaiser
- LaSOPB - Laboratório de Síntese Orgânica e Prospecção Biológica, InstitutodeQuímica, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Sabrina Baptista Ferreira
- LaSOPB - Laboratório de Síntese Orgânica e Prospecção Biológica, InstitutodeQuímica, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Maisa da Silva Araujo
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Amazônia Legal - BIONORTE, Porto Velho, RO, Brazil
- Plataforma de Infecção de Vetores da Malária (PIVEM/ Laboratório de Entomologia, Fundação Oswaldo Cruz, FIOCRUZ, UnidadeRondônia, Porto Velho, RO, Brazil
- Instituto Nacional de Epidemiologia da Amazônia Ocidental - EpiAmO, Porto Velho, RO, Brazil
| | - Carolina Bioni Garcia Teles
- Plataforma de Bioensaios de Malária E Leishmaniose (PBML), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil
- Programa de Pós-Graduação Em Biologia Experimental (PGBIOEXP), Fundação Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil
- Centro Universitário São Lucas -PVH/Afya, Porto Velho, RO, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Amazônia Legal - BIONORTE, Porto Velho, RO, Brazil
- Instituto Nacional de Epidemiologia da Amazônia Ocidental - EpiAmO, Porto Velho, RO, Brazil
| |
Collapse
|
4
|
Naude M, van Heerden A, Reader J, van der Watt M, Niemand J, Joubert D, Siciliano G, Alano P, Njoroge M, Chibale K, Herreros E, Leroy D, Birkholtz LM. Eliminating malaria transmission requires targeting immature and mature gametocytes through lipoidal uptake of antimalarials. Nat Commun 2024; 15:9896. [PMID: 39548094 PMCID: PMC11568134 DOI: 10.1038/s41467-024-54144-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
Novel antimalarial compounds targeting both the pathogenic and transmissible stages of the human malaria parasite, Plasmodium falciparum, would greatly benefit malaria elimination strategies. However, most compounds affecting asexual blood stage parasites show severely reduced activity against gametocytes. The impact of this activity loss on a compound's transmission-blocking activity is unclear. Here, we report the systematic evaluation of the activity loss against gametocytes and investigate the confounding factors contributing to this. A threshold for acceptable activity loss between asexual blood stage parasites and gametocytes was defined, with near-equipotent compounds required to prevent continued gametocyte maturation and onward transmission. Target abundance is not predictive of gametocytocidal activity, but instead, lipoidal uptake is the main barrier of dual activity and is influenced by distinct physicochemical properties. This study provides guidelines for the required profiles of potential dual-active antimalarial agents and facilitates the development of effective transmission-blocking compounds.
Collapse
Affiliation(s)
- Mariska Naude
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
| | - Ashleigh van Heerden
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
| | - Mariëtte van der Watt
- Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
| | - Jandeli Niemand
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
| | - Dorè Joubert
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
| | - Giulia Siciliano
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy
| | - Mathew Njoroge
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | - Kelly Chibale
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | | | - Didier Leroy
- Medicines for Malaria Venture, Geneva, Switzerland
| | - Lyn-Marié Birkholtz
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria, 0028, South Africa.
- Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria, 0028, South Africa.
- Department of Biochemistry, Stellenbosch University, Matieland, Stellenbosch, 7602, South Africa.
| |
Collapse
|
5
|
Brettell SB, Janha O, Begen A, Cann G, Sharma S, Olaniyan N, Yelland T, Hole AJ, Alam B, Mayville E, Gillespie R, Capper M, Fidock DA, Milligan G, Clarke DJ, Tobin AB, Jamieson AG. Targeting PfCLK3 with Covalent Inhibitors: A Novel Strategy for Malaria Treatment. J Med Chem 2024; 67:18895-18910. [PMID: 39441986 PMCID: PMC11571108 DOI: 10.1021/acs.jmedchem.4c01300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Malaria still causes over 600,000 deaths annually, with rising resistance to frontline drugs by Plasmodium falciparum increasing this number each year. New medicines with novel mechanisms of action are, therefore, urgently needed. In this work, we solved the cocrystal structure of the essential malarial kinase PfCLK3 with the reversible inhibitor TCMDC-135051 (1), enabling the design of covalent inhibitors targeting a unique cysteine residue (Cys368) poorly conserved in the human kinome. Chloroacetamide 4 shows nanomolar potency and covalent inhibition in both recombinant protein and P. falciparum assays. Efficacy in parasites persisted after a 6 h washout, indicating an extended duration of action. Additionally, 4 showed improved kinase selectivity and a high selectivity index against HepG2 cells, with a low propensity for resistance (log MIR > 8.1). To our knowledge, compound 4 is the first covalent inhibitor of a malarial kinase, offering promising potential as a lead for a single-dose malaria cure.
Collapse
Affiliation(s)
- Skye B. Brettell
- School
of Chemistry, The Advanced Research Centre, University of Glasgow, 11 Chapel Lane, Glasgow G11 6EW, U.K.
| | - Omar Janha
- Centre
for Translational Pharmacology, The Advanced Research Centre, University of Glasgow, 11 Chapel Lane, Glasgow G11 6EW, U.K.
| | - Abbey Begen
- KelticPharma
Therapeutics, The Advanced Research Centre, University of Glasgow, 11 Chapel Lane, Glasgow G11 6EW, U.K.
| | - Gillian Cann
- KelticPharma
Therapeutics, The Advanced Research Centre, University of Glasgow, 11 Chapel Lane, Glasgow G11 6EW, U.K.
| | - Saumya Sharma
- KelticPharma
Therapeutics, The Advanced Research Centre, University of Glasgow, 11 Chapel Lane, Glasgow G11 6EW, U.K.
| | - Niniola Olaniyan
- Centre
for Translational Pharmacology, The Advanced Research Centre, University of Glasgow, 11 Chapel Lane, Glasgow G11 6EW, U.K.
| | - Tamas Yelland
- Evotec
(U.K.) Ltd, 95 Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RY, U.K.
| | - Alison J. Hole
- Evotec
(U.K.) Ltd, 95 Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RY, U.K.
| | - Benazir Alam
- Evotec
(U.K.) Ltd, 95 Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RY, U.K.
| | - Emily Mayville
- Department
of Microbiology& Immunology and Center for Malaria Therapeutics
and Antimicrobial Resistance, Division of Infectious Diseases, Department
of Medicine, Columbia University Medical
Centre, New York, New York 10032, United States
| | - Ross Gillespie
- School
of Chemistry, The Advanced Research Centre, University of Glasgow, 11 Chapel Lane, Glasgow G11 6EW, U.K.
| | - Michael Capper
- School
of Chemistry, The Advanced Research Centre, University of Glasgow, 11 Chapel Lane, Glasgow G11 6EW, U.K.
| | - David A. Fidock
- Department
of Microbiology& Immunology and Center for Malaria Therapeutics
and Antimicrobial Resistance, Division of Infectious Diseases, Department
of Medicine, Columbia University Medical
Centre, New York, New York 10032, United States
| | - Graeme Milligan
- Centre
for Translational Pharmacology, The Advanced Research Centre, University of Glasgow, 11 Chapel Lane, Glasgow G11 6EW, U.K.
| | - David J. Clarke
- EaSTCHEM
School of Chemistry, University of Edinburgh, Joseph Black Building, David, Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Andrew B. Tobin
- Centre
for Translational Pharmacology, The Advanced Research Centre, University of Glasgow, 11 Chapel Lane, Glasgow G11 6EW, U.K.
| | - Andrew G. Jamieson
- School
of Chemistry, The Advanced Research Centre, University of Glasgow, 11 Chapel Lane, Glasgow G11 6EW, U.K.
| |
Collapse
|
6
|
Miyazaki Y, Miyazaki S. Reporter parasite lines: valuable tools for the study of Plasmodium biology. Trends Parasitol 2024; 40:1000-1015. [PMID: 39389901 DOI: 10.1016/j.pt.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024]
Abstract
The human malaria parasite Plasmodium falciparum causes the most severe form of malaria in endemic regions and is transmitted via mosquito bites. To better understand the biology of this deadly pathogen, a variety of P. falciparum reporter lines have been generated using transgenic approaches to express reporter proteins, such as fluorescent proteins and luciferases. This review discusses the advances in recently generated P. falciparum transgenic reporter lines, which will aid in the investigation of parasite physiology and the discovery of novel antimalarial drugs. Future prospects for the generation of new and superior human malaria parasite reporter lines are also discussed, and unresolved questions in malaria biology are highlighted to help boost support for the development and implementation of malaria treatments.
Collapse
Affiliation(s)
- Yukiko Miyazaki
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Japan
| | - Shinya Miyazaki
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Japan.
| |
Collapse
|
7
|
Cox A, Krishnankutty N, Shave S, Howick VM, Auer M, La Clair JJ, Philip N. Repositioning Brusatol as a Transmission Blocker of Malaria Parasites. ACS Infect Dis 2024; 10:3586-3596. [PMID: 39352879 PMCID: PMC11474950 DOI: 10.1021/acsinfecdis.4c00434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
Currently, primaquine is the only malaria transmission-blocking drug recommended by the WHO. Recent efforts have highlighted the importance of discovering new agents that regulate malarial transmission, with particular interest in agents that can be administered in a single low dose, ideally with a discrete and Plasmodium-selective mechanism of action. Here, our team demonstrates an approach to identify malaria transmission-blocking agents through a combination of in vitro screening and in vivo analyses. Using a panel of natural products, our approach identified potent transmission blockers, as illustrated by the discovery of the transmission-blocking efficacy of brusatol. As a member of a large family of biologically active natural products, this discovery provides a critical next step toward developing methods to rapidly identify quassinoids and related agents with valuable pharmacological therapeutic properties.
Collapse
Affiliation(s)
- Amelia Cox
- School
of Biodiversity, One Health and Veterinary Medicine, College of Medical,
Veterinary and Life Sciences, University
of Glasgow, Garscube
Campus, Bearsden Road, Glasgow G61 1QH, United Kingdom
| | - Neelima Krishnankutty
- Institute
of Immunology and Infection Research, University
of Edinburgh, Ashworth Laboratories 2, Room 3.11, Edinburgh EH9 3FL, United Kingdom
| | - Steven Shave
- School
of Biological Sciences, University of Edinburgh, The King’s Buildings, Edinburgh EH9 3BF, United Kingdom
| | - Virginia M. Howick
- School
of Biodiversity, One Health and Veterinary Medicine, College of Medical,
Veterinary and Life Sciences, University
of Glasgow, Garscube
Campus, Bearsden Road, Glasgow G61 1QH, United Kingdom
| | - Manfred Auer
- School
of Biological Sciences, University of Edinburgh, The King’s Buildings, Edinburgh EH9 3BF, United Kingdom
- Xenobe
Research Institute, P.O. Box 3052, San Diego, California 92163, United States
| | - James J. La Clair
- Xenobe
Research Institute, P.O. Box 3052, San Diego, California 92163, United States
| | - Nisha Philip
- Institute
of Immunology and Infection Research, University
of Edinburgh, Ashworth Laboratories 2, Room 3.11, Edinburgh EH9 3FL, United Kingdom
| |
Collapse
|
8
|
Woodland JG, Horatscheck A, Soares de Melo C, Dziwornu GA, Taylor D. Another decade of antimalarial drug discovery: New targets, tools and molecules. PROGRESS IN MEDICINAL CHEMISTRY 2024; 63:161-234. [PMID: 39370241 DOI: 10.1016/bs.pmch.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Malaria remains a devastating but preventable infectious disease that disproportionately affects the African continent. Emerging resistance to current frontline therapies means that not only are new treatments urgently required, but also novel validated antimalarial targets to circumvent cross-resistance. Fortunately, tremendous efforts have been made by the global drug discovery community over the past decade. In this chapter, we will highlight some of the antimalarial drug discovery and development programmes currently underway across the globe, charting progress in the identification of new targets and the development of new classes of drugs to prosecute them. These efforts have been complemented by the development of valuable tools to accelerate target validation such as the NOD scid gamma (NSG) humanized mouse efficacy model and progress in predictive modelling and open-source software. Among the medicinal chemistry programmes that have been conducted over the past decade are those targeting Plasmodium falciparum ATPase4 (ATP4) and acetyl-CoA synthetase (AcAS) as well as proteins disrupting parasite protein translation such as the aminoacyl-tRNA synthetases (aaRSs) and eukaryotic elongation factor 2 (eEF2). The benefits and challenges of targeting Plasmodium kinases will be examined, with a focus on Plasmodium cyclic GMP-dependent protein kinase (PKG), cyclin-dependent-like protein kinase 3 (CLK3) and phosphatidylinositol 4-kinase (PI4K). The chapter concludes with a survey of incipient drug discovery centres in Africa and acknowledges the value of recent international meetings in galvanizing and uniting the antimalarial drug discovery community.
Collapse
Affiliation(s)
- John G Woodland
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa; South African Medical Research Council Drug Discovery and Development Research Unit, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - André Horatscheck
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Candice Soares de Melo
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Godwin A Dziwornu
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Dale Taylor
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa.
| |
Collapse
|
9
|
Watson SJ, van der Watt ME, Theron A, Reader J, Tshabalala S, Erlank E, Koekemoer LL, Naude M, Stampolaki M, Adewole F, Sadowska K, Pérez-Lozano P, Turcu AL, Vázquez S, Ko J, Mazurek B, Singh D, Malwal SR, Njoroge M, Chibale K, Onajole OK, Kolocouris A, Oldfield E, Birkholtz LM. The Tuberculosis Drug Candidate SQ109 and Its Analogs Have Multistage Activity against Plasmodium falciparum. ACS Infect Dis 2024; 10:3358-3367. [PMID: 39143042 PMCID: PMC11406516 DOI: 10.1021/acsinfecdis.4c00461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Toward repositioning the antitubercular clinical candidate SQ109 as an antimalarial, analogs were investigated for structure-activity relationships for activity against asexual blood stages of the human malaria parasite Plasmodium falciparum pathogenic forms, as well as transmissible, sexual stage gametocytes. We show that equipotent activity (IC50) in the 100-300 nM range could be attained for both asexual and sexual stages, with the activity of most compounds retained against a multidrug-resistant strain. The multistage activity profile relies on high lipophilicity ascribed to the adamantane headgroup, and antiplasmodial activity is critically dependent on the diamine linker. Frontrunner compounds showed conserved activity against genetically diverse southern African clinical isolates. We additionally validated that this series could block transmission to mosquitoes, marking these compounds as novel chemotypes with multistage antiplasmodial activity.
Collapse
Affiliation(s)
| | | | - Anjo Theron
- Next Generation Health, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
| | | | | | - Erica Erlank
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Services, Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Johannesburg 2000, South Africa
| | - Lizette L Koekemoer
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Services, Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Johannesburg 2000, South Africa
| | | | - Marianna Stampolaki
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis-Zografou, 15771 Athens, Greece
| | - Feyisola Adewole
- Department of Biological, Physical and Health Sciences, College of Science, Health & Pharmacy, Roosevelt University, 425 South Wabash Avenue, Chicago, Illinois 60605, United States
| | - Katie Sadowska
- Department of Biological, Physical and Health Sciences, College of Science, Health & Pharmacy, Roosevelt University, 425 South Wabash Avenue, Chicago, Illinois 60605, United States
| | - Pilar Pérez-Lozano
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona 08028, Spain
| | - Andreea L Turcu
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Barcelona E-08028, Spain
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Barcelona E-08028, Spain
| | - Jihee Ko
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ben Mazurek
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Davinder Singh
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Satish R Malwal
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mathew Njoroge
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, Capetown 7701, South Africa
| | - Kelly Chibale
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, Capetown 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Centre, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, Capetown 7701, South Africa
| | - Oluseye K Onajole
- Department of Biological, Physical and Health Sciences, College of Science, Health & Pharmacy, Roosevelt University, 425 South Wabash Avenue, Chicago, Illinois 60605, United States
| | - Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis-Zografou, 15771 Athens, Greece
| | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | | |
Collapse
|
10
|
Shadija N, Dass S, Xu W, Wang L, Ke H. Functionality of the V-type ATPase during asexual growth and development of Plasmodium falciparum. J Biol Chem 2024; 300:107608. [PMID: 39084459 PMCID: PMC11387698 DOI: 10.1016/j.jbc.2024.107608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Vacuolar type ATPases (V-type ATPases) are highly conserved hetero-multisubunit proton pumping machineries found in all eukaryotes. They utilize ATP hydrolysis to pump protons, acidifying intracellular or extracellular compartments, and are thus crucial for various biological processes. Despite their evolutionary conservation in malaria parasites, this proton pump remains understudied. To understand the localization and biological functions of Plasmodium falciparum V-type ATPase, we employed CRISPR/Cas9 to endogenously tag the subunit A of the V1 domain. V1A (PF3D7_1311900) was tagged with a triple hemagglutinin epitope and the TetR-DOZI-aptamer system for conditional expression under the regulation of anhydrotetracycline. Via immunofluorescence assays, we identified that V-type ATPase is expressed throughout the intraerythrocytic developmental cycle and is mainly localized to the digestive vacuole and parasite plasma membrane. Immuno-electron microscopy further revealed that V-type ATPase is also localized on secretory organelles in merozoites. Knockdown of V1A led to cytosolic pH imbalance and blockage of hemoglobin digestion in the digestive vacuole, resulting in an arrest of parasite development in the trophozoite-stage and, ultimately, parasite demise. Using bafilomycin A1, a specific inhibitor of V-type ATPases, we found that the P. falciparum V-type ATPase is likely involved in parasite invasion but is not critical for ring-stage development. Further, we detected a large molecular weight complex in blue native-PAGE (∼1.0 MDa), corresponding to the total molecular weights of V1 and Vo domains. Together, we show that V-type ATPase is localized to multiple subcellular compartments in P. falciparum, and its functionality throughout the asexual cycle varies depending on the parasite developmental stages.
Collapse
Affiliation(s)
- Neeta Shadija
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Swati Dass
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Wei Xu
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Liying Wang
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Hangjun Ke
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
11
|
Kabeche S, Meister T, Yeh E. A fast-acting inhibitor of blood-stage P. falciparum with mechanism distinct from artemisinin and chloroquine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607553. [PMID: 39185231 PMCID: PMC11343144 DOI: 10.1101/2024.08.12.607553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Artemisinins are first-line treatment for malaria, prized for their extremely fast reduction of parasite load in patients. New fast-acting antimalarial compounds are urgently needed to counter artemisinin resistance, but the fast parasite reduction observed with artemisinins is rare among antimalarial compounds. Here we show that MMV1580853 has a very fast in vitro killing rate, comparable to that of dihydroartemisinin. Near-complete parasite growth inhibition was observed within 1 hour of treatment with MMV1580853 and dihydroartemisinin, while chloroquine, another fast-acting antimalarial, showed partial growth inhibition after 1h. MMV1580853 was reported to inhibit prenyltransferases, but its fast killing rate is inconsistent with this mechanism-of-action and we were unable to validate any of 3 annotated P. falciparum prenyltransferases as MMV1580853 targets. MMV1580853 also did not phenocopy the inhibition phenotype of either chloroquine or dihydroartemisinin. These results indicate that MMV1580853 has a distinct mechanism-of-action leading to a very fast killing rate. MMV1580853 compound development and investigation of its mechanism-of-action will be critical avenues in the search for drugs matching the remarkable clinical efficacy of artemisinin.
Collapse
Affiliation(s)
- Stephanie Kabeche
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas Meister
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ellen Yeh
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA 94158
| |
Collapse
|
12
|
Appetecchia F, Fabbrizi E, Fiorentino F, Consalvi S, Biava M, Poce G, Rotili D. Transmission-Blocking Strategies for Malaria Eradication: Recent Advances in Small-Molecule Drug Development. Pharmaceuticals (Basel) 2024; 17:962. [PMID: 39065810 PMCID: PMC11279868 DOI: 10.3390/ph17070962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Malaria drug research and development efforts have resurged in the last decade following the decelerating rate of mortality and malaria cases in endemic regions. The inefficiency of malaria interventions is largely driven by the spreading resistance of the Plasmodium falciparum parasite to current drug regimens and that of the malaria vector, the Anopheles mosquito, to insecticides. In response to the new eradication agenda, drugs that act by breaking the malaria transmission cycle (transmission-blocking drugs), which has been recognized as an important and additional target for intervention, are being developed. These drugs take advantage of the susceptibility of Plasmodium during population bottlenecks before transmission (gametocytes) and in the mosquito vector (gametes, zygotes, ookinetes, oocysts, sporozoites). To date, compounds targeting stage V gametocytes predominate in the chemical library of transmission-blocking drugs, and some of them have entered clinical trials. The targeting of Plasmodium mosquito stages has recently renewed interest in the development of innovative malaria control tools, which hold promise for the application of compounds effective at these stages. In this review, we highlight the major achievements and provide an update on the research of transmission-blocking drugs, with a particular focus on their chemical scaffolds, antiplasmodial activity, and transmission-blocking potential.
Collapse
Affiliation(s)
| | | | | | | | | | - Giovanna Poce
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (F.A.); (E.F.); (F.F.); (S.C.); (M.B.)
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (F.A.); (E.F.); (F.F.); (S.C.); (M.B.)
| |
Collapse
|
13
|
Dziwornu G, Seanego D, Fienberg S, Clements M, Ferreira J, Sypu VS, Samanta S, Bhana AD, Korkor CM, Garnie LF, Teixeira N, Wicht KJ, Taylor D, Olckers R, Njoroge M, Gibhard L, Salomane N, Wittlin S, Mahato R, Chakraborty A, Sevilleno N, Coyle R, Lee MCS, Godoy LC, Pasaje CF, Niles JC, Reader J, van der Watt M, Birkholtz LM, Bolscher JM, de Bruijni MHC, Coulson LB, Basarab GS, Ghorpade SR, Chibale K. 2,8-Disubstituted-1,5-naphthyridines as Dual Inhibitors of Plasmodium falciparum Phosphatidylinositol-4-kinase and Hemozoin Formation with In Vivo Efficacy. J Med Chem 2024; 67:11401-11420. [PMID: 38918002 PMCID: PMC11247499 DOI: 10.1021/acs.jmedchem.4c01154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
Structure-activity relationship studies of 2,8-disubstituted-1,5-naphthyridines, previously reported as potent inhibitors of Plasmodium falciparum (Pf) phosphatidylinositol-4-kinase β (PI4K), identified 1,5-naphthyridines with basic groups at 8-position, which retained Plasmodium PI4K inhibitory activity but switched primary mode of action to the host hemoglobin degradation pathway through inhibition of hemozoin formation. These compounds showed minimal off-target inhibitory activity against the human phosphoinositide kinases and MINK1 and MAP4K kinases, which were associated with the teratogenicity and testicular toxicity observed in rats for the PfPI4K inhibitor clinical candidate MMV390048. A representative compound from the series retained activity against field isolates and lab-raised drug-resistant strains of Pf. It was efficacious in the humanized NSG mouse malaria infection model at a single oral dose of 32 mg/kg. This compound was nonteratogenic in the zebrafish embryo model of teratogenicity and has a low predicted human dose, indicating that this series has the potential to deliver a preclinical candidate for malaria.
Collapse
Affiliation(s)
- Godwin
Akpeko Dziwornu
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Donald Seanego
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Stephen Fienberg
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Monica Clements
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Jasmin Ferreira
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Venkata S. Sypu
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Sauvik Samanta
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Ashlyn D. Bhana
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Constance M. Korkor
- Department
of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Larnelle F. Garnie
- Department
of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Nicole Teixeira
- Department
of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Kathryn J. Wicht
- Drug
Discovery and Development Centre (H3D), Department of Chemistry and
Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Dale Taylor
- Drug
Discovery and Development Centre (H3D), Division of Clinical Pharmacology,
Department of Medicine, University of Cape
Town, Observatory 7925, South Africa
| | - Ronald Olckers
- Drug
Discovery and Development Centre (H3D), Division of Clinical Pharmacology,
Department of Medicine, University of Cape
Town, Observatory 7925, South Africa
| | - Mathew Njoroge
- Drug
Discovery and Development Centre (H3D), Division of Clinical Pharmacology,
Department of Medicine, University of Cape
Town, Observatory 7925, South Africa
| | - Liezl Gibhard
- Drug
Discovery and Development Centre (H3D), Division of Clinical Pharmacology,
Department of Medicine, University of Cape
Town, Observatory 7925, South Africa
| | - Nicolaas Salomane
- Drug
Discovery and Development Centre (H3D), Institute of Infectious Disease
and Molecular Medicine, University of Cape
Town, Observatory, Cape Town 7925, South Africa
| | - Sergio Wittlin
- Swiss Tropical
and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- University
of Basel, 4001 Basel, Switzerland
| | | | | | - Nicole Sevilleno
- Wellcome
Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, U.K.
| | - Rachael Coyle
- Wellcome
Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, U.K.
| | - Marcus C. S. Lee
- Wellcome
Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, U.K.
| | - Luiz C. Godoy
- Department
of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Charisse Flerida Pasaje
- Department
of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jacquin C. Niles
- Department
of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Janette Reader
- Department
of Biochemistry, Genetics and Microbiology, Institute
for Sustainable Malaria Control, University
of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Mariette van der Watt
- Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Lyn-Marié Birkholtz
- Department
of Biochemistry, Genetics and Microbiology, Institute
for Sustainable Malaria Control, University
of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Judith M. Bolscher
- TropIQ Health Sciences, Transistorweg 5, 6534 AT Nijmegen, The Netherlands
| | | | - Lauren B. Coulson
- Drug
Discovery and Development Centre (H3D), Institute of Infectious Disease
and Molecular Medicine, University of Cape
Town, Observatory, Cape Town 7925, South Africa
| | - Gregory S. Basarab
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- Drug
Discovery and Development Centre (H3D), Division of Clinical Pharmacology,
Department of Medicine, University of Cape
Town, Observatory 7925, South Africa
| | - Sandeep R. Ghorpade
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Kelly Chibale
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council Drug Discovery
and Development
Research Unit, Department of Chemistry and Institute of Infectious
Disease and Molecular Medicine, University
of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
14
|
Kovács H, Jakusch T, May NV, Tóth S, Szakács G, Enyedy ÉA. Complex formation of ML324, the histone demethylase inhibitor, with essential metal ions: Relationship between solution chemistry and anticancer activity. J Inorg Biochem 2024; 255:112540. [PMID: 38552361 DOI: 10.1016/j.jinorgbio.2024.112540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 04/16/2024]
Abstract
N-(3-(dimethylamino)propyl-4-(8-hydroxyquinolin-6-yl)benzamide (ML324, HL) is a potent inhibitor of the iron-containing histone demethylase KDM4, a recognized potential target of cancer therapeutics. Herein, we report the proton dissociation and complex formation processes of ML324 with essential metal ions such as Fe(II), Fe(III), Cu(II) and Zn(II) using UV-visible, fluorescence, electron paramagnetic resonance and 1H NMR spectroscopic methods. The electrochemical behaviour of the copper and iron complexes was characterized by cyclic voltammetry and spectroelectrochemistry. The solid phase structure of ML324 analysed by X-ray crystallography is also provided. Based on the solution equilibrium data, ML324 is present in solution in H2L+ form with a protonated dimethylammonium moiety at pH 7.4, and this (N,O) donor bearing ligand forms mono and bis complexes with all the studied metal ions and the tris-ligand species is also observed with Fe(III). At pH 7.4 the metal binding ability of ML324 follows the order: Fe(II) < Zn(II) < Cu(II) < Fe(III). Complexation with iron resulted in a negative redox potential (E'1/2 = -145 mV vs. NHE), further suggesting that the ligand has a preference for Fe(III) over Fe(II). ML324 was tested for its anticancer activity in chemosensitive and resistant human cancer cells overexpressing the efflux pump P-glycoprotein. ML324 exerted similar activity in all tested cells (IC50 = 1.9-3.6 μM). Co-incubation and complexation of the compound with Cu(II) and Zn(II) had no impact on the cytotoxicity of ML324, whereas Fe(III) decreased the toxicity in a concentration-dependent manner, and this effect was more pronounced in the multidrug resistant cells.
Collapse
Affiliation(s)
- Hilda Kovács
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Department of Molecular and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7-8, H-6720 Szeged, Hungary; Department of Molecular and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7-8, H-6720 Szeged, Hungary
| | - Tamás Jakusch
- Department of Molecular and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7-8, H-6720 Szeged, Hungary
| | - Nóra V May
- Centre for Structural Science, Research Centre for Natural Sciences, Hungarian Research Network (HUN-REN), Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Szilárd Tóth
- Drug Resistance Research Group, Institute of Molecular Life Sciences, Research Centre for Natural Sciences, Hungarian Research Network (HUN-REN), Magyar Tudósok krt. 2, H-1117 Budapest, Hungary; National Laboratory for Drug Research and Development, Magyar Tudósok krt. 2, H-1117 Budapest, Hungary
| | - Gergely Szakács
- Drug Resistance Research Group, Institute of Molecular Life Sciences, Research Centre for Natural Sciences, Hungarian Research Network (HUN-REN), Magyar Tudósok krt. 2, H-1117 Budapest, Hungary; Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Éva A Enyedy
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Department of Molecular and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7-8, H-6720 Szeged, Hungary; Department of Molecular and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7-8, H-6720 Szeged, Hungary.
| |
Collapse
|
15
|
Lindblom JR, Zhang X, Lehane AM. A pH Fingerprint Assay to Identify Inhibitors of Multiple Validated and Potential Antimalarial Drug Targets. ACS Infect Dis 2024; 10:1185-1200. [PMID: 38499199 PMCID: PMC11019546 DOI: 10.1021/acsinfecdis.3c00588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/22/2024] [Accepted: 02/09/2024] [Indexed: 03/20/2024]
Abstract
New drugs with novel modes of action are needed to safeguard malaria treatment. In recent years, millions of compounds have been tested for their ability to inhibit the growth of asexual blood-stage Plasmodium falciparum parasites, resulting in the identification of thousands of compounds with antiplasmodial activity. Determining the mechanisms of action of antiplasmodial compounds informs their further development, but remains challenging. A relatively high proportion of compounds identified as killing asexual blood-stage parasites show evidence of targeting the parasite's plasma membrane Na+-extruding, H+-importing pump, PfATP4. Inhibitors of PfATP4 give rise to characteristic changes in the parasite's internal [Na+] and pH. Here, we designed a "pH fingerprint" assay that robustly identifies PfATP4 inhibitors while simultaneously allowing the detection of (and discrimination between) inhibitors of the lactate:H+ transporter PfFNT, which is a validated antimalarial drug target, and the V-type H+ ATPase, which was suggested as a possible target of the clinical candidate ZY19489. In our pH fingerprint assays and subsequent secondary assays, ZY19489 did not show evidence for the inhibition of pH regulation by the V-type H+ ATPase, suggesting that it has a different mode of action in the parasite. The pH fingerprint assay also has the potential to identify protonophores, inhibitors of the acid-loading Cl- transporter(s) (for which the molecular identity(ies) remain elusive), and compounds that act through inhibition of either the glucose transporter PfHT or glycolysis. The pH fingerprint assay therefore provides an efficient starting point to match a proportion of antiplasmodial compounds with their mechanisms of action.
Collapse
Affiliation(s)
| | | | - Adele M. Lehane
- Research School of Biology, Australian National University, Canberra, Australian Capital
Territory 2600, Australia
| |
Collapse
|
16
|
Greyling N, van der Watt M, Gwarinda H, van Heerden A, Greenhouse B, Leroy D, Niemand J, Birkholtz LM. Genetic complexity alters drug susceptibility of asexual and gametocyte stages of Plasmodium falciparum to antimalarial candidates. Antimicrob Agents Chemother 2024; 68:e0129123. [PMID: 38259087 PMCID: PMC10916389 DOI: 10.1128/aac.01291-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024] Open
Abstract
Malaria elimination requires interventions able to target both the asexual blood stage (ABS) parasites and transmissible gametocyte stages of Plasmodium falciparum. Lead antimalarial candidates are evaluated against clinical isolates to address key concerns regarding efficacy and to confirm that the current, circulating parasites from endemic regions lack resistance against these candidates. While this has largely been performed on ABS parasites, limited data are available on the transmission-blocking efficacy of compounds with multistage activity. Here, we evaluated the efficacy of lead antimalarial candidates against both ABS parasites and late-stage gametocytes side-by-side, against clinical P. falciparum isolates from southern Africa. We additionally correlated drug efficacy to the genetic diversity of the clinical isolates as determined with a panel of well-characterized, genome-spanning microsatellite markers. Our data indicate varying sensitivities of the isolates to key antimalarial candidates, both for ABS parasites and gametocyte stages. While ABS parasites were efficiently killed, irrespective of genetic complexity, antimalarial candidates lost some gametocytocidal efficacy when the gametocytes originated from genetically complex, multiple-clone infections. This suggests a fitness benefit to multiclone isolates to sustain transmission and reduce drug susceptibility. In conclusion, this is the first study to investigate the efficacy of antimalarial candidates on both ABS parasites and gametocytes from P. falciparum clinical isolates where the influence of parasite genetic complexity is highlighted, ultimately aiding the malaria elimination agenda.
Collapse
Affiliation(s)
- Nicola Greyling
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Mariëtte van der Watt
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Hazel Gwarinda
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Ashleigh van Heerden
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Bryan Greenhouse
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Didier Leroy
- Medicines for Malaria Venture, Geneva, Switzerland
| | - Jandeli Niemand
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Lyn-Marié Birkholtz
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
17
|
Rajendran V, Naveen NC. Identifying Fast and Slow-Acting Antimalarial Compounds of Pandemic Response Box Against Blood-Stage Culture of Plasmodium falciparum 3D7. Curr Microbiol 2024; 81:81. [PMID: 38289473 DOI: 10.1007/s00284-023-03601-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/23/2023] [Indexed: 02/01/2024]
Abstract
The evolving clinical resistance in Plasmodium falciparum and the spike in malarial cases after the COVID-19 outbreak has triggered a search for new antimalarials effective against multi-drug-resistant P. falciparum strains. In this study, we assessed the timing of action, either fast or slow-acting of 13 potent compounds of Pandemic Response Box (PRB) against blood-stage Pf3D7 strain by SYBR Green-I assay. The asynchronous culture of Pf3D7 was exposed to varying concentrations of 13 compounds, and IC50 values were determined at 12, 24, 48, 72, and 96 h. We identified four fast-acting compounds (MMV000008, MMV1593541, MMV020752, MMV396785) with rapid-growth inhibitory activity having IC50 values ≤ 0.3 µM at 12 and 24 h. Similarly, we determined nine slow-acting compounds (MMV159340, MMV1634492, MMV1581558, MMV689758, MMV1593540, MMV394033, MMV019724, MMV000725, MMV1557856) having IC50 values ≤ 0.5 µM at 72 and 96 h. Furthermore, the stage-specific action of the two most potent fast-acting compounds (MMV1593541 and MMV020752) against rings, trophozoites, and schizonts at 48 h of exposure revealed that ring-stage parasites showed reduced IC50 values compared to mature stage forms. Therefore, our study demonstrates for the first time the identification of the most potent fast and slow-acting compounds from PRB against blood-stage infection, suggesting its utility in clinics and considering it as a partner drug in combination therapies.
Collapse
Affiliation(s)
- Vinoth Rajendran
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India.
| | | |
Collapse
|
18
|
Luo AP, Giannangelo C, Siddiqui G, Creek DJ. Promising antimalarial hits from phenotypic screens: a review of recently-described multi-stage actives and their modes of action. Front Cell Infect Microbiol 2023; 13:1308193. [PMID: 38162576 PMCID: PMC10757594 DOI: 10.3389/fcimb.2023.1308193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Over the last two decades, global malaria cases caused by Plasmodium falciparum have declined due to the implementation of effective treatments and the use of insecticides. However, the COVID-19 pandemic caused major disruption in the timely delivery of medical goods and diverted public health resources, impairing malaria control. The emergence of resistance to all existing frontline antimalarials underpins an urgent need for new antimalarials with novel mechanisms of action. Furthermore, the need to reduce malaria transmission and/or prevent malaria infection has shifted the focus of antimalarial research towards the discovery of compounds that act beyond the symptomatic blood stage and also impact other parasite life cycle stages. Phenotypic screening has been responsible for the majority of new antimalarial lead compounds discovered over the past 10 years. This review describes recently reported novel antimalarial hits that target multiple parasite stages and were discovered by phenotypic screening during the COVID-19 pandemic. Their modes of action and targets in blood stage parasites are also discussed.
Collapse
Affiliation(s)
| | | | - Ghizal Siddiqui
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Darren J. Creek
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|
19
|
Huang Q, Chen J, Pan G, Reinke AW. Screening of the Pandemic Response Box identifies anti-microsporidia compounds. PLoS Negl Trop Dis 2023; 17:e0011806. [PMID: 38064503 PMCID: PMC10732440 DOI: 10.1371/journal.pntd.0011806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/20/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
Microsporidia are fungal obligate intracellular pathogens, which infect most animals and cause microsporidiosis. Despite the serious threat that microsporidia pose to humans and agricultural animals, few drugs are available for the treatment and control of microsporidia. To identify novel inhibitors, we took advantage of the model organism Caenorhabditis elegans infected with its natural microsporidian Nematocida parisii. We used this system to screen the Pandemic Response Box, a collection of 400 diverse compounds with known antimicrobial activity. After testing these compounds in a 96-well format at high (100 μM) and low (40 μM) concentrations, we identified four inhibitors that restored the ability of C. elegans to produce progeny in the presence of N. parisii. All four compounds reduced the pathogen load of both N. parisii and Pancytospora epiphaga, a C. elegans-infecting microsporidia related to human-infecting species. One of these compounds, a known inhibitor of a viral protease, MMV1006203, inhibited invasion and prevented the firing of spores. A bis-indole derivative, MMV1593539, decreased spore viability. An albendazole analog, MMV1782387, inhibited proliferation of N. parisii. We tested albendazole as well as 5 other analogs and observed that MMV1782387 was amongst the strongest inhibitors of N. parisii and displayed the least host toxicity. Our study further demonstrates the effectiveness of the C. elegans-N. parisii system for discovering microsporidia inhibitors and the compounds we identified provide potential scaffolds for anti-microsporidia drug development.
Collapse
Affiliation(s)
- Qingyuan Huang
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jie Chen
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Guoqing Pan
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Aaron W. Reinke
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
van Heerden A, Turon G, Duran-Frigola M, Pillay N, Birkholtz LM. Machine Learning Approaches Identify Chemical Features for Stage-Specific Antimalarial Compounds. ACS OMEGA 2023; 8:43813-43826. [PMID: 38027377 PMCID: PMC10666252 DOI: 10.1021/acsomega.3c05664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023]
Abstract
Efficacy data from diverse chemical libraries, screened against the various stages of the malaria parasite Plasmodium falciparum, including asexual blood stage (ABS) parasites and transmissible gametocytes, serve as a valuable reservoir of information on the chemical space of compounds that are either active (or not) against the parasite. We postulated that this data can be mined to define chemical features associated with the sole ABS activity and/or those that provide additional life cycle activity profiles like gametocytocidal activity. Additionally, this information could provide chemical features associated with inactive compounds, which could eliminate any future unnecessary screening of similar chemical analogs. Therefore, we aimed to use machine learning to identify the chemical space associated with stage-specific antimalarial activity. We collected data from various chemical libraries that were screened against the asexual (126 374 compounds) and sexual (gametocyte) stages of the parasite (93 941 compounds), calculated the compounds' molecular fingerprints, and trained machine learning models to recognize stage-specific active and inactive compounds. We were able to build several models that predict compound activity against ABS and dual activity against ABS and gametocytes, with Support Vector Machines (SVM) showing superior abilities with high recall (90 and 66%) and low false-positive predictions (15 and 1%). This allowed the identification of chemical features enriched in active and inactive populations, an important outcome that could be mined for essential chemical features to streamline hit-to-lead optimization strategies of antimalarial candidates. The predictive capabilities of the models held true in diverse chemical spaces, indicating that the ML models are therefore robust and can serve as a prioritization tool to drive and guide phenotypic screening and medicinal chemistry programs.
Collapse
Affiliation(s)
- Ashleigh van Heerden
- Department
of Biochemistry, Genetics and Microbiology, Institute for Sustainable
Malaria Control, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Gemma Turon
- Ersilia
Open Source Initiative, 28 Belgrave Road, Cambridge CB1 3DE, U.K.
| | | | - Nelishia Pillay
- Department
of Computer Science, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Lyn-Marié Birkholtz
- Department
of Biochemistry, Genetics and Microbiology, Institute for Sustainable
Malaria Control, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| |
Collapse
|
21
|
Alder A, Sanchez CP, Russell MRG, Collinson LM, Lanzer M, Blackman MJ, Gilberger TW, Matz JM. The role of Plasmodium V-ATPase in vacuolar physiology and antimalarial drug uptake. Proc Natl Acad Sci U S A 2023; 120:e2306420120. [PMID: 37463201 PMCID: PMC10372686 DOI: 10.1073/pnas.2306420120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023] Open
Abstract
To ensure their survival in the human bloodstream, malaria parasites degrade up to 80% of the host erythrocyte hemoglobin in an acidified digestive vacuole. Here, we combine conditional reverse genetics and quantitative imaging approaches to demonstrate that the human malaria pathogen Plasmodium falciparum employs a heteromultimeric V-ATPase complex to acidify the digestive vacuole matrix, which is essential for intravacuolar hemoglobin release, heme detoxification, and parasite survival. We reveal an additional function of the membrane-embedded V-ATPase subunits in regulating morphogenesis of the digestive vacuole independent of proton translocation. We further show that intravacuolar accumulation of antimalarial chemotherapeutics is surprisingly resilient to severe deacidification of the vacuole and that modulation of V-ATPase activity does not affect parasite sensitivity toward these drugs.
Collapse
Affiliation(s)
- Arne Alder
- Cell Biology of Human Parasites Group, Centre for Structural Systems Biology, Hamburg22607, Germany
- Cellular Parasitology Department, Bernhard Nocht Institute for Tropical Medicine, Hamburg20359, Germany
- Department of Biology, University of Hamburg, Hamburg20146, Germany
| | - Cecilia P. Sanchez
- Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg69120, Germany
| | - Matthew R. G. Russell
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, LondonNW1 1AT, United Kingdom
- Centre for Ultrastructural Imaging, King’s College London, LondonSE1 1UL, United Kingdom
| | - Lucy M. Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, LondonNW1 1AT, United Kingdom
| | - Michael Lanzer
- Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg69120, Germany
| | - Michael J. Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, LondonNW1 1AT, United Kingdom
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, LondonWC1E 7HT, United Kingdom
| | - Tim-Wolf Gilberger
- Cell Biology of Human Parasites Group, Centre for Structural Systems Biology, Hamburg22607, Germany
- Cellular Parasitology Department, Bernhard Nocht Institute for Tropical Medicine, Hamburg20359, Germany
- Department of Biology, University of Hamburg, Hamburg20146, Germany
| | - Joachim M. Matz
- Cell Biology of Human Parasites Group, Centre for Structural Systems Biology, Hamburg22607, Germany
- Cellular Parasitology Department, Bernhard Nocht Institute for Tropical Medicine, Hamburg20359, Germany
- Malaria Biochemistry Laboratory, The Francis Crick Institute, LondonNW1 1AT, United Kingdom
| |
Collapse
|
22
|
Miyazaki Y, Vos MW, Geurten FJA, Bigeard P, Kroeze H, Yoshioka S, Arisawa M, Inaoka DK, Soulard V, Dechering KJ, Franke-Fayard B, Miyazaki S. A versatile Plasmodium falciparum reporter line expressing NanoLuc enables highly sensitive multi-stage drug assays. Commun Biol 2023; 6:713. [PMID: 37438491 DOI: 10.1038/s42003-023-05078-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 06/27/2023] [Indexed: 07/14/2023] Open
Abstract
Transgenic luciferase-expressing Plasmodium falciparum parasites have been widely used for the evaluation of anti-malarial compounds. Here, to screen for anti-malarial drugs effective against multiple stages of the parasite, we generate a P. falciparum reporter parasite that constitutively expresses NanoLuciferase (NanoLuc) throughout its whole life cycle. The NanoLuc-expressing P. falciparum reporter parasite shows a quantitative NanoLuc signal in the asexual blood, gametocyte, mosquito, and liver stages. We also establish assay systems to evaluate the anti-malarial activity of compounds at the asexual blood, gametocyte, and liver stages, and then determine the 50% inhibitory concentration (IC50) value of several anti-malarial compounds. Through the development of this robust high-throughput screening system, we identify an anti-malarial compound that kills the asexual blood stage parasites. Our study highlights the utility of the NanoLuc reporter line, which may advance anti-malarial drug development through the improved screening of compounds targeting the human malarial parasite at multiple stages.
Collapse
Affiliation(s)
- Yukiko Miyazaki
- Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 852-8523, Nagasaki, Japan.
- Department of Parasitology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands.
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan.
| | - Martijn W Vos
- TropIQ Health Sciences, Transistorweg 5, 6534 AT, Nijmegen, The Netherlands
| | - Fiona J A Geurten
- Department of Parasitology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Pierre Bigeard
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, F-75013, Paris, France
| | - Hans Kroeze
- Department of Parasitology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Shohei Yoshioka
- Graduate School of Pharmaceutical Sciences, Osaka University, 565-0871, Osaka, Japan
| | - Mitsuhiro Arisawa
- Graduate School of Pharmaceutical Sciences, Osaka University, 565-0871, Osaka, Japan
| | - Daniel Ken Inaoka
- Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 852-8523, Nagasaki, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, 852-8523, Japan
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Valerie Soulard
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, F-75013, Paris, France
| | - Koen J Dechering
- TropIQ Health Sciences, Transistorweg 5, 6534 AT, Nijmegen, The Netherlands
| | - Blandine Franke-Fayard
- Department of Parasitology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Shinya Miyazaki
- Department of Parasitology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands.
- Department of Cellular Architecture Studies, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 852-8523, Nagasaki, Japan.
| |
Collapse
|
23
|
Dos Reis TF, de Castro PA, Bastos RW, Pinzan CF, Souza PFN, Ackloo S, Hossain MA, Drewry DH, Alkhazraji S, Ibrahim AS, Jo H, Lightfoot JD, Adams EM, Fuller KK, deGrado WF, Goldman GH. A host defense peptide mimetic, brilacidin, potentiates caspofungin antifungal activity against human pathogenic fungi. Nat Commun 2023; 14:2052. [PMID: 37045836 PMCID: PMC10090755 DOI: 10.1038/s41467-023-37573-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
Fungal infections cause more than 1.5 million deaths a year. Due to emerging antifungal drug resistance, novel strategies are urgently needed to combat life-threatening fungal diseases. Here, we identify the host defense peptide mimetic, brilacidin (BRI) as a synergizer with caspofungin (CAS) against CAS-sensitive and CAS-resistant isolates of Aspergillus fumigatus, Candida albicans, C. auris, and CAS-intrinsically resistant Cryptococcus neoformans. BRI also potentiates azoles against A. fumigatus and several Mucorales fungi. BRI acts in A. fumigatus by affecting cell wall integrity pathway and cell membrane potential. BRI combined with CAS significantly clears A. fumigatus lung infection in an immunosuppressed murine model of invasive pulmonary aspergillosis. BRI alone also decreases A. fumigatus fungal burden and ablates disease development in a murine model of fungal keratitis. Our results indicate that combinations of BRI and antifungal drugs in clinical use are likely to improve the treatment outcome of aspergillosis and other fungal infections.
Collapse
Affiliation(s)
- Thaila Fernanda Dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Rafael Wesley Bastos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Camila Figueiredo Pinzan
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Pedro F N Souza
- Visiting professor at Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, 60451, Brazil
| | - Suzanne Ackloo
- Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS South Tower, Suite 700, Toronto, ON, M5G 1L7, Canada
| | - Mohammad Anwar Hossain
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - David Harold Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sondus Alkhazraji
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles (UCLA) Medical Center, Torrance, CA, 90502, USA
| | - Ashraf S Ibrahim
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles (UCLA) Medical Center, Torrance, CA, 90502, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Hyunil Jo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Jorge D Lightfoot
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Emily M Adams
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Kevin K Fuller
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - William F deGrado
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
24
|
Patra J, Rana D, Arora S, Pal M, Mahindroo N. Falcipains: Biochemistry, target validation and structure-activity relationship studies of inhibitors as antimalarials. Eur J Med Chem 2023; 252:115299. [PMID: 36996716 DOI: 10.1016/j.ejmech.2023.115299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/04/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
Malaria is a tropical disease with significant morbidity and mortality burden caused by Plasmodium species in Africa, the Middle East, Asia, and South America. Pathogenic Plasmodium species have lately become increasingly resistant to approved chemotherapeutics and combination therapies. Therefore, there is an emergent need for identifying new druggable targets and novel chemical classes against the parasite. Falcipains, cysteine proteases required for heme metabolism in the erythrocytic stage, have emerged as promising drug targets against Plasmodium species that infect humans. This perspective discusses the biology, biochemistry, structural features, and genetics of falcipains. The efforts to identify selective or dual inhibitors and their structure-activity relationships are reviewed to give a perspective on the design of novel compounds targeting falcipains for antimalarial activity evaluating reasons for hits and misses for this important target.
Collapse
Affiliation(s)
- Jeevan Patra
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Energy Acres, Bidholi, Via Prem Nagar, Uttarakhand, 248007, India
| | - Devika Rana
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh, 173229, India
| | - Smriti Arora
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Energy Acres, Bidholi, Via Prem Nagar, Uttarakhand, 248007, India
| | - Mintu Pal
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Bathinda, Punjab, 151001, India
| | - Neeraj Mahindroo
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Energy Acres, Bidholi, Via Prem Nagar, Uttarakhand, 248007, India; School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, 124 Paud Road, Kothrud, Pune, Maharashtra, 411038, India.
| |
Collapse
|
25
|
Woodland JG, Basarab GS, Mogwera K, Winks S, Chibale K. The 2022 H3D Symposium: Celebrating over a Decade of African-Led Infectious Disease Drug Discovery to Enhance Global Health. ACS Infect Dis 2023; 9:389-393. [PMID: 36762950 DOI: 10.1021/acsinfecdis.3c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- John G Woodland
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch 7700, South Africa.,South African Medical Research Council Drug Discovery and Development Research Unit, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Gregory S Basarab
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch 7700, South Africa
| | - Koketso Mogwera
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch 7700, South Africa
| | - Susan Winks
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch 7700, South Africa
| | - Kelly Chibale
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch 7700, South Africa.,South African Medical Research Council Drug Discovery and Development Research Unit, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
26
|
Lagardère P, Mustière R, Amanzougaghene N, Hutter S, Casanova M, Franetich JF, Tajeri S, Malzert-Fréon A, Corvaisier S, Azas N, Vanelle P, Verhaeghe P, Primas N, Mazier D, Masurier N, Lisowski V. New antiplasmodial 4-amino-thieno[3,2-d]pyrimidines with improved intestinal permeability and microsomal stability. Eur J Med Chem 2023; 249:115115. [PMID: 36680984 DOI: 10.1016/j.ejmech.2023.115115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
The increasing number of Plasmodium falciparum strains resistant to current treatments justifies the urgent need to discover new compounds active on several stages of the parasite development. Based on the structure of Gamhepathiopine, a 2-tert-butylaminothieno[3,2-d]pyrimidin-4(3H)-one previously identified for its dual activity against the sexual and asexual stages of P. falciparum, 25 new 4-amino-substituted analogues were synthesized and evaluated on the erythrocytic and hepatic stages of Plasmodium. A promising compound, N2-(tert-butyl)-N [4]-(3-(dimethylamino)propyl)-6-(p-tolyl)thieno[3,2-d]pyrimidine-2,4-diamine, showed improved physicochemical properties, intestinal permeability (PAMPA model) and microsomal stability compared to Gamhepathiopine, while maintaining a good antiplasmodial activity on the erythrocytic stage of P. falciparum and on the hepatic stage of P. berghei.
Collapse
Affiliation(s)
- Prisca Lagardère
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques, Montpellier, France
| | - Romain Mustière
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 13385, Marseille, cedex 05, France
| | - Nadia Amanzougaghene
- Centre d'Immunologie et des Maladies Infectieuses (CIMI), INSERM, CNRS, Sorbonne Université, Paris, France
| | - Sébastien Hutter
- Aix Marseille Université, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Marion Casanova
- Aix Marseille Université, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Jean-François Franetich
- Centre d'Immunologie et des Maladies Infectieuses (CIMI), INSERM, CNRS, Sorbonne Université, Paris, France
| | - Shahin Tajeri
- Centre d'Immunologie et des Maladies Infectieuses (CIMI), INSERM, CNRS, Sorbonne Université, Paris, France
| | | | | | - Nadine Azas
- Aix Marseille Université, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Patrice Vanelle
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 13385, Marseille, cedex 05, France; AP-HM, Hôpital Conception, Service Central de la Qualité et de l'Information Pharmaceutiques, 13005, Marseille, France
| | - Pierre Verhaeghe
- LCC-CNRS, Université de Toulouse, CNRS UPR 8241, UPS, Toulouse, France; Univ. Grenoble Alpes, CNRS, DPM UMR 5063, F-38041, Grenoble, France; CHU de Nîmes, service de pharmacie, Nîmes, France
| | - Nicolas Primas
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 13385, Marseille, cedex 05, France; AP-HM, Hôpital Conception, Service Central de la Qualité et de l'Information Pharmaceutiques, 13005, Marseille, France
| | - Dominique Mazier
- Centre d'Immunologie et des Maladies Infectieuses (CIMI), INSERM, CNRS, Sorbonne Université, Paris, France
| | - Nicolas Masurier
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques, Montpellier, France.
| | - Vincent Lisowski
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques, Montpellier, France.
| |
Collapse
|
27
|
Stampolaki M, Malwal SR, Alvarez-Cabrera N, Gao Z, Moniruzzaman M, Babii SO, Naziris N, Rey-Cibati A, Valladares-Delgado M, Turcu AL, Baek KH, Phan TN, Lee H, Alcaraz M, Watson S, van der Watt M, Coertzen D, Efstathiou N, Chountoulesi M, Shoen CM, Papanastasiou IP, Brea J, Cynamon MH, Birkholtz LM, Kremer L, No JH, Vázquez S, Benaim G, Demetzos C, Zgurskaya HI, Dick T, Oldfield E, D. Kolocouris A. Synthesis and Testing of Analogs of the Tuberculosis Drug Candidate SQ109 against Bacteria and Protozoa: Identification of Lead Compounds against Mycobacterium abscessus and Malaria Parasites. ACS Infect Dis 2023; 9:342-364. [PMID: 36706233 PMCID: PMC10615177 DOI: 10.1021/acsinfecdis.2c00537] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
SQ109 is a tuberculosis drug candidate that has high potency against Mycobacterium tuberculosis and is thought to function at least in part by blocking cell wall biosynthesis by inhibiting the MmpL3 transporter. It also has activity against bacteria and protozoan parasites that lack MmpL3, where it can act as an uncoupler, targeting lipid membranes and Ca2+ homeostasis. Here, we synthesized 18 analogs of SQ109 and tested them against M. smegmatis, M. tuberculosis, M. abscessus, Bacillus subtilis, and Escherichia coli, as well as against the protozoan parasites Trypanosoma brucei, T. cruzi, Leishmania donovani, L. mexicana, and Plasmodium falciparum. Activity against the mycobacteria was generally less than with SQ109 and was reduced by increasing the size of the alkyl adduct, but two analogs were ∼4-8-fold more active than SQ109 against M. abscessus, including a highly drug-resistant strain harboring an A309P mutation in MmpL3. There was also better activity than found with SQ109 with other bacteria and protozoa. Of particular interest, we found that the adamantyl C-2 ethyl, butyl, phenyl, and benzyl analogs had 4-10× increased activity against P. falciparum asexual blood stages, together with low toxicity to a human HepG2 cell line, making them of interest as new antimalarial drug leads. We also used surface plasmon resonance to investigate the binding of inhibitors to MmpL3 and differential scanning calorimetry to investigate binding to lipid membranes. There was no correlation between MmpL3 binding and M. tuberculosis or M. smegmatis cell activity, suggesting that MmpL3 is not a major target in mycobacteria. However, some of the more active species decreased lipid phase transition temperatures, indicating increased accumulation in membranes, which is expected to lead to enhanced uncoupler activity.
Collapse
Affiliation(s)
- Marianna Stampolaki
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Athens 15771, Greece
| | - Satish R. Malwal
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, USA
| | | | - Zijun Gao
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, USA
| | - Mohammad Moniruzzaman
- University of Oklahoma, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, 101 Stephenson Parkway, Norman, OK 73019-5251, USA
| | - Svitlana O. Babii
- University of Oklahoma, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, 101 Stephenson Parkway, Norman, OK 73019-5251, USA
| | - Nikolaos Naziris
- Section of Pharmaceutical Technology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Athens 15771, Greece
| | - André Rey-Cibati
- Instituto de Estudios Avanzados, Caracas, Venezuela Instituto de Biología Experimental, Facultad de Ciencias, Universidad Central de Venezuela (UCV), Caracas, Venezuela
| | - Mariana Valladares-Delgado
- Instituto de Estudios Avanzados, Caracas, Venezuela Instituto de Biología Experimental, Facultad de Ciencias, Universidad Central de Venezuela (UCV), Caracas, Venezuela
| | - Andreea L. Turcu
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l’Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, Barcelona, E-08028, Spain
| | - Kyung-Hwa Baek
- Host-Parasite Research Laboratory, Institut Pasteur Korea, Seongnam-si, Republic of Korea
| | - Trong-Nhat Phan
- Host-Parasite Research Laboratory, Institut Pasteur Korea, Seongnam-si, Republic of Korea
| | - Hyeryon Lee
- Host-Parasite Research Laboratory, Institut Pasteur Korea, Seongnam-si, Republic of Korea
| | - Mattheo Alcaraz
- Institut de Recherche en Infectiologie de Montpellier, CNRS UMR9004, Université de Montpellier, 1919 route de Mende, 34293, Montpellier, France
| | - Savannah Watson
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
| | - Mariette van der Watt
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
| | - Dina Coertzen
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
| | - Natasa Efstathiou
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Athens 15771, Greece
| | - Maria Chountoulesi
- Section of Pharmaceutical Technology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Athens 15771, Greece
| | - Carolyn M. Shoen
- Central New York Research Corporation, Veterans Affairs Medical Center, Syracuse, NY 13210, U
| | - Ioannis P. Papanastasiou
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Athens 15771, Greece
| | - Jose Brea
- Drug Screening Platform/Biofarma Research Group, CIMUS Research Center, Departamento de Farmacoloxía, Farmacia e Tecnoloxía Farmacéutica, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| | - Michael H. Cynamon
- Central New York Research Corporation, Veterans Affairs Medical Center, Syracuse, NY 13210, U
| | - Lyn-Marié Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
| | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier, CNRS UMR9004, Université de Montpellier, 1919 route de Mende, 34293, Montpellier, France
- INSERM, IRIM, Montpellier, France
| | - Joo Hwan No
- Host-Parasite Research Laboratory, Institut Pasteur Korea, Seongnam-si, Republic of Korea
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l’Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, Barcelona, E-08028, Spain
| | - Gustavo Benaim
- Instituto de Estudios Avanzados, Caracas, Venezuela Instituto de Biología Experimental, Facultad de Ciencias, Universidad Central de Venezuela (UCV), Caracas, Venezuela
| | - Costas Demetzos
- Section of Pharmaceutical Technology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Athens 15771, Greece
| | - Helen I. Zgurskaya
- University of Oklahoma, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, 101 Stephenson Parkway, Norman, OK 73019-5251, USA
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
- Department of Microbiology and Immunology, Georgetown University, Washington, DC 20007, USA
| | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, USA
| | - Antonios D. Kolocouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Athens 15771, Greece
| |
Collapse
|
28
|
Promising Antifungal Molecules against Mucormycosis Agents Identified from Pandemic Response Box ®: In Vitro and In Silico Analyses. J Fungi (Basel) 2023; 9:jof9020187. [PMID: 36836302 PMCID: PMC9959553 DOI: 10.3390/jof9020187] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Mucormycosis is considered concerning invasive fungal infections due to its high mortality rates, difficult diagnosis and limited treatment approaches. Mucorales species are highly resistant to many antifungal agents and the search for alternatives is an urgent need. In the present study, a library with 400 compounds called the Pandemic Response Box® was used and four compounds were identified: alexidine and three non-commercial molecules. These compounds showed anti-biofilm activity, as well as alterations in fungal morphology and cell wall and plasma membrane structure. They also induced oxidative stress and mitochondrial membrane depolarization. In silico analysis revealed promising pharmacological parameters. These results suggest that these four compounds are potent candidates to be considered in future studies for the development of new approaches to treat mucormycosis.
Collapse
|
29
|
Macho M, Saha S, Konert G, Banerjee A, Ewe D, Hrouzek P, Urajová P, Saurav K. Screening of the Medicines for Malaria Venture Pandemic Response Box for Discovery of Antivirulent Drug against Pseudomonas aeruginosa. Microbiol Spectr 2022; 10:e0223222. [PMID: 36301146 PMCID: PMC9769688 DOI: 10.1128/spectrum.02232-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/01/2022] [Indexed: 01/06/2023] Open
Abstract
Resistance development and exhaustion of the arsenal of existing antibacterial agents urgently require an alternative approach toward drug discovery. Herein, we report the screening of Medicines for Malaria Venture (MMV) Pandemic Response Box (PRB) through a cascade developed to streamline the potential compounds with antivirulent properties to combat an opportunistic pathogen, Pseudomonas aeruginosa. To find an agent suppressing the production of P. aeruginosa virulence factors, we assessed the potential of the compounds in PRB with quorum sensing inhibitory activity. Our approach led us to identify four compounds with significant inhibition of extracellular virulence factor production and biofilm formation. This provides an opportunity to expand and redirect the application of these data sets toward the development of a drug with unexplored target-based activity. IMPORTANCE The rise of drug-resistant pathogens as well as overuse and misuse of antibiotics threatens modern medicine as the number of effective antimicrobial drugs steadily decreases. Given the nature of antimicrobial resistance development under intense selective pressure such as the one posed by pathogen-eliminating antibiotics, new treatment options which could slow down the emergence of resistance are urgently needed. Antivirulence therapy aims at suppressing a pathogen's ability to cause disease rather than eliminating it, generating significantly lower selective pressure. Quorum sensing inhibitors are thought to be able to downregulate the production of virulence factors, allowing for smaller amounts of antimicrobials to be used and thus preventing the emergence of resistance. The PRB constitutes an unprecedented opportunity to repurpose new as well as known compounds with cytotoxicity and in vitro absorption, distribution, metabolism and excretion (ADME) profile available, thus shortening the time between compound discovery and medicinal use.
Collapse
Affiliation(s)
- Markéta Macho
- Laboratory of Algal Biotechnology, Institute of Microbiology of the Czech Academy of Sciences-Center Algatech, Třeboň, Czech Republic
- University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
| | - Subhasish Saha
- Laboratory of Algal Biotechnology, Institute of Microbiology of the Czech Academy of Sciences-Center Algatech, Třeboň, Czech Republic
| | - Grzegorz Konert
- Laboratory of Photosynthesis, Institute of Microbiology of the Czech Academy of Sciences—Center Algatech, Třeboň, Czech Republic
| | - Avik Banerjee
- Laboratory of Photosynthesis, Institute of Microbiology of the Czech Academy of Sciences—Center Algatech, Třeboň, Czech Republic
| | - Daniela Ewe
- Laboratory of Algal Biotechnology, Institute of Microbiology of the Czech Academy of Sciences-Center Algatech, Třeboň, Czech Republic
| | - Pavel Hrouzek
- Laboratory of Algal Biotechnology, Institute of Microbiology of the Czech Academy of Sciences-Center Algatech, Třeboň, Czech Republic
| | - Petra Urajová
- Laboratory of Algal Biotechnology, Institute of Microbiology of the Czech Academy of Sciences-Center Algatech, Třeboň, Czech Republic
| | - Kumar Saurav
- Laboratory of Algal Biotechnology, Institute of Microbiology of the Czech Academy of Sciences-Center Algatech, Třeboň, Czech Republic
| |
Collapse
|
30
|
Sharma I, Farr L, Moonah S. Alcohol Abuse Drug Disulfiram Is Effective against Cyst Stages of Entamoeba histolytica Parasite. Antimicrob Agents Chemother 2022; 66:e0083222. [PMID: 36255253 PMCID: PMC9664845 DOI: 10.1128/aac.00832-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/28/2022] [Indexed: 11/20/2022] Open
Abstract
New anti-Entamoeba histolytica multistage drugs are needed because only one drug class, nitroimidazoles, is available for treating invasive disease, and it does not effectively eradicate the infective cyst stage. Zinc ditiocarb (ZnDTC), a main metabolite of the FDA-approved drug disulfiram, was recently shown to be highly effective against the invasive trophozoite stage. In this brief report, we show that ZnDTC is active against cysts, with similar potency to first-line cysticidal drug paromomycin.
Collapse
Affiliation(s)
- Ishrya Sharma
- Division of Infectious Diseases & International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Laura Farr
- Division of Infectious Diseases & International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Shannon Moonah
- Division of Infectious Diseases & International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
31
|
Challis MP, Devine SM, Creek DJ. Current and emerging target identification methods for novel antimalarials. Int J Parasitol Drugs Drug Resist 2022; 20:135-144. [PMID: 36410177 PMCID: PMC9771836 DOI: 10.1016/j.ijpddr.2022.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
New antimalarial compounds with novel mechanisms of action are urgently needed to combat the recent rise in antimalarial drug resistance. Phenotypic high-throughput screens have proven to be a successful method for identifying new compounds, however, do not provide mechanistic information about the molecular target(s) responsible for antimalarial action. Current and emerging target identification methods such as in vitro resistance generation, metabolomics screening, chemoproteomic approaches and biophysical assays measuring protein stability across the whole proteome have successfully identified novel drug targets. This review provides an overview of these techniques, comparing their strengths and weaknesses and how they can be utilised for antimalarial target identification.
Collapse
Affiliation(s)
- Matthew P. Challis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Shane M. Devine
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Darren J. Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia,Corresponding author. Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
32
|
Reader J, Opperman DFL, van der Watt ME, Theron A, Leshabane M, da Rocha S, Turner J, Garrabrant K, Piña I, Mills C, Woster PM, Birkholtz L. New Transmission-Selective Antimalarial Agents through Hit-to-Lead Optimization of 2-([1,1'-Biphenyl]-4-carboxamido)benzoic Acid Derivatives. Chembiochem 2022; 23:e202200427. [PMID: 36106425 PMCID: PMC10946866 DOI: 10.1002/cbic.202200427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/14/2022] [Indexed: 11/12/2022]
Abstract
Malaria elimination requires multipronged approaches, including the application of antimalarial drugs able to block human-to-mosquito transmission of malaria parasites. The transmissible gametocytes of Plasmodium falciparum seem to be highly sensitive towards epidrugs, particularly those targeting demethylation of histone post-translational marks. Here, we report exploration of compounds from a chemical library generated during hit-to-lead optimization of inhibitors of the human histone lysine demethylase, KDM4B. Derivatives of 2-([1,1'-biphenyl]-4-carboxamido) benzoic acid, around either the amide or a sulfonamide linker backbone (2-(arylcarboxamido)benzoic acid, 2-carboxamide (arylsulfonamido)benzoic acid and N-(2-(1H-tetrazol-5-yl)phenyl)-arylcarboxamide), showed potent activity towards late-stage gametocytes (stage IV/V) of P. falciparum, with the most potent compound reaching single digit nanomolar activity. Structure-activity relationship trends were evident and frontrunner compounds also displayed microsomal stability and favourable solubility profiles. Simplified synthetic routes support further derivatization of these compounds for further development of these series as malaria transmission-blocking agents.
Collapse
Affiliation(s)
- Janette Reader
- Department of BiochemistryGenetics and MicrobiologyInstitute for Sustainable Malaria ControlUniversity of PretoriaLynnwood RoadPretoria0028South Africa
| | - Daniel F. L. Opperman
- Department of BiochemistryGenetics and MicrobiologyInstitute for Sustainable Malaria ControlUniversity of PretoriaLynnwood RoadPretoria0028South Africa
| | - Mariëtte E. van der Watt
- Department of BiochemistryGenetics and MicrobiologyInstitute for Sustainable Malaria ControlUniversity of PretoriaLynnwood RoadPretoria0028South Africa
- School of Health Systems and Public HealthUniversity of Pretoria, HatfieldPretoria0028South Africa
| | - Anjo Theron
- Next Generation HealthCouncil for Scientific and Industrial ResearchPretoria0001South Africa
| | - Meta Leshabane
- Department of BiochemistryGenetics and MicrobiologyInstitute for Sustainable Malaria ControlUniversity of PretoriaLynnwood RoadPretoria0028South Africa
| | - Shanté da Rocha
- Department of BiochemistryGenetics and MicrobiologyInstitute for Sustainable Malaria ControlUniversity of PretoriaLynnwood RoadPretoria0028South Africa
| | - Jonathan Turner
- Department of Drug Discovery and Biomedical SciencesMedical University of South CarolinaCharlestonSC 29425USA
| | - Kathleen Garrabrant
- Department of Drug Discovery and Biomedical SciencesMedical University of South CarolinaCharlestonSC 29425USA
| | - Ivett Piña
- Department of Drug Discovery and Biomedical SciencesMedical University of South CarolinaCharlestonSC 29425USA
| | - Catherine Mills
- Department of Drug Discovery and Biomedical SciencesMedical University of South CarolinaCharlestonSC 29425USA
| | - Patrick M. Woster
- Department of Drug Discovery and Biomedical SciencesMedical University of South CarolinaCharlestonSC 29425USA
| | - Lyn‐Marié Birkholtz
- Department of BiochemistryGenetics and MicrobiologyInstitute for Sustainable Malaria ControlUniversity of PretoriaLynnwood RoadPretoria0028South Africa
| |
Collapse
|
33
|
Zhou B, Yue JM. Natural products are the treasure pool for antimalarial agents. Natl Sci Rev 2022; 9:nwac112. [PMID: 36440452 PMCID: PMC9691342 DOI: 10.1093/nsr/nwac112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 05/30/2022] [Accepted: 06/09/2022] [Indexed: 10/05/2023] Open
Abstract
Despite the success in malaria control, it remains a life-threatening infectious disease due mainly to the persistent emergence of drug resistance. Sharpened insight into the historical achievements and current trends in antimalarial drug discovery provides more hopes and advantages on natural products for the development of the next antimalarial treatment.
Collapse
Affiliation(s)
- Bin Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Jian-Min Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| |
Collapse
|
34
|
Kumari J, Kumar V, Behl A, Kumar Sah R, Kumari G, Garg S, Gupta A, Nazar Mohomed Mohaideen. S, Shafi S, Pati S, Samby K, Burrows J, Mohandas N, Singh S. ‘Erythritol’, a safe natural sweetener exhibits multi-stage anti-malarial activity by permeating into Plasmodium falciparum through aquaglyceroporin channel. Biochem Pharmacol 2022; 205:115287. [DOI: 10.1016/j.bcp.2022.115287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 11/28/2022]
|
35
|
Dephospho-Coenzyme A Kinase Is an Exploitable Drug Target against Plasmodium falciparum: Identification of Selective Inhibitors by High-Throughput Screening of a Large Chemical Compound Library. Antimicrob Agents Chemother 2022; 66:e0042022. [DOI: 10.1128/aac.00420-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Malaria is a mosquito-borne fatal infectious disease that affects humans and is caused by
Plasmodium
parasites, primarily
Plasmodium falciparum
. Widespread drug resistance compels us to discover novel compounds and alternative drug discovery targets.
Collapse
|
36
|
Mianda SM, Invernizzi L, van der Watt ME, Reader J, Moyo P, Birkholtz LM, Maharaj VJ. In vitro dual activity of Aloe marlothii roots and its chemical constituents against Plasmodium falciparum asexual and sexual stage parasites. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115551. [PMID: 35850311 DOI: 10.1016/j.jep.2022.115551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aloe marlothii A.Berger (Xanthorrhoeaceae) is indigenous to southern African countries where its aqueous preparations are used in traditional medicine to treat several ailments including hypertension, respiratory infections, venereal diseases, chest pain, sore throat and malaria. AIM OF THE STUDY The aims of this study were as follows: (i) isolate and identify the antiplasmodial active compounds in A. marlothii roots. As the water extract was previously inactive, the dichloromethane:methanol (DCM:MeOH) (1:1) was used, (ii) examine the activity of the isolated compounds against Plasmodium falciparum asexual blood stage (ABS) parasites as well as for transmission-blocking activity against gametocytes and gametes, and (iii) to use in silico tools to predict the target(s) of the active molecules. MATERIALS AND METHODS The crude DCM:MeOH (1:1) extract of A. marlothii roots was fractionated on a reverse phase C8 column, using a positive pressure solid-phase extraction (ppSPE) workstation to produce seven fractions. The resulting fractions and the crude DCM:MeOH extract were tested in vitro against P. falciparum (NF54) ABS parasites using the malaria SYBR Green I based-fluorescence assay. Flash silica chromatography and mass-directed preparative high-performance liquid chromatography were utilised to isolate the active compounds. The isolated compounds were evaluated in vitro against P. falciparum asexual (NF54 and K1 strains) and sexual (gametocytes and gametes) stage parasites. Molecular docking was then used for the in silico prediction of targets for the isolated active compounds in P. falciparum. RESULTS The crude extract and two SPE fractions displayed good antiplasmodial activity with >97% and 100% inhibition of ABS parasites proliferation at 10 and 20 μg/mL, respectively. Following UPLC-MS analysis of these active fractions, a targeted purification resulted in the isolation of six compounds identified as aloesaponol I (1), aloesaponarin I (2), aloesaponol IV (3), β-sorigenin-1-O-methylether (4), emodin (5), and chrysophanol (6). Aloesaponarin I (2) was the most bioactive, compared to other isolated constituents, against P. falciparum ABS parasites exhibiting equipotency against the drug-sensitive (NF54) (IC50 = 1.54 μg/mL (5 μM)) and multidrug-resistant (K1) (IC50 = 1.58 μg/mL (5 μM)) strains. Aloesaponol IV (3) showed pronounced activity against late-stage (>90% stage IV/V) gametocytes (IC50 = 6.53 μg/mL (22.6 μM)) demonstrating a 3-fold selective potency towards these sexual stages compared to asexual forms of the parasite (IC50 = 19.77 ± 6.835 μg/mL (68 μM)). Transmission-blocking potential of aloesaponol IV (3) was validated by in vitro inhibition of exflagellation of male gametes (94% inhibition at 20 μg/mL). In silico studies identified β-hematin and DNA topoisomerase II as potential biological targets of compounds 2 and 3, respectively. CONCLUSION The findings from our study substantiate the traditional use of A. marlothii to treat malaria. To our knowledge, this study has provided the first report on the isolation and identification of antiplasmodial compounds from A. marlothii roots. Furthermore, our study has provided the first report on the transmission-blocking potential of one of the compounds from the genus Aloe, motivating for the investigation of other species within this genus for their potential P. falciparum transmission-blocking activity.
Collapse
Affiliation(s)
- Sephora Mutombo Mianda
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, 0028, South Africa.
| | - Luke Invernizzi
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, 0028, South Africa.
| | - Mariëtte E van der Watt
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria, 0028, South Africa; Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Gezina, Pretoria, 0031, South Africa.
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria, 0028, South Africa.
| | - Phanankosi Moyo
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, 0028, South Africa; Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria, 0028, South Africa.
| | - Lyn-Marié Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria, 0028, South Africa.
| | - Vinesh J Maharaj
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, 0028, South Africa.
| |
Collapse
|
37
|
Arendse LB, Murithi JM, Qahash T, Pasaje CFA, Godoy LC, Dey S, Gibhard L, Ghidelli-Disse S, Drewes G, Bantscheff M, Lafuente-Monasterio MJ, Fienberg S, Wambua L, Gachuhi S, Coertzen D, van der Watt M, Reader J, Aswat AS, Erlank E, Venter N, Mittal N, Luth MR, Ottilie S, Winzeler EA, Koekemoer LL, Birkholtz LM, Niles JC, Llinás M, Fidock DA, Chibale K. The anticancer human mTOR inhibitor sapanisertib potently inhibits multiple Plasmodium kinases and life cycle stages. Sci Transl Med 2022; 14:eabo7219. [PMID: 36260689 PMCID: PMC9951552 DOI: 10.1126/scitranslmed.abo7219] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Compounds acting on multiple targets are critical to combating antimalarial drug resistance. Here, we report that the human "mammalian target of rapamycin" (mTOR) inhibitor sapanisertib has potent prophylactic liver stage activity, in vitro and in vivo asexual blood stage (ABS) activity, and transmission-blocking activity against the protozoan parasite Plasmodium spp. Chemoproteomics studies revealed multiple potential Plasmodium kinase targets, and potent inhibition of Plasmodium phosphatidylinositol 4-kinase type III beta (PI4Kβ) and cyclic guanosine monophosphate-dependent protein kinase (PKG) was confirmed in vitro. Conditional knockdown of PI4Kβ in ABS cultures modulated parasite sensitivity to sapanisertib, and laboratory-generated P. falciparum sapanisertib resistance was mediated by mutations in PI4Kβ. Parasite metabolomic perturbation profiles associated with sapanisertib and other known PI4Kβ and/or PKG inhibitors revealed similarities and differences between chemotypes, potentially caused by sapanisertib targeting multiple parasite kinases. The multistage activity of sapanisertib and its in vivo antimalarial efficacy, coupled with potent inhibition of at least two promising drug targets, provides an opportunity to reposition this pyrazolopyrimidine for malaria.
Collapse
Affiliation(s)
- Lauren B. Arendse
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, Cape Town 7701, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - James M. Murithi
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Tarrick Qahash
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Huck Center for Malaria Research, Pennsylvania State University, University Park, PA 16802, USA
| | | | - Luiz C. Godoy
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sumanta Dey
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Liezl Gibhard
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | | | - Gerard Drewes
- Cellzome GmbH, a GSK Company, Heidelberg 69117, Germany
| | | | - Maria J. Lafuente-Monasterio
- Tres Cantos Medicines Development Campus-Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, Madrid 28760, Spain
| | - Stephen Fienberg
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, Cape Town 7701, South Africa
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Lynn Wambua
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Samuel Gachuhi
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Dina Coertzen
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield 0028, South Africa
| | - Mariëtte van der Watt
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield 0028, South Africa
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield 0028, South Africa
| | - Ayesha S. Aswat
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Erica Erlank
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Nelius Venter
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Nimisha Mittal
- School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Madeline R. Luth
- School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sabine Ottilie
- School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Lizette L. Koekemoer
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield 0028, South Africa
| | - Jacquin C. Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Huck Center for Malaria Research, Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kelly Chibale
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, Cape Town 7701, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| |
Collapse
|
38
|
Jia X, Liu F, Bai J, Zhang Y, Cui L, Cao Y, Luo E. Phosphatase inhibitors BVT-948 and alexidine dihydrochloride inhibit sexual development of the malaria parasite Plasmodium berghei. Int J Parasitol Drugs Drug Resist 2022; 19:81-88. [PMID: 35792443 PMCID: PMC9260261 DOI: 10.1016/j.ijpddr.2022.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND With the emergence of resistance to front-line antimalarials, there is an urgent need to develop new medicines, including those targeting sexual development. This study aimed to assess the activity of a panel of phosphatase inhibitors against the sexual development of Plasmodium berghei and evaluate their potential as transmission-blocking agents. METHODS Twenty-five compounds were screened for transmission-blocking activity in vitro using the P. berghei ookinete culture assay. The inhibitory effects on male gametogenesis, gamete-ookinete, and zygote-ookinete formation were evaluated. The transmission-blocking activity of two compounds was evaluated using an in vivo mosquito feeding assay. Their cytotoxic effects were assessed on the human cell line HepG2. RESULTS Twelve compounds inhibited P. berghei ookinete formation with an IC50 < 10 μM. Two compounds, BVT-948 and alexidine dihydrochloride, significantly inhibited different developmental stages from gametogenesis through ookinete maturation. They also showed a substantial in vivo transmission-blocking activity by the mosquito feeding assay. CONCLUSIONS Some phosphatase inhibitors effectively inhibited Plasmodium sexual development and exhibited evident transmission-blocking activity, suggesting that phosphatases are valid targets for antimalarial development.
Collapse
Affiliation(s)
- Xitong Jia
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, 110122, China
| | - Fei Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, 110122, China
| | - Jie Bai
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, 110122, China
| | - Yongzhe Zhang
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, 110122, China; Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, FL, 33612-9415, USA
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, 110122, China.
| | - Enjie Luo
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
39
|
Looker O, Dans MG, Bullen HE, Sleebs BE, Crabb BS, Gilson PR. The Medicines for Malaria Venture Malaria Box contains inhibitors of protein secretion in
Plasmodium falciparum
blood stage parasites. Traffic 2022; 23:442-461. [PMID: 36040075 PMCID: PMC9543830 DOI: 10.1111/tra.12862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/17/2022] [Accepted: 07/26/2022] [Indexed: 11/27/2022]
Abstract
Plasmodium falciparum parasites which cause malaria, traffic hundreds of proteins into the red blood cells (RBCs) they infect. These exported proteins remodel their RBCs enabling host immune evasion through processes such as cytoadherence that greatly assist parasite survival. As resistance to all current antimalarial compounds is rising new compounds need to be identified and those that could inhibit parasite protein secretion and export would both rapidly reduce parasite virulence and ultimately lead to parasite death. To identify compounds that inhibit protein export we used transgenic parasites expressing an exported nanoluciferase reporter to screen the Medicines for Malaria Venture Malaria Box of 400 antimalarial compounds with mostly unknown targets. The most potent inhibitor identified in this screen was MMV396797 whose application led to export inhibition of both the reporter and endogenous exported proteins. MMV396797 mediated blockage of protein export and slowed the rigidification and cytoadherence of infected RBCs—modifications which are both mediated by parasite‐derived exported proteins. Overall, we have identified a new protein export inhibitor in P. falciparum whose target though unknown, could be developed into a future antimalarial that rapidly inhibits parasite virulence before eliminating parasites from the host.
Collapse
Affiliation(s)
| | - Madeline G. Dans
- Burnet Institute Melbourne Australia
- School of Medicine Deakin University Geelong Australia
| | - Hayley E. Bullen
- Burnet Institute Melbourne Australia
- Department of Immunology and Microbiology University of Melbourne Melbourne Australia
| | - Brad E. Sleebs
- The Walter and Eliza Hall Institute of Medical Research Parkville Victoria Australia
- Department of Medical Biology The University of Melbourne Parkville Victoria Australia
| | - Brendan S. Crabb
- Burnet Institute Melbourne Australia
- Department of Immunology and Microbiology University of Melbourne Melbourne Australia
- Department of Immunology and Pathology Monash University Melbourne Australia
| | - Paul R. Gilson
- Burnet Institute Melbourne Australia
- Department of Immunology and Microbiology University of Melbourne Melbourne Australia
| |
Collapse
|
40
|
Sousa CC, Dziwornu GA, Quadros HC, Araujo-Neto JH, Chibale K, Moreira DRM. Antimalarial Pyrido[1,2- a]benzimidazoles Exert Strong Parasiticidal Effects by Achieving High Cellular Uptake and Suppressing Heme Detoxification. ACS Infect Dis 2022; 8:1700-1710. [PMID: 35848708 DOI: 10.1021/acsinfecdis.2c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pyrido[1,2-a]benzimidazoles (PBIs) are synthetic antiplasmodium agents with potent activity and are structurally differentiated from benchmark antimalarials. To study the cellular uptake of PBIs and understand the underlying phenotype of their antiplasmodium activity, their antiparasitic activities were examined in chloroquine (CQ)-susceptible and CQ-resistant Plasmodium falciparum in vitro. Moreover, drug uptake and heme detoxification suppression were examined in Plasmodium berghei-infected mice. The in vitro potency of PBIs is comparable to most 4-aminoquinolines. They have a speed of action in vitro that is superior to that of atovaquone and an ability to kill rings and trophozoites. The antiparasitic effects observed for the PBIs in cell culture and in infected mice are similar in terms of potency and efficacy and are comparable to CQ but with the added advantage of demonstrating equipotency against both CQ susceptible and resistant parasite strains. PBIs have a high rate of uptake by parasite cells and, conversely, a limited rate of uptake by host cells. The mechanism of cellular uptake of the PBIs differs from the ion-trap mechanism typically observed for 4-aminoquinolines, although they share key structural features. The high cellular uptake, attractive parasiticidal profile, and susceptibility of resistant strains to PBIs are desirable characteristics for new antimalarial agents.
Collapse
Affiliation(s)
- Caroline C Sousa
- Fundação Oswaldo Cruz (Fiocruz), Instituto Gonçalo Moniz, Salvador, 40296-710 Bahia, Brazil
| | - Godwin Akpeko Dziwornu
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Helenita C Quadros
- Fundação Oswaldo Cruz (Fiocruz), Instituto Gonçalo Moniz, Salvador, 40296-710 Bahia, Brazil
| | | | - Kelly Chibale
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Diogo R M Moreira
- Fundação Oswaldo Cruz (Fiocruz), Instituto Gonçalo Moniz, Salvador, 40296-710 Bahia, Brazil
| |
Collapse
|
41
|
Fostering drug discovery and development in Africa. Nat Med 2022; 28:1523-1526. [PMID: 35840729 DOI: 10.1038/s41591-022-01885-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Kumari G, Jain R, Kumar Sah R, Kalia I, Vashistha M, Singh P, Prasad Singh A, Samby K, Burrows J, Singh S. Multistage and transmission-blocking tubulin targeting potent antimalarial discovered from the open access MMV pathogen box. Biochem Pharmacol 2022; 203:115154. [PMID: 35798201 DOI: 10.1016/j.bcp.2022.115154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/08/2022] [Accepted: 06/23/2022] [Indexed: 11/28/2022]
Abstract
The development of resistance to current antimalarial therapies remains a significant source of concern. To address this risk,newdrugswithnoveltargetsin distinct developmental stages ofPlasmodiumparasites are required. In the current study,we have targetedP. falciparumTubulin(PfTubulin)proteins which represent some of thepotentialdrug targetsfor malaria chemotherapy. PlasmodialMicrotubules (MTs) play a crucial role during parasite proliferation, growth, and transmission, which render them highlydesirabletargets for the development ofnext-generation chemotherapeutics. Towards this,we have evaluated the antimalarial activity ofTubulintargetingcompounds received from theMedicines for Malaria Venture (MMV)"Pathogen Box"against the human malaria parasite,P. falciparumincluding 3D7 (chloroquine and artemisinin sensitive strain), RKL-9 (chloroquine-resistant strain), and R539T (artemisinin-resistant strain). At nanomolar concentrations, the filtered-out compounds exhibitedpronouncedmultistage antimalarialeffects across the parasite life cycle, including intra-erythrocytic blood stages, liver stage parasites, gametocytes, and ookinetes. Concomitantly, these compoundswere found toimpedemale gamete ex-flagellation, thus showingtheir transmission-blocking potential. Target mining of these potent compounds, by combining in silico, biochemical and biophysical assays,implicatedPfTubulinas their moleculartarget, which may possibly act bydisruptingMT assembly dynamics by binding at the interface of α-βTubulin-dimer.Further, the promising ADME profile of the parent scaffold supported its consideration as a lead compound for further development.Thus, our work highlights the potential of targetingPfTubulin proteins in discovering and developing next-generation, multistage antimalarial agents against Multi-Drug Resistant (MDR) malaria parasites.
Collapse
Affiliation(s)
- Geeta Kumari
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ravi Jain
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Raj Kumar Sah
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | | | - Manu Vashistha
- Advanced Instrumentation Research Facility, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pooja Singh
- National Institute of Immunology, New Delhi 110067, India
| | | | | | | | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
43
|
4-Substituted Thieno[3,2-d]pyrimidines as Dual-Stage Antiplasmodial Derivatives. Pharmaceuticals (Basel) 2022; 15:ph15070820. [PMID: 35890119 PMCID: PMC9323797 DOI: 10.3390/ph15070820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 01/27/2023] Open
Abstract
Malaria remains one of the major health problems worldwide. The increasing resistance of Plasmodium to approved antimalarial drugs requires the development of novel antiplasmodial agents that can effectively prevent and/or treat this disease. Based on the structure of Gamhepathiopine, a 2-tert-butylaminothieno[3,2-d]pyrimidin-4(3H)-one hit, active on the sexual and asexual stages of the parasite and thanked for the introduction of various substituents at position 4 of the thienopyrimidine core by nucleophilic aromatic substitution and pallado-catalyzed coupling reactions, a series of 4-substituted thieno[3,2-d]pyrimidines were identified as displaying in vitro activities against both the erythrocytic stage of P. falciparum and the hepatic stage of P. berghei. Among the 28 compounds evaluated, the chloro analogue of Gamhepathiopine showed good activity against the erythrocytic stage of P. falciparum, moderate toxicity on HepG2, and better activity against hepatic P. berghei parasites, compared to Gamhepathiopine.
Collapse
|
44
|
Reader J, van der Watt ME, Birkholtz LM. Streamlined and Robust Stage-Specific Profiling of Gametocytocidal Compounds Against Plasmodium falciparum. Front Cell Infect Microbiol 2022; 12:926460. [PMID: 35846744 PMCID: PMC9282888 DOI: 10.3389/fcimb.2022.926460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/30/2022] [Indexed: 12/29/2022] Open
Abstract
Malaria elimination is dependent on the ability to target both the pathogenic and transmissible stages of the human malaria parasite, Plasmodium falciparum. These forms of the parasite are differentiated by unique developmental stages, each with their own biological mechanisms and processes. These individual stages therefore also respond differently to inhibitory compounds, and this complicates the discovery of multistage active antimalarial agents. The search for compounds with transmission-blocking activity has focused on screening for activity on mature gametocytes, with only limited descriptions available for the activity of such compounds on immature stage gametocytes. This therefore poses a gap in the profiling of antimalarial agents for pan-reactive, multistage activity to antimalarial leads. Here, we optimized an effective and robust strategy for the simple and cost-effective description of the stage-specific action of gametocytocidal antimalarial compounds.
Collapse
Affiliation(s)
- Janette Reader
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Mariette E. van der Watt
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Lyn-Marié Birkholtz
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- *Correspondence: Lyn-Marié Birkholtz,
| |
Collapse
|
45
|
van der Watt ME, Reader J, Birkholtz LM. Adapt or Die: Targeting Unique Transmission-Stage Biology for Malaria Elimination. Front Cell Infect Microbiol 2022; 12:901971. [PMID: 35755845 PMCID: PMC9218253 DOI: 10.3389/fcimb.2022.901971] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/06/2022] [Indexed: 12/25/2022] Open
Abstract
Plasmodium parasites have a complex life cycle that includes development in the human host as well as the Anopheles vector. Successful transmission of the parasite between its host and vector therefore requires the parasite to balance its investments in asexual replication and sexual reproduction, varying the frequency of sexual commitment to persist within the human host and generate future opportunities for transmission. The transmission window is extended further by the ability of stage V gametocytes to circulate in peripheral blood for weeks, whereas immature stage I to IV gametocytes sequester in the bone marrow and spleen until final maturation. Due to the low gametocyte numbers in blood circulation and with the ease of targeting such life cycle bottlenecks, transmission represents an efficient target for therapeutic intervention. The biological process of Plasmodium transmission is a multistage, multifaceted process and the past decade has seen a much deeper understanding of the molecular mechanisms and regulators involved. Clearly, specific and divergent processes are used during transmission compared to asexual proliferation, which both poses challenges but also opportunities for discovery of transmission-blocking antimalarials. This review therefore presents an update of our molecular understanding of gametocyte and gamete biology as well as the status of transmission-blocking activities of current antimalarials and lead development compounds. By defining the biological components associated with transmission, considerations for the development of new transmission-blocking drugs to target such untapped but unique biology is suggested as an important, main driver for transmission-blocking drug discovery.
Collapse
Affiliation(s)
- Mariëtte E van der Watt
- Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Janette Reader
- Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Lyn-Marié Birkholtz
- Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
46
|
de Oliveira HC, Castelli RF, Reis FCG, Samby K, Nosanchuk JD, Alves LR, Rodrigues ML. Screening of the Pandemic Response Box Reveals an Association between Antifungal Effects of MMV1593537 and the Cell Wall of Cryptococcus neoformans, Cryptococcus deuterogattii, and Candida auris. Microbiol Spectr 2022; 10:e0060122. [PMID: 35471056 PMCID: PMC9241760 DOI: 10.1128/spectrum.00601-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/11/2022] [Indexed: 11/20/2022] Open
Abstract
There is an urgent unmet need for novel antifungals. In this study, we searched for novel antifungal activities in the Pandemic Response Box, a collection of 400 structurally diverse compounds in various phases of drug discovery. We identified five molecules which could control the growth of Cryptococcus neoformans, Cryptococcus deuterogattii, and the emerging global threat Candida auris. After eliminating compounds which demonstrated paradoxical antifungal effects or toxicity to mammalian macrophages, we selected compound MMV1593537 as a nontoxic, fungicidal molecule for further characterization of antifungal activity. Scanning electron microscopy revealed that MMV1593537 affected cellular division in all three pathogens. In Cryptococcus, MMV1593537 caused a reduction in capsular dimensions. Treatment with MMV1593537 resulted in increased detection of cell wall chitooligomers in these three species. Since chitooligomers are products of the enzymatic hydrolysis of chitin, we investigated whether surface chitinase activity was altered in response to MMV1593537 exposure. We observed peaks of enzyme activity in C. neoformans and C. deuterogattii in response to MMV1593537. We did not detect any surface chitinase activity in C. auris. Our results suggest that MMV1593537 is a promising, nontoxic fungicide whose mechanism of action, at least in Cryptococcus spp, requires chitinase-mediated hydrolysis of chitin. IMPORTANCE The development of novel antifungals is a matter of urgency. In this study, we evaluated antifungal activities in a collection of 400 molecules, using highly lethal fungal pathogens as targets. One of these molecules, namely, MMV1593537, was not toxic to host cells and controlled the growth of isolates of Cryptococcus neoformans, C. deuterogattii, C. gattii, Candida auris, C. albicans, C. parapsilosis, and C. krusei. We tested the mechanisms of antifungal action of MMV1593537 in the Cryptococcus and C. auris models and concluded that the compound affects the cell wall, a structure which is essential for fungal life. At least in Cryptococcus, this effect involved chitinase, an enzyme which is required for remodeling the cell wall. Our results suggest that MMV1593537 is a candidate for future antifungal development.
Collapse
Affiliation(s)
| | - Rafael F. Castelli
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
- Programa de Pós-Graduação em Biologia Parasitária, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Flavia C. G. Reis
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
- Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Joshua D. Nosanchuk
- Department of Microbiology and Immunology and Division of Infectious Diseases, Albert Einstein College of Medicine of Yeshiva University, New York, New York, USA
| | - Lysangela R. Alves
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Marcio L. Rodrigues
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
47
|
Paonessa G, Siciliano G, Graziani R, Lalli C, Cecchetti O, Alli C, La Valle R, Petrocchi A, Sferrazza A, Bisbocci M, Falchi M, Toniatti C, Bresciani A, Alano P. Gametocyte-specific and all-blood-stage transmission-blocking chemotypes discovered from high throughput screening on Plasmodium falciparum gametocytes. Commun Biol 2022; 5:547. [PMID: 35668202 PMCID: PMC9170688 DOI: 10.1038/s42003-022-03510-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/19/2022] [Indexed: 11/25/2022] Open
Abstract
Blocking Plasmodium falciparum human-to-mosquito transmission is essential for malaria elimination, nonetheless drugs killing the pathogenic asexual stages are generally inactive on the parasite transmissible stages, the gametocytes. Due to technical and biological limitations in high throughput screening of non-proliferative stages, the search for gametocyte-killing molecules so far tested one tenth the number of compounds screened on asexual stages. Here we overcome these limitations and rapidly screened around 120,000 compounds, using not purified, bioluminescent mature gametocytes. Orthogonal gametocyte assays, selectivity assays on human cells and asexual parasites, followed by compound clustering, brought to the identification of 84 hits, half of which are gametocyte selective and half with comparable activity against sexual and asexual parasites. We validated seven chemotypes, three of which are, to the best of our knowledge, novel. These molecules are able to inhibit male gametocyte exflagellation and block parasite transmission through the Anopheles mosquito vector in a standard membrane feeding assay. This work shows that interrogating a wide and diverse chemical space, with a streamlined gametocyte HTS and hit validation funnel, holds promise for the identification of dual stage and gametocyte-selective compounds to be developed into new generation of transmission blocking drugs for malaria elimination.
Collapse
Affiliation(s)
- Giacomo Paonessa
- Department of Translational and Discovery Research, IRBM S.p.A., Pomezia, Roma, Italy
| | - Giulia Siciliano
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Roma, Italy
| | - Rita Graziani
- Department of Translational and Discovery Research, IRBM S.p.A., Pomezia, Roma, Italy
| | - Cristiana Lalli
- Department of Translational and Discovery Research, IRBM S.p.A., Pomezia, Roma, Italy
| | - Ottavia Cecchetti
- Department of Translational and Discovery Research, IRBM S.p.A., Pomezia, Roma, Italy
| | - Cristina Alli
- Department of Translational and Discovery Research, IRBM S.p.A., Pomezia, Roma, Italy
| | - Roberto La Valle
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Roma, Italy
| | | | | | - Monica Bisbocci
- Department of Translational and Discovery Research, IRBM S.p.A., Pomezia, Roma, Italy
| | - Mario Falchi
- Centro Nazionale AIDS, Istituto Superiore di Sanità, Roma, Italy
| | - Carlo Toniatti
- Department of Translational and Discovery Research, IRBM S.p.A., Pomezia, Roma, Italy
- Department of Drug Discovery, IRBM S.p.A., Pomezia, Roma, Italy
| | - Alberto Bresciani
- Department of Translational and Discovery Research, IRBM S.p.A., Pomezia, Roma, Italy.
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Roma, Italy.
| |
Collapse
|
48
|
High-Throughput Screening Platform To Identify Inhibitors of Protein Synthesis with Potential for the Treatment of Malaria. Antimicrob Agents Chemother 2022; 66:e0023722. [PMID: 35647647 PMCID: PMC9211397 DOI: 10.1128/aac.00237-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Artemisinin-based combination therapies have been crucial in driving down the global burden of malaria, the world’s largest parasitic killer. However, their efficacy is now threatened by the emergence of resistance in Southeast Asia and sub-Saharan Africa. Thus, there is a pressing need to develop new antimalarials with diverse mechanisms of action. One area of Plasmodium metabolism that has recently proven rich in exploitable antimalarial targets is protein synthesis, with a compound targeting elongation factor 2 now in clinical development and inhibitors of several aminoacyl-tRNA synthetases in lead optimization. Given the promise of these components of translation as viable drug targets, we rationalized that an assay containing all functional components of translation would be a valuable tool for antimalarial screening and drug discovery. Here, we report the development and validation of an assay platform that enables specific inhibitors of Plasmodium falciparum translation (PfIVT) to be identified. The primary assay in this platform monitors the translation of a luciferase reporter in a P. falciparum lysate-based expression system. Hits identified in this primary assay are assessed in a counterscreen assay that enables false positives that directly interfere with the luciferase to be triaged. The remaining hit compounds are then assessed in an equivalent human IVT assay. This platform of assays was used to screen MMV’s Pandemic and Pathogen Box libraries, identifying several selective inhibitors of protein synthesis. We believe this new high-throughput screening platform has the potential to greatly expedite the discovery of antimalarials that act via this highly desirable mechanism of action.
Collapse
|
49
|
Olivier T, Loots L, Kok M, de Villiers M, Reader J, Birkholtz LM, Arnott GE, de Villiers KA. Adsorption to the Surface of Hemozoin Crystals: Structure-Based Design and Synthesis of Amino-Phenoxazine β-Hematin Inhibitors. ChemMedChem 2022; 17:e202200139. [PMID: 35385211 PMCID: PMC9119941 DOI: 10.1002/cmdc.202200139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/05/2022] [Indexed: 11/07/2022]
Abstract
In silico adsorption of eight antimalarials that inhibit β-hematin (synthetic hemozoin) formation identified a primary binding site on the (001) face, which accommodates inhibitors via formation of predominantly π-π interactions. A good correlation (r2 =0.64, P=0.017) between adsorption energies and the logarithm of β-hematin inhibitory activity was found for this face. Of 53 monocyclic, bicyclic and tricyclic scaffolds, the latter yielded the most favorable adsorption energies. Five new amino-phenoxazine compounds were pursued as β-hematin inhibitors based on adsorption behaviour. The 2-substituted phenoxazines show good to moderate β-hematin inhibitory activity (<100 μM) and Plasmodium falciparum blood stage activity against the 3D7 strain. N1 ,N1 -diethyl-N4 -(10H-phenoxazin-2-yl)pentane-1,4-diamine (P2a) is the most promising hit with IC50 values of 4.7±0.6 and 0.64±0.05 μM, respectively. Adsorption energies are predictive of β-hematin inhibitory activity, and thus the in silico approach is a beneficial tool for structure-based development of new non-quinoline inhibitors.
Collapse
Affiliation(s)
- Tania Olivier
- Department of Chemistry and Polymer Science, Stellenbosch University, Private BagX1, Matieland, 7602, South Africa
| | - Leigh Loots
- Department of Chemistry and Polymer Science, Stellenbosch University, Private BagX1, Matieland, 7602, South Africa
| | - Michélle Kok
- Department of Biochemistry, Stellenbosch University, Private BagX1, Matieland, 7602, South Africa
| | - Marianne de Villiers
- Department of Biochemistry, Stellenbosch University, Private BagX1, Matieland, 7602, South Africa
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, 0028, South Africa
| | - Lyn-Marié Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, 0028, South Africa
| | - Gareth E Arnott
- Department of Chemistry and Polymer Science, Stellenbosch University, Private BagX1, Matieland, 7602, South Africa
| | - Katherine A de Villiers
- Department of Chemistry and Polymer Science, Stellenbosch University, Private BagX1, Matieland, 7602, South Africa
| |
Collapse
|
50
|
Abacha YZ, Forkuo AD, Gbedema SY, Mittal N, Ottilie S, Rocamora F, Winzeler EA, van Schalkwyk DA, Kelly JM, Taylor MC, Reader J, Birkholtz LM, Lisgarten DR, Cockcroft JK, Lisgarten JN, Palmer RA, Talbert RC, Shnyder SD, Wright CW. Semi-Synthetic Analogues of Cryptolepine as a Potential Source of Sustainable Drugs for the Treatment of Malaria, Human African Trypanosomiasis, and Cancer. Front Pharmacol 2022; 13:875647. [PMID: 35600849 PMCID: PMC9119314 DOI: 10.3389/fphar.2022.875647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/08/2022] [Indexed: 12/11/2022] Open
Abstract
The prospect of eradicating malaria continues to be challenging in the face of increasing parasite resistance to antimalarial drugs so that novel antimalarials active against asexual, sexual, and liver-stage malaria parasites are urgently needed. In addition, new antimalarials need to be affordable and available to those most in need and, bearing in mind climate change, should ideally be sustainable. The West African climbing shrub Cryptolepis sanguinolenta is used traditionally for the treatment of malaria; its principal alkaloid, cryptolepine (1), has been shown to have antimalarial properties, and the synthetic analogue 2,7-dibromocryptolepine (2) is of interest as a lead toward new antimalarial agents. Cryptolepine (1) was isolated using a two-step Soxhlet extraction of C. sanguinolenta roots, followed by crystallization (yield 0.8% calculated as a base with respect to the dried roots). Semi-synthetic 7-bromo- (3), 7, 9-dibromo- (4), 7-iodo- (5), and 7, 9-dibromocryptolepine (6) were obtained in excellent yields by reaction of 1 with N-bromo- or N-iodosuccinimide in trifluoroacetic acid as a solvent. All compounds were active against Plasmodia in vitro, but 6 showed the most selective profile with respect to Hep G2 cells: P. falciparum (chloroquine-resistant strain K1), IC50 = 0.25 µM, SI = 113; late stage, gametocytes, IC50 = 2.2 µM, SI = 13; liver stage, P. berghei sporozoites IC50 = 6.13 µM, SI = 4.6. Compounds 3-6 were also active against the emerging zoonotic species P. knowlesi with 5 being the most potent (IC50 = 0.11 µM). In addition, 3-6 potently inhibited T. brucei in vitro at nM concentrations and good selectivity with 6 again being the most selective (IC50 = 59 nM, SI = 478). These compounds were also cytotoxic to wild-type ovarian cancer cells as well as adriamycin-resistant and, except for 5, cisplatin-resistant ovarian cancer cells. In an acute oral toxicity test in mice, 3-6 did not exhibit toxic effects at doses of up to 100 mg/kg/dose × 3 consecutive days. This study demonstrates that C. sanguinolenta may be utilized as a sustainable source of novel compounds that may lead to the development of novel agents for the treatment of malaria, African trypanosomiasis, and cancer.
Collapse
Affiliation(s)
- Yabalu Z. Abacha
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, United Kingdom,Department of Pharmacognosy, Faculty of Pharmacy, University of Maiduguri, Maiduguri, Nigeria
| | - Arnold Donkor Forkuo
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Stephen Y. Gbedema
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, KNUST, Kumasi, Ghana
| | - Nimisha Mittal
- Malaria Drug Accelerator (MalDA) Consortium, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Sabine Ottilie
- Malaria Drug Accelerator (MalDA) Consortium, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Frances Rocamora
- Malaria Drug Accelerator (MalDA) Consortium, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Elizabeth A. Winzeler
- Malaria Drug Accelerator (MalDA) Consortium, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Donelly A. van Schalkwyk
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - John M. Kelly
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Martin C. Taylor
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, South Africa
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, South Africa
| | - David R. Lisgarten
- Biomolecular Research Group, School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
| | - Jeremy K. Cockcroft
- Department of Chemistry, Christopher Ingold Laboratories, University College London, London, United Kingdom
| | | | - Rex A. Palmer
- Department of Crystallography, Biochemical Sciences, Birkbeck College, University of London, London, United Kingdom
| | - Rosemary C. Talbert
- Biomolecular Research Group, School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
| | - Steven D. Shnyder
- School of Pharmacy and Medical Sciences, Institute of Cancer Therapeutics, University of Bradford, Bradford, United Kingdom
| | - Colin W. Wright
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, United Kingdom,*Correspondence: Colin W. Wright,
| |
Collapse
|