1
|
Jarzembowski JA, Navarro S, Shimada H. Peripheral neuroblastic tumors behaving badly: an update on high-risk morphologic and molecular groupings. Virchows Arch 2025; 486:895-903. [PMID: 40158050 DOI: 10.1007/s00428-025-04083-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/01/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025]
Abstract
Peripheral neuroblastic tumors occur on a histologic spectrum from benign ganglioneuromas to malignant neuroblastomas, but even within the latter category, there is extensive heterogeneity in morphologic appearance and genetic composition. The International Neuroblastoma Pathology Committee classification has traditionally been used to successfully categorize tumors with favorable or unfavorable histology, but morphology must be supplemented with the results of additional testing. While MYCN amplification, diploid DNA content, and 11q loss have long been known to be negative prognostic factors, a new group of molecular biomarkers has emerged that define discrete high-risk categories. These include MYCN/MYC overexpression, dysregulated telomere maintenance mechanisms (both increased expression of telomere reverse transcriptase and alternate lengthening of telomeres), and ALK aberrations. Testing for these biomarkers and an integrated classification scheme may lead to improved risk stratification and selection of emerging targeted therapies.
Collapse
Affiliation(s)
- Jason A Jarzembowski
- Department of Pathology, Medical College of Wisconsin and Children'S Hospital of Wisconsin, 9000 W. Wisconsin Ave, Milwaukee, MS#701,WI , 53226, USA.
| | - Samuel Navarro
- Department of Pathology, Medical School, University of Valencia and CIBERONC (ISCIII), Madrid, Spain
| | - Hiroyuki Shimada
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| |
Collapse
|
2
|
Lorenzi F, Jostes S, Gao Q, Hutchinson JC, Tall J, Martins da Costa B, Cooke AJ, Rampling D, Ogunbiyi O, Barker K, Hughes D, Barone G, Barisa M, Bellini A, Hubank M, Schleiermacher G, Anderson J, Bernstein E, Chesler L, George SL. ATRX mutations mediate an immunogenic phenotype and macrophage infiltration in neuroblastoma. Cancer Lett 2025; 613:217495. [PMID: 39892705 PMCID: PMC12057689 DOI: 10.1016/j.canlet.2025.217495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/04/2025]
Abstract
ATRX is one of the most frequently mutated genes in high-risk neuroblastoma. ATRX mutations are mutually exclusive with MYCN amplification and mark a recognizable patient subgroup, presenting in older children with chemotherapy-resistant, slowly progressive disease. The mechanisms underlying how ATRX mutations drive high-risk and difficult-to-treat neuroblastoma are still largely elusive. To unravel the role of ATRX in neuroblastoma, we generated isogenic neuroblastoma cell line models with ATRX loss-of-function and ATRX in-frame multi-exon deletions, representing different types of alterations found in patients. RNA-sequencing analysis consistently showed significant upregulation of inflammatory response pathways in the ATRX-altered cell lines. In vivo, ATRX alterations are consistently associated with macrophage infiltration across multiple xenograft models. Furthermore, ATRX alterations also result in upregulation of epithelial-to-mesenchymal transition pathways and a reduction in expression of adrenergic core-regulatory circuit genes. Consistent with this, bioinformatic analysis of previously published neuroblastoma patient data sets revealed that ATRX-altered neuroblastomas display an immunogenic phenotype and higher score of macrophages (with no distinction between M1 and M2 macrophage populations) and dendritic cells, but not lymphocytes. Histopathological assessment of diagnostic samples from patients with ATRX mutant disease confirmed these findings with significantly more macrophage infiltration compared to MYCN-amplified tumors. In conclusion, we show that gene expression and cell-state changes as a result of ATRX alterations associate with a characteristic immune cell infiltration in both in vivo models and patient samples. Together, this provides novel insight into mechanisms underlying the distinct clinical phenotype seen in this group of patients.
Collapse
Affiliation(s)
- Federica Lorenzi
- Division of Clinical Studies, The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, London, United Kingdom
| | - Sina Jostes
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, 10029-5674, USA
| | - Qiong Gao
- Cancer Therapeutics Unit, Computational Biology and Chemogenomics, The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, London, United Kingdom
| | - J Ciaran Hutchinson
- Histopathology Department, Great Ormond Street Institute of Child Health, Great Ormond Street, London, WC1N 3JH, United Kingdom
| | - Jennifer Tall
- Division of Clinical Studies, The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, London, United Kingdom
| | - Barbara Martins da Costa
- Division of Clinical Studies, The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, London, United Kingdom
| | - Anisha J Cooke
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, 10029-5674, USA
| | - Dyanne Rampling
- Histopathology Department, Great Ormond Street Institute of Child Health, Great Ormond Street, London, WC1N 3JH, United Kingdom
| | - Olumide Ogunbiyi
- Histopathology Department, Great Ormond Street Institute of Child Health, Great Ormond Street, London, WC1N 3JH, United Kingdom
| | - Karen Barker
- Division of Clinical Studies, The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, London, United Kingdom
| | - Debbie Hughes
- Division of Clinical Studies, The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, London, United Kingdom
| | - Giuseppe Barone
- UCL Great Ormond Street Institute of Child Health, Great Ormond Street, London, WC1N 3JH, United Kingdom
| | - Marta Barisa
- UCL Great Ormond Street Institute of Child Health, Great Ormond Street, London, WC1N 3JH, United Kingdom
| | - Angela Bellini
- SiRIC RTOP (Recherche Translationelle en Oncologie Pediatrique), U830 INSERM and SIREDO Integrated Pediatric Oncology Center, Institut Curie, 26 Rue d'Ulm, 75005, Paris, France
| | - Michael Hubank
- Molecular Pathology Section, The Institute of Cancer Research, Clinical Genomics, The Royal Marsden NHS Foundation, 15 Cotswold Road, Sutton, SM2 5NG, London, United Kingdom
| | - Gudrun Schleiermacher
- SiRIC RTOP (Recherche Translationelle en Oncologie Pediatrique), U830 INSERM and SIREDO Integrated Pediatric Oncology Center, Institut Curie, 26 Rue d'Ulm, 75005, Paris, France
| | - John Anderson
- UCL Great Ormond Street Institute of Child Health, Great Ormond Street, London, WC1N 3JH, United Kingdom
| | - Emily Bernstein
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, 10029-5674, USA
| | - Louis Chesler
- Division of Clinical Studies, The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, London, United Kingdom; Children and Young People's Unit, The Royal Marsden Hospital, Downs Road, Sutton, SM2 5PT, London, United Kingdom
| | - Sally L George
- Division of Clinical Studies, The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, London, United Kingdom; Children and Young People's Unit, The Royal Marsden Hospital, Downs Road, Sutton, SM2 5PT, London, United Kingdom.
| |
Collapse
|
3
|
Chen C, Wei Z. Mechanisms and molecular characterization of relapsed/refractory neuroblastomas. Front Oncol 2025; 15:1555419. [PMID: 40115016 PMCID: PMC11922920 DOI: 10.3389/fonc.2025.1555419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 02/18/2025] [Indexed: 03/22/2025] Open
Abstract
Relapsed/refractory neuroblastoma is a type of malignant solid tumor with a very poor prognosis in children. Its pathogenesis is complex, involving multiple molecular pathways and genetic alterations. Recent studies have shown that MYCN amplification, ALK mutation, TERT promoter mutation, p53 pathway inactivation, and chromosomal instability are the key mechanisms and molecular characteristics of relapsed/refractory neuroblastoma. Precision treatment strategies targeting these molecular mechanisms have shown certain prospects in preclinical studies and clinical practice. This review focuses on the relevant mechanisms and molecular characteristics of relapsed/refractory neuroblastoma, explores its relationship with treatment response and clinical prognosis, and briefly introduces the current treatment strategies to provide a theoretical basis for the development of novel and personalized therapeutic regimens to improve the prognosis of children.
Collapse
Affiliation(s)
- Chong Chen
- Department of Clinical Laboratory, Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin, China
| | - Zixuan Wei
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Department of Pediatric Oncology, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Pediatric Oncology, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| |
Collapse
|
4
|
Mishra A, Patel TN. Locking the gates of immortality: targeting alternative lengthening of telomeres (ALT) pathways. Med Oncol 2025; 42:78. [PMID: 39964637 DOI: 10.1007/s12032-025-02627-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/11/2025] [Indexed: 05/10/2025]
Abstract
Telomere maintenance is essential for the unlimited proliferation of cancer cells. While most cancers reactivate telomerase to preserve telomeres, approximately 10-15% utilize the alternative lengthening of telomeres (ALT), a telomerase-independent mechanism driven by homologous recombination. ALT is primarily observed in sarcomas and neuroepithelial tumors and it is characterized by hallmarks such as heterogeneous telomere lengths, the presence of ALT-associated PML bodies (APBs), extrachromosomal telomeric repeats (ECTRs), and elevated replication stress. This review has a threefold aim: (1) to examine the mechanisms of ALT activation, (2) to highlight existing therapeutic interventions targeting ALT components and telosomic complexes, and, (3) to pinpoint potential molecular targets for novel anticancer treatments. Therapeutic strategies focus on disrupting APBs, stabilizing G-quadruplex structures, and inhibiting replication stress proteins such as FANCM and SMARCAL1. Emerging evidence highlights the role of shelterin proteins like TRF1 and TRF2, chromatin remodeling factors such as ATRX and DAXX, and the dysregulated cGAS-STING pathway in facilitating ALT activity. Moreover, the inhibitory role of RAP1-SUN1 protein interactions in telomere recombination provides a novel therapeutic avenue. Recent advances have elucidated the intricate balance of replication stress, DNA damage response, and recombination in ALT regulation. These insights can help overcome challenges posed by ALT + cancers, including their ability to transition from telomerase-dependent states. Targeting ALT-specific vulnerabilities offers a promising direction for developing innovative therapies that exploit the unique biology of ALT-driven tumors.
Collapse
Affiliation(s)
- Apurwa Mishra
- Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Trupti N Patel
- Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
5
|
Li F, Zhang T, Syed A, Elbakry A, Holmer N, Nguyen H, Mukkavalli S, Greenberg RA, D'Andrea AD. CHAMP1 complex directs heterochromatin assembly and promotes homology-directed DNA repair. Nat Commun 2025; 16:1714. [PMID: 39962076 PMCID: PMC11832927 DOI: 10.1038/s41467-025-56834-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 02/03/2025] [Indexed: 02/20/2025] Open
Abstract
The CHAMP1 complex, a little-known but highly conserved protein complex consisting of CHAMP1, POGZ, and HP1α, is enriched in heterochromatin though its cellular function in these regions of the genome remain unknown. Here we show that the CHAMP complex promotes heterochromatin assembly at multiple chromosomal sites, including centromeres and telomeres, and promotes homology-directed repair (HDR) of DNA double strand breaks (DSBs) in these regions. The CHAMP1 complex is also required for heterochromatin assembly and DSB repair in highly-specialized chromosomal regions, such as the highly-compacted telomeres of ALT (Alternative Lengthening of Telomeres) positive tumor cells. Moreover, the CHAMP1 complex binds and recruits the writer methyltransferase SETDB1 to heterochromatin regions of the genome and is required for efficient DSB repair at these sites. Importantly, peripheral blood lymphocytes from individuals with CHAMP1 syndrome, an inherited neurologic disorder resulting from heterozygous mutations in CHAMP1, also exhibit defective heterochromatin clustering and defective repair of DSBs, suggesting that a defect in DNA repair underlies this syndrome. Taken together, the CHAMP1 complex has a specific role in heterochromatin assembly and the enhancement of HDR in heterochromatin.
Collapse
Affiliation(s)
- Feng Li
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Tianpeng Zhang
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aleem Syed
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Amira Elbakry
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Noella Holmer
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Huy Nguyen
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Sirisha Mukkavalli
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Roger A Greenberg
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alan D D'Andrea
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Zeng L, Li YQ, He SW, Xu H, Zhang R, Chen K, Qin LJ, Zhu XH, Li YL, Li L, Liu N, Wang HY. The deubiquitinase USP44 enhances cisplatin chemosensitivity through stabilizing STUB1 to promote LRPPRC degradation in neuroblastoma. Neuro Oncol 2025; 27:492-507. [PMID: 39215663 PMCID: PMC11812030 DOI: 10.1093/neuonc/noae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Dysregulated deubiquitinating enzymes (DUBs) execute as intrinsic oncogenes or tumor suppressors and are involved in chemoresistance in cancers. However, the functions and exact molecular mechanisms remain largely unclear in neuroblastoma. METHODS Here, an R2 screening strategy based on the standard deviation values was used to identify the most important DUB, USP44, in neuroblastoma with stage 4. We validated the role of USP44 regulation upon cisplatin treatment in vitro and in vivo experiments, revealing the molecular mechanisms associated with USP44 regulation and cisplatin sensitivity in neuroblastoma. RESULTS We found that low USP44 expression was associated with an inferior prognosis in neuroblastoma patients. Overexpression of USP44 enhanced neuroblastoma cell sensitivity to cisplatin in vitro and in vivo. Mechanistically, USP44 recruited and stabilized the E3 ubiquitin ligase STUB1 by removing its K48-linked polyubiquitin chains at Lys30, and STUB1 further reinforced the K48-linked polyubiquitination of LRPPRC at Lys453 and promoted its protein degradation, thus enhancing the accumulation of mitochondrial reactive oxygen species (mROS), in turn facilitating neuroblastoma cell apoptosis and cisplatin sensitivity. Additionally, overexpression of LRPPRC reversed the promoting effect of USP44 on cell apoptosis in cisplatin-treated neuroblastoma cells. CONCLUSIONS Our findings demonstrate that the USP44-STUB1-LRPPRC axis plays a pivotal role in neuroblastoma chemoresistance and provides potential targets for neuroblastoma therapy and prognostication.
Collapse
Affiliation(s)
- Liang Zeng
- Department of Pathology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, National Children’s Medical Center for South Central Region, Guangzhou, P. R. China
| | - Ying-Qing Li
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Shi-Wei He
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Hui Xu
- Department of Pathology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, National Children’s Medical Center for South Central Region, Guangzhou, P. R. China
| | - Ruizhong Zhang
- Guangdong Provincial Key Laboratory of Research in Structure Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, P. R. China
| | - Kai Chen
- Department of Pathology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, National Children’s Medical Center for South Central Region, Guangzhou, P. R. China
| | - Liang-Jun Qin
- Department of Pathology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, National Children’s Medical Center for South Central Region, Guangzhou, P. R. China
| | - Xun-Hua Zhu
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Yi-Lin Li
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, P. R. China
| | - Le Li
- Department of Thoracic Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, National Children’s Medical Center for South Central Region, Guangzhou, P. R. China
| | - Na Liu
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Hai-Yun Wang
- Guangzhou Institute of Paediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, National Children’s Medical Center for South Central Region, Guangzhou, P. R. China
- Department of Pathology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, National Children’s Medical Center for South Central Region, Guangzhou, P. R. China
| |
Collapse
|
7
|
Grunewald L, Andersch L, Helmsauer K, Schwiebert S, Klaus A, Henssen AG, Straka T, Lodrini M, Wicha SG, Fuchs S, Hertwig F, Westermann F, Vitali A, Caramel C, Büchel G, Eilers M, Astrahantseff K, Eggert A, Höpken UE, Schulte JH, Blankenstein T, Anders K, Künkele A. Targeting MYCN upregulates L1CAM tumor antigen in MYCN-dysregulated neuroblastoma to increase CAR T cell efficacy. Pharmacol Res 2025; 212:107608. [PMID: 39828101 DOI: 10.1016/j.phrs.2025.107608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/18/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Current treatment protocols have limited success against MYCN-amplified neuroblastoma. Adoptive T cell therapy presents an innovative strategy to improve cure rates. However, L1CAM-targeting CAR T cells achieved only limited response against refractory/relapsed neuroblastoma so far. We investigated how oncogenic MYCN levels influence tumor cell response to CAR T cells, as one possible factor limiting clinical success. A MYCN-inducible neuroblastoma cell model was created. L1CAM-CAR T cell effector function was assessed (activation markers, cytokine release, tumor cytotoxicity) after coculture with the model or MYCN-amplified neuroblastoma cell lines. RNA sequencing datasets characterizing the model were compared to publicly available RNA/proteomic datasets. MYCN-directed L1CAM regulation was explored using public ChIP-sequencing datasets. Synergism between CAR T cells and the indirect MYCN inhibitor, MLN8237, was assessed in vitro using the Bliss model and in vivo in an immunocompromised mouse model. Inducing high MYCN levels in the neuroblastoma cell model reduced L1CAM expression and, consequently, L1CAM-CAR T cell effector function in vitro. Primary neuroblastomas possessing high MYCN levels expressed lower levels of both the L1CAM transcript and L1CAM tumor antigen. MLN8237 treatment restored L1CAM tumor expression and L1CAM-CAR T cell effector function. Combining MLN8237 and L1CAM-CAR T cell treatment synergistically enhanced MYCN-overexpressing tumor cytotoxicity in vitro and in vivo concomitant with severe in vivo toxicity. We identify target antigen downregulation as source of resistance against L1CAM-CAR T cells in MYCN-driven neuroblastoma cells. These data suggest that L1CAM-CAR T cell therapy combined with pharmacological MYCN inhibition may benefit patients with MYCN-amplified neuroblastoma.
Collapse
Affiliation(s)
- Laura Grunewald
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Oncology and Hematology, Augustenburger Platz 1, Berlin 13353, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Lena Andersch
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Oncology and Hematology, Augustenburger Platz 1, Berlin 13353, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany; Freie Universität Berlin, Kaiserswerther Str. 16-18, Berlin 14195, Germany
| | - Konstantin Helmsauer
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Oncology and Hematology, Augustenburger Platz 1, Berlin 13353, Germany; Neuroblastoma Research Group, Experimental and Clinical Research Center (ECRC) of the Charité and the Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Lindenberger Weg 80, Berlin 13125, Germany
| | - Silke Schwiebert
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Oncology and Hematology, Augustenburger Platz 1, Berlin 13353, Germany
| | - Anika Klaus
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Oncology and Hematology, Augustenburger Platz 1, Berlin 13353, Germany
| | - Anton G Henssen
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Oncology and Hematology, Augustenburger Platz 1, Berlin 13353, Germany; Neuroblastoma Research Group, Experimental and Clinical Research Center (ECRC) of the Charité and the Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Lindenberger Weg 80, Berlin 13125, Germany
| | - Teresa Straka
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Oncology and Hematology, Augustenburger Platz 1, Berlin 13353, Germany
| | - Marco Lodrini
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Oncology and Hematology, Augustenburger Platz 1, Berlin 13353, Germany
| | - Sebastian G Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Bundesstrasse 45, Hamburg 20146, Germany
| | - Steffen Fuchs
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Oncology and Hematology, Augustenburger Platz 1, Berlin 13353, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, Virchowweg 23, Berlin 10117, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Anna-Louisa-Karsch-Strasse 2, Berlin 10178, Germany
| | - Falk Hertwig
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Oncology and Hematology, Augustenburger Platz 1, Berlin 13353, Germany
| | - Frank Westermann
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Alice Vitali
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Oncology and Hematology, Augustenburger Platz 1, Berlin 13353, Germany
| | - Carlotta Caramel
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Oncology and Hematology, Augustenburger Platz 1, Berlin 13353, Germany
| | - Gabriele Büchel
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, Würzburg 97074, Germany; Mildred Scheel Early Career Center, University Hospital Würzburg, Josef-Schneider-Str. 6, Würzburg 97080, Germany
| | - Martin Eilers
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Kathy Astrahantseff
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Oncology and Hematology, Augustenburger Platz 1, Berlin 13353, Germany
| | - Angelika Eggert
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Oncology and Hematology, Augustenburger Platz 1, Berlin 13353, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, Virchowweg 23, Berlin 10117, Germany
| | - Uta E Höpken
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Robert-Rössle Str. 10, Berlin 13125, Germany
| | - Johannes H Schulte
- Universitätsklinik für Kinder, und Jugendmedizin, Department of Pediatric Hematology and Oncology, Hoppe-Seyler-Straße 1, Tübingen 72076, Germany
| | - Thomas Blankenstein
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Oncology and Hematology, Augustenburger Platz 1, Berlin 13353, Germany; Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Robert-Rössle Str. 10, Berlin 13125, Germany
| | - Kathleen Anders
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Oncology and Hematology, Augustenburger Platz 1, Berlin 13353, Germany
| | - Annette Künkele
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Oncology and Hematology, Augustenburger Platz 1, Berlin 13353, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, Virchowweg 23, Berlin 10117, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Anna-Louisa-Karsch-Strasse 2, Berlin 10178, Germany.
| |
Collapse
|
8
|
Avinent-Pérez M, Westermann F, Navarro S, López-Carrasco A, Noguera R. Tackling ALT-positive neuroblastoma: is it time to redefine risk classification systems? A systematic review with IPD meta-analysis. Neoplasia 2025; 60:101106. [PMID: 39733691 PMCID: PMC11743311 DOI: 10.1016/j.neo.2024.101106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND The heterogeneous prognosis in neuroblastoma, shaped by telomere maintenance mechanisms (TMMs), notably the alternative lengthening of telomeres (ALT) pathway, necessitates a refined risk classification for high-risk patients. Current systems often lack precision, hindering tailored treatment approaches. This individual participant data (IPD) meta-analysis of survival among ALT-positive patients aims to improve risk classification systems, enhancing therapeutic strategies and patient outcomes. METHODS Following PRISMA-IPD guidelines, we conducted a comprehensive review of neuroblastoma patients retrieved from PubMed, Scopus, and Embase databases until March-2024. Patients were stratified into ALT-positive and TMM-negative subgroups. Overall and event-free survival probabilities were evaluated. RESULTS In our cohort of 293 patients (156 ALT-positive, 137 TMM-negative) obtained from eight different studies, ALT-positive individuals displayed lower survival rates than TMM-negative patients. Non-stage 4 ALT-positive patients had reduced overall and event-free survival probabilities compared to their TMM-negative counterparts, indicating potential misclassification. Stage 4 ALT-positive patients similarly showed poorer survival outcomes than non-stage 4 TMM-negative patients, underscoring the significance of ALT in patient prognosis. CONCLUSIONS Our study highlights poorer outcomes in ALT-positive neuroblastoma patients, emphasizing the need to integrate TMM status into international risk classification guidelines. Standardizing TMM assessment is key for refining treatment strategies, considering the unique biology of ALT-positive patients.
Collapse
Affiliation(s)
- Marta Avinent-Pérez
- Department of Pathology, Medical School, University of Valencia, 46010 Valencia, Spain; Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Westermann
- Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
| | - Samuel Navarro
- Department of Pathology, Medical School, University of Valencia, 46010 Valencia, Spain; Incliva biomedical health research institute, 46010 Valencia, Spain; CIBER of Cancer (CIBERONC), 28029 Madrid, Spain
| | - Amparo López-Carrasco
- Department of Pathology, Medical School, University of Valencia, 46010 Valencia, Spain; Incliva biomedical health research institute, 46010 Valencia, Spain; CIBER of Cancer (CIBERONC), 28029 Madrid, Spain.
| | - Rosa Noguera
- Department of Pathology, Medical School, University of Valencia, 46010 Valencia, Spain; Incliva biomedical health research institute, 46010 Valencia, Spain; CIBER of Cancer (CIBERONC), 28029 Madrid, Spain.
| |
Collapse
|
9
|
Yu R, Huang K, He X, Zhang J, Ma Y, Liu H. ATRX mutation modifies the DNA damage response in glioblastoma multiforme tumor cells and enhances patient prognosis. Medicine (Baltimore) 2025; 104:e41180. [PMID: 39792760 PMCID: PMC11730090 DOI: 10.1097/md.0000000000041180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025] Open
Abstract
The presence of specific genetic mutations in patients with glioblastoma multiforme (GBM) is associated with improved survival outcomes. Disruption of the DNA damage response (DDR) pathway in tumor cells enhances the effectiveness of radiotherapy drugs, while increased mutational burden following tumor cell damage also facilitates the efficacy of immunotherapy. The ATRX gene, located on chromosome X, plays a crucial role in DDR. The aim of this research is to elucidate the correlation between ATRX mutations and GBM. Dataset obtained from TCGA-GBM were conducted an analysis on the genomic features, biological characteristics, immunopathological markers, and clinical prognosis of patients carrying ATRX mutations. Our findings revealed a significantly elevated level of microsatellite instability in individuals with ATRX mutants, along with significant alterations in the receptor-tyrosine kinase (RTK)-ras pathway among patients exhibiting combined ATRX mutations. TCGA-GBM patients with concurrent ATRX mutations exhibited sensitivity to 26 chemotherapeutic and anticancer drugs, which exerted their effects by modulating the DDR of tumor cells through highly correlated mechanisms involving the RTK-ras pathway. Additionally, we observed an enrichment of ATRX mutations in specific pathways associated with DDR among TCGA-GBM patients. Our model also demonstrated prolonged overall survival in patients carrying ATRX mutations, particularly showing strong predictive value for 3- and 5-year survival rates. Furthermore, additional protective factors such as younger age, female gender, combined IDH mutations, and TP53 mutations were identified. The results underscore the protective role and prognostic significance of ATRX mutations in GBM as a potential therapeutic target and biomarker for patient survival.
Collapse
Affiliation(s)
- Rou Yu
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, P.R. China
| | - Keru Huang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Xinyan He
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, P.R. China
- West China School of Medicine, Sichuan University, Chengdu, P.R. China
| | - Jingwen Zhang
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, P.R. China
| | - Yushan Ma
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, P.R. China
| | - Hui Liu
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, P.R. China
| |
Collapse
|
10
|
Bruinsma RS, Lekkerkerker CWM, Fiocco M, Dierselhuis MP, Langenberg KPS, Tytgat GAM, van Noesel MM, Wijnen MHWA, van der Steeg AFW, de Krijger RR. Prognostic Value of Molecular Aberrations in Low- or Intermediate-Risk Neuroblastomas: A Systematic Review. Cancers (Basel) 2024; 17:13. [PMID: 39796644 PMCID: PMC11718975 DOI: 10.3390/cancers17010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND The 5-year prognosis of non-high-risk neuroblastomas is generally good (>90%). However, a proportion of patients show progression and succumb to their disease. We aimed to identify molecular aberrations (not incorporated in the current risk stratification) associated with overall survival (OS) and/or event-free survival (EFS) in patients diagnosed with non-high-risk neuroblastoma. METHODS We conducted a systematic search in PubMed, Embase, Cochrane and Google Scholar. Two reviewers independently and blindly screened titles/abstracts, references of protocols/reviews and full texts. Risk of bias was assessed using a customized Quality in Prognostic Studies tool. Applicability was assessed using a tool designed by the researchers. GRADE criteria were used to determine quality of evidence. RESULTS Sixteen studies (4718 patients) were included. A segmental chromosomal aberration (SCA) profile was associated with lower survival. 1p loss of heterozygosity (LOH) and 17q gain were associated with lower OS and EFS. 1p deletion and 2p gain were associated with lower OS, but this was not the same for EFS. 3p deletion was not associated with worse outcome. Quality of evidence was downgraded because of imprecision and publication bias and upgraded because of moderate/large effect, resulting in a moderate quality of evidence. CONCLUSION The association of 1p LOH, 1p deletion, 2p gain and 17q gain with OS and EFS suggests that these SCAs may be added to the risk stratification to identify non-high-risk neuroblastomas with worse prognosis.
Collapse
Affiliation(s)
- Rixt S. Bruinsma
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | | | - Marta Fiocco
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Mathematical Institute, Leiden University, 2333 CC Leiden, The Netherlands
| | | | | | | | - Max M. van Noesel
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- Division Imaging & Cancer, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | | | | | - Ronald R. de Krijger
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
11
|
Sainero-Alcolado L, Sjöberg Bexelius T, Santopolo G, Yuan Y, Liaño-Pons J, Arsenian-Henriksson M. Defining neuroblastoma: From origin to precision medicine. Neuro Oncol 2024; 26:2174-2192. [PMID: 39101440 PMCID: PMC11630532 DOI: 10.1093/neuonc/noae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Indexed: 08/06/2024] Open
Abstract
Neuroblastoma (NB), a heterogenous pediatric tumor of the sympathetic nervous system, is the most common and deadly extracranial solid malignancy diagnosed in infants. Numerous efforts have been invested in understanding its origin and in development of novel curative targeted therapies. Here, we summarize the recent advances in the identification of the cell of origin and the genetic alterations occurring during development that contribute to NB. We discuss current treatment regimens, present and future directions for the identification of novel therapeutic metabolic targets, differentiation agents, as well as personalized combinatory therapies as potential approaches for improving the survival and quality of life of children with NB.
Collapse
Affiliation(s)
- Lourdes Sainero-Alcolado
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, Stockholm SE-17165, Sweden
| | - Tomas Sjöberg Bexelius
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm SE-17177, Sweden
- Paediatric Oncology Unit, Astrid Lindgren’s Children Hospital, Solna SE-17164, Sweden
| | - Giuseppe Santopolo
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, Stockholm SE-17165, Sweden
| | - Ye Yuan
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, Stockholm SE-17165, Sweden
| | - Judit Liaño-Pons
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, Stockholm SE-17165, Sweden
| | - Marie Arsenian-Henriksson
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund SE-22381, Sweden
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, Stockholm SE-17165, Sweden
| |
Collapse
|
12
|
Thombare K, Vaid R, Pucci P, Ihrmark Lundberg K, Ayyalusamy R, Baig MH, Mendez A, Burgos-Panadero R, Höppner S, Bartenhagen C, Sjövall D, Rehan AA, Dattatraya Nale S, Djos A, Martinsson T, Jaako P, Dong JJ, Kogner P, Johnsen JI, Fischer M, Turner SD, Mondal T. METTL3/MYCN cooperation drives neural crest differentiation and provides therapeutic vulnerability in neuroblastoma. EMBO J 2024; 43:6310-6335. [PMID: 39528654 PMCID: PMC11649786 DOI: 10.1038/s44318-024-00299-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/09/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Neuroblastoma (NB) is the most common extracranial childhood cancer, caused by the improper differentiation of developing trunk neural crest cells (tNCC) in the sympathetic nervous system. The N6-methyladenosine (m6A) epitranscriptomic modification controls post-transcriptional gene expression but the mechanism by which the m6A methyltransferase complex METTL3/METTL14/WTAP is recruited to specific loci remains to be fully characterized. We explored whether the m6A epitranscriptome could fine-tune gene regulation in migrating/differentiating tNCC. We demonstrate that the m6A modification regulates the expression of HOX genes in tNCC, thereby contributing to their timely differentiation into sympathetic neurons. Furthermore, we show that posterior HOX genes are m6A modified in MYCN-amplified NB with reduced expression. In addition, we provide evidence that sustained overexpression of the MYCN oncogene in tNCC drives METTL3 recruitment to a specific subset of genes including posterior HOX genes creating an undifferentiated state. Moreover, METTL3 depletion/inhibition induces DNA damage and differentiation of MYCN overexpressing cells and increases vulnerability to chemotherapeutic drugs in MYCN-amplified patient-derived xenografts (PDX) in vivo, suggesting METTL3 inhibition could be a potential therapeutic approach for NB.
Collapse
Affiliation(s)
- Ketan Thombare
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Chemistry, Gothenburg, Sweden
| | - Roshan Vaid
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Chemistry, Gothenburg, Sweden
| | - Perla Pucci
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Kristina Ihrmark Lundberg
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institute, and Pediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Ritish Ayyalusamy
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Chemistry, Gothenburg, Sweden
| | - Mohammad Hassan Baig
- Department of Family Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, 211 Eonju-Ro, Gangnam-Gu, Seoul, 06273, Republic of Korea
| | - Akram Mendez
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Chemistry, Gothenburg, Sweden
| | - Rebeca Burgos-Panadero
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Chemistry, Gothenburg, Sweden
| | - Stefanie Höppner
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Medical Faculty, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Department of Pediatric Oncology and Hematology, University of Cologne, Cologne, Germany
| | - Christoph Bartenhagen
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Medical Faculty, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Department of Pediatric Oncology and Hematology, University of Cologne, Cologne, Germany
| | - Daniel Sjövall
- Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Aqsa Ali Rehan
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Chemistry, Gothenburg, Sweden
| | - Sagar Dattatraya Nale
- BNJ Biopharma, Memorial Hall, 85, Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea
| | - Anna Djos
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Tommy Martinsson
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Pekka Jaako
- Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Jae-June Dong
- Department of Family Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, 211 Eonju-Ro, Gangnam-Gu, Seoul, 06273, Republic of Korea
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institute, and Pediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - John Inge Johnsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institute, and Pediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Matthias Fischer
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Medical Faculty, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Department of Pediatric Oncology and Hematology, University of Cologne, Cologne, Germany
| | - Suzanne D Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Tanmoy Mondal
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Chemistry, Gothenburg, Sweden.
| |
Collapse
|
13
|
Bonine N, Zanzani V, Van Hemelryk A, Vanneste B, Zwicker C, Thoné T, Roelandt S, Bekaert SL, Koster J, Janoueix-Lerosey I, Thirant C, Van Haver S, Roberts SS, Mus LM, De Wilde B, Van Roy N, Everaert C, Speleman F, Vermeirssen V, Scott CL, De Preter K. NBAtlas: A harmonized single-cell transcriptomic reference atlas of human neuroblastoma tumors. Cell Rep 2024; 43:114804. [PMID: 39368085 DOI: 10.1016/j.celrep.2024.114804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/11/2024] [Accepted: 09/12/2024] [Indexed: 10/07/2024] Open
Abstract
Neuroblastoma, a rare embryonic tumor arising from neural crest development, is responsible for 15% of pediatric cancer-related deaths. Recently, several single-cell transcriptome studies were performed on neuroblastoma patient samples to investigate the cell of origin and tumor heterogeneity. However, these individual studies involved a small number of tumors and cells, limiting the conclusions that could be drawn. To overcome this limitation, we integrated seven single-cell or single-nucleus datasets into a harmonized cell atlas covering 362,991 cells across 61 patients. We use this atlas to decipher the transcriptional landscape of neuroblastoma at single-cell resolution, revealing associations between transcriptomic profiles and clinical outcomes within the tumor compartment. In addition, we characterize the complex immune-cell landscape and uncover considerable heterogeneity among tumor-associated macrophages. Finally, we showcase the utility of our atlas as a resource by expanding it with additional data and using it as a reference for data-driven cell-type annotation.
Collapse
Affiliation(s)
- Noah Bonine
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Vittorio Zanzani
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory for Computational Biology, Integromics and Gene Regulation (CBIGR), Ghent University, Ghent, Belgium
| | - Annelies Van Hemelryk
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Bavo Vanneste
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Christian Zwicker
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Tinne Thoné
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Sofie Roelandt
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Sarah-Lee Bekaert
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Jan Koster
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Isabelle Janoueix-Lerosey
- Inserm U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Center, Paris, France
| | - Cécile Thirant
- Inserm U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Center, Paris, France
| | - Stéphane Van Haver
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stephen S Roberts
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Liselot M Mus
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Bram De Wilde
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Nadine Van Roy
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Celine Everaert
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Frank Speleman
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Vanessa Vermeirssen
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory for Computational Biology, Integromics and Gene Regulation (CBIGR), Ghent University, Ghent, Belgium
| | - Charlotte L Scott
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium.
| | - Katleen De Preter
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
14
|
Burkert M, Blanc E, Thiessen N, Weber C, Toedling J, Monti R, Dombrowe VM, Stella de Biase M, Kaufmann TL, Haase K, Waszak SM, Eggert A, Beule D, Schulte JH, Ohler U, Schwarz RF. Copy-number dosage regulates telomere maintenance and disease-associated pathways in neuroblastoma. iScience 2024; 27:110918. [PMID: 39635126 PMCID: PMC11615189 DOI: 10.1016/j.isci.2024.110918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/12/2024] [Accepted: 09/06/2024] [Indexed: 12/07/2024] Open
Abstract
Telomere maintenance in neuroblastoma is linked to poor outcome and caused by either telomerase reverse transcriptase (TERT) activation or through alternative lengthening of telomeres (ALT). In contrast to TERT activation, commonly caused by genomic rearrangements or MYCN amplification, ALT is less well understood. Alterations at the ATRX locus are key drivers of ALT but only present in ∼50% of ALT tumors. To identify potential new pathways to telomere maintenance, we investigate allele-specific gene dosage effects from whole genomes and transcriptomes in 115 primary neuroblastomas. We show that copy-number dosage deregulates telomere maintenance, genomic stability, and neuronal pathways and identify upregulation of variants of histone H3 and H2A as a potential alternative pathway to ALT. We investigate the interplay between TERT activation, overexpression and copy-number dosage and reveal loss of imprinting at the RTL1 gene associated with poor clinical outcome. These results highlight the importance of gene dosage in key oncogenic mechanisms in neuroblastoma.
Collapse
Affiliation(s)
- Martin Burkert
- Department of Biology, Humboldt University, Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Eric Blanc
- Core Unit Bioinformatics, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin, Germany
| | - Nina Thiessen
- Core Unit Bioinformatics, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin, Germany
| | | | - Joern Toedling
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Remo Monti
- Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Victoria M. Dombrowe
- Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Maria Stella de Biase
- Department of Biology, Humboldt University, Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Tom L. Kaufmann
- Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
- Department of Electrical Engineering & Computer Science, Technische Universität Berlin, Marchstr. 23, 10587 Berlin, Germany
| | - Kerstin Haase
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sebastian M. Waszak
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Pediatric Research, Division of Pediatric and Adolescent Medicine, Rikshospitalet, Oslo University Hospital, Oslo, Norway
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Angelika Eggert
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin, Germany
| | - Johannes H. Schulte
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Uwe Ohler
- Department of Biology, Humboldt University, Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Roland F. Schwarz
- Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
- Institute for Computational Cancer Biology (ICCB), Center for Integrated Oncology (CIO), Cancer Research Center Cologne Essen (CCCE), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
15
|
Burrow TA, Koneru B, Macha SJ, Sun W, Barr FG, Triche TJ, Reynolds CP. Prevalence of alternative lengthening of telomeres in pediatric sarcomas determined by the telomeric DNA C-circle assay. Front Oncol 2024; 14:1399442. [PMID: 39224814 PMCID: PMC11366626 DOI: 10.3389/fonc.2024.1399442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Alternative lengthening of telomeres (ALT) occurs in sarcomas and ALT cancers share common mechanisms of therapy resistance or sensitivity. Telomeric DNA C-circles are self-primed circular telomeric repeats detected with a PCR assay that provide a sensitive and specific biomarker exclusive to ALT cancers. We have previously shown that 23% of high-risk neuroblastomas are of the ALT phenotype. Here, we investigate the frequency of ALT in Ewing's family sarcoma (EFS), rhabdomyosarcoma (RMS), and osteosarcoma (OS) by analyzing DNA from fresh frozen primary tumor samples utilizing the real-time PCR C-circle Assay (CCA). Methods We reviewed prior publications on ALT detection in pediatric sarcomas. DNA was extracted from fresh frozen primary tumors, fluorometrically quantified, C-circles were selectively enriched by isothermal rolling cycle amplification and detected by real-time PCR. Results The sample cohort consisted of DNA from 95 EFS, 191 RMS, and 87 OS primary tumors. One EFS and 4 RMS samples were inevaluable. Using C-circle positive (CC+) cutoffs previously defined for high-risk neuroblastoma, we observed 0 of 94 EFS, 5 of 187 RMS, and 62 of 87 OS CC+ tumors. Conclusions Utilizing the ALT-specific CCA we observed ALT in 0% of EFS, 2.7% of RMS, and 71% of OS. These data are comparable to prior studies in EFS and OS using less specific ALT markers. The CCA can provide a robust and sensitive means of identifying ALT in sarcomas and has potential as a companion diagnostic for ALT targeted therapeutics.
Collapse
Affiliation(s)
- Trevor A. Burrow
- Department of Pediatrics, Texas Tech University Health Sciences Center School of Medicine Cancer Center, Lubbock, TX, United States
- Department of Translational Neuroscience and Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Balakrishna Koneru
- Department of Pediatrics, Texas Tech University Health Sciences Center School of Medicine Cancer Center, Lubbock, TX, United States
| | - Shawn J. Macha
- Department of Pediatrics, Texas Tech University Health Sciences Center School of Medicine Cancer Center, Lubbock, TX, United States
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center Graduate School of Biomedical Sciences, Lubbock, TX, United States
| | - Wenyue Sun
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, United States
| | - Frederic G. Barr
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, United States
| | - Timothy J. Triche
- Children’s Hospital Los Angles, Department of Pathology and Laboratory Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| | - C. Patrick Reynolds
- Department of Pediatrics, Texas Tech University Health Sciences Center School of Medicine Cancer Center, Lubbock, TX, United States
- Department of Translational Neuroscience and Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center Graduate School of Biomedical Sciences, Lubbock, TX, United States
| |
Collapse
|
16
|
Zhou J, Li Q, Deng X, Peng L, Sun J, Zhang Y, Du Y. Comprehensive analysis identifies ubiquitin ligase FBXO42 as a tumor-promoting factor in neuroblastoma. Sci Rep 2024; 14:18697. [PMID: 39134694 PMCID: PMC11319589 DOI: 10.1038/s41598-024-69760-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024] Open
Abstract
Neuroblastoma, the deadliest solid tumor in children, exhibits alarming mortality rates, particularly among high-risk cases. To enhance survival rates, a more precise risk stratification for patients is imperative. Utilizing proteomic data from 34 cases with or without N-Myc amplification, we identified 28 differentially expressed ubiquitination-related proteins (URGs). From these, a prognostic signature comprising 6 URGs was constructed. A nomogram incorporating clinical-pathological parameters yielded impressive AUC values of 0.88, 0.93, and 0.95 at 1, 3, and 5 years, respectively. Functional experiments targeting the E3 ubiquitin ligase FBXO42, a component of the prognostic signature, revealed its TP53-dependent promotion of neuroblastoma cell proliferation. In conclusion, our ubiquitination-related prognostic model robustly predicts patient outcomes, guiding clinical decisions. Additionally, the newfound pro-proliferative role of FBXO42 offers a novel foundation for understanding the molecular mechanisms of neuroblastoma.
Collapse
Affiliation(s)
- Jianwu Zhou
- Department of Pediatric Surgical Oncology, Children's Hospital of Chongqing Medical University; and the National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Qijun Li
- Laboratory Animal Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xiaobin Deng
- Department of Pediatric Surgical Oncology, Children's Hospital of Chongqing Medical University; and the National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Liang Peng
- Department of Pediatric Surgical Oncology, Children's Hospital of Chongqing Medical University; and the National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Jian Sun
- Department of Pediatric Surgical Oncology, Children's Hospital of Chongqing Medical University; and the National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Yao Zhang
- Department of Pediatric Surgical Oncology, Children's Hospital of Chongqing Medical University; and the National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Yifei Du
- Department of Pediatric Surgical Oncology, Children's Hospital of Chongqing Medical University; and the National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China.
| |
Collapse
|
17
|
Graham MK, Xu B, Davis C, Meeker AK, Heaphy CM, Yegnasubramanian S, Dyer MA, Zeineldin M. The TERT Promoter is Polycomb-Repressed in Neuroblastoma Cells with Long Telomeres. CANCER RESEARCH COMMUNICATIONS 2024; 4:1533-1547. [PMID: 38837897 PMCID: PMC11188873 DOI: 10.1158/2767-9764.crc-22-0287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 05/04/2023] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
Acquiring a telomere maintenance mechanism is a hallmark of high-risk neuroblastoma and commonly occurs by expressing telomerase (TERT). Telomerase-negative neuroblastoma has long telomeres and utilizes the telomerase-independent alternative lengthening of telomeres (ALT) mechanism. Conversely, no discernable telomere maintenance mechanism is detected in a fraction of neuroblastoma with long telomeres. Here, we show, unlike most cancers, DNA of the TERT promoter is broadly hypomethylated in neuroblastoma. In telomerase-positive neuroblastoma cells, the hypomethylated DNA promoter is approximately 1.5 kb. The TERT locus shows active chromatin marks with low enrichment for the repressive mark, H3K27me3. MYCN, a commonly amplified oncogene in neuroblstoma, binds to the promoter and induces TERT expression. Strikingly, in neuroblastoma with long telomeres, the hypomethylated region spans the entire TERT locus, including multiple nearby genes with enrichment for the repressive H3K27me3 chromatin mark. Furthermore, subtelomeric regions showed enrichment of repressive chromatin marks in neuroblastomas with long telomeres relative to those with short telomeres. These repressive marks were even more evident at the genic loci, suggesting a telomere position effect (TPE). Inhibiting H3K27 methylation by three different EZH2 inhibitors induced the expression of TERT in cell lines with long telomeres and H3K27me3 marks in the promoter region. EZH2 inhibition facilitated MYCN binding to the TERT promoter in neuroblastoma cells with long telomeres. Taken together, these data suggest that epigenetic regulation of TERT expression differs in neuroblastoma depending on the telomere maintenance status, and H3K27 methylation is important in repressing TERT expression in neuroblastoma with long telomeres. SIGNIFICANCE The epigenetic landscape of the TERT locus is unique in neuroblastoma. The DNA at the TERT locus, unlike other cancer cells and similar to normal cells, are hypomethylated in telomerase-positive neuroblastoma cells. The TERT locus is repressed by polycomb repressive complex-2 complex in neuroblastoma cells that have long telomeres and do not express TERT. Long telomeres in neuroblastoma cells are also associated with repressive chromatin states at the chromosomal termini, suggesting TPE.
Collapse
Affiliation(s)
- Mindy K. Graham
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Urology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Christine Davis
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alan K. Meeker
- Department of Urology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christopher M. Heaphy
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Srinivasan Yegnasubramanian
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael A. Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee
- Howard Hughes Medical Institute, Chevy Chase, Maryland
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Maged Zeineldin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
18
|
Hu X, Zhou Y, Hill C, Chen K, Cheng C, Liu X, Duan P, Gu Y, Wu Y, Ewing RM, Li Z, Wu Z, Wang Y. Identification of MYCN non-amplified neuroblastoma subgroups points towards molecular signatures for precision prognosis and therapy stratification. Br J Cancer 2024; 130:1841-1854. [PMID: 38553589 PMCID: PMC7616008 DOI: 10.1038/s41416-024-02666-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Despite the extensive study of MYCN-amplified neuroblastomas, there is a significant unmet clinical need in MYCN non-amplified cases. In particular, the extent of heterogeneity within the MYCN non-amplified population is unknown. METHODS A total of 1566 samples from 16 datasets were identified in Gene Expression Omnibus (GEO) and ArrayExpress. Characterisation of the subtypes was analysed by ConsensusClusterPlus. Independent predictors for subgrouping were constructed from the single sample predictor based on the multiclassPairs package. Findings were verified using immunohistochemistry and CIBERSORTx analysis. RESULTS We demonstrate that MYCN non-amplified neuroblastomas are heterogeneous and can be classified into 3 subgroups based on their transcriptional signatures. Within these groups, subgroup_2 has the worst prognosis and this group shows a 'MYCN' signature that is potentially induced by the overexpression of Aurora Kinase A (AURKA); whilst subgroup_3 is characterised by an 'inflamed' gene signature. The clinical implications of this subtype classification are significant, as each subtype demonstrates a unique prognosis and vulnerability to investigational therapies. A total of 420 genes were identified as independent subgroup predictors with average balanced accuracy of 0.93 and 0.84 for train and test datasets, respectively. CONCLUSION We propose that transcriptional subtyping may enhance precision prognosis and therapy stratification for patients with MYCN non-amplified neuroblastomas.
Collapse
Affiliation(s)
- Xiaoxiao Hu
- Department of Paediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China
- Department of Paediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Division of Paediatric Oncology, Shanghai Institute of Paediatric Research, Shanghai, 200092, China
| | - Yilu Zhou
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Charlotte Hill
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Kai Chen
- Department of Paediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China
- Division of Paediatric Oncology, Shanghai Institute of Paediatric Research, Shanghai, 200092, China
| | - Cheng Cheng
- Department of Paediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China
- Division of Paediatric Oncology, Shanghai Institute of Paediatric Research, Shanghai, 200092, China
| | - Xiaowei Liu
- Department of Paediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China
- Division of Paediatric Oncology, Shanghai Institute of Paediatric Research, Shanghai, 200092, China
| | - Peiwen Duan
- Department of Paediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China
- Division of Paediatric Oncology, Shanghai Institute of Paediatric Research, Shanghai, 200092, China
| | - Yaoyao Gu
- Department of Paediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China
- Division of Paediatric Oncology, Shanghai Institute of Paediatric Research, Shanghai, 200092, China
| | - Yeming Wu
- Department of Paediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China
- Division of Paediatric Oncology, Shanghai Institute of Paediatric Research, Shanghai, 200092, China
- Department of Paediatric Surgery, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Rob M Ewing
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Zhongrong Li
- Department of Paediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhixiang Wu
- Department of Paediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China.
- Division of Paediatric Oncology, Shanghai Institute of Paediatric Research, Shanghai, 200092, China.
- Department of Paediatric Surgery, Children's Hospital of Soochow University, Suzhou, 215003, China.
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
19
|
Vaid R, Thombare K, Mendez A, Burgos-Panadero R, Djos A, Jachimowicz D, Lundberg K, Bartenhagen C, Kumar N, Tümmler C, Sihlbom C, Fransson S, Johnsen J, Kogner P, Martinsson T, Fischer M, Mondal T. METTL3 drives telomere targeting of TERRA lncRNA through m6A-dependent R-loop formation: a therapeutic target for ALT-positive neuroblastoma. Nucleic Acids Res 2024; 52:2648-2671. [PMID: 38180812 PMCID: PMC10954483 DOI: 10.1093/nar/gkad1242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024] Open
Abstract
Telomerase-negative tumors maintain telomere length by alternative lengthening of telomeres (ALT), but the underlying mechanism behind ALT remains poorly understood. A proportion of aggressive neuroblastoma (NB), particularly relapsed tumors, are positive for ALT (ALT+), suggesting that a better dissection of the ALT mechanism could lead to novel therapeutic opportunities. TERRA, a long non-coding RNA (lncRNA) derived from telomere ends, localizes to telomeres in a R-loop-dependent manner and plays a crucial role in telomere maintenance. Here we present evidence that RNA modification at the N6 position of internal adenosine (m6A) in TERRA by the methyltransferase METTL3 is essential for telomere maintenance in ALT+ cells, and the loss of TERRA m6A/METTL3 results in telomere damage. We observed that m6A modification is abundant in R-loop enriched TERRA, and the m6A-mediated recruitment of hnRNPA2B1 to TERRA is critical for R-loop formation. Our findings suggest that m6A drives telomere targeting of TERRA via R-loops, and this m6A-mediated R-loop formation could be a widespread mechanism employed by other chromatin-interacting lncRNAs. Furthermore, treatment of ALT+ NB cells with a METTL3 inhibitor resulted in compromised telomere targeting of TERRA and accumulation of DNA damage at telomeres, indicating that METTL3 inhibition may represent a therapeutic approach for ALT+ NB.
Collapse
Affiliation(s)
- Roshan Vaid
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Ketan Thombare
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Akram Mendez
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Rebeca Burgos-Panadero
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Anna Djos
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Daniel Jachimowicz
- Translational Genomics, Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Kristina Ihrmark Lundberg
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institute, and Pediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Christoph Bartenhagen
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Medical Faculty, Cologne, Germany, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Department of Pediatric Oncology and Hematology, University of Cologne, Cologne, Germany
| | - Navinder Kumar
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Conny Tümmler
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institute, and Pediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Carina Sihlbom
- Proteomics Core Facility, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Susanne Fransson
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - John Inge Johnsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institute, and Pediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institute, and Pediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Tommy Martinsson
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Matthias Fischer
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Medical Faculty, Cologne, Germany, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Department of Pediatric Oncology and Hematology, University of Cologne, Cologne, Germany
| | - Tanmoy Mondal
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Chemistry, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, 41345 Sweden
| |
Collapse
|
20
|
Mori JO, Keegan J, Flynn RL, Heaphy CM. Alternative lengthening of telomeres: mechanism and the pathogenesis of cancer. J Clin Pathol 2024; 77:82-86. [PMID: 37890990 PMCID: PMC11450735 DOI: 10.1136/jcp-2023-209005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023]
Abstract
Telomere maintenance and elongation allows cells to gain replicative immortality and evade cellular senescence during cancer development. While most cancers use telomerase to maintain telomere lengths, a subset of cancers engage the alternative lengthening of telomeres (ALT) pathway for telomere maintenance. ALT is present in 5%-10% of all cancers, although the prevalence is dramatically higher in certain cancer types, including complex karyotype sarcomas, isocitrate dehydrogenase-mutant astrocytoma (WHO grade II-IV), pancreatic neuroendocrine tumours, neuroblastoma and chromophobe hepatocellular carcinomas. ALT is maintained through a homology-directed DNA repair mechanism. Resembling break-induced replication, this aberrant process results in dramatic cell-to-cell telomere length heterogeneity, widespread chromosomal instability and chronic replication stress. Additionally, ALT-positive cancers frequently harbour inactivating mutations in either chromatin remodelling proteins (ATRX, DAXX and H3F3A) or DNA damage repair factors (SMARCAL1 and SLX4IP). ALT can readily be detected in tissue by assessing the presence of unique molecular characteristics, such as large ultrabright nuclear telomeric foci or partially single-stranded telomeric DNA circles (C-circles). Importantly, ALT has been validated as a robust diagnostic and prognostic biomarker for certain cancer types and may even be exploited as a therapeutic target via small molecular inhibitors and/or synthetic lethality approaches.
Collapse
Affiliation(s)
- Joakin O Mori
- Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Joshua Keegan
- Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Rachel L Flynn
- Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Christopher M Heaphy
- Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Pathology and Laboratory Medicine, Boston Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Djos A, Thombare K, Vaid R, Gaarder J, Umapathy G, Reinsbach SE, Georgantzi K, Stenman J, Carén H, Ek T, Mondal T, Kogner P, Martinsson T, Fransson S. Telomere Maintenance Mechanisms in a Cohort of High-Risk Neuroblastoma Tumors and Its Relation to Genomic Variants in the TERT and ATRX Genes. Cancers (Basel) 2023; 15:5732. [PMID: 38136279 PMCID: PMC10741428 DOI: 10.3390/cancers15245732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Tumor cells are hallmarked by their capacity to undergo unlimited cell divisions, commonly accomplished either by mechanisms that activate TERT or through the alternative lengthening of telomeres pathway. Neuroblastoma is a heterogeneous pediatric cancer, and the aim of this study was to characterize telomere maintenance mechanisms in a high-risk neuroblastoma cohort. All tumor samples were profiled with SNP microarrays and, when material was available, subjected to whole genome sequencing (WGS). Telomere length was estimated from WGS data, samples were assayed for the ALT biomarker c-circles, and selected samples were subjected to methylation array analysis. Samples with ATRX aberration in this study were positive for c-circles, whereas samples with either MYCN amplification or TERT re-arrangement were negative for c-circles. Both ATRX aberrations and TERT re-arrangement were enriched in 11q-deleted samples. An association between older age at diagnosis and 1q-deletion was found in the ALT-positive group. TERT was frequently placed in juxtaposition to a previously established gene in neuroblastoma tumorigenesis or cancer in general. Given the importance of high-risk neuroblastoma, means for mitigating active telomere maintenance must be therapeutically explored.
Collapse
Affiliation(s)
- Anna Djos
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (A.D.); (K.T.); (R.V.); (J.G.); (G.U.); (T.M.); (T.M.)
| | - Ketan Thombare
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (A.D.); (K.T.); (R.V.); (J.G.); (G.U.); (T.M.); (T.M.)
| | - Roshan Vaid
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (A.D.); (K.T.); (R.V.); (J.G.); (G.U.); (T.M.); (T.M.)
| | - Jennie Gaarder
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (A.D.); (K.T.); (R.V.); (J.G.); (G.U.); (T.M.); (T.M.)
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Ganesh Umapathy
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (A.D.); (K.T.); (R.V.); (J.G.); (G.U.); (T.M.); (T.M.)
| | - Susanne E. Reinsbach
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden;
| | - Kleopatra Georgantzi
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden; (K.G.); (J.S.); (P.K.)
| | - Jakob Stenman
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden; (K.G.); (J.S.); (P.K.)
| | - Helena Carén
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden;
| | - Torben Ek
- Children’s Cancer Center, Sahlgrenska University Hospital, 41650 Gothenburg, Sweden;
| | - Tanmoy Mondal
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (A.D.); (K.T.); (R.V.); (J.G.); (G.U.); (T.M.); (T.M.)
- Department of Clinical Chemistry, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden; (K.G.); (J.S.); (P.K.)
| | - Tommy Martinsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (A.D.); (K.T.); (R.V.); (J.G.); (G.U.); (T.M.); (T.M.)
| | - Susanne Fransson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (A.D.); (K.T.); (R.V.); (J.G.); (G.U.); (T.M.); (T.M.)
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| |
Collapse
|
22
|
Zhao M, Guan Z, Gong L, Liu F, Gu W, Liu L, Jiang K, Cai J, Feng C, Kuick CH, Chang KTE, Wang J, Tang H, Yin M, Mao J. Rapid detection of telomerase expression of neuroblastoma in paraffin-embedded tissue: combination of in situ hybridisation and quantitative PCR. Pathology 2023; 55:958-965. [PMID: 37741703 DOI: 10.1016/j.pathol.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/24/2023] [Accepted: 07/03/2023] [Indexed: 09/25/2023]
Abstract
Neuroblastoma is a heterogeneous paediatric malignant tumour. Telomere maintenance mechanism (TMM) by telomerase activation or alternative lengthening of telomeres (ALT) is a hallmark of high-risk neuroblastoma. However, the prior assays for telomerase, such as TERT expression by RNA sequencing or microarrays, may not be easy to perform in many histopathology laboratories in hospitals. The aims of this study are to assess the utility of ultrasensitive single-cell RNA in situ hybridisation (RNAscope), immunohistochemistry, and RT-qPCR on formalin-fixed, paraffin-embedded tumour samples as diagnostic tools for detecting TERT expression in neuroblastoma. In this study, we detected MYCN amplification in 22 of 222 cases (10%), TERT rearrangements in 18 of 220 cases (8%), and ALT activation in 39 of 222 cases (18%) using fluorescence in situ hybridisation (FISH). By RNA in situ hybridisation, 36 of 210 (17%) pretreatment neuroblastomas were found to have TERT overexpression, which was significantly associated with the high-risk group (33/78, 42%), TERT rearrangements (16/18, 89%), and MYCN amplification (13/22, 59%). None of the tumours with ALT showed TERT staining. In our study, 19 of the 55 MYCN non-amplified high-risk neuroblastomas displayed TERT mRNA expression, including 13 of the 14 TERT rearrangements, none of the 30 ALT-positive cases, and a significant proportion (6/11, 55%) that did not have the aforementioned genomic anomalies. RT-qPCR results correlated well with RNAscope levels (Spearman's rho=0.621, p<0.001, n=94). In conclusion, TERT RNA in situ hybridisation and RT-qPCR are suitable methods to evaluate TERT expression in neuroblastoma. The combination of detection of the genomic alterations and TERT mRNA expression is a powerful strategy for TMM activation detection, which can categorise neuroblastomas into multiple clinical subgroups for risk stratification in routine histopathology practice.
Collapse
Affiliation(s)
- Manli Zhao
- Department of Pathology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Zhonghai Guan
- Department of Surgical Oncology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Liang Gong
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Fei Liu
- Department of Nephrology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Weizhong Gu
- Department of Pathology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Lei Liu
- Department of Pathology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Kewen Jiang
- Biobank, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Jiabin Cai
- Department of Surgical Oncology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Chunyue Feng
- Department of Nephrology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Chik Hong Kuick
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore
| | - Kenneth Tou En Chang
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore
| | - Jinhu Wang
- Department of Surgical Oncology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Hongfeng Tang
- Department of Pathology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Minzhi Yin
- Department of Pathology, Shanghai Children's Medical Centre, Shanghai, China.
| | - Jianhua Mao
- Department of Nephrology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
| |
Collapse
|
23
|
Kerkar AN, Chinnam D, Verma A, Peters NJ, Kakkar N, Trehan A, Singh M, Gupta K. MYCN amplification, TERT rearrangements and ATRX mutations in neuroblastoma: clinicopathological correlates- an Indian perspective. Virchows Arch 2023; 483:477-486. [PMID: 37460674 DOI: 10.1007/s00428-023-03604-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/14/2023] [Accepted: 07/11/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Neuroblastoma (NB) is the most common extracranial solid tumour in childhood with a diverse clinical presentation and course. The early age of onset, high frequency of metastatic disease at diagnosis and tendency for spontaneous regression in infancy sets it apart from other childhood tumors. This heterogeneity is largely attributed to underlying genetic aberrations which are distinct in low-risk and high-risk NB. To this end, we sought to analyse our NB cases for the molecular alterations and find its correlation with clinical behaviour. METHODS NB cases (n = 50) diagnosed over last 7 years were retrospectively analysed for MYCN amplification (fluorescent-in-situ hybridization), TERT rearrangements (qRT-PCR), ATRX mutations (immunohistochemistry). These findings were correlated with demographic profiles, histologic features and clinical outcome. RESULTS Age ranged from 1 month to 30 years (mean 2.8 years) with male preponderance. Poorly differentiated subtype constituted the majority (64%), followed by differentiating (28%) and undifferentiated subtype (8%) which were equally distributed across all age groups. MYCN amplification, TERT-mRNA upregulation and ATRX mutations was observed in 30%, 42% and 24%, respectively. Cases with TERT-mRNA upregulation were distributed equally across all histological subtypes while those with ATRX mutations and MYCN amplification were frequent in poorly differentiated NB. ATRX mutation was mutually exclusive of TERT-mRNA upregulation and MYCN amplification. Kaplan-Meier analysis revealed significantly shorter overall and progression-free survival for tumors harboring MYCN amplification and TERT-mRNA upregulation, while that for ATRX mutant tumors was not significant. CONCLUSIONS Our results provide data indicating poor clinical outcome in NB carrying MYCN amplification and TERT-mRNA upregulation.
Collapse
Affiliation(s)
- Aadya N Kerkar
- Department of Pathology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | | | - Aanchal Verma
- Department of Histopathology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Nitin J Peters
- Department of Pediatric Surgery, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Nandita Kakkar
- Department of Histopathology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Amita Trehan
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Minu Singh
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Kirti Gupta
- Department of Histopathology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
| |
Collapse
|
24
|
Sung S, Kim E, Niida H, Kim C, Lee J. Distinct characteristics of two types of alternative lengthening of telomeres in mouse embryonic stem cells. Nucleic Acids Res 2023; 51:9122-9143. [PMID: 37496110 PMCID: PMC10516625 DOI: 10.1093/nar/gkad617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 06/27/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023] Open
Abstract
Telomere length must be maintained in actively dividing cells to avoid cellular arrest or death. In the absence of telomerase activity, activation of alternative lengthening of telomeres (ALT) allows the maintenance of telomeric length and prolongs the cellular lifespan. Our previous studies have established two types of ALT survivors from mouse embryonic stem cells. The key differences between these ALT survivors are telomere-constituting sequences: non-telomeric sequences and canonical telomeric repeats, with each type of ALT survivors being referred to as type I and type II, respectively. We explored how the characteristics of the two types of ALT lines reflect their fates using multi-omics approaches. The most notable gene expression signatures of type I and type II ALT cell lines were chromatin remodelling and DNA repair, respectively. Compared with type II cells, type I ALT cells accumulated more mutations and demonstrated persistent telomere instability. These findings indicate that cells of the same origin have separate routes for survival, thus providing insights into the plasticity of crisis-suffering cells and cancers.
Collapse
Affiliation(s)
- Sanghyun Sung
- Department of Biological Sciences, Seoul National University, Gwanak-ro 1, Seoul 08826, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Gwanak-ro 1, Seoul 08826, Korea
| | - Eunkyeong Kim
- Department of Biological Sciences, Seoul National University, Gwanak-ro 1, Seoul 08826, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Gwanak-ro 1, Seoul 08826, Korea
| | - Hiroyuki Niida
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Chuna Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro 125, Daejeon 34141, Korea
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Junho Lee
- Department of Biological Sciences, Seoul National University, Gwanak-ro 1, Seoul 08826, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Gwanak-ro 1, Seoul 08826, Korea
| |
Collapse
|
25
|
Bagatell R, DuBois SG, Naranjo A, Belle J, Goldsmith KC, Park JR, Irwin MS. Children's Oncology Group's 2023 blueprint for research: Neuroblastoma. Pediatr Blood Cancer 2023; 70 Suppl 6:e30572. [PMID: 37458162 PMCID: PMC10587593 DOI: 10.1002/pbc.30572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Neuroblastoma is the most common extra-cranial solid tumor in children and is known for its clinical heterogeneity. A greater understanding of the biology of this disease has led to both improved risk stratification and new approaches to therapy. Outcomes for children with low and intermediate risk disease are excellent overall, and efforts to decrease therapy for such patients have been largely successful. Although survival has improved over time for patients with high-risk disease and treatments evaluated in the relapse setting are now being moved into earlier phases of treatment, much work remains to improve survival and decrease therapy-related toxicities. Studies of highly annotated biobanked samples continue to lead to important insights regarding neuroblastoma biology. Such studies, along with correlative biology studies incorporated into therapeutic trials, are expected to continue to provide insights that lead to new and more effective therapies. A focus on translational science is accompanied by an emphasis on new agent development, optimized risk stratification, and international collaboration to address questions relevant to molecularly defined subsets of patients. In addition, the COG Neuroblastoma Committee is committed to addressing the patient/family experience, mitigating late effects of therapy, and studying social determinants of health in patients with neuroblastoma.
Collapse
Affiliation(s)
- Rochelle Bagatell
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Steven G DuBois
- Department of Pediatrics, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| | - Arlene Naranjo
- Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Jen Belle
- Children's Oncology Group, Monrovia, California, USA
| | - Kelly C Goldsmith
- Department of Pediatrics, Children's Healthcare of Atlanta Inc Aflac Cancer and Blood Disorders Center, Atlanta, Georgia, USA
| | - Julie R Park
- Department of Oncology, St Jude Children's Research Hospital Department of Oncology, Memphis, Tennessee, USA
| | - Meredith S Irwin
- Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
26
|
Igoshin AV, Yudin NS, Romashov GA, Larkin DM. A Multibreed Genome-Wide Association Study for Cattle Leukocyte Telomere Length. Genes (Basel) 2023; 14:1596. [PMID: 37628647 PMCID: PMC10454124 DOI: 10.3390/genes14081596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Telomeres are terminal DNA regions of chromosomes that prevent chromosomal fusion and degradation during cell division. In cattle, leukocyte telomere length (LTL) is associated with longevity, productive lifespan, and disease susceptibility. However, the genetic basis of LTL in this species is less studied than in humans. In this study, we utilized the whole-genome resequencing data of 239 animals from 17 cattle breeds for computational leukocyte telomere length estimation and subsequent genome-wide association study of LTL. As a result, we identified 42 significant SNPs, of which eight were found in seven genes (EXOC6B, PTPRD, RPS6KC1, NSL1, AGBL1, ENSBTAG00000052188, and GPC1) when using covariates for two major breed groups (Turano-Mongolian and European). Association analysis with covariates for breed effect detected 63 SNPs, including 13 in five genes (EXOC6B, PTPRD, RPS6KC1, ENSBTAG00000040318, and NELL1). The PTPRD gene, demonstrating the top signal in analysis with breed effect, was previously associated with leukocyte telomere length in cattle and likely is involved in the mechanism of alternative lengthening of telomeres. The single nucleotide variants found could be tested for marker-assisted selection to improve telomere-length-associated traits.
Collapse
Affiliation(s)
- Alexander V. Igoshin
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), 630090 Novosibirsk, Russia
| | - Nikolay S. Yudin
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), 630090 Novosibirsk, Russia
| | - Grigorii A. Romashov
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), 630090 Novosibirsk, Russia
| | - Denis M. Larkin
- Royal Veterinary College, University of London, London NW1 0TU, UK
| |
Collapse
|
27
|
Stundon JL, Ijaz H, Gaonkar KS, Kaufman RS, Jin R, Karras A, Vaksman Z, Kim J, Corbett RJ, Lueder MR, Miller DP, Guo Y, Santi M, Li M, Lopez G, Storm PB, Resnick AC, Waanders AJ, MacFarland SP, Stewart DR, Diskin SJ, Rokita JL, Cole KA. Alternative lengthening of telomeres (ALT) in pediatric high-grade gliomas can occur without ATRX mutation and is enriched in patients with pathogenic germline mismatch repair (MMR) variants. Neuro Oncol 2023; 25:1331-1342. [PMID: 36541551 PMCID: PMC10326481 DOI: 10.1093/neuonc/noac278] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND To achieve replicative immortality, most cancers develop a telomere maintenance mechanism, such as reactivation of telomerase or alternative lengthening of telomeres (ALT). There are limited data on the prevalence and clinical significance of ALT in pediatric brain tumors, and ALT-directed therapy is not available. METHODS We performed C-circle analysis (CCA) on 579 pediatric brain tumors that had corresponding tumor/normal whole genome sequencing through the Open Pediatric Brain Tumor Atlas (OpenPBTA). We detected ALT in 6.9% (n = 40/579) of these tumors and completed additional validation by ultrabright telomeric foci in situ on a subset of these tumors. We used CCA to validate TelomereHunter for computational prediction of ALT status and focus subsequent analyses on pediatric high-grade gliomas (pHGGs) Finally, we examined whether ALT is associated with recurrent somatic or germline alterations. RESULTS ALT is common in pHGGs (n = 24/63, 38.1%), but occurs infrequently in other pediatric brain tumors (<3%). Somatic ATRX mutations occur in 50% of ALT+ pHGGs and in 30% of ALT- pHGGs. Rare pathogenic germline variants in mismatch repair (MMR) genes are significantly associated with an increased occurrence of ALT. CONCLUSIONS We demonstrate that ATRX is mutated in only a subset of ALT+ pHGGs, suggesting other mechanisms of ATRX loss of function or alterations in other genes may be associated with the development of ALT in these patients. We show that germline variants in MMR are associated with the development of ALT in patients with pHGG.
Collapse
Affiliation(s)
- Jennifer L Stundon
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania,USA
| | - Heba Ijaz
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania,USA
| | - Krutika S Gaonkar
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Department of Bioinformatics and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
| | - Rebecca S Kaufman
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Department of Bioinformatics and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
| | - Run Jin
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
| | - Anastasios Karras
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
| | - Zalman Vaksman
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Department of Bioinformatics and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
| | - Jung Kim
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland,USA
| | - Ryan J Corbett
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
| | - Matthew R Lueder
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
| | - Daniel P Miller
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
| | - Yiran Guo
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
| | - Mariarita Santi
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
| | - Marilyn Li
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
| | - Gonzalo Lopez
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
| | - Phillip B Storm
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
| | - Adam C Resnick
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
| | - Angela J Waanders
- Division of Hematology, Oncology, NeuroOncology, and Stem Cell Transplant, Ann & Robert H Lurie Children’s Hospital of Chicago, Illinois,USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois,USA
| | - Suzanne P MacFarland
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania,USA
| | - Douglas R Stewart
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland,USA
| | - Sharon J Diskin
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania,USA
- Department of Bioinformatics and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania,USA
| | - Jo Lynne Rokita
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Department of Bioinformatics and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
| | - Kristina A Cole
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania,USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania,USA
| |
Collapse
|
28
|
Fuchs S, Danßmann C, Klironomos F, Winkler A, Fallmann J, Kruetzfeldt LM, Szymansky A, Naderi J, Bernhart SH, Grunewald L, Helmsauer K, Rodriguez-Fos E, Kirchner M, Mertins P, Astrahantseff K, Suenkel C, Toedling J, Meggetto F, Remke M, Stadler PF, Hundsdoerfer P, Deubzer HE, Künkele A, Lang P, Fuchs J, Henssen AG, Eggert A, Rajewsky N, Hertwig F, Schulte JH. Defining the landscape of circular RNAs in neuroblastoma unveils a global suppressive function of MYCN. Nat Commun 2023; 14:3936. [PMID: 37402719 DOI: 10.1038/s41467-023-38747-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 05/12/2023] [Indexed: 07/06/2023] Open
Abstract
Circular RNAs (circRNAs) are a regulatory RNA class. While cancer-driving functions have been identified for single circRNAs, how they modulate gene expression in cancer is not well understood. We investigate circRNA expression in the pediatric malignancy, neuroblastoma, through deep whole-transcriptome sequencing in 104 primary neuroblastomas covering all risk groups. We demonstrate that MYCN amplification, which defines a subset of high-risk cases, causes globally suppressed circRNA biogenesis directly dependent on the DHX9 RNA helicase. We detect similar mechanisms in shaping circRNA expression in the pediatric cancer medulloblastoma implying a general MYCN effect. Comparisons to other cancers identify 25 circRNAs that are specifically upregulated in neuroblastoma, including circARID1A. Transcribed from the ARID1A tumor suppressor gene, circARID1A promotes cell growth and survival, mediated by direct interaction with the KHSRP RNA-binding protein. Our study highlights the importance of MYCN regulating circRNAs in cancer and identifies molecular mechanisms, which explain their contribution to neuroblastoma pathogenesis.
Collapse
Affiliation(s)
- Steffen Fuchs
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany.
- The German Cancer Consortium (DKTK), Partner Site Berlin, 10117, Berlin, Germany.
- The German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10178, Berlin, Germany.
- CRCT, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, 31037, Toulouse, France.
- Laboratoire d'Excellence Toulouse Cancer-TOUCAN, 31037, Toulouse, France.
| | - Clara Danßmann
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Filippos Klironomos
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Annika Winkler
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Jörg Fallmann
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107, Leipzig, Germany
| | - Louisa-Marie Kruetzfeldt
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Annabell Szymansky
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Julian Naderi
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Stephan H Bernhart
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107, Leipzig, Germany
| | - Laura Grunewald
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- The German Cancer Consortium (DKTK), Partner Site Berlin, 10117, Berlin, Germany
- The German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Konstantin Helmsauer
- Experimental and Clinical Research Center (ECRC) of the Charité and Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125, Berlin, Germany
| | - Elias Rodriguez-Fos
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- Experimental and Clinical Research Center (ECRC) of the Charité and Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125, Berlin, Germany
| | - Marieluise Kirchner
- Core Unit Proteomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine (MDC), 13125, Berlin, Germany
| | - Philipp Mertins
- Core Unit Proteomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine (MDC), 13125, Berlin, Germany
| | - Kathy Astrahantseff
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Christin Suenkel
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Straße 28, 10115, Berlin, Germany
- Lonza Drug Product Services, 4057, Basel, Switzerland
| | - Joern Toedling
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- The German Cancer Consortium (DKTK), Partner Site Berlin, 10117, Berlin, Germany
- The German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Fabienne Meggetto
- CRCT, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, 31037, Toulouse, France
- Laboratoire d'Excellence Toulouse Cancer-TOUCAN, 31037, Toulouse, France
| | - Marc Remke
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University Düsseldorf, Medical Faculty, and University Hospital Düsseldorf, 40225, Düsseldorf, Germany
- The German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, 40225, Düsseldorf, Germany
- Institute of Neuropathology, Heinrich Heine University Düsseldorf, Medical Faculty, and University Hospital Düsseldorf, 40225, Düsseldorf, Germany
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107, Leipzig, Germany
| | - Patrick Hundsdoerfer
- Department of Pediatric Oncology, Helios Klinikum Berlin-Buch, 13125, Berlin, Germany
| | - Hedwig E Deubzer
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- The German Cancer Consortium (DKTK), Partner Site Berlin, 10117, Berlin, Germany
- The German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10178, Berlin, Germany
- Experimental and Clinical Research Center (ECRC) of the Charité and Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125, Berlin, Germany
| | - Annette Künkele
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- The German Cancer Consortium (DKTK), Partner Site Berlin, 10117, Berlin, Germany
- The German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Peter Lang
- Department I - General Pediatrics, Hematology/Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Jörg Fuchs
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Anton G Henssen
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- The German Cancer Consortium (DKTK), Partner Site Berlin, 10117, Berlin, Germany
- The German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Experimental and Clinical Research Center (ECRC) of the Charité and Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125, Berlin, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- The German Cancer Consortium (DKTK), Partner Site Berlin, 10117, Berlin, Germany
- The German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10178, Berlin, Germany
| | - Nikolaus Rajewsky
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Straße 28, 10115, Berlin, Germany
| | - Falk Hertwig
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- The German Cancer Consortium (DKTK), Partner Site Berlin, 10117, Berlin, Germany
- The German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Johannes H Schulte
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany.
- The German Cancer Consortium (DKTK), Partner Site Berlin, 10117, Berlin, Germany.
- The German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10178, Berlin, Germany.
- Department I - General Pediatrics, Hematology/Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany.
| |
Collapse
|
29
|
Fetahu IS, Esser-Skala W, Dnyansagar R, Sindelar S, Rifatbegovic F, Bileck A, Skos L, Bozsaky E, Lazic D, Shaw L, Tötzl M, Tarlungeanu D, Bernkopf M, Rados M, Weninger W, Tomazou EM, Bock C, Gerner C, Ladenstein R, Farlik M, Fortelny N, Taschner-Mandl S. Single-cell transcriptomics and epigenomics unravel the role of monocytes in neuroblastoma bone marrow metastasis. Nat Commun 2023; 14:3620. [PMID: 37365178 PMCID: PMC10293285 DOI: 10.1038/s41467-023-39210-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Metastasis is the major cause of cancer-related deaths. Neuroblastoma (NB), a childhood tumor has been molecularly defined at the primary cancer site, however, the bone marrow (BM) as the metastatic niche of NB is poorly characterized. Here we perform single-cell transcriptomic and epigenomic profiling of BM aspirates from 11 subjects spanning three major NB subtypes and compare these to five age-matched and metastasis-free BM, followed by in-depth single cell analyses of tissue diversity and cell-cell interactions, as well as functional validation. We show that cellular plasticity of NB tumor cells is conserved upon metastasis and tumor cell type composition is NB subtype-dependent. NB cells signal to the BM microenvironment, rewiring via macrophage mgration inhibitory factor and midkine signaling specifically monocytes, which exhibit M1 and M2 features, are marked by activation of pro- and anti-inflammatory programs, and express tumor-promoting factors, reminiscent of tumor-associated macrophages. The interactions and pathways characterized in our study provide the basis for therapeutic approaches that target tumor-to-microenvironment interactions.
Collapse
Affiliation(s)
- Irfete S Fetahu
- St. Anna Children's Cancer Research Institute, Vienna, Austria.
| | - Wolfgang Esser-Skala
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Rohit Dnyansagar
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Samuel Sindelar
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | | | - Andrea Bileck
- University of Vienna, Department of Analytical Chemistry, Faculty of Chemistry, Vienna, Austria
- Joint Metabolomics Facility, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Lukas Skos
- University of Vienna, Department of Analytical Chemistry, Faculty of Chemistry, Vienna, Austria
| | - Eva Bozsaky
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Daria Lazic
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Lisa Shaw
- Medical University of Vienna, Department of Dermatology, Vienna, Austria
| | - Marcus Tötzl
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | | | - Marie Bernkopf
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Magdalena Rados
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Wolfgang Weninger
- Medical University of Vienna, Department of Dermatology, Vienna, Austria
| | - Eleni M Tomazou
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Medical University of Vienna, Institute of Artificial Intelligence, Center for Medical Data Science, Vienna, Austria
| | - Christopher Gerner
- University of Vienna, Department of Analytical Chemistry, Faculty of Chemistry, Vienna, Austria
- Joint Metabolomics Facility, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Ruth Ladenstein
- St. Anna Children's Hospital and St. Anna Children's Cancer Research Institute, Department of Studies and Statistics for Integrated Research and Projects, Vienna, Austria
- Medical University of Vienna, Department of Pediatrics, Vienna, Austria
| | - Matthias Farlik
- Medical University of Vienna, Department of Dermatology, Vienna, Austria
| | - Nikolaus Fortelny
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria.
| | | |
Collapse
|
30
|
Bender HG, Irwin MS, Hogarty MD, Castleberry R, Maris JM, Kao PC, Zhang FF, Naranjo A, Cohn SL, London WB. Survival of Patients With Neuroblastoma After Assignment to Reduced Therapy Because of the 12- to 18-Month Change in Age Cutoff in Children's Oncology Group Risk Stratification. J Clin Oncol 2023; 41:3149-3159. [PMID: 37098238 PMCID: PMC10256433 DOI: 10.1200/jco.22.01946] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/01/2022] [Accepted: 02/23/2023] [Indexed: 04/27/2023] Open
Abstract
PURPOSE In 2006, Children's Oncology Group (COG) reclassified subgroups of toddlers diagnosed with neuroblastoma from high-risk to intermediate-risk, when the age cutoff for high-risk assignment was raised from 365 days (12 months) to 547 days (18 months). The primary aim of this retrospective study was to determine if excellent outcome was maintained after assigned reduction of therapy. PATIENTS AND METHODS Children <3 years old at diagnosis, enrolled on a COG biology study from 1990 to 2018, were eligible (n = 9,189). Assigned therapy was reduced for two cohorts of interest on the basis of the age cutoff change: 365-546 days old with International Neuroblastoma Staging System (INSS) stage 4, MYCN not amplified (MYCN-NA), favorable International Neuroblastoma Pathology Classification (INPC), hyperdiploid tumors (12-18mo/Stage4/FavBiology), and 365-546 days old with INSS stage 3, MYCN-NA, and unfavorable INPC tumors (12-18mo/Stage3/MYCN-NA/Unfav). Log-rank tests compared event-free survival (EFS) and overall survival (OS) curves. RESULTS For 12-18mo/Stage4/FavBiology, 5-year EFS/OS (± SE) before (≤2006; n = 40) versus after (>2006; n = 55) assigned reduction in therapy was similar: 89% ± 5.1%/89% ± 5.1% versus 87% ± 4.6%/94% ± 3.2% (P = .7; P = .4, respectively). For 12-18mo/Stage3/MYCN-NA/Unfav, the 5-year EFS and OS were both 100%, before (n = 6) and after (n = 4) 2006. The 12-18mo/Stage4/FavBiology plus 12-18mo/Stage3/MYCN-NA/Unfav classified as high-risk ≤2006 had an EFS/OS of 91% ± 4.4%/91% ± 4.5% versus 38% ± 1.3%/43% ± 1.3% for all other high-risk patients <3 years old (P < .0001; P < .0001, respectively). The 12-18mo/Stage4/FavBiology plus 12-18mo/Stage3/MYCN-NA/Unfav classified as intermediate-risk >2006 had an EFS/OS of 88% ± 4.3%/95% ± 2.9% versus 88% ± 0.9%/95% ± 0.6% for all other intermediate-risk patients <3 years old (P = .87; P = .85, respectively). CONCLUSION Excellent outcome was maintained among subsets of toddlers with neuroblastoma assigned to reduced treatment after reclassification of risk group from high to intermediate on the basis of new age cutoffs. Importantly, as documented in prior trials, intermediate-risk therapy is not associated with the degree of acute toxicity and late effects commonly observed with high-risk regimens.
Collapse
Affiliation(s)
- Hannah G. Bender
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA
| | - Meredith S. Irwin
- Department of Pediatrics, The Hospital for Sick Children, University of Toronto, ON, Canada
| | - Michael D. Hogarty
- Department of Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - John M. Maris
- Department of Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Pei-Chi Kao
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA
| | - Fan F. Zhang
- Department of Biostatistics, Children's Oncology Group Statistics and Data Center, University of Florida, Gainesville, FL
| | - Arlene Naranjo
- Department of Biostatistics, Children's Oncology Group Statistics and Data Center, University of Florida, Gainesville, FL
| | - Susan L. Cohn
- Department of Pediatrics and Comer Children's Hospital, University of Chicago, Chicago, IL
| | - Wendy B. London
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA
| |
Collapse
|
31
|
Goldsmith KC, Park JR, Kayser K, Malvar J, Chi YY, Groshen SG, Villablanca JG, Krytska K, Lai LM, Acharya PT, Goodarzian F, Pawel B, Shimada H, Ghazarian S, States L, Marshall L, Chesler L, Granger M, Desai AV, Mody R, Morgenstern DA, Shusterman S, Macy ME, Pinto N, Schleiermacher G, Vo K, Thurm HC, Chen J, Liyanage M, Peltz G, Matthay KK, Berko ER, Maris JM, Marachelian A, Mossé YP. Lorlatinib with or without chemotherapy in ALK-driven refractory/relapsed neuroblastoma: phase 1 trial results. Nat Med 2023; 29:1092-1102. [PMID: 37012551 DOI: 10.1038/s41591-023-02297-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/09/2023] [Indexed: 04/05/2023]
Abstract
Neuroblastomas harbor ALK aberrations clinically resistant to crizotinib yet sensitive pre-clinically to the third-generation ALK inhibitor lorlatinib. We conducted a first-in-child study evaluating lorlatinib with and without chemotherapy in children and adults with relapsed or refractory ALK-driven neuroblastoma. The trial is ongoing, and we report here on three cohorts that have met pre-specified primary endpoints: lorlatinib as a single agent in children (12 months to <18 years); lorlatinib as a single agent in adults (≥18 years); and lorlatinib in combination with topotecan/cyclophosphamide in children (<18 years). Primary endpoints were safety, pharmacokinetics and recommended phase 2 dose (RP2D). Secondary endpoints were response rate and 123I-metaiodobenzylguanidine (MIBG) response. Lorlatinib was evaluated at 45-115 mg/m2/dose in children and 100-150 mg in adults. Common adverse events (AEs) were hypertriglyceridemia (90%), hypercholesterolemia (79%) and weight gain (87%). Neurobehavioral AEs occurred mainly in adults and resolved with dose hold/reduction. The RP2D of lorlatinib with and without chemotherapy in children was 115 mg/m2. The single-agent adult RP2D was 150 mg. The single-agent response rate (complete/partial/minor) for <18 years was 30%; for ≥18 years, 67%; and for chemotherapy combination in <18 years, 63%; and 13 of 27 (48%) responders achieved MIBG complete responses, supporting lorlatinib's rapid translation into active phase 3 trials for patients with newly diagnosed high-risk, ALK-driven neuroblastoma. ClinicalTrials.gov registration: NCT03107988 .
Collapse
Affiliation(s)
- Kelly C Goldsmith
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Julie R Park
- Seattle Children's Hospital, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Kimberly Kayser
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jemily Malvar
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Yueh-Yun Chi
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Susan G Groshen
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Judith G Villablanca
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kateryna Krytska
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lillian M Lai
- Department of Radiology, University of Iowa Hospital and Clinics, Iowa City, IA, USA
| | - Patricia T Acharya
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Fariba Goodarzian
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Bruce Pawel
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Hiroyuki Shimada
- Department of Pathology and Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Susan Ghazarian
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Lisa States
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Lynley Marshall
- The Royal Marsden Hospital, London, UK
- The Institute of Cancer Research, London, UK
| | - Louis Chesler
- The Royal Marsden Hospital, London, UK
- The Institute of Cancer Research, London, UK
| | | | - Ami V Desai
- Department of Pediatrics, Section of Hematology/Oncology/Stem Cell Transplantation, University of Chicago, Chicago, IL, USA
| | - Rajen Mody
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Daniel A Morgenstern
- Division of Haematology and Oncology, Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Suzanne Shusterman
- Dana-Farber Cancer Institute, Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Margaret E Macy
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA
| | - Navin Pinto
- Seattle Children's Hospital, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Gudrun Schleiermacher
- RTOP (Recherche Translationelle en Oncologie Pédiatrique), INSERM U830, Research Center, PSL Research University, Institut Curie, Paris, France
- SIREDO Oncology Center (Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer), Institut Curie, Paris, France
| | - Kieuhoa Vo
- Department of Pediatrics, UCSF Benioff Children's Hospital, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Holger C Thurm
- Global Product Development, Clinical Pharmacology, Pfizer Oncology, Pfizer, Inc., New York, NY, USA
| | - Joseph Chen
- Global Product Development, Clinical Pharmacology, Pfizer Oncology, Pfizer, Inc., New York, NY, USA
| | - Marlon Liyanage
- Global Product Development, Clinical Pharmacology, Pfizer Oncology, Pfizer, Inc., New York, NY, USA
| | - Gerson Peltz
- Global Product Development, Clinical Pharmacology, Pfizer Oncology, Pfizer, Inc., New York, NY, USA
| | - Katherine K Matthay
- Department of Pediatrics, UCSF Benioff Children's Hospital, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Esther R Berko
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Pediatric Hematology and Oncology, Schneider Children's Medical Center, Petach Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Araz Marachelian
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yael P Mossé
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
32
|
Körber V, Stainczyk SA, Kurilov R, Henrich KO, Hero B, Brors B, Westermann F, Höfer T. Neuroblastoma arises in early fetal development and its evolutionary duration predicts outcome. Nat Genet 2023; 55:619-630. [PMID: 36973454 PMCID: PMC10101850 DOI: 10.1038/s41588-023-01332-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 02/06/2023] [Indexed: 03/29/2023]
Abstract
AbstractNeuroblastoma, the most frequent solid tumor in infants, shows very diverse outcomes from spontaneous regression to fatal disease. When these different tumors originate and how they evolve are not known. Here we quantify the somatic evolution of neuroblastoma by deep whole-genome sequencing, molecular clock analysis and population-genetic modeling in a comprehensive cohort covering all subtypes. We find that tumors across the entire clinical spectrum begin to develop via aberrant mitoses as early as the first trimester of pregnancy. Neuroblastomas with favorable prognosis expand clonally after short evolution, whereas aggressive neuroblastomas show prolonged evolution during which they acquire telomere maintenance mechanisms. The initial aneuploidization events condition subsequent evolution, with aggressive neuroblastoma exhibiting early genomic instability. We find in the discovery cohort (n = 100), and validate in an independent cohort (n = 86), that the duration of evolution is an accurate predictor of outcome. Thus, insight into neuroblastoma evolution may prospectively guide treatment decisions.
Collapse
|
33
|
Chicco D, Sanavia T, Jurman G. Signature literature review reveals AHCY, DPYSL3, and NME1 as the most recurrent prognostic genes for neuroblastoma. BioData Min 2023; 16:7. [PMID: 36870971 PMCID: PMC9985261 DOI: 10.1186/s13040-023-00325-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Neuroblastoma is a childhood neurological tumor which affects hundreds of thousands of children worldwide, and information about its prognosis can be pivotal for patients, their families, and clinicians. One of the main goals in the related bioinformatics analyses is to provide stable genetic signatures able to include genes whose expression levels can be effective to predict the prognosis of the patients. In this study, we collected the prognostic signatures for neuroblastoma published in the biomedical literature, and noticed that the most frequent genes present among them were three: AHCY, DPYLS3, and NME1. We therefore investigated the prognostic power of these three genes by performing a survival analysis and a binary classification on multiple gene expression datasets of different groups of patients diagnosed with neuroblastoma. Finally, we discussed the main studies in the literature associating these three genes with neuroblastoma. Our results, in each of these three steps of validation, confirm the prognostic capability of AHCY, DPYLS3, and NME1, and highlight their key role in neuroblastoma prognosis. Our results can have an impact on neuroblastoma genetics research: biologists and medical researchers can pay more attention to the regulation and expression of these three genes in patients having neuroblastoma, and therefore can develop better cures and treatments which can save patients' lives.
Collapse
Affiliation(s)
- Davide Chicco
- Institute of Health Policy Management and Evaluation, University of Toronto, 155 College Street, M5T 3M7 Toronto, Ontario, Canada
| | - Tiziana Sanavia
- Dipartimento di Scienze Mediche, Università di Torino, Via Verdi 8, 10124 Turin, Italy
| | - Giuseppe Jurman
- Data Science for Health Unit, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Povo (Trento), Italy
| |
Collapse
|
34
|
Sun H, Chen G, Guo B, Lv S, Yuan G. Potential clinical treatment prospects behind the molecular mechanism of alternative lengthening of telomeres (ALT). J Cancer 2023; 14:417-433. [PMID: 36860927 PMCID: PMC9969575 DOI: 10.7150/jca.80097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/25/2022] [Indexed: 02/04/2023] Open
Abstract
Normal somatic cells inevitably experience replicative stress and senescence during proliferation. Somatic cell carcinogenesis can be prevented in part by limiting the reproduction of damaged or old cells and removing them from the cell cycle [1, 2]. However, Cancer cells must overcome the issues of replication pressure and senescence as well as preserve telomere length in order to achieve immortality, in contrast to normal somatic cells [1, 2]. Although telomerase accounts for the bulk of telomere lengthening methods in human cancer cells, there is a non-negligible portion of telomere lengthening pathways that depend on alternative lengthening of telomeres (ALT) [3]. For the selection of novel possible therapeutic targets for ALT-related disorders, a thorough understanding of the molecular biology of these diseases is crucial [4]. The roles of ALT, typical ALT tumor cell traits, the pathophysiology and molecular mechanisms of ALT tumor disorders, such as adrenocortical carcinoma (ACC), are all summarized in this work. Additionally, this research compiles as many of its hypothetically viable but unproven treatment targets as it can (ALT-associated PML bodies (APB), etc.). This review is intended to contribute as much as possible to the development of research, while also trying to provide a partial information for prospective investigations on ALT pathways and associated diseases.
Collapse
Affiliation(s)
- Haolu Sun
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230011, China
| | - Guijuan Chen
- School of Environment and Chemical Engineering, Anhui Vocational and Technical College, Hefei, 230011, China
| | - Baochang Guo
- Rehabilitation Department of Traditional Chinese Medicine, 969 Hospital of the Joint Support Force of the Chinese People's Liberation Army, Hohhot, 010000, China
| | - Shushu Lv
- Department of Pathology, The First Affiliated Hospital of Huzhou University, Huzhou 313000, China
| | - Guojun Yuan
- School of Environment and Chemical Engineering, Anhui Vocational and Technical College, Hefei, 230011, China
| |
Collapse
|
35
|
Meeser A, Bartenhagen C, Werr L, Hellmann AM, Kahlert Y, Hemstedt N, Nürnberg P, Altmüller J, Ackermann S, Hero B, Simon T, Peifer M, Fischer M, Rosswog C. Reliable assessment of telomere maintenance mechanisms in neuroblastoma. Cell Biosci 2022; 12:160. [PMID: 36153564 PMCID: PMC9508734 DOI: 10.1186/s13578-022-00896-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/03/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Telomere maintenance mechanisms (TMM) are a hallmark of high-risk neuroblastoma, and are conferred by activation of telomerase or alternative lengthening of telomeres (ALT). However, detection of TMM is not yet part of the clinical routine, and consensus on TMM detection, especially on ALT assessment, remains to be achieved. METHODS Whole genome sequencing (WGS) data of 68 primary neuroblastoma samples were analyzed. Telomere length was calculated from WGS data or by telomere restriction fragment analysis (n = 39). ALT was assessed by C-circle assay (CCA, n = 67) and detection of ALT-associated PML nuclear bodies (APB) by combined fluorescence in situ hybridization and immunofluorescence staining (n = 68). RNA sequencing was performed (n = 64) to determine expression of TERT and telomeric long non-coding RNA (TERRA). Telomerase activity was examined by telomerase repeat amplification protocol (TRAP, n = 15). RESULTS Tumors were considered as telomerase-positive if they harbored a TERT rearrangement, MYCN amplification or high TERT expression (45.6%, 31/68), and ALT-positive if they were positive for APB and CCA (19.1%, 13/68). If all these markers were absent, tumors were considered TMM-negative (25.0%, 17/68). According to these criteria, the majority of samples were classified unambiguously (89.7%, 61/68). Assessment of additional ALT-associated parameters clarified the TMM status of the remaining seven cases with high likelihood: ALT-positive tumors had higher TERRA expression, longer telomeres, more telomere insertions, a characteristic pattern of telomere variant repeats, and were associated with ATRX mutations. CONCLUSIONS We here propose a workflow to reliably detect TMM in neuroblastoma. We show that unambiguous classification is feasible following a stepwise approach that determines both, activation of telomerase and ALT. The workflow proposed in this study can be used in clinical routine and provides a framework to systematically and reliably determine telomere maintenance mechanisms for risk stratification and treatment allocation of neuroblastoma patients.
Collapse
Affiliation(s)
- Alina Meeser
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, Medical Faculty, University of Cologne, Cologne, Germany
| | - Christoph Bartenhagen
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, Medical Faculty, University of Cologne, Cologne, Germany
| | - Lisa Werr
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, Medical Faculty, University of Cologne, Cologne, Germany
| | - Anna-Maria Hellmann
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, Medical Faculty, University of Cologne, Cologne, Germany
| | - Yvonne Kahlert
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, Medical Faculty, University of Cologne, Cologne, Germany
| | - Nadine Hemstedt
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, Medical Faculty, University of Cologne, Cologne, Germany
| | - Peter Nürnberg
- Center for Molecular Medicine Cologne, Medical Faculty, University of Cologne, Cologne, Germany
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Core Facility Genomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Sandra Ackermann
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, Medical Faculty, University of Cologne, Cologne, Germany
| | - Barbara Hero
- Department of Pediatric Oncology and Hematology, University of Cologne, Cologne, Germany
| | - Thorsten Simon
- Department of Pediatric Oncology and Hematology, University of Cologne, Cologne, Germany
| | - Martin Peifer
- Center for Molecular Medicine Cologne, Medical Faculty, University of Cologne, Cologne, Germany
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, Cologne, Germany
| | - Matthias Fischer
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
- Center for Molecular Medicine Cologne, Medical Faculty, University of Cologne, Cologne, Germany.
| | - Carolina Rosswog
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
- Center for Molecular Medicine Cologne, Medical Faculty, University of Cologne, Cologne, Germany.
| |
Collapse
|
36
|
Gao J, Pickett HA. Targeting telomeres: advances in telomere maintenance mechanism-specific cancer therapies. Nat Rev Cancer 2022; 22:515-532. [PMID: 35790854 DOI: 10.1038/s41568-022-00490-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 12/31/2022]
Abstract
Cancer cells establish replicative immortality by activating a telomere-maintenance mechanism (TMM), be it telomerase or the alternative lengthening of telomeres (ALT) pathway. Targeting telomere maintenance represents an intriguing opportunity to treat the vast majority of all cancer types. Whilst telomerase inhibitors have historically been heralded as promising anticancer agents, the reality has been more challenging, and there are currently no therapeutic options for cancer types that use ALT despite their aggressive nature and poor prognosis. In this Review, we discuss the mechanistic differences between telomere maintenance by telomerase and ALT, the current methods used to detect each mechanism, the utility of these tests for clinical diagnosis, and recent developments in the therapeutic strategies being employed to target both telomerase and ALT. We present notable developments in repurposing established therapeutic agents and new avenues that are emerging to target cancer types according to which TMM they employ. These opportunities extend beyond inhibition of telomere maintenance, by finding and exploiting inherent weaknesses in the telomeres themselves to trigger rapid cellular effects that lead to cell death.
Collapse
Affiliation(s)
- Jixuan Gao
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| | - Hilda A Pickett
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia.
| |
Collapse
|
37
|
Yu EY, Cheung NKV, Lue NF. Connecting telomere maintenance and regulation to the developmental origin and differentiation states of neuroblastoma tumor cells. J Hematol Oncol 2022; 15:117. [PMID: 36030273 PMCID: PMC9420296 DOI: 10.1186/s13045-022-01337-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/28/2022] [Indexed: 11/18/2022] Open
Abstract
A cardinal feature that distinguishes clinically high-risk neuroblastoma from low-risk tumors is telomere maintenance. Specifically, neuroblastoma tumors with either active telomerase or alternative lengthening of telomeres exhibit aggressive growth characteristics that lead to poor outcomes, whereas tumors without telomere maintenance can be managed with observation or minimal treatment. Even though the need for cancer cells to maintain telomere DNA-in order to sustain cell proliferation-is well established, recent studies suggest that the neural crest origin of neuroblastoma may enforce unique relationships between telomeres and tumor malignancy. Specifically in neuroblastoma, telomere structure and telomerase activity are correlated with the adrenergic/mesenchymal differentiation states, and manipulating telomerase activity can trigger tumor cell differentiation. Both findings may reflect features of normal neural crest development. This review summarizes recent advances in the characterization of telomere structure and telomere maintenance mechanisms in neuroblastoma and discusses the findings in the context of relevant literature on telomeres during embryonic and neural development. Understanding the canonical and non-canonical roles of telomere maintenance in neuroblastoma could reveal vulnerabilities for telomere-directed therapies with potential applications to other pediatric malignancies.
Collapse
Affiliation(s)
- Eun Young Yu
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Neal F Lue
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
38
|
Amplification of CDK4 and MDM2: a detailed study of a high-risk neuroblastoma subgroup. Sci Rep 2022; 12:12420. [PMID: 35859155 PMCID: PMC9300649 DOI: 10.1038/s41598-022-16455-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 07/11/2022] [Indexed: 11/08/2022] Open
Abstract
In neuroblastoma, MYCN amplification and 11q-deletion are important, although incomplete, markers of high-risk disease. It is therefore relevant to characterize additional alterations that can function as prognostic and/or predictive markers. Using SNP-microarrays, a group of neuroblastoma patients showing amplification of one or multiple 12q loci was identified. Two loci containing CDK4 and MDM2 were commonly co-amplified, although amplification of either locus in the absence of the other was observed. Pharmacological inhibition of CDK4/6 with ribociclib or abemaciclib decreased proliferation in a broad set of neuroblastoma cell lines, including CDK4/MDM2-amplified, whereas MDM2 inhibition by Nutlin-3a was only effective in p53wild-type cells. Combined CDK4/MDM2 targeting had an additive effect in p53wild-type cell lines, while no or negative additive effect was observed in p53mutated cells. Most 12q-amplified primary tumors were of abdominal origin, including those of intrarenal origin initially suspected of being Wilms' tumor. An atypical metastatic pattern was also observed with low degree of bone marrow involvement, favoring other sites such as the lungs. Here we present detailed biological data of an aggressive neuroblastoma subgroup hallmarked by 12q amplification and atypical clinical presentation for which our in vitro studies indicate that CDK4 and/or MDM2 inhibition also could be beneficial.
Collapse
|
39
|
Frank L, Rademacher A, Mücke N, Tirier SM, Koeleman E, Knotz C, Schumacher S, Stainczyk S, Westermann F, Fröhling S, Chudasama P, Rippe K. ALT-FISH quantifies alternative lengthening of telomeres activity by imaging of single-stranded repeats. Nucleic Acids Res 2022; 50:e61. [PMID: 35188570 PMCID: PMC9226501 DOI: 10.1093/nar/gkac113] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 11/14/2022] Open
Abstract
Alternative lengthening of telomeres (ALT) occurs in ∼10% of cancer entities. However, little is known about the heterogeneity of ALT activity since robust ALT detection assays with high-throughput in situ readouts are lacking. Here, we introduce ALT-FISH, a method to quantitate ALT activity in single cells from the accumulation of single-stranded telomeric DNA and RNA. It involves a one-step fluorescent in situ hybridization approach followed by fluorescence microscopy imaging. Our method reliably identified ALT in cancer cell lines from different tumor entities and was validated in three established models of ALT induction and suppression. Furthermore, we successfully applied ALT-FISH to spatially resolve ALT activity in primary tissue sections from leiomyosarcoma and neuroblastoma tumors. Thus, our assay provides insights into the heterogeneity of ALT tumors and is suited for high-throughput applications, which will facilitate screening for ALT-specific drugs.
Collapse
Affiliation(s)
- Lukas Frank
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Anne Rademacher
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Norbert Mücke
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Stephan M Tirier
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Emma Koeleman
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Caroline Knotz
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Sabrina Schumacher
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Sabine A Stainczyk
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Westermann
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Fröhling
- Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Priya Chudasama
- Precision Sarcoma Research Group, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Karsten Rippe
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| |
Collapse
|
40
|
Galiger C, Dahlhaus M, Vitek MP, Debatin KM, Beltinger C. PPP2CA Is a Novel Therapeutic Target in Neuroblastoma Cells That Can Be Activated by the SET Inhibitor OP449. Front Oncol 2022; 12:744984. [PMID: 35814385 PMCID: PMC9258974 DOI: 10.3389/fonc.2022.744984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor in childhood and has a poor prognosis in high-risk cases, requiring novel therapies. Pathways that depend on phospho-signaling maintain the aggressiveness of NB. Protein phosphatase 2 (PP2A) with its catalytic subunit PPP2CA is a major phosphatase in cancer cells, including NB. We show that reduction of PPP2CA by knock-down decreased growth of NB cells and that complete ablation of PPP2CA by knock-out was not tolerated. Thus, NB cells are addicted to PPP2CA, an addiction augmented by MYCN activation. SET, a crucial endogenous inhibitor of PP2A, was overexpressed in poor-prognosis NB. The SET inhibitor OP449 effectively decreased the viability of NB cells, independent of their molecular alterations and in line with a tumor suppressor function of PPP2CA. The contrasting concentration-dependent functions of PPP2CA as an essential survival gene at low expression levels and a tumor suppressor at high levels are reminiscent of other genes showing this so-called Goldilocks phenomenon. PP2A reactivated by OP449 decreased activating phosphorylation of serine/threonine residues in the AKT pathway. Conversely, induced activation of AKT led to partial rescue of OP449-mediated viability inhibition. Dasatinib, a kinase inhibitor used in relapsed/refractory NB, and OP449 synergized, decreasing activating AKT phosphorylations. In summary, concomitantly reactivating phosphatases and inhibiting kinases with a combination of OP449 and dasatinib are promising novel therapeutic approaches to NB.
Collapse
Affiliation(s)
- Celimene Galiger
- Section of Experimental Pediatric Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | - Meike Dahlhaus
- Section of Experimental Pediatric Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | - Michael Peter Vitek
- Cognosci, Inc., Research Triangle Park, NC, United States
- Department of Neurology, Duke University Medical Center, Durham, NC, United States
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Christian Beltinger
- Section of Experimental Pediatric Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
- *Correspondence: Christian Beltinger,
| |
Collapse
|
41
|
Zuffardi O, Fichera M, Bonaglia MC. The embryo battle against adverse genomes: Are de novo terminal deletions the rescue of unfavorable zygotic imbalances? Eur J Med Genet 2022; 65:104532. [PMID: 35724817 DOI: 10.1016/j.ejmg.2022.104532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 04/02/2022] [Accepted: 05/21/2022] [Indexed: 11/03/2022]
Abstract
De novo distal deletions are structural variants considered to be already present in the zygote. However, investigations especially in the prenatal setting have documented that they are often in mosaic with cell lines in which the same deleted chromosome shows different types of aberrations such as: 1) neutral copy variants with loss of heterozygosity that replace the deleted region with equivalent portions of the homologous chromosome and create distal uniparental disomy (UPD); 2) derivative chromosomes where the deleted one ends with the distal region of another chromosome or has the shape of a ring; 3) U-type mirror dicentric or inv-dup del rearrangements. Unstable dicentrics had already been entailed as causative of terminal deletions even when no trace of the reciprocal inv-dup del had been detected. To clarify the mechanism of origin of distal deletions, we examined PubMed using as keywords: complex/mosaic chromosomal deletions, distal UPD, U-type dicentrics, inv-dup del chromosomes, excluding the recurrent inv-dup del(8p)s which are known to originate by NAHR at the maternal meiosis. The literature has shown that U-type dicentrics leading to nearly complete trisomy and therefore incompatible with zygotic survival underlie many types of de novo unbalanced rearrangements, including terminal deletions. In the early embryo, the position of the postzygotic breaks of the dicentric, the different ways of acquiring telomeres by the broken portions and the selection of the most favorable cell lines in the different tissues determine the prevalence of one or the other rearrangement. Multiple lines with simple terminal deletions, inv-dup dels, unbalanced translocations and segmental UPDs can coexist in various mosaic combinations although it is rare to identify them all in the blood. Regarding the origin of the dicentric, among the 30 cases of non-recurrent inv-dup del with sufficient genotyping information, paternal origin was markedly prevalent with consistently identical polymorphisms within the duplication region, regardless of parental origin. The non-random parental origin made any postzygotic origin unlikely and suggested the occurrence of these dicentrics mainly in spermatogenesis. This study strengthens the evidence that non-recurrent de novo structural rearrangements are often secondary to the rescue of a zygotic genome incompatible with embryo survival.
Collapse
Affiliation(s)
- Orsetta Zuffardi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.
| | - Marco Fichera
- Department of Biomedical and Biotechnological Sciences, Medical Genetics, University of Catania, Catania, Italy; Oasi Research Institute-IRCCS, Troina, Italy.
| | - Maria Clara Bonaglia
- Cytogenetics Laboratory, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy.
| |
Collapse
|
42
|
Federico SM, Cash T. A bridge over troubled water—Extending induction for high‐risk neuroblastoma patients with poor end‐of‐induction response. Cancer 2022; 128:2880-2882. [PMID: 35665920 PMCID: PMC9728546 DOI: 10.1002/cncr.34267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Sara M. Federico
- Department of Oncology St. Jude Children's Research Hospital Memphis Tennessee
- Department of Pediatrics, College of Medicine University of Tennessee Health Science Center Memphis Tennessee
| | - Thomas Cash
- Department of Pediatrics Emory University Atlanta Georgia
- Aflac Cancer and Blood Disorders Center at Children's Healthcare of Atlanta Atlanta Georgia
| |
Collapse
|
43
|
Shukla N, Levine MF, Gundem G, Domenico D, Spitzer B, Bouvier N, Arango-Ossa JE, Glodzik D, Medina-Martínez JS, Bhanot U, Gutiérrez-Abril J, Zhou Y, Fiala E, Stockfisch E, Li S, Rodriguez-Sanchez MI, O'Donohue T, Cobbs C, Roehrl MHA, Benhamida J, Iglesias Cardenas F, Ortiz M, Kinnaman M, Roberts S, Ladanyi M, Modak S, Farouk-Sait S, Slotkin E, Karajannis MA, Dela Cruz F, Glade Bender J, Zehir A, Viale A, Walsh MF, Kung AL, Papaemmanuil E. Feasibility of whole genome and transcriptome profiling in pediatric and young adult cancers. Nat Commun 2022; 13:2485. [PMID: 35585047 PMCID: PMC9117241 DOI: 10.1038/s41467-022-30233-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 04/21/2022] [Indexed: 02/07/2023] Open
Abstract
The utility of cancer whole genome and transcriptome sequencing (cWGTS) in oncology is increasingly recognized. However, implementation of cWGTS is challenged by the need to deliver results within clinically relevant timeframes, concerns about assay sensitivity, reporting and prioritization of findings. In a prospective research study we develop a workflow that reports comprehensive cWGTS results in 9 days. Comparison of cWGTS to diagnostic panel assays demonstrates the potential of cWGTS to capture all clinically reported mutations with comparable sensitivity in a single workflow. Benchmarking identifies a minimum of 80× as optimal depth for clinical WGS sequencing. Integration of germline, somatic DNA and RNA-seq data enable data-driven variant prioritization and reporting, with oncogenic findings reported in 54% more patients than standard of care. These results establish key technical considerations for the implementation of cWGTS as an integrated test in clinical oncology. Cancer whole-genome and transcriptome sequencing (cWGTS) has been challenging to implement in clinical settings. Here, the authors develop a workflow to deliver robust cWGTS analyses and reports within clinically-relevant timeframes for paediatric, adolescent and young adult solid tumour patients.
Collapse
Affiliation(s)
- N Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - M F Levine
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - G Gundem
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - D Domenico
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - B Spitzer
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - N Bouvier
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - J E Arango-Ossa
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - D Glodzik
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - J S Medina-Martínez
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - U Bhanot
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Precision Pathology Biobanking Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - J Gutiérrez-Abril
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Y Zhou
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E Fiala
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E Stockfisch
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - S Li
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - T O'Donohue
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - C Cobbs
- Integrated Genomics Operation Core, Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - M H A Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Precision Pathology Biobanking Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - J Benhamida
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - F Iglesias Cardenas
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - M Ortiz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - M Kinnaman
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - S Roberts
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - M Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - S Modak
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - S Farouk-Sait
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E Slotkin
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - M A Karajannis
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - F Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - J Glade Bender
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - A Zehir
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - A Viale
- Integrated Genomics Operation Core, Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - M F Walsh
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - A L Kung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - E Papaemmanuil
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .,Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
44
|
DuBois SG, Macy ME, Henderson TO. High-Risk and Relapsed Neuroblastoma: Toward More Cures and Better Outcomes. Am Soc Clin Oncol Educ Book 2022; 42:1-13. [PMID: 35522915 DOI: 10.1200/edbk_349783] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Approximately half of the patients diagnosed with neuroblastoma are classified as having high-risk disease. This group continues to have inadequate cure rates despite multiagent chemotherapy, surgery, high-dose chemotherapy with autologous stem cell rescue, and immunotherapy directed against GD2. We review current efforts to try to improve outcomes in patients with newly diagnosed disease by integrating novel targeted therapies earlier in the course of the disease. We further examine a growing list of options available for patients with relapsed or refractory high-risk disease, with an eye toward graduating successful strategies from a relapsed/refractory setting to the frontline setting. Last, we review efforts to study and potentially mitigate the array of late effects faced by survivors of high-risk neuroblastoma.
Collapse
Affiliation(s)
- Steven G DuBois
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA
| | - Margaret E Macy
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Tara O Henderson
- Department of Pediatrics, University of Chicago Pritzker School of Medicine, Chicago, IL
| |
Collapse
|
45
|
Bhargava R, Lynskey ML, O’Sullivan RJ. New twists to the ALTernative endings at telomeres. DNA Repair (Amst) 2022; 115:103342. [DOI: 10.1016/j.dnarep.2022.103342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022]
|
46
|
van Gerven MR, Bozsaky E, Matser YAH, Vosseberg J, Taschner-Mandl S, Koster J, Tytgat GAM, Molenaar JJ, van den Boogaard M. The mutational spectrum of ATRX aberrations in neuroblastoma and the associated patient and tumor characteristics. Cancer Sci 2022; 113:2167-2178. [PMID: 35384159 PMCID: PMC9207354 DOI: 10.1111/cas.15363] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/18/2022] [Accepted: 04/02/2022] [Indexed: 11/30/2022] Open
Abstract
Neuroblastoma is the most common extracranial solid tumor in children. The chromatin remodeler ATRX is frequently mutated in high‐risk patients with a poor prognosis. Although many studies have reported ATRX aberrations and the associated clinical characteristics in neuroblastoma, a comprehensive overview is currently lacking. In this study, we extensively characterize the mutational spectrum of ATRX aberrations in neuroblastoma tumors reported in previous studies and present an overview of patient and tumor characteristics. We collected the data of a total of 127 neuroblastoma patients and three cell lines with ATRX aberrations originating from 20 papers. We subdivide the ATRX aberrations into nonsense, missense, and multiexon deletions (MEDs) and show that 68% of them are MEDs. Of these MEDs, 75% are predicted to be in‐frame. Furthermore, we identify a missense mutational hotspot region in the helicase domain. We also confirm that all three ATRX mutation types are more often identified in patients diagnosed at an older age, but still approximately 40% of the patients are aged 5 years or younger at diagnosis. Surprisingly, we found that 11q deletions are enriched in neuroblastomas with ATRX deletions compared to a reference cohort, but not in neuroblastomas with ATRX point mutations. Taken together, our data emphasizes a distinct ATRX mutation spectrum in neuroblastoma, which should be considered when studying molecular phenotypes and therapeutic strategies.
Collapse
Affiliation(s)
| | - Eva Bozsaky
- Tumor biology group, St Anna Children's Cancer Research Institute, Vienna, Austria
| | - Yvette A H Matser
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Julian Vosseberg
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | | | - Jan Koster
- Department of Oncogenomics, Amsterdam UMC, location AMC, Amsterdam, the Netherlands
| | | | - Jan J Molenaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.,Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | | |
Collapse
|
47
|
Alborzinia H, Flórez AF, Kreth S, Brückner LM, Yildiz U, Gartlgruber M, Odoni DI, Poschet G, Garbowicz K, Shao C, Klein C, Meier J, Zeisberger P, Nadler-Holly M, Ziehm M, Paul F, Burhenne J, Bell E, Shaikhkarami M, Würth R, Stainczyk SA, Wecht EM, Kreth J, Büttner M, Ishaque N, Schlesner M, Nicke B, Stresemann C, Llamazares-Prada M, Reiling JH, Fischer M, Amit I, Selbach M, Herrmann C, Wölfl S, Henrich KO, Höfer T, Trumpp A, Westermann F. MYCN mediates cysteine addiction and sensitizes neuroblastoma to ferroptosis. NATURE CANCER 2022; 3:471-485. [PMID: 35484422 PMCID: PMC9050595 DOI: 10.1038/s43018-022-00355-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/28/2022] [Indexed: 12/13/2022]
Abstract
Aberrant expression of MYC transcription factor family members predicts poor clinical outcome in many human cancers. Oncogenic MYC profoundly alters metabolism and mediates an antioxidant response to maintain redox balance. Here we show that MYCN induces massive lipid peroxidation on depletion of cysteine, the rate-limiting amino acid for glutathione (GSH) biosynthesis, and sensitizes cells to ferroptosis, an oxidative, non-apoptotic and iron-dependent type of cell death. The high cysteine demand of MYCN-amplified childhood neuroblastoma is met by uptake and transsulfuration. When uptake is limited, cysteine usage for protein synthesis is maintained at the expense of GSH triggering ferroptosis and potentially contributing to spontaneous tumor regression in low-risk neuroblastomas. Pharmacological inhibition of both cystine uptake and transsulfuration combined with GPX4 inactivation resulted in tumor remission in an orthotopic MYCN-amplified neuroblastoma model. These findings provide a proof of concept of combining multiple ferroptosis targets as a promising therapeutic strategy for aggressive MYCN-amplified tumors.
Collapse
Affiliation(s)
- Hamed Alborzinia
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Heidelberg, Germany.
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.
- Division of Stem Cells and Cancer German Cancer Research Center and Center for Molecular Biology of the University of Heidelberg Alliance, Heidelberg, Germany.
| | - Andrés F Flórez
- Division of Theoretical Systems Biology, German Cancer Research Center, Heidelberg, Germany
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Sina Kreth
- Hopp Children's Cancer Center, Heidelberg, Germany
- Division of Neuroblastoma Genomics, German Cancer Research Center, Heidelberg, Germany
| | - Lena M Brückner
- Hopp Children's Cancer Center, Heidelberg, Germany
- Division of Neuroblastoma Genomics, German Cancer Research Center, Heidelberg, Germany
| | - Umut Yildiz
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Heidelberg, Germany
- Division of Stem Cells and Cancer German Cancer Research Center and Center for Molecular Biology of the University of Heidelberg Alliance, Heidelberg, Germany
| | - Moritz Gartlgruber
- Hopp Children's Cancer Center, Heidelberg, Germany
- Division of Neuroblastoma Genomics, German Cancer Research Center, Heidelberg, Germany
| | - Dorett I Odoni
- Bioinformatics and Omics Data Analytics, German Cancer Research Center, Heidelberg, Germany
- Biomedical Informatics, Data Mining and Data Analytics, Augsburg University, Augsburg, Germany
| | - Gernot Poschet
- Metabolomics Core Technology Platform, University of Heidelberg, Heidelberg, Germany
| | - Karolina Garbowicz
- Hopp Children's Cancer Center, Heidelberg, Germany
- Division of Neuroblastoma Genomics, German Cancer Research Center, Heidelberg, Germany
| | - Chunxuan Shao
- Division of Theoretical Systems Biology, German Cancer Research Center, Heidelberg, Germany
| | - Corinna Klein
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Heidelberg, Germany
- Division of Stem Cells and Cancer German Cancer Research Center and Center for Molecular Biology of the University of Heidelberg Alliance, Heidelberg, Germany
| | - Jasmin Meier
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Heidelberg, Germany
- Division of Stem Cells and Cancer German Cancer Research Center and Center for Molecular Biology of the University of Heidelberg Alliance, Heidelberg, Germany
| | - Petra Zeisberger
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Heidelberg, Germany
- Division of Stem Cells and Cancer German Cancer Research Center and Center for Molecular Biology of the University of Heidelberg Alliance, Heidelberg, Germany
| | - Michal Nadler-Holly
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Matthias Ziehm
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Franziska Paul
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Jürgen Burhenne
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Emma Bell
- Hopp Children's Cancer Center, Heidelberg, Germany
- Division of Neuroblastoma Genomics, German Cancer Research Center, Heidelberg, Germany
| | - Marjan Shaikhkarami
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Roberto Würth
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Heidelberg, Germany
- Division of Stem Cells and Cancer German Cancer Research Center and Center for Molecular Biology of the University of Heidelberg Alliance, Heidelberg, Germany
| | - Sabine A Stainczyk
- Hopp Children's Cancer Center, Heidelberg, Germany
- Division of Neuroblastoma Genomics, German Cancer Research Center, Heidelberg, Germany
| | - Elisa M Wecht
- Hopp Children's Cancer Center, Heidelberg, Germany
- Division of Neuroblastoma Genomics, German Cancer Research Center, Heidelberg, Germany
| | - Jochen Kreth
- Hopp Children's Cancer Center, Heidelberg, Germany
- Division of Neuroblastoma Genomics, German Cancer Research Center, Heidelberg, Germany
| | - Michael Büttner
- Metabolomics Core Technology Platform, University of Heidelberg, Heidelberg, Germany
| | - Naveed Ishaque
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Digital Health Center, Berlin, Germany
| | - Matthias Schlesner
- Bioinformatics and Omics Data Analytics, German Cancer Research Center, Heidelberg, Germany
- Biomedical Informatics, Data Mining and Data Analytics, Augsburg University, Augsburg, Germany
| | - Barbara Nicke
- Target Discovery Technologies, Bayer AG, Berlin, Germany
| | - Carlo Stresemann
- Research & Development, Pharmaceuticals Division, Bayer AG, Berlin, Germany
| | - María Llamazares-Prada
- Division of Cancer Epigenomics, German Cancer Research Center, Member of the German Center for Lung Research, Heidelberg, Germany
| | - Jan H Reiling
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matthias Fischer
- Experimental Pediatric Oncology, Children's Hospital and Center for Molecular Medicine, Medical Faculty, University of Cologne, Cologne, Germany
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Matthias Selbach
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Carl Herrmann
- Bioinformatics and Omics Data Analytics, German Cancer Research Center, Heidelberg, Germany
- Health Data Science Unit, Medical Faculty University Heidelberg and BioQuant, Heidelberg, Germany
| | - Stefan Wölfl
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Kai-Oliver Henrich
- Hopp Children's Cancer Center, Heidelberg, Germany
- Division of Neuroblastoma Genomics, German Cancer Research Center, Heidelberg, Germany
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center, Heidelberg, Germany
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Heidelberg, Germany
- Division of Stem Cells and Cancer German Cancer Research Center and Center for Molecular Biology of the University of Heidelberg Alliance, Heidelberg, Germany
- German Cancer Consortium, Heidelberg, Germany
| | - Frank Westermann
- Hopp Children's Cancer Center, Heidelberg, Germany.
- Division of Neuroblastoma Genomics, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
48
|
Lister-Shimauchi EH, McCarthy B, Lippincott M, Ahmed S. Genetic and Epigenetic Inheritance at Telomeres. EPIGENOMES 2022; 6:9. [PMID: 35323213 PMCID: PMC8947350 DOI: 10.3390/epigenomes6010009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/21/2022] [Accepted: 03/08/2022] [Indexed: 12/17/2022] Open
Abstract
Transgenerational inheritance can occur at telomeres in distinct contexts. Deficiency for telomerase or telomere-binding proteins in germ cells can result in shortened or lengthened chromosome termini that are transmitted to progeny. In human families, altered telomere lengths can result in stem cell dysfunction or tumor development. Genetic inheritance of altered telomeres as well as mutations that alter telomeres can result in progressive telomere length changes over multiple generations. Telomeres of yeast can modulate the epigenetic state of subtelomeric genes in a manner that is mitotically heritable, and the effects of telomeres on subtelomeric gene expression may be relevant to senescence or other human adult-onset disorders. Recently, two novel epigenetic states were shown to occur at C. elegans telomeres, where very low or high levels of telomeric protein foci can be inherited for multiple generations through a process that is regulated by histone methylation.Together, these observations illustrate that information relevant to telomere biology can be inherited via genetic and epigenetic mechanisms, although the broad impact of epigenetic inheritance to human biology remains unclear.
Collapse
Affiliation(s)
- Evan H. Lister-Shimauchi
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-3280, USA; (E.H.L.-S.); (B.M.); (M.L.)
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Benjamin McCarthy
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-3280, USA; (E.H.L.-S.); (B.M.); (M.L.)
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Michael Lippincott
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-3280, USA; (E.H.L.-S.); (B.M.); (M.L.)
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Shawn Ahmed
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-3280, USA; (E.H.L.-S.); (B.M.); (M.L.)
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| |
Collapse
|
49
|
Yu EY, Zahid SS, Aloe S, Falck-Pedersen E, Zhou XK, Cheung NKV, Lue NF. Reciprocal impacts of telomerase activity and ADRN/MES differentiation state in neuroblastoma tumor biology. Commun Biol 2021; 4:1315. [PMID: 34799676 PMCID: PMC8604896 DOI: 10.1038/s42003-021-02821-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/29/2021] [Indexed: 01/01/2023] Open
Abstract
Telomere maintenance and tumor cell differentiation have been separately implicated in neuroblastoma malignancy. Their mechanistic connection is unclear. We analyzed neuroblastoma cell lines and morphologic subclones representing the adrenergic (ADRN) and mesenchymal (MES) differentiation states and uncovered sharp differences in their telomere protein and telomerase activity levels. Pharmacologic conversion of ADRN into MES cells elicited consistent and robust changes in the expression of telomere-related proteins. Conversely, stringent down-regulation of telomerase activity triggers the differentiation of ADRN into MES cells, which was reversible upon telomerase up-regulation. Interestingly, the MES differentiation state is associated with elevated levels of innate immunity factors, including key components of the DNA-sensing pathway. Accordingly, MES but not ADRN cells can mount a robust response to viral infections in vitro. A gene expression signature based on telomere and cell lineage-related factors can cluster neuroblastoma tumor samples into predominantly ADRN or MES-like groups, with distinct clinical outcomes. Our findings establish a strong mechanistic connection between telomere and differentiation and suggest that manipulating telomeres may suppress malignancy not only by limiting the tumor growth potential but also by inducing tumor cell differentiation and altering its immunogenicity.
Collapse
Affiliation(s)
- Eun Young Yu
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, NY, USA
| | - Syed S Zahid
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, NY, USA
| | - Sarah Aloe
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, NY, USA
| | - Erik Falck-Pedersen
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, NY, USA
| | - Xi Kathy Zhou
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Neal F Lue
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
50
|
Akter J, Katai Y, Sultana P, Takenobu H, Haruta M, Sugino RP, Mukae K, Satoh S, Wada T, Ohira M, Ando K, Kamijo T. Loss of p53 suppresses replication stress-induced DNA damage in ATRX-deficient neuroblastoma. Oncogenesis 2021; 10:73. [PMID: 34743173 PMCID: PMC8572175 DOI: 10.1038/s41389-021-00363-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 11/09/2022] Open
Abstract
Genetic aberrations are present in the ATRX gene in older high-risk neuroblastoma (NB) patients with very poor clinical outcomes. Its loss-of-function (LoF) facilitates the alternative lengthening of telomeres (ALT) pathway in tumor cells and is strongly linked to replication stress (RS) and DNA damage through G-quadruplex (G4) DNA secondary structures. However, limited information is available on ATRX alteration-related NB tumorigenesis. We herein knocked out (KO) ATRX in MYCN-amplified (NGP) and MYCN single copy (SK-N-AS) NB cells with wild-type (wt) and truncated TP53 at the C terminus, respectively, using CRISPR/Cas9 technologies. The loss of ATRX increased DNA damage and G4 formation related to RS in TP53 wt isogenic ATRX KO NGP cells, but not in SK-N-AS clones. A gene set enrichment analysis (GSEA) showed that the gene sets related to DNA double-strand break repair, negative cell cycle regulation, the G2M checkpoint, and p53 pathway activation were enriched in NGP clones. The accumulation of DNA damage activated the ATM/CHK2/p53 pathway, leading to cell cycle arrest in NGP clones. Interestingly, ATRX loss did not induce RS related to DNA damage response (DDR) in TP53-truncated SK-N-AS cells. p53 inactivation abrogated cell cycle arrest and reduced G4 accumulation in NGP clones. The loss of p53 also induced G4 DNA helicases or Fanconi anemia group D2 protein (FANCD2) with ATRX deficiency, suggesting that ATRX maintained genome integrity and p53 deficiency attenuated RS-induced DNA damage in NB cells featuring inactivated ATRX by regulating DNA repair mechanisms and replication fork stability.
Collapse
Affiliation(s)
- Jesmin Akter
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Yutaka Katai
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Parvin Sultana
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan.,Laboratory of Tumor Molecular Biology, Department of Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Hisanori Takenobu
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Masayuki Haruta
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Ryuichi P Sugino
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Kyosuke Mukae
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Shunpei Satoh
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Tomoko Wada
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Miki Ohira
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Kiyohiro Ando
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Takehiko Kamijo
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan. .,Laboratory of Tumor Molecular Biology, Department of Graduate School of Science and Engineering, Saitama University, Saitama, Japan.
| |
Collapse
|