1
|
Huang H, Luo Z, Min J, Luo W, Zhou X, Wang C. Targeting Neuroinflammation in Schizophrenia: A comprehensive review of mechanisms and pharmacological interventions. Int Immunopharmacol 2025; 159:114910. [PMID: 40424655 DOI: 10.1016/j.intimp.2025.114910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 05/15/2025] [Accepted: 05/17/2025] [Indexed: 05/29/2025]
Abstract
Schizophrenia is a complex psychiatric disorder traditionally linked to neurotransmitter imbalances, but growing evidence implicates neuroinflammation as a key factor in its pathogenesis. Core pathological features include aberrant microglial activation, elevated proinflammatory cytokines (e.g., IL-6, TNF-α), blood-brain barrier disruption, and oxidative stress, all contributing to neuronal dysfunction. Genetic, epigenetic, and neurodevelopmental abnormalities further intensify the link between neuroinflammation and clinical symptoms, including cognitive deficits and positive/negative symptoms. Therapeutically, anti-inflammatory strategies show promise: Non-steroidal anti-inflammatory drugs inhibit the cyclooxygenase pathway; minocycline modulates microglial activity; cytokine inhibitors regulate immune responses; and antioxidants and mitochondrial agents (e.g., N-acetylcysteine, omega-3 fatty acids) reduce oxidative damage. Emerging approaches such as cannabidiol and nanodelivery systems also demonstrate anti-inflammatory and neuroprotective potential. However, long-term safety, dosage optimization, and individual variability remain to be fully validated. Future research should integrate single-cell genomics, neuroimaging, and biomarker stratification to elucidate neuroinflammatory mechanisms and enable precise combination therapies. Combining immunomodulatory and neurotransmitter-based strategies may overcome the limitations of traditional antipsychotics and improve clinical outcomes.
Collapse
Affiliation(s)
- Hao Huang
- Department of General surgery, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Zijie Luo
- Department of Gastroenterology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Jieshu Min
- Department of Pharmacy, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Wenjie Luo
- School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Xujia Zhou
- Department of Radiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Changxu Wang
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China; School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| |
Collapse
|
2
|
McElhenney SJ, Yu J. Collective Variables and Facilitated Conformational Opening during Translocation of Human Mitochondrial RNA Polymerase (POLRMT) from Atomic Simulations. J Chem Theory Comput 2025; 21:4815-4829. [PMID: 40238747 DOI: 10.1021/acs.jctc.4c01568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Collective variable (CV) identification is challenging in complex dynamical systems. To study the translocation of a single-subunit RNA polymerase (RNAP) during human mitochondrial transcription, we employed all-atom molecular dynamics (MD) as a vehicle to illustrate CV refinement in conformational samplings and dimension reduction analyses. RNAP translocation is an essential mechanical step of transcription elongation that dictates gene expression. The translocation generally follows from polymerization product release and proceeds to initial binding or preinsertion of incoming nucleotides. The human mitochondrial DNA-dependent RNAP (or POLRMT) plays a critical role in cellular metabolism and can be a key molecular off-target in the design of nucleotide analogue antiviral and antitumor drugs due to its structural similarities with many viral RNAPs or RNA-dependent RNA polymerases (RdRps). While POLRMT shares particularly high structural similarity with bacteriophage T7 RNAP, previous experimental studies and our current simulations suggest that POLRMT's mechanochemical coupling mechanisms may be distinct. In the current work, we modeled POLRMT elongation complexes and performed equilibrium MD simulations on the pre- and post-translocation models, with extensive samplings around two potential translocation paths (with or without coupling to the fingers subdomain conformational change). We then compared time-lagged independent component analysis (tICA) and the neural network implementation of the variational approach for Markov processes (VAMPnets) as dimensional reduction methods on selected atomic coordinate sets to best represent the sampled features from the MD simulations. Our results indicate that POLRMT translocation is likely coupled with NTP binding to enable fingers subdomain opening at post-translocation which would otherwise be nonstabilized, or the translocations may proceed futilely without the fingers opening for incoming NTP initial binding or incorporation. The time scale of the coupled translocation reaches over hundreds of microseconds, as predicted by the VAMPnets analyses. Such a time scale seems to match a last postcatalytic kinetic step suggested for the POLRMT elongation cycle by previous experimental measurements. Our MD simulation studies combining atomic coordinate refinements and dimension reduction analyses on top of extensive conformational samplings thus suggest a variation of Brownian ratcheting in POLRMT translocation, as if the Brownian motions of translocation are coupled with NTP binding, which captures transient fingers subdomain opening to couple the translocation with a sustained fingers opening.
Collapse
Affiliation(s)
- Shannon J McElhenney
- Department of Chemistry, University of California-Irvine, Irvine, California 92697, United States
| | - Jin Yu
- Department of Chemistry, University of California-Irvine, Irvine, California 92697, United States
- Department of Physics and Astronomy, University of California-Irvine, Irvine, California 92697, United States
| |
Collapse
|
3
|
Hsieh AH, Mishanina TV. Nucleic acid sequence determinants of transcriptional pausing by human mitochondrial RNA polymerase (POLRMT). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.25.650729. [PMID: 40313918 PMCID: PMC12045343 DOI: 10.1101/2025.04.25.650729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Transcription by RNA polymerase (RNAP) lies at the heart of gene expression in all organisms. The speed with which RNAPs produce the RNA is tuned in part by the signals in the transcribed nucleic-acid sequences, which temporarily arrange RNAPs into a paused conformation unable to extend the RNA. In turn, the altered transcription kinetics determines the three-dimensional shape into which RNA ultimately folds, dictates the chromatin state, and promotes or inhibits co-transcriptional events. While pause sequence determinants have been characterized for multi-subunit RNAPs in bacteria and the eukaryotic nuclei, this information is lacking for the single-subunit RNAP of human mitochondria, POLRMT. Here, we developed a robust nucleic-acid scaffold system to reconstitute POLRMT transcription in vitro and identified multiple transcriptional pause sites on the human mitochondrial genomic sequence (mtDNA). Using one of the pause sequences as a representative, we performed a suite of mutational studies to pinpoint the nucleic-acid elements that enhance, weaken, or completely abolish POLRMT pausing. Finally, a search of the human mtDNA for the pause motif revealed multiple predicted pause sites, with potential roles in mitochondrial co-transcriptional processes.
Collapse
|
4
|
Herbine K, Nayak AR, Zamudio-Ochoa A, Temiakov D. Structural Basis for Promoter Recognition and Transcription Factor Binding and Release in Human Mitochondria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.03.647028. [PMID: 40236250 PMCID: PMC11996575 DOI: 10.1101/2025.04.03.647028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Transcription in human mitochondria is driven by a core apparatus consisting of a Pol A family RNA polymerase (mtRNAP), the initiation factors TFAM and TFB2M, and the elongation factor TEFM. While earlier structures of initiation and elongation complexes provided valuable snapshots, they represent isolated stages of a highly dynamic and multistep process. Critical aspects of mitochondrial transcription-such as DNA recognition and melting, promoter escape, and the release of initiation factors-remain poorly understood. Here, we present a series of cryo-EM structures that capture the transcription complex as it transitions from the initial open promoter complex to the processive elongation complex through intermediate stages. Our data reveal new determinants of promoter specificity, the sequential disengagement of mtRNAP from TFAM and the promoter, the release of TFB2M, and the recruitment of TEFM. Together, these findings provide a detailed molecular mechanism underlying transcription in human mitochondria.
Collapse
|
5
|
Greenwald E, Galls D, Park J, Jain N, Montgomery S, Roy B, Yin Y, Fire A. DragonRNA: Generality of DNA-primed RNA-extension activities by DNA-directed RNA polymerases. Nucleic Acids Res 2025; 53:gkaf236. [PMID: 40197829 PMCID: PMC11976148 DOI: 10.1093/nar/gkaf236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 02/25/2025] [Accepted: 03/14/2025] [Indexed: 04/10/2025] Open
Abstract
RNA polymerases (RNAPs) transcribe DNA into RNA. Several RNAPs, including from bacteriophages Sp6 and T7, Escherichia coli, and wheat germ, had been shown to add ribonucleotides to DNA 3' ends. Mitochondria have their own RNAPs (mtRNAPs). Examining reaction products of RNAPs acting on DNA molecules with free 3' ends, we found yeast and human mtRNAP preparations exhibit a robust activity of extending DNA 3' ends with ribonucleotides. The resulting molecules are serial DNA→RNA chains with the input DNA on the 5' end and extended RNA on the 3' end. Such chains were produced from a wide variety of DNA oligonucleotide inputs with short complementarity in the sequence to the DNA 3' end with the sequence of the RNA portion complementary to the input DNA. We provide a set of fluorescence-based assays for facile detection of such products and show that this activity is a general property of diverse RNAPs, including phage RNAPs and multi-subunit E. coli RNAP. These results support a model in which DNA serves as both primer and template, with extension beginning when the 3' end of the DNA is elongated with a ribonucleotide. As this DNA→RNA class of molecule remains unnamed, we propose the name DragonRNA.
Collapse
Affiliation(s)
- Emily Greenwald
- Department of Genetics, Stanford University, 1291 Welch Road, Stanford, CA 94305, United States
- Department of Pathology, Stanford University, 1291 Welch Road, Stanford, CA 94305, United States
| | - Drew Galls
- Department of Genetics, Stanford University, 1291 Welch Road, Stanford, CA 94305, United States
- Department of Pathology, Stanford University, 1291 Welch Road, Stanford, CA 94305, United States
| | - Joon Park
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX 77555, United States
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX 77555, United States
| | - Nimit Jain
- Department of Pathology, Stanford University, 1291 Welch Road, Stanford, CA 94305, United States
- Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, CA 94305, United States
| | - Stephen B Montgomery
- Department of Genetics, Stanford University, 1291 Welch Road, Stanford, CA 94305, United States
- Department of Pathology, Stanford University, 1291 Welch Road, Stanford, CA 94305, United States
- Department of Biomedical Data Science, Stanford University, 1291 Welch Road, Stanford, CA 94305, United States
| | - Bijoyita Roy
- New England Biolabs, 240 County Road, Ipswich, MA 01938, United States
| | - Y Whitney Yin
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX 77555, United States
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX 77555, United States
| | - Andrew Z Fire
- Department of Genetics, Stanford University, 1291 Welch Road, Stanford, CA 94305, United States
- Department of Pathology, Stanford University, 1291 Welch Road, Stanford, CA 94305, United States
| |
Collapse
|
6
|
Wang Z, Sun W, Zhang K, Ke X, Wang Z. New insights into the relationship of mitochondrial metabolism and atherosclerosis. Cell Signal 2025; 127:111580. [PMID: 39732307 DOI: 10.1016/j.cellsig.2024.111580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Atherosclerotic cardiovascular and cerebrovascular diseases are the number one killer of human health. In view of the important role of mitochondria in the formation and evolution of atherosclerosis, our manuscript aims to comprehensively elaborate the relationship between mitochondria and the formation and evolution of atherosclerosis from the aspects of mitochondrial dynamics, mitochondria-organelle interaction (communication), mitochondria and cell death, mitochondria and vascular smooth muscle cell phenotypic switch, etc., which is combined with genome, transcriptome and proteome, in order to provide new ideas for the pathogenesis of atherosclerosis and the diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Zexun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China; Institue of Cardiovascular Diseases, Jiangsu University, Zhenjiang 212001, China
| | - Wangqing Sun
- Department of Radiology, Yixing Tumor Hospital, Yixing 214200, China
| | - Kai Zhang
- Department of Otorhinolaryngology and Head and Neck Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| | - Xianjin Ke
- Department of Neurology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China; Institue of Cardiovascular Diseases, Jiangsu University, Zhenjiang 212001, China.
| |
Collapse
|
7
|
Hu WM, Jiang WJ. A prognostic model for laryngeal squamous cell carcinoma based on the mitochondrial metabolism-related genes. Transl Cancer Res 2025; 14:966-979. [PMID: 40104737 PMCID: PMC11912054 DOI: 10.21037/tcr-24-1436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/17/2024] [Indexed: 03/20/2025]
Abstract
Background Mitochondrial metabolism-related genes (MMRGs) have emerged as potential therapeutic targets in cancer. This study aimed to construct a prognosis model based on MMRGs for patients with laryngeal squamous cell carcinoma (LSCC). Methods Differentially expressed MMRGs in LSCC were identified from The Cancer Genome Atlas (TCGA) and Molecular Signatures Database (MSigDB). Their functions were characterized by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). A prognostic model was established using univariate, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analyses, and its performance was evaluated using Kaplan-Meier and receiver operating characteristic (ROC) curves. Gene set enrichment analysis (GSEA) was performed to elucidate the biological pathways associated with the hub prognostic MMRGs. Genetic perturbation similarity analysis (GPSA) was used to determine the regulatory network of hub genes. Additionally, the correlation of the hub MMRGs with the immune microenvironment and drug sensitivity was investigated. Results We identified 308 differentially expressed MMRGs, enriched in various metabolic processes and pathways. The prognostic model comprising four hub MMRGs (POLD1, PON2, SMS, and THEM5) accurately predicted patient outcomes, with the high-risk group exhibiting poorer survival. Additionally, high expression of POLD1 and THEM5 while low expression of PON2 and SMS indicated better prognosis for LSCC patients. GSEA revealed pathways correlated with each prognostic MMRG, such as PI3K-AKT-mTOR signaling pathways, while GPSA identified key regulatory genes interacting with four hub MMRGs. Furthermore, differences in the tumor immune microenvironment and somatic mutation profiles were observed between high- and low-risk groups. Finally, the correlation of four hub MMRGs with 30 drug sensitivity was revealed. Conclusions This study highlights the prognostic significance of MMRGs in LSCC and underscores their potential as biomarkers for LSCC therapy.
Collapse
Affiliation(s)
- Wei-Ming Hu
- Head and Neck & Otolaryngology Center, Plastic Surgery Center, Cancer Center, Department of Otolaryngology, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Wen-Jing Jiang
- Head and Neck & Otolaryngology Center, Plastic Surgery Center, Cancer Center, Department of Otolaryngology, Zhejiang Provincial People's Hospital, Hangzhou, China
| |
Collapse
|
8
|
Bretscher H, O’Connor MB. Glycogen homeostasis and mitochondrial DNA expression require motor neuron to muscle TGF-β/Activin signaling in Drosophila. iScience 2025; 28:111611. [PMID: 39850360 PMCID: PMC11754121 DOI: 10.1016/j.isci.2024.111611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/30/2024] [Accepted: 12/12/2024] [Indexed: 01/25/2025] Open
Abstract
Maintaining metabolic homeostasis requires coordinated nutrient utilization between intracellular organelles and across multiple organ systems. Many organs rely heavily on mitochondria to generate (ATP) from glucose, or stored glycogen. Proteins required for ATP generation are encoded in both nuclear and mitochondrial DNA (mtDNA). We show that motoneuron to muscle signaling by the TGFβ/Activin family member Actβ positively regulates glycogen levels during Drosophila development. Remarkably, we find that levels of stored glycogen are unaffected by altering cytoplasmic glucose catabolism. Instead, loss of Actβ reduces levels of nuclearly encoded genes required for mtDNA replication, transcription, and translation and mtDNA levels. Direct RNAi knockdown of nuclearly encoded mtDNA expression factors in muscle also results in decreased glycogen stores. Lastly, expressing an activated form of the type I receptor Baboon in muscle restores both glycogen and mtDNA levels in actβ mutants, thereby confirming a direct link between Actβ signaling, glycogen homeostasis, and mtDNA expression factors.
Collapse
Affiliation(s)
- Heidi Bretscher
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael B. O’Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
9
|
Shen J, Goovaerts Q, Ajjugal Y, Wijngaert BD, Das K, Patel SS. Human mitochondrial RNA polymerase structures reveal transcription start-site and slippage mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626445. [PMID: 39677640 PMCID: PMC11642874 DOI: 10.1101/2024.12.02.626445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Human mitochondrial RNA polymerase (POLRMT) and protein factors TFAM and TFB2M assemble on mitochondrial DNA promoters to initiate promoter-specific transcription. We present cryo-EM structures of two initiation complexes, IC3 and slipped-IC3, with fully resolved transcription bubbles containing RNA transcripts starting from +1 and -1 positions, respectively. These structures reveal the mechanisms of promoter melting, start site selection, and slippage synthesis. Promoter melting begins at -4 with base-specific interactions of -4 and -3 template guanines with POLRMT and -1 non-template adenine with TFB2M, stabilizing the bubble and facilitating initiation from +1. Slippage occurs when a synthesized 2-mer RNA shifts to -1; the -1 position is not an alternative start-site. The conserved non-template sequence (-1)AAA(+2) is recognized by a non-template stabilizing loop (K153LDPRSGGVIKPP165) and Y209 from TFB2M and W1026 of POLRMT. The initiation complex on cryo-EM grids exist in equilibrium with apo and dimeric POLRMTs, whose relative concentrations may regulate transcription initiation.
Collapse
Affiliation(s)
- Jiayu Shen
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
- Graduate School of Biomedical Sciences at the Robert Wood Johnson Medical School of Rutgers University, USA
| | - Quinten Goovaerts
- Molecular Structural and Translational Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Yogeeshwar Ajjugal
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Brent De Wijngaert
- Molecular Structural and Translational Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Kalyan Das
- Molecular Structural and Translational Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton AB T6G 2T9, Canada
| | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
10
|
El-Maradny YA, Badawy MA, Mohamed KI, Ragab RF, Moharm HM, Abdallah NA, Elgammal EM, Rubio-Casillas A, Uversky VN, Redwan EM. Unraveling the role of the nucleocapsid protein in SARS-CoV-2 pathogenesis: From viral life cycle to vaccine development. Int J Biol Macromol 2024; 279:135201. [PMID: 39216563 DOI: 10.1016/j.ijbiomac.2024.135201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The nucleocapsid protein (N protein) is the most abundant protein in SARS-CoV-2. Viral RNA and this protein are bound by electrostatic forces, forming cytoplasmic helical structures known as nucleocapsids. Subsequently, these nucleocapsids interact with the membrane (M) protein, facilitating virus budding into early secretory compartments. SCOPE OF REVIEW Exploring the role of the N protein in the SARS-CoV-2 life cycle, pathogenesis, post-sequelae consequences, and interaction with host immunity has enhanced our understanding of its function and potential strategies for preventing SARS-CoV-2 infection. MAJOR CONCLUSION This review provides an overview of the N protein's involvement in SARS-CoV-2 infectivity, highlighting its crucial role in the virus-host protein interaction and immune system modulation, which in turn influences viral spread. GENERAL SIGNIFICANCE Understanding these aspects identifies the N protein as a promising target for developing effective antiviral treatments and vaccines against SARS-CoV-2.
Collapse
Affiliation(s)
- Yousra A El-Maradny
- Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt; Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El Alamein 51718, Egypt.
| | - Moustafa A Badawy
- Industrial Microbiology and Applied Chemistry program, Faculty of Science, Alexandria University, Egypt.
| | - Kareem I Mohamed
- Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El Alamein 51718, Egypt.
| | - Renad F Ragab
- Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El Alamein 51718, Egypt.
| | - Hamssa M Moharm
- Genetics, Biotechnology Department, Faculty of Agriculture, Alexandria University, Egypt.
| | - Nada A Abdallah
- Medicinal Plants Department, Faculty of Agriculture, Alexandria University, Egypt.
| | - Esraa M Elgammal
- Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El Alamein 51718, Egypt.
| | - Alberto Rubio-Casillas
- Autlan Regional Hospital, Health Secretariat, Autlan, JAL 48900, Mexico; Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan, JAL 48900, Mexico.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, 21934 Alexandria, Egypt.
| |
Collapse
|
11
|
Correia SP, Moedas MF, Taylor LS, Naess K, Lim AZ, McFarland R, Kazior Z, Rumyantseva A, Wibom R, Engvall M, Bruhn H, Lesko N, Végvári Á, Käll L, Trost M, Alston CL, Freyer C, Taylor RW, Wedell A, Wredenberg A. Quantitative proteomics of patient fibroblasts reveal biomarkers and diagnostic signatures of mitochondrial disease. JCI Insight 2024; 9:e178645. [PMID: 39288270 PMCID: PMC11530135 DOI: 10.1172/jci.insight.178645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 09/10/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUNDMitochondrial diseases belong to the group of inborn errors of metabolism (IEM), with a prevalence of 1 in 2,000-5,000 individuals. They are the most common form of IEM, but, despite advances in next-generation sequencing technologies, almost half of the patients are left genetically undiagnosed.METHODSWe investigated a cohort of 61 patients with defined mitochondrial disease to improve diagnostics, identify biomarkers, and correlate metabolic pathways to specific disease groups. Clinical presentations were structured using human phenotype ontology terms, and mass spectrometry-based proteomics was performed on primary fibroblasts. Additionally, we integrated 6 patients carrying variants of uncertain significance (VUS) to test proteomics as a diagnostic expansion.RESULTSProteomic profiles from patient samples could be classified according to their biochemical and genetic characteristics, with the expression of 5 proteins (GPX4, MORF4L1, MOXD1, MSRA, and TMED9) correlating with the disease cohort, thus acting as putative biomarkers. Pathway analysis showed a deregulation of inflammatory and mitochondrial stress responses. This included the upregulation of glycosphingolipid metabolism and mitochondrial protein import, as well as the downregulation of arachidonic acid metabolism. Furthermore, we could assign pathogenicity to a VUS in MRPS23 by demonstrating the loss of associated mitochondrial ribosome subunits.CONCLUSIONWe established mass spectrometry-based proteomics on patient fibroblasts as a viable and versatile tool for diagnosing patients with mitochondrial disease.FUNDINGThe NovoNordisk Foundation, Knut and Alice Wallenberg Foundation, Wellcome Centre for Mitochondrial Research, UK Medical Research Council, and the UK NHS Highly Specialised Service for Rare Mitochondrial Disorders of Adults and Children.
Collapse
Affiliation(s)
- Sandrina P. Correia
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Marco F. Moedas
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lucie S. Taylor
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Karin Naess
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Albert Z. Lim
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Robert McFarland
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Zuzanna Kazior
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anastasia Rumyantseva
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Rolf Wibom
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Martin Engvall
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Helene Bruhn
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nicole Lesko
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ákos Végvári
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lukas Käll
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden
| | - Matthias Trost
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- Laboratory for Biomedical Mass Spectrometry, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Charlotte L. Alston
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Christoph Freyer
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Robert W. Taylor
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Anna Wedell
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Wredenberg
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
Bretscher H, O’Connor MB. Glycogen homeostasis and mtDNA expression require motor neuron to muscle TGFβ/Activin Signaling in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600699. [PMID: 39131342 PMCID: PMC11312462 DOI: 10.1101/2024.06.25.600699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Maintaining metabolic homeostasis requires coordinated nutrient utilization between intracellular organelles and across multiple organ systems. Many organs rely heavily on mitochondria to generate (ATP) from glucose, or stored glycogen. Proteins required for ATP generation are encoded in both nuclear and mitochondrial DNA (mtDNA). We show that motoneuron to muscle signaling by the TGFβ/Activin family member Actβ positively regulates glycogen levels during Drosophila development. Remarkably, we find that levels of stored glycogen are unaffected by altering cytoplasmic glucose catabolism. Instead, Actβ loss reduces levels of mtDNA and nuclearly encoded genes required for mtDNA replication, transcription and translation. Direct RNAi mediated knockdown of these same nuclearly encoded mtDNA expression factors also results in decreased glycogen stores. Lastly, we find that expressing an activated form of the type I receptor Baboon in muscle restores both glycogen and mtDNA levels in actβ mutants, thereby confirming a direct link between Actβ signaling, glycogen homeostasis and mtDNA expression.
Collapse
Affiliation(s)
- Heidi Bretscher
- Department of Genetics, Cell Biology and Development University of Minnesota, Minneapolis, MN 55455
| | - Michael B. O’Connor
- Department of Genetics, Cell Biology and Development University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
13
|
Donato L, Scimone C, Alibrandi S, Vadalà M, Castellucci M, Bonfiglio VME, Scalinci SZ, Abate G, D'Angelo R, Sidoti A. The genomic mosaic of mitochondrial dysfunction: Decoding nuclear and mitochondrial epigenetic contributions to maternally inherited diabetes and deafness pathogenesis. Heliyon 2024; 10:e34756. [PMID: 39148984 PMCID: PMC11324998 DOI: 10.1016/j.heliyon.2024.e34756] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
Aims Maternally inherited diabetes and deafness (MIDD) is a complex disorder characterized by multiorgan clinical manifestations, including diabetes, hearing loss, and ophthalmic complications. This pilot study aimed to elucidate the intricate interplay between nuclear and mitochondrial genetics, epigenetic modifications, and their potential implications in the pathogenesis of MIDD. Main methods A comprehensive genomic approach was employed to analyze a Sicilian family affected by clinically characterized MIDD, negative to the only known causative m.3243 A > G variant, integrating whole-exome sequencing and whole-genome bisulfite sequencing of both nuclear and mitochondrial analyses. Key findings Rare and deleterious variants were identified across multiple nuclear genes involved in retinal homeostasis, mitochondrial function, and epigenetic regulation, while complementary mitochondrial DNA analysis revealed a rich tapestry of genetic diversity across genes encoding components of the electron transport chain and ATP synthesis machinery. Epigenetic analyses uncovered significant differentially methylated regions across the genome and within the mitochondrial genome, suggesting a nuanced landscape of epigenetic modulation. Significance The integration of genetic and epigenetic data highlighted the potential crosstalk between nuclear and mitochondrial regulation, with specific mtDNA variants influencing methylation patterns and potentially impacting the expression and regulation of mitochondrial genes. This pilot study provides valuable insights into the complex molecular mechanisms underlying MIDD, emphasizing the interplay between nucleus and mitochondrion, tracing the way for future research into targeted therapeutic interventions and personalized approaches for disease management.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-edge Therapies, I.E.ME.S.T., Palermo, 90139, Italy
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-edge Therapies, I.E.ME.S.T., Palermo, 90139, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-edge Therapies, I.E.ME.S.T., Palermo, 90139, Italy
| | - Maria Vadalà
- Department of Biomolecular Strategies, Genetics and Cutting-edge Therapies, I.E.ME.S.T., Palermo, 90139, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), Ophthalmology Institute, University of Palermo, 90143, Palermo, Italy
| | - Massimo Castellucci
- Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), Ophthalmology Institute, University of Palermo, 90143, Palermo, Italy
| | - Vincenza Maria Elena Bonfiglio
- Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), Ophthalmology Institute, University of Palermo, 90143, Palermo, Italy
| | | | - Giorgia Abate
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
| | - Rosalia D'Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
| |
Collapse
|
14
|
Koludarova L, Battersby BJ. Mitochondrial protein synthesis quality control. Hum Mol Genet 2024; 33:R53-R60. [PMID: 38280230 PMCID: PMC11112378 DOI: 10.1093/hmg/ddae012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/05/2023] [Indexed: 01/29/2024] Open
Abstract
Human mitochondrial DNA is one of the most simplified cellular genomes and facilitates compartmentalized gene expression. Within the organelle, there is no physical barrier to separate transcription and translation, nor is there evidence that quality control surveillance pathways are active to prevent translation on faulty mRNA transcripts. Mitochondrial ribosomes synthesize 13 hydrophobic proteins that require co-translational insertion into the inner membrane of the organelle. To maintain the integrity of the inner membrane, which is essential for organelle function, requires responsive quality control mechanisms to recognize aberrations in protein synthesis. In this review, we explore how defects in mitochondrial protein synthesis can arise due to the culmination of inherent mistakes that occur throughout the steps of gene expression. In turn, we examine the stepwise series of quality control processes that are needed to eliminate any mistakes that would perturb organelle homeostasis. We aim to provide an integrated view on the quality control mechanisms of mitochondrial protein synthesis and to identify promising avenues for future research.
Collapse
Affiliation(s)
- Lidiia Koludarova
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki 00014, Finland
| | - Brendan J Battersby
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
15
|
Hughes LA, Rackham O, Filipovska A. Illuminating mitochondrial translation through mouse models. Hum Mol Genet 2024; 33:R61-R79. [PMID: 38779771 PMCID: PMC11112386 DOI: 10.1093/hmg/ddae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 05/25/2024] Open
Abstract
Mitochondria are hubs of metabolic activity with a major role in ATP conversion by oxidative phosphorylation (OXPHOS). The mammalian mitochondrial genome encodes 11 mRNAs encoding 13 OXPHOS proteins along with 2 rRNAs and 22 tRNAs, that facilitate their translation on mitoribosomes. Maintaining the internal production of core OXPHOS subunits requires modulation of the mitochondrial capacity to match the cellular requirements and correct insertion of particularly hydrophobic proteins into the inner mitochondrial membrane. The mitochondrial translation system is essential for energy production and defects result in severe, phenotypically diverse diseases, including mitochondrial diseases that typically affect postmitotic tissues with high metabolic demands. Understanding the complex mechanisms that underlie the pathologies of diseases involving impaired mitochondrial translation is key to tailoring specific treatments and effectively targeting the affected organs. Disease mutations have provided a fundamental, yet limited, understanding of mitochondrial protein synthesis, since effective modification of the mitochondrial genome has proven challenging. However, advances in next generation sequencing, cryoelectron microscopy, and multi-omic technologies have revealed unexpected and unusual features of the mitochondrial protein synthesis machinery in the last decade. Genome editing tools have generated unique models that have accelerated our mechanistic understanding of mitochondrial translation and its physiological importance. Here we review the most recent mouse models of disease pathogenesis caused by defects in mitochondrial protein synthesis and discuss their value for preclinical research and therapeutic development.
Collapse
Affiliation(s)
- Laetitia A Hughes
- Telethon Kids Institute, Northern Entrance, Perth Children’s Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
- Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, 35 Stirling Highway, Crawley, WA 6009, The University of Western Australia, Crawley, WA 6009, Australia
| | - Oliver Rackham
- Telethon Kids Institute, Northern Entrance, Perth Children’s Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
- Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, 35 Stirling Highway, Crawley, WA 6009, The University of Western Australia, Crawley, WA 6009, Australia
- Curtin Medical School, Curtin University, Kent Street, Bentley, WA 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Kent Street, Bentley, WA 6102, Australia
| | - Aleksandra Filipovska
- Telethon Kids Institute, Northern Entrance, Perth Children’s Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, 35 Stirling Highway, Crawley, WA 6009, The University of Western Australia, Crawley, WA 6009, Australia
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, 19 Innovation Walk, Clayton, Clayton, VIC 3168, Australia
| |
Collapse
|
16
|
Lei T, Rui Y, Xiaoshuang Z, Jinglan Z, Jihong Z. Mitochondria transcription and cancer. Cell Death Discov 2024; 10:168. [PMID: 38589371 PMCID: PMC11001877 DOI: 10.1038/s41420-024-01926-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
Mitochondria are major organelles involved in several processes related to energy supply, metabolism, and cell proliferation. The mitochondria function is transcriptionally regulated by mitochondria DNA (mtDNA), which encodes the key proteins in the electron transport chain that is indispensable for oxidative phosphorylation (OXPHOS). Mitochondrial transcriptional abnormalities are closely related to a variety of human diseases, such as cardiovascular diseases, and diabetes. The mitochondria transcription is regulated by the mtDNA, mitochondrial RNA polymerase (POLRMT), two transcription factors (TFAM and TF2BM), one transcription elongation (TEFM), and one known transcription termination factor (mTERFs). Dysregulation of these factors directly leads to altered expression of mtDNA in tumor cells, resulting in cellular metabolic reprogramming and mitochondrial dysfunction. This dysregulation plays a role in modulating tumor progression. Therefore, understanding the role of mitochondrial transcription in cancer can have implications for cancer diagnosis, prognosis, and treatment. Targeting mitochondrial transcription or related pathways may provide potential therapeutic strategies for cancer treatment. Additionally, assessing mitochondrial transcriptional profiles or biomarkers in cancer cells or patient samples may offer diagnostic or prognostic information.
Collapse
Affiliation(s)
- Tang Lei
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Yu Rui
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Zhou Xiaoshuang
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Zhang Jinglan
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Zhang Jihong
- Medical School, Kunming University of Science and Technology, Kunming, China.
- Yunnan Province Clinical Research Center for Hematologic Disease, Kunming, China.
| |
Collapse
|
17
|
Wang H, Zhang Y, Du S. Integrated analysis of lactate-related genes identifies POLRMT as a novel marker promoting the proliferation, migration and energy metabolism of hepatocellular carcinoma via Wnt/β-Catenin signaling. Am J Cancer Res 2024; 14:1316-1337. [PMID: 38590398 PMCID: PMC10998737 DOI: 10.62347/zttg4319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent and deadly form of cancer globally with typically unfavorable outcomes. Increasing research suggests that lactate serves as an important carbon contributor to cellular metabolism and holds a crucial part in the progression, sustenance, and treatment response of tumors. However, the contribution of lactate-related genes (LRGs) in HCC is still unclear. In this study, we analyzed TCGA datasets and screened 21 differentially expressed LRGs related to long-term survivals in HCC patients. Pan-cancer assays revealed that 21 LRGs expression exhibited a dysregulated level in man types of tumors and associated with clinical prognosis of tumor patients. The analysis of 21 LRGs successfully classified HCC samples into two molecular subtypes, and these two subtypes showed significant differences in clinical information, gene expression, and immune characteristics. Subsequently, based on the aforementioned 21 LRGs, a novel prognostic signature (DTYMK, IRAK1, POLRMT, MPV17, UQCRH, PDSS1, SLC16A3, SPP1 and LDHD) was generated by LASSO-Cox regression analysis. Survival assays demonstrated that the signature performed well in predicting the overall survival of patients with HCC. The results of Gene Set Variation Analysis indicated that the high GSVA scores were associated with poor prognosis. Moreover, we also investigated the correlation between GSVA scores and various signaling pathways in HCC. Among the nine prognostic genes, our attention focused on POLRMT which was highly expressed in HCC specimens based on TCGA datasets and several HCC cell lines. In addition, functional assays indicated that POLRMT distinctly promoted the proliferation, migration and energy metabolism of HCC cells via regulating Wnt/β-Catenin signaling. Overall, through the establishment of a novel prognostic signature, we have provided potential clinical value for assessing the prognosis of HCC patients. Furthermore, our study has identified the high expression of POLRMT in HCC and demonstrated its crucial role in HCC cell proliferation. These findings hold great importance in advancing our understanding of the pathophysiology of HCC, identifying new therapeutic targets, and improving patient survival rates.
Collapse
Affiliation(s)
- Huifen Wang
- Department of Gastroenterology, China-Japan Friendship Hospital Beijing 100029, P. R. China
| | - Yanli Zhang
- Department of Gastroenterology, China-Japan Friendship Hospital Beijing 100029, P. R. China
| | - Shiyu Du
- Department of Gastroenterology, China-Japan Friendship Hospital Beijing 100029, P. R. China
| |
Collapse
|
18
|
Hsieh AH, Reardon SD, Munozvilla-Cabellon JH, Shen J, Patel SS, Mishanina TV. Expression and Purification of Recombinant Human Mitochondrial RNA Polymerase (POLRMT) and the Initiation Factors TFAM and TFB2M. Bio Protoc 2023; 13:e4892. [PMID: 38094251 PMCID: PMC10714150 DOI: 10.21769/bioprotoc.4892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 02/01/2024] Open
Abstract
Human mitochondrial DNA (mtDNA) encodes several components of oxidative phosphorylation responsible for the bulk of cellular energy production. The mtDNA is transcribed by a dedicated human mitochondrial RNA polymerase (POLRMT) that is structurally distinct from its nuclear counterparts, instead closely resembling the single-subunit viral RNA polymerases (e.g., T7 RNA polymerase). The initiation of transcription by POLRMT is aided by two initiation factors: transcription factor A, mitochondrial (TFAM), and transcription factor B2, mitochondrial (TFB2M). Although many details of human mitochondrial transcription initiation have been elucidated with in vitro biochemical and structural studies, much remains to be addressed relating to the mechanism and regulation of transcription. Studies of such mechanisms require reliable, high-yield, and high-purity methods for protein production, and this protocol provides the level of detail and troubleshooting tips that are necessary for a novice to generate meaningful amounts of proteins for experimental work. The current protocol describes how to purify recombinant POLRMT, TFAM, and TFB2M from Escherichia coli using techniques such as affinity column chromatography (Ni2+ and heparin), how to remove the solubility tags with TEV protease and recover untagged proteins of interest, and how to overcome commonly encountered challenges in obtaining high yield of each protein. Key features • This protocol builds upon purification methods developed by Patel lab (Ramachandran et al., 2017) and others with greater detail than previously published works. • The protocol requires several days to complete as various steps are designed to be performed overnight. • The recombinantly purified proteins have been successfully used for in vitro transcription experiments, allowing for finer control of experimental components in a minimalistic system.
Collapse
Affiliation(s)
- An H. Hsieh
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Sean D. Reardon
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | | | - Jiayu Shen
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Smita S. Patel
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Tatiana V. Mishanina
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
19
|
Platz KR, Rudisel EJ, Paluch KV, Laurin TR, Dittenhafer-Reed KE. Assessing the Role of Post-Translational Modifications of Mitochondrial RNA Polymerase. Int J Mol Sci 2023; 24:16050. [PMID: 38003238 PMCID: PMC10671485 DOI: 10.3390/ijms242216050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
The mitochondrial proteome is subject to abundant post-translational modifications, including lysine acetylation and phosphorylation of serine, threonine, and tyrosine. The biological function of the majority of these protein modifications is unknown. Proteins required for the transcription and translation of mitochondrial DNA (mtDNA) are subject to modification. This suggests that reversible post-translational modifications may serve as a regulatory mechanism for mitochondrial gene transcription, akin to mechanisms controlling nuclear gene expression. We set out to determine whether acetylation or phosphorylation controls the function of mitochondrial RNA polymerase (POLRMT). Mass spectrometry was used to identify post-translational modifications on POLRMT. We analyzed three POLRMT modification sites (lysine 402, threonine 315, threonine 993) found in distinct structural regions. Amino acid point mutants that mimic the modified and unmodified forms of POLRMT were employed to measure the effect of acetylation or phosphorylation on the promoter binding ability of POLRMT in vitro. We found a slight decrease in binding affinity for the phosphomimic at threonine 315. We did not identify large changes in viability, mtDNA content, or mitochondrial transcript level upon overexpression of POLRMT modification mimics in HeLa cells. Our results suggest minimal biological impact of the POLRMT post-translational modifications studied in our system.
Collapse
|
20
|
Viering DH, Vermeltfoort L, Bindels RJ, Deinum J, de Baaij JH. Electrolyte Disorders in Mitochondrial Cytopathies: A Systematic Review. J Am Soc Nephrol 2023; 34:1875-1888. [PMID: 37678265 PMCID: PMC10631606 DOI: 10.1681/asn.0000000000000224] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
SIGNIFICANCE STATEMENT Several recent studies identified mitochondrial mutations in patients with Gitelman or Fanconi syndrome. Mitochondrial cytopathies are generally not considered in the diagnostic workup of patients with electrolyte disorders. In this systematic review, we investigated the presence of electrolyte disorders in patients with mitochondrial cytopathies to determine the relevance of mitochondrial mutation screening in this population. Our analysis demonstrates that electrolyte disorders are commonly reported in mitochondrial cytopathies, often as presenting symptoms. Consequently, more clinical attention should be raised for mitochondrial disease as cause for disturbances in electrolyte homeostasis. Further prospective cohort studies are required to determine the exact prevalence of electrolyte disorders in mitochondrial cytopathies. BACKGROUND Electrolyte reabsorption in the kidney has a high energy demand. Proximal and distal tubular epithelial cells have a high mitochondrial density for energy release. Recently, electrolyte disorders have been reported as the primary presentation of some mitochondrial cytopathies. However, the prevalence and the pathophysiology of electrolyte disturbances in mitochondrial disease are unknown. Therefore, we systematically investigated electrolyte disorders in patients with mitochondrial cytopathies. METHODS We searched PubMed, Embase, and Google Scholar for articles on genetically confirmed mitochondrial disease in patients for whom at least one electrolyte is reported. Patients with a known second genetic anomaly were excluded. We evaluated 214 case series and reports (362 patients) as well as nine observational studies. Joanna Briggs Institute criteria were used to evaluate the quality of included studies. RESULTS Of 362 reported patients, 289 had an electrolyte disorder, with it being the presenting or main symptom in 38 patients. The average number of different electrolyte abnormalities per patient ranged from 2.4 to 1.0, depending on genotype. Patients with mitochondrial DNA structural variants seemed most affected. Reported pathophysiologic mechanisms included renal tubulopathies and hormonal, gastrointestinal, and iatrogenic causes. CONCLUSIONS Mitochondrial diseases should be considered in the evaluation of unexplained electrolyte disorders. Furthermore, clinicians should be aware of electrolyte abnormalities in patients with mitochondrial disease.
Collapse
Affiliation(s)
- Daan H.H.M. Viering
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lars Vermeltfoort
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - René J.M. Bindels
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jaap Deinum
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen H.F. de Baaij
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
21
|
Chen Q, Chen Y, Shi L, Tao Y, Li X, Zhu X, Yang Y, Xu W. Uniparental disomy: expanding the clinical and molecular phenotypes of whole chromosomes. Front Genet 2023; 14:1232059. [PMID: 37860673 PMCID: PMC10582337 DOI: 10.3389/fgene.2023.1232059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
Uniparental disomy (UPD) refers to as both homologous chromosomes inherited from only one parent without identical copies from the other parent. Studies on clinical phenotypes in UPDs are usually focused on the documented UPD 6, 7, 11, 14, 15, and 20, which directly lead to imprinting disorders. This study describes clinical phenotypes and genetic findings of three patients with UPD 2, 9, and 14, respectively. Chromosomal microarray (CMA), UPDtool, methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) and whole-exome sequencing (WES) analysis were performed to characterize the genetic etiology. The CMA revealed a homozygous region involving the whole chromosome 2 and 9, a partial region of homozygosity in chromosome 14. UPD-tool revealed a paternal origin of the UPD2. MS-MLPA showed hypomethylation of imprinting gene MEG3 from maternal origin in the UPD14 case. In addition, UPD14 case displayed complex symptoms including growth failure, hypotonia and acute respiratory distress syndrome (ARDS), accompanied by several gene mutations with heterozygous genotype by WES analysis. Furthermore, we reviewed the documented UPDs and summarized the clinical characteristics and prognosis. This study highlighted the importance to confirm the diagnosis and origin of UPD using genetic testing. Therefore, it is suggested that expanding of the detailed phenotypes and genotypes provide effective guidance for molecule testing and genetic counseling, and promote further biological investigation to the underlying mechanisms of imprinted disorders and accompanied copy number variations.
Collapse
Affiliation(s)
- Qi Chen
- Genetic and Prenatal Diagnosis Center, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yunpeng Chen
- Genetic and Prenatal Diagnosis Center, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lin Shi
- Department of Ultrasound, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ying Tao
- Genetic and Prenatal Diagnosis Center, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaoguang Li
- Genetic and Prenatal Diagnosis Center, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaolan Zhu
- Reproductive Medicine Center, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yan Yang
- Genetic and Prenatal Diagnosis Center, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | | |
Collapse
|
22
|
Erdinc D, Rodríguez‐Luis A, Fassad MR, Mackenzie S, Watson CM, Valenzuela S, Xie X, Menger KE, Sergeant K, Craig K, Hopton S, Falkous G, Genomics England Research Consortium, Poulton J, Garcia‐Moreno H, Giunti P, de Moura Aschoff CA, Morales Saute JA, Kirby AJ, Toro C, Wolfe L, Novacic D, Greenbaum L, Eliyahu A, Barel O, Anikster Y, McFarland R, Gorman GS, Schaefer AM, Gustafsson CM, Taylor RW, Falkenberg M, Nicholls TJ. Pathological variants in TOP3A cause distinct disorders of mitochondrial and nuclear genome stability. EMBO Mol Med 2023; 15:e16775. [PMID: 37013609 PMCID: PMC10165364 DOI: 10.15252/emmm.202216775] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 04/05/2023] Open
Abstract
Topoisomerase 3α (TOP3A) is an enzyme that removes torsional strain and interlinks between DNA molecules. TOP3A localises to both the nucleus and mitochondria, with the two isoforms playing specialised roles in DNA recombination and replication respectively. Pathogenic variants in TOP3A can cause a disorder similar to Bloom syndrome, which results from bi-allelic pathogenic variants in BLM, encoding a nuclear-binding partner of TOP3A. In this work, we describe 11 individuals from 9 families with an adult-onset mitochondrial disease resulting from bi-allelic TOP3A gene variants. The majority of patients have a consistent clinical phenotype characterised by bilateral ptosis, ophthalmoplegia, myopathy and axonal sensory-motor neuropathy. We present a comprehensive characterisation of the effect of TOP3A variants, from individuals with mitochondrial disease and Bloom-like syndrome, upon mtDNA maintenance and different aspects of enzyme function. Based on these results, we suggest a model whereby the overall severity of the TOP3A catalytic defect determines the clinical outcome, with milder variants causing adult-onset mitochondrial disease and more severe variants causing a Bloom-like syndrome with mitochondrial dysfunction in childhood.
Collapse
Affiliation(s)
- Direnis Erdinc
- Department of Medical Biochemistry and Cell BiologyUniversity of GothenburgGothenburgSweden
| | - Alejandro Rodríguez‐Luis
- Wellcome Centre for Mitochondrial Research, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Mahmoud R Fassad
- Wellcome Centre for Mitochondrial Research, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Sarah Mackenzie
- The Newcastle Upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Christopher M Watson
- North East and Yorkshire Genomic Laboratory Hub, Central LabSt. James's University HospitalLeedsUK
- Leeds Institute of Medical ResearchUniversity of Leeds, St. James's University HospitalLeedsUK
| | - Sebastian Valenzuela
- Department of Medical Biochemistry and Cell BiologyUniversity of GothenburgGothenburgSweden
| | - Xie Xie
- Department of Medical Biochemistry and Cell BiologyUniversity of GothenburgGothenburgSweden
| | - Katja E Menger
- Wellcome Centre for Mitochondrial Research, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Kate Sergeant
- Oxford Genetics LaboratoriesOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Kate Craig
- Wellcome Centre for Mitochondrial Research, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- NHS Highly Specialised Service for Rare Mitochondrial DisordersNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Sila Hopton
- Wellcome Centre for Mitochondrial Research, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- NHS Highly Specialised Service for Rare Mitochondrial DisordersNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Gavin Falkous
- Wellcome Centre for Mitochondrial Research, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- NHS Highly Specialised Service for Rare Mitochondrial DisordersNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | | | - Joanna Poulton
- Nuffield Department of Women's & Reproductive Health, The Women's CentreUniversity of OxfordOxfordUK
| | - Hector Garcia‐Moreno
- Department of Clinical and Movement Neurosciences, Ataxia CentreUCL Queen Square Institute of NeurologyLondonUK
| | - Paola Giunti
- Department of Clinical and Movement Neurosciences, Ataxia CentreUCL Queen Square Institute of NeurologyLondonUK
| | | | - Jonas A Morales Saute
- Medical Genetics ServiceHospital de Clínicas de Porto Alegre (HCPA)Porto AlegreBrazil
- Department of Internal MedicineUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
- Graduate Program in Medicine: Medical SciencesUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - Amelia J Kirby
- Department of PediatricsWake Forest School of MedicineWinston‐SalemNCUSA
| | - Camilo Toro
- Undiagnosed Diseases ProgramNational Human Genome Research Institute, National Institutes of HealthBethesdaMDUSA
| | - Lynne Wolfe
- Undiagnosed Diseases ProgramNational Human Genome Research Institute, National Institutes of HealthBethesdaMDUSA
| | - Danica Novacic
- Undiagnosed Diseases ProgramNational Human Genome Research Institute, National Institutes of HealthBethesdaMDUSA
| | - Lior Greenbaum
- The Danek Gertner Institute of Human GeneticsSheba Medical CenterTel HashomerIsrael
- The Joseph Sagol Neuroscience Center, Sheba Medical CenterTel HashomerIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Aviva Eliyahu
- The Danek Gertner Institute of Human GeneticsSheba Medical CenterTel HashomerIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Ortal Barel
- Genomics UnitThe Center for Cancer Research, Sheba Medical CenterTel HashomerIsrael
| | - Yair Anikster
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Metabolic Disease UnitEdmond and Lily Safra Children's Hospital, Sheba Medical CenterTel HashomerIsrael
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Gráinne S Gorman
- Wellcome Centre for Mitochondrial Research, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Andrew M Schaefer
- Wellcome Centre for Mitochondrial Research, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- NHS Highly Specialised Service for Rare Mitochondrial DisordersNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Claes M Gustafsson
- Department of Medical Biochemistry and Cell BiologyUniversity of GothenburgGothenburgSweden
- Department of Clinical ChemistrySahlgrenska University HospitalGothenburgSweden
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- NHS Highly Specialised Service for Rare Mitochondrial DisordersNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell BiologyUniversity of GothenburgGothenburgSweden
| | - Thomas J Nicholls
- Wellcome Centre for Mitochondrial Research, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
23
|
Van Haute L, O'Connor E, Díaz-Maldonado H, Munro B, Polavarapu K, Hock DH, Arunachal G, Athanasiou-Fragkouli A, Bardhan M, Barth M, Bonneau D, Brunetti-Pierri N, Cappuccio G, Caruana NJ, Dominik N, Goel H, Helman G, Houlden H, Lenaers G, Mention K, Murphy D, Nandeesh B, Olimpio C, Powell CA, Preethish-Kumar V, Procaccio V, Rius R, Rebelo-Guiomar P, Simons C, Vengalil S, Zaki MS, Ziegler A, Thorburn DR, Stroud DA, Maroofian R, Christodoulou J, Gustafsson C, Nalini A, Lochmüller H, Minczuk M, Horvath R. TEFM variants impair mitochondrial transcription causing childhood-onset neurological disease. Nat Commun 2023; 14:1009. [PMID: 36823193 PMCID: PMC9950373 DOI: 10.1038/s41467-023-36277-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/20/2023] [Indexed: 02/25/2023] Open
Abstract
Mutations in the mitochondrial or nuclear genomes are associated with a diverse group of human disorders characterized by impaired mitochondrial respiration. Within this group, an increasing number of mutations have been identified in nuclear genes involved in mitochondrial RNA biology. The TEFM gene encodes the mitochondrial transcription elongation factor responsible for enhancing the processivity of mitochondrial RNA polymerase, POLRMT. We report for the first time that TEFM variants are associated with mitochondrial respiratory chain deficiency and a wide range of clinical presentations including mitochondrial myopathy with a treatable neuromuscular transmission defect. Mechanistically, we show muscle and primary fibroblasts from the affected individuals have reduced levels of promoter distal mitochondrial RNA transcripts. Finally, tefm knockdown in zebrafish embryos resulted in neuromuscular junction abnormalities and abnormal mitochondrial function, strengthening the genotype-phenotype correlation. Our study highlights that TEFM regulates mitochondrial transcription elongation and its defect results in variable, tissue-specific neurological and neuromuscular symptoms.
Collapse
Affiliation(s)
- Lindsey Van Haute
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Emily O'Connor
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
| | - Héctor Díaz-Maldonado
- Department of Biochemistry and Cell Biology, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Benjamin Munro
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Kiran Polavarapu
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Daniella H Hock
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, VIC, 3052, Australia
| | - Gautham Arunachal
- Department of Human genetics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Alkyoni Athanasiou-Fragkouli
- UCL London, Department of Neuromuscular Disorders, Institute of Neurology, University College London, London, UK
| | - Mainak Bardhan
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Magalie Barth
- Department of Genetics, Mitovasc INSERM 1083, CNRS 6015, University Hospital of Angers, Angers, France
| | - Dominique Bonneau
- Department of Genetics, Mitovasc INSERM 1083, CNRS 6015, University Hospital of Angers, Angers, France
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, University of Naples Federico II, Via s. Pansini, 5, 80131, Naples, Italy
| | - Gerarda Cappuccio
- Department of Translational Medicine, University of Naples Federico II, Via s. Pansini, 5, 80131, Naples, Italy
| | - Nikeisha J Caruana
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, VIC, 3052, Australia
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, 3011, Australia
| | - Natalia Dominik
- UCL London, Department of Neuromuscular Disorders, Institute of Neurology, University College London, London, UK
| | - Himanshu Goel
- Hunter Genetics, Waratah, University of Newcastle, Callaghan, NSW, 2298, Australia
| | - Guy Helman
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia
| | - Henry Houlden
- UCL London, Department of Neuromuscular Disorders, Institute of Neurology, University College London, London, UK
| | - Guy Lenaers
- Department of Genetics, Mitovasc INSERM 1083, CNRS 6015, University Hospital of Angers, Angers, France
| | - Karine Mention
- Pediatric Inherited Metabolic Disorders, Hôpital Jeanne de Flandre, Lille, France
| | - David Murphy
- UCL London, Department of Neuromuscular Disorders, Institute of Neurology, University College London, London, UK
| | - Bevinahalli Nandeesh
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Catarina Olimpio
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | | | | | - Vincent Procaccio
- Department of Genetics, Mitovasc INSERM 1083, CNRS 6015, University Hospital of Angers, Angers, France
| | - Rocio Rius
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, 3010, Australia
| | | | - Cas Simons
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia
| | - Seena Vengalil
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, 12311, Egypt
| | - Alban Ziegler
- Department of Genetics, Mitovasc INSERM 1083, CNRS 6015, University Hospital of Angers, Angers, France
| | - David R Thorburn
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, 3010, Australia
| | - David A Stroud
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, VIC, 3052, Australia
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia
| | - Reza Maroofian
- UCL London, Department of Neuromuscular Disorders, Institute of Neurology, University College London, London, UK
| | - John Christodoulou
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Claes Gustafsson
- Department of Biochemistry and Cell Biology, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK.
| | - Rita Horvath
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
24
|
Shaito A, Al-Mansoob M, Ahmad SM, Haider MZ, Eid AH, Posadino AM, Pintus G, Giordo R. Resveratrol-Mediated Regulation of Mitochondria Biogenesis-associated Pathways in Neurodegenerative Diseases: Molecular Insights and Potential Therapeutic Applications. Curr Neuropharmacol 2023; 21:1184-1201. [PMID: 36237161 PMCID: PMC10286596 DOI: 10.2174/1570159x20666221012122855] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/22/2022] [Accepted: 10/09/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative disorders include different neurological conditions that affect nerve cells, causing the progressive loss of their functions and ultimately leading to loss of mobility, coordination, and mental functioning. The molecular mechanisms underpinning neurodegenerative disease pathogenesis are still unclear. Nonetheless, there is experimental evidence to demonstrate that the perturbation of mitochondrial function and dynamics play an essential role. In this context, mitochondrial biogenesis, the growth, and division of preexisting mitochondria, by controlling mitochondria number, plays a vital role in maintaining proper mitochondrial mass and function, thus ensuring efficient synaptic activity and brain function. Mitochondrial biogenesis is tightly associated with the control of cell division and variations in energy demand in response to extracellular stimuli; therefore, it may represent a promising therapeutic target for developing new curative approaches to prevent or counteract neurodegenerative disorders. Accordingly, several inducers of mitochondrial biogenesis have been proposed as pharmacological targets for treating diverse central nervous system conditions. The naturally occurring polyphenol resveratrol has been shown to promote mitochondrial biogenesis in various tissues, including the nervous tissue, and an ever-growing number of studies highlight its neurotherapeutic potential. Besides preventing cognitive impairment and neurodegeneration through its antioxidant and anti-inflammatory properties, resveratrol has been shown to be able to enhance mitochondria biogenesis by acting on its main effectors, including PGC-1α, SIRT1, AMPK, ERRs, TERT, TFAM, NRF-1 and NRF-2. This review aims to present and discuss the current findings concerning the impact of resveratrol on the machinery and main effectors modulating mitochondrial biogenesis in the context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Abdullah Shaito
- Biomedical Research Center, College of Medicine, Qatar University, Doha, 2713, Qatar
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, 2713, Qatar
| | - Maryam Al-Mansoob
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, 2713, Qatar
| | - Salma M.S. Ahmad
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, 2713, Qatar
| | | | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, 2713, Qatar
| | - Anna Maria Posadino
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah, 27272, United Arab Emirates
| | - Roberta Giordo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, 505055, United Arab Emirates
| |
Collapse
|
25
|
Genomics, Origin and Selection Signals of Loudi Cattle in Central Hunan. BIOLOGY 2022; 11:biology11121775. [PMID: 36552284 PMCID: PMC9775101 DOI: 10.3390/biology11121775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Due to the geographical, cultural and environmental variability in Xiangxi, China, distinctive indigenous cattle populations have formed. Among them, Loudi cattle and Xiangxi cattle are the local cattle in Hunan, and the environment in Loudi is relatively more enclosed and humid than that in Xiangxi. To study the genome and origin of Loudi cattle in hot and humid environments, 29 individuals were collected and sequenced by whole-genome resequencing. In addition, genomic data were obtained from public databases for 96 individuals representing different cattle breeds worldwide, including 23 Xiangxi cattle from western Hunan. Genetic analysis indicated that the genetic diversity of Loudi cattle was close to that of Chinese cattle and higher than that of other breeds. Population structure and ancestral origin analysis indicated the relationship between Loudi cattle and other breeds. Loudi has four distinctive seasons, with a stereoscopic climate and extremely rich water resources. Selective sweep analysis revealed candidate genes and pathways associated with environmental adaptation and homeostasis. Our findings provide a valuable source of information on the genetic diversity of Loudi cattle and ideas for population conservation and genome-associated breeding of local cattle in today's extreme climate environment.
Collapse
|
26
|
Tiivoja E, Reinson K, Muru K, Rähn K, Muhu K, Mauring L, Kahre T, Pajusalu S, Õunap K. The prevalence of inherited metabolic disorders in Estonian population over 30 years: A significant increase during study period. JIMD Rep 2022; 63:604-613. [PMID: 36341167 PMCID: PMC9626666 DOI: 10.1002/jmd2.12325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/09/2022] Open
Abstract
Inherited metabolic disorders (IMD) are a group of hereditary diseases wherein the impairment of a biochemical pathway is intrinsic to the pathophysiology of the disease. Estonia's small population and nationwide digitalised healthcare system make it possible to perform an epidemiological study that covers the whole population. A study was performed in Tartu University Hospital, which is the only tertiary care unit in Estonia for diagnosing patients with IMD, to define the prevalence and live birth prevalence of IMDs and the effectiveness of new diagnostic methods on the diagnosis of IMD. During the retrospective study period from 1990 to 2017, 333 patients were diagnosed with IMD. Statistical analysis showed a significant increase in IMD diagnoses per year from 0.47 to 2.51 cases per 100 000 persons (p < 0.0001) during the study period. Live birth prevalence of IMD in Estonia was calculated to be 41.52 cases per 100 000 live births. The most frequently diagnosed IMD groups were disorders of amino acid metabolism, disorders of complex molecule degradation, mitochondrial disorders, and disorders of tetrapyrrole metabolism. Phenylketonuria was the most frequently diagnosed disorder of all IMD (21.6%). Our results correlated well with data from other developed countries and, along with high birth prevalence, add confidence in the effectiveness of our diagnostic yield. Implementation of new diagnostic methods during study period may largely account for the significant increase in the number of IMD diagnoses per year. We conclude that the implementation of new diagnostic methods continues to be important and contributes to better diagnosis of rare diseases.
Collapse
Affiliation(s)
- Elis Tiivoja
- Department of Clinical Genetics, Institute of Clinical MedicineUniversity of TartuTartuEstonia
- Department of Clinical Genetics, Genetic and Personalized Medicine ClinicTartu University HospitalTartuEstonia
| | - Karit Reinson
- Department of Clinical Genetics, Institute of Clinical MedicineUniversity of TartuTartuEstonia
- Department of Clinical Genetics, Genetic and Personalized Medicine ClinicTartu University HospitalTartuEstonia
| | - Kai Muru
- Department of Clinical Genetics, Institute of Clinical MedicineUniversity of TartuTartuEstonia
- Department of Clinical Genetics, Genetic and Personalized Medicine ClinicTartu University HospitalTartuEstonia
| | - Kristi Rähn
- Department of Clinical Genetics, Institute of Clinical MedicineUniversity of TartuTartuEstonia
- Department of Clinical Genetics, Genetic and Personalized Medicine ClinicTartu University HospitalTartuEstonia
| | - Kristina Muhu
- Department of Clinical Genetics, Institute of Clinical MedicineUniversity of TartuTartuEstonia
| | - Laura Mauring
- Department of Clinical Genetics, Institute of Clinical MedicineUniversity of TartuTartuEstonia
- Eye ClinicTartu University HospitalTartuEstonia
| | - Tiina Kahre
- Department of Clinical Genetics, Institute of Clinical MedicineUniversity of TartuTartuEstonia
- Department of Laboratory Genetics, Genetic and Personalized Medicine ClinicTartu University HospitalTartuEstonia
| | - Sander Pajusalu
- Department of Clinical Genetics, Institute of Clinical MedicineUniversity of TartuTartuEstonia
- Department of Laboratory Genetics, Genetic and Personalized Medicine ClinicTartu University HospitalTartuEstonia
| | - Katrin Õunap
- Department of Clinical Genetics, Institute of Clinical MedicineUniversity of TartuTartuEstonia
- Department of Clinical Genetics, Genetic and Personalized Medicine ClinicTartu University HospitalTartuEstonia
| |
Collapse
|
27
|
Menger KE, Chapman J, Díaz-Maldonado H, Khazeem M, Deen D, Erdinc D, Casement JW, Di Leo V, Pyle A, Rodríguez-Luis A, Cowell I, Falkenberg M, Austin C, Nicholls T. Two type I topoisomerases maintain DNA topology in human mitochondria. Nucleic Acids Res 2022; 50:11154-11174. [PMID: 36215039 PMCID: PMC9638942 DOI: 10.1093/nar/gkac857] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/03/2022] [Accepted: 09/26/2022] [Indexed: 11/12/2022] Open
Abstract
Genetic processes require the activity of multiple topoisomerases, essential enzymes that remove topological tension and intermolecular linkages in DNA. We have investigated the subcellular localisation and activity of the six human topoisomerases with a view to understanding the topological maintenance of human mitochondrial DNA. Our results indicate that mitochondria contain two topoisomerases, TOP1MT and TOP3A. Using molecular, genomic and biochemical methods we find that both proteins contribute to mtDNA replication, in addition to the decatenation role of TOP3A, and that TOP1MT is stimulated by mtSSB. Loss of TOP3A or TOP1MT also dysregulates mitochondrial gene expression, and both proteins promote transcription elongation in vitro. We find no evidence for TOP2 localisation to mitochondria, and TOP2B knockout does not affect mtDNA maintenance or expression. Our results suggest a division of labour between TOP3A and TOP1MT in mtDNA topology control that is required for the proper maintenance and expression of human mtDNA.
Collapse
Affiliation(s)
- Katja E Menger
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - James Chapman
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Héctor Díaz-Maldonado
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, 405 30 Gothenburg, Sweden
| | - Mushtaq M Khazeem
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Dasha Deen
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Direnis Erdinc
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, 405 30 Gothenburg, Sweden
| | - John W Casement
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Valeria Di Leo
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Angela Pyle
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Alejandro Rodríguez-Luis
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Ian G Cowell
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, 405 30 Gothenburg, Sweden
| | - Caroline A Austin
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Thomas J Nicholls
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
28
|
Wang L, Yang Z, He X, Pu S, Yang C, Wu Q, Zhou Z, Cen X, Zhao H. Mitochondrial protein dysfunction in pathogenesis of neurological diseases. Front Mol Neurosci 2022; 15:974480. [PMID: 36157077 PMCID: PMC9489860 DOI: 10.3389/fnmol.2022.974480] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Mitochondria are essential organelles for neuronal function and cell survival. Besides the well-known bioenergetics, additional mitochondrial roles in calcium signaling, lipid biogenesis, regulation of reactive oxygen species, and apoptosis are pivotal in diverse cellular processes. The mitochondrial proteome encompasses about 1,500 proteins encoded by both the nuclear DNA and the maternally inherited mitochondrial DNA. Mutations in the nuclear or mitochondrial genome, or combinations of both, can result in mitochondrial protein deficiencies and mitochondrial malfunction. Therefore, mitochondrial quality control by proteins involved in various surveillance mechanisms is critical for neuronal integrity and viability. Abnormal proteins involved in mitochondrial bioenergetics, dynamics, mitophagy, import machinery, ion channels, and mitochondrial DNA maintenance have been linked to the pathogenesis of a number of neurological diseases. The goal of this review is to give an overview of these pathways and to summarize the interconnections between mitochondrial protein dysfunction and neurological diseases.
Collapse
Affiliation(s)
- Liang Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Ziyun Yang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Xiumei He
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Shiming Pu
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Cheng Yang
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Qiong Wu
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Zuping Zhou
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Hongxia Zhao
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
29
|
Riccio AA, Bouvette J, Longley MJ, Krahn JM, Borgnia MJ, Copeland WC. Method for the structural analysis of Twinkle mitochondrial DNA helicase by cryo-EM. Methods 2022; 205:263-270. [PMID: 35779765 PMCID: PMC9398961 DOI: 10.1016/j.ymeth.2022.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022] Open
Abstract
The mitochondrial replisome replicates the 16.6 kb mitochondria DNA (mtDNA). The proper functioning of this multicomponent protein complex is vital for the integrity of the mitochondrial genome. One of the critical protein components of the mitochondrial replisome is the Twinkle helicase, a member of the Superfamily 4 (SF4) helicases. Decades of research has uncovered common themes among SF4 helicases including self-assembly, ATP-dependent translocation, and formation of protein-protein complexes. Some of the molecular details of these processes are still unknown for the mitochondria SF4 helicase, Twinkle. Here, we describe a protocol for expression, purification, and single-particle cryo-electron microscopy of the Twinkle helicase clinical variant, W315L, which resulted in the first high-resolution structure of Twinkle helicase. The methods described here serve as an adaptable protocol to support future high-resolution studies of Twinkle helicase or other SF4 helicases.
Collapse
Affiliation(s)
- Amanda A Riccio
- Mitochondrial DNA Replication Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Jonathan Bouvette
- Molecular Microscopy Consortium, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Matthew J Longley
- Mitochondrial DNA Replication Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Juno M Krahn
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Mario J Borgnia
- Molecular Microscopy Consortium, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - William C Copeland
- Mitochondrial DNA Replication Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
30
|
Zhu X, Xie X, Das H, Tan BG, Shi Y, Al-Behadili A, Peter B, Motori E, Valenzuela S, Posse V, Gustafsson CM, Hällberg BM, Falkenberg M. Non-coding 7S RNA inhibits transcription via mitochondrial RNA polymerase dimerization. Cell 2022; 185:2309-2323.e24. [PMID: 35662414 DOI: 10.1016/j.cell.2022.05.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 04/05/2022] [Accepted: 05/05/2022] [Indexed: 12/19/2022]
Abstract
The mitochondrial genome encodes 13 components of the oxidative phosphorylation system, and altered mitochondrial transcription drives various human pathologies. A polyadenylated, non-coding RNA molecule known as 7S RNA is transcribed from a region immediately downstream of the light strand promoter in mammalian cells, and its levels change rapidly in response to physiological conditions. Here, we report that 7S RNA has a regulatory function, as it controls levels of mitochondrial transcription both in vitro and in cultured human cells. Using cryo-EM, we show that POLRMT dimerization is induced by interactions with 7S RNA. The resulting POLRMT dimer interface sequesters domains necessary for promoter recognition and unwinding, thereby preventing transcription initiation. We propose that the non-coding 7S RNA molecule is a component of a negative feedback loop that regulates mitochondrial transcription in mammalian cells.
Collapse
Affiliation(s)
- Xuefeng Zhu
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, 405 30 Gothenburg, Sweden
| | - Xie Xie
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, 405 30 Gothenburg, Sweden
| | - Hrishikesh Das
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Benedict G Tan
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, 405 30 Gothenburg, Sweden
| | - Yonghong Shi
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, 405 30 Gothenburg, Sweden
| | - Ali Al-Behadili
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, 405 30 Gothenburg, Sweden
| | - Bradley Peter
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, 405 30 Gothenburg, Sweden
| | - Elisa Motori
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany; Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, 50674 Cologne, Germany
| | - Sebastian Valenzuela
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, 405 30 Gothenburg, Sweden
| | - Viktor Posse
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, 405 30 Gothenburg, Sweden
| | - Claes M Gustafsson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, 405 30 Gothenburg, Sweden
| | - B Martin Hällberg
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, 405 30 Gothenburg, Sweden.
| |
Collapse
|
31
|
Mehmedović M, Martucci M, Spåhr H, Ishak L, Mishra A, Sanchez-Sandoval ME, Pardo-Hernández C, Peter B, van den Wildenberg SM, Falkenberg M, Farge G. Disease causing mutation (P178L) in mitochondrial transcription factor A results in impaired mitochondrial transcription initiation. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166467. [PMID: 35716868 DOI: 10.1016/j.bbadis.2022.166467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/31/2022] [Accepted: 06/09/2022] [Indexed: 10/18/2022]
Abstract
Mitochondrial transcription factor A (TFAM) is essential for the maintenance, expression, and packaging of mitochondrial DNA (mtDNA). Recently, a pathogenic homozygous variant in TFAM (P178L) has been associated with a severe mtDNA depletion syndrome leading to neonatal liver failure and early death. We have performed a biochemical characterization of the TFAM variant P178L in order to understand the molecular basis for the pathogenicity of this mutation. We observe no effects on DNA binding, and compaction of DNA is only mildly affected by the P178L amino acid change. Instead, the mutation severely impairs mtDNA transcription initiation at the mitochondrial heavy and light strand promoters. Molecular modeling suggests that the P178L mutation affects promoter sequence recognition and the interaction between TFAM and the tether helix of POLRMT, thus explaining transcription initiation deficiency.
Collapse
Affiliation(s)
- Majda Mehmedović
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| | - Martial Martucci
- Université Clermont Auvergne, CNRS, Laboratoire de Physique de Clermont, F-63000 Clermont-Ferrand, France
| | - Henrik Spåhr
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden; Max Planck Institute for Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm 17177, Sweden
| | - Layal Ishak
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| | - Anup Mishra
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| | - Maria Eugenia Sanchez-Sandoval
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| | - Carlos Pardo-Hernández
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| | - Bradley Peter
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| | - Siet M van den Wildenberg
- Université Clermont Auvergne, CNRS, Laboratoire de Physique de Clermont, F-63000 Clermont-Ferrand, France; Université Clermont Auvergne, CNRS, IRD, Université Jean Monnet Saint Etienne, LMV, F-63000 Clermont-Ferrand, France
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden.
| | - Geraldine Farge
- Université Clermont Auvergne, CNRS, Laboratoire de Physique de Clermont, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
32
|
Organization and expression of the mammalian mitochondrial genome. Nat Rev Genet 2022; 23:606-623. [PMID: 35459860 DOI: 10.1038/s41576-022-00480-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
The mitochondrial genome encodes core subunits of the respiratory chain that drives oxidative phosphorylation and is, therefore, essential for energy conversion. Advances in high-throughput sequencing technologies and cryoelectron microscopy have shed light on the structure and organization of the mitochondrial genome and revealed unique mechanisms of mitochondrial gene regulation. New animal models of impaired mitochondrial protein synthesis have shown how the coordinated regulation of the cytoplasmic and mitochondrial translation machineries ensures the correct assembly of the respiratory chain complexes. These new technologies and disease models are providing a deeper understanding of mitochondrial genome organization and expression and of the diseases caused by impaired energy conversion, including mitochondrial, neurodegenerative, cardiovascular and metabolic diseases. They also provide avenues for the development of treatments for these conditions.
Collapse
|
33
|
Miranda M, Bonekamp NA, Kühl I. Starting the engine of the powerhouse: mitochondrial transcription and beyond. Biol Chem 2022; 403:779-805. [PMID: 35355496 DOI: 10.1515/hsz-2021-0416] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/09/2022] [Indexed: 12/25/2022]
Abstract
Mitochondria are central hubs for cellular metabolism, coordinating a variety of metabolic reactions crucial for human health. Mitochondria provide most of the cellular energy via their oxidative phosphorylation (OXPHOS) system, which requires the coordinated expression of genes encoded by both the nuclear (nDNA) and mitochondrial genomes (mtDNA). Transcription of mtDNA is not only essential for the biogenesis of the OXPHOS system, but also generates RNA primers necessary to initiate mtDNA replication. Like the prokaryotic system, mitochondria have no membrane-based compartmentalization to separate the different steps of mtDNA maintenance and expression and depend entirely on nDNA-encoded factors imported into the organelle. Our understanding of mitochondrial transcription in mammalian cells has largely progressed, but the mechanisms regulating mtDNA gene expression are still poorly understood despite their profound importance for human disease. Here, we review mechanisms of mitochondrial gene expression with a focus on the recent findings in the field of mammalian mtDNA transcription and disease phenotypes caused by defects in proteins involved in this process.
Collapse
Affiliation(s)
- Maria Miranda
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, D-50931, Germany
| | - Nina A Bonekamp
- Department of Neuroanatomy, Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University, Mannheim, D-68167, Germany
| | - Inge Kühl
- Department of Cell Biology, Institute of Integrative Biology of the Cell (I2BC), UMR9198, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, F-91190, France
| |
Collapse
|
34
|
Yu HJ, Xiao GL, Zhao YY, Wang XX, Lan R. Targeting Mitochondrial Metabolism and RNA Polymerase POLRMT to Overcome Multidrug Resistance in Cancer. Front Chem 2022; 9:775226. [PMID: 34976949 PMCID: PMC8716502 DOI: 10.3389/fchem.2021.775226] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Clinically, the prognosis of tumor therapy is fundamentally affected by multidrug resistance (MDR), which is primarily a result of enhanced drug efflux mediated by channels in the membrane that reduce drug accumulation in tumor cells. How to restore the sensitivity of tumor cells to chemotherapy is an ongoing and pressing clinical issue. There is a prevailing view that tumor cells turn to glycolysis for energy supply due to hypoxia. However, studies have shown that mitochondria also play crucial roles, such as providing intermediates for biosynthesis through the tricarboxylic acid (TCA) cycle and a plenty of ATP to fuel cells through the complete breakdown of organic matter by oxidative phosphorylation (OXPHOS). High OXPHOS have been found in some tumors, particularly in cancer stem cells (CSCs), which possess increased mitochondria mass and may be depends on OXPHOS for energy supply. Therefore, they are sensitive to inhibitors of mitochondrial metabolism. In view of this, we should consider mitochondrial metabolism when developing drugs to overcome MDR, where mitochondrial RNA polymerase (POLRMT) would be the focus, as it is responsible for mitochondrial gene expression. Inhibition of POLRMT could disrupt mitochondrial metabolism at its source, causing an energy crisis and ultimately eradicating tumor cells. In addition, it may restore the energy supply of MDR cells to glycolysis and re-sensitize them to conventional chemotherapy. Furthermore, we discuss the rationale and strategies for designing new therapeutic molecules for MDR cancers by targeting POLRMT.
Collapse
Affiliation(s)
- Hui-Jing Yu
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Guan-Li Xiao
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Yu-Ying Zhao
- Department of Cell Biology and Medical Genetics, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Xin-Xin Wang
- Department of Cell Biology and Medical Genetics, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Rongfeng Lan
- Department of Cell Biology and Medical Genetics, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|