1
|
Sandik G, Feist J, García-Vidal FJ, Schwartz T. Cavity-enhanced energy transport in molecular systems. NATURE MATERIALS 2025; 24:344-355. [PMID: 39122930 DOI: 10.1038/s41563-024-01962-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/01/2024] [Indexed: 08/12/2024]
Abstract
Molecules are the building blocks of all of nature's functional components, serving as the machinery that captures, stores and releases energy or converts it into useful work. However, molecules interact with each other over extremely short distances, which hinders the spread of energy across molecular systems. Conversely, photons are inert, but they are fast and can traverse large distances very efficiently. Using optical resonators, these distinct entities can be mixed with each other, opening a path to new architectures that benefit from both the active nature of molecules and the long-range transport obtained by the coupling with light. In this Review, we present the physics underlying the enhancement of energy transfer and energy transport in molecular systems, and highlight the experimental and theoretical advances in this field over the past decade. Finally, we identify several key questions and theoretical challenges that remain to be resolved via future research.
Collapse
Affiliation(s)
- Gal Sandik
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences and Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv, Israel
| | - Johannes Feist
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain.
| | - Francisco J García-Vidal
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain.
| | - Tal Schwartz
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences and Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
2
|
Alfieri AD, Ruth T, Lim C, Lynch J, Jariwala D. Effects of Self-Hybridized Exciton-Polaritons on TMDC Photovoltaics. NANO LETTERS 2025; 25:3020-3026. [PMID: 39916471 DOI: 10.1021/acs.nanolett.5c00399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Hybrid light-matter states called exciton-polaritons have been explored to improve excitonic photovoltaic (PV) and photodiode efficiency, but the use of closed cavity structures results in efficiency gains over a narrow band, with losses in the short circuit current density under solar illumination. In WX2 (X = S, Se), the simultaneous large optical constants and strong exciton resonance can result in self-hybridized exciton-polaritons (SHEPs) emerging from the strong coupling of excitons and optical cavity modes formed by WX2. We perform thickness dependent device characterization of WS2 and WSe2 PVs to show that self-hybridized strong coupling enhances device efficiency on resonance while still enabling broadband absorption, resulting in improved short circuit current density under solar illumination. Ultimately, we leverage strong coupling to achieve external quantum efficiencies as high as 70% and record power conversion efficiencies approaching 7%. This result indicates the utility of SHEPs for light-energy harvesting applications.
Collapse
Affiliation(s)
- Adam D Alfieri
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Tobia Ruth
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Cheryl Lim
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jason Lynch
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Deep Jariwala
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
3
|
Wang S, Huang JL, Hsu LY. Theory of molecular emission power spectra. III. Non-Hermitian interactions in multichromophoric systems coupled with polaritons. J Chem Phys 2024; 161:234113. [PMID: 39692490 DOI: 10.1063/5.0235250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024] Open
Abstract
Based on our previous study [Wang et al., J. Chem. Phys. 153, 184102 (2020)], we generalize the theory of molecular emission power spectra (EPS) from one molecule to multichromophoric systems in the framework of macroscopic quantum electrodynamics. This generalized theory is applicable to ensembles of molecules, providing a comprehensive description of the molecular spontaneous emission spectrum in arbitrary inhomogeneous, dispersive, and absorbing media. In the far-field region, the analytical formula of EPS can be expressed as the product of a lineshape function (LF) and an electromagnetic environment factor (EEF). To demonstrate the polaritonic effect on multichromophoric systems, we simulate the LF and EEF for one to three molecules weakly coupled to surface plasmon polaritons above a silver surface. Our analytical expressions show that the peak broadening originates from not only the spontaneous emission rates but also the imaginary part of resonant dipole-dipole interactions (non-Hermitian interactions), which is associated with the superradiance of molecular aggregates, indicating that the superradiance rate can be controlled through an intermolecular distance and the design of dielectric environments. This study presents an alternative approach to directly analyze the hybrid-state dynamics of multichromophoric systems coupled with polaritons.
Collapse
Affiliation(s)
- Siwei Wang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Jia-Liang Huang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Liang-Yan Hsu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- National Center for Theoretical Sciences, Taipei 10617, Taiwan
| |
Collapse
|
4
|
Zhang L, Ge M, Zhao B, Xu K, Xie W, Zou Z, Li W, Zhao J, Wang T, Du W. Room-Temperature Exciton Polaritons in a Monolayer Molecular Crystal. NANO LETTERS 2024; 24:16072-16080. [PMID: 39641351 DOI: 10.1021/acs.nanolett.4c04562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Strong coupling between excitons and photons in optical microcavities leads to the formation of exciton polaritons, which maintain both the coherence of light and the interaction of matter. Recently, atomically thin monolayer semiconductors with a large exciton oscillator strength and high exciton binding energy have been widely used for realizing room-temperature exciton polaritons. Here, we demonstrated room-temperature exciton polaritons with a monolayer molecular crystal. The molecular monolayers behave as J-aggregates with comparable oscillator strength and narrow line width as inorganic monolayers, enabling exciton-photon strong coupling at the monolayer limit. Moreover, the coupling strength can be tuned systematically via engineering the in-plane polarization or by using a vertical stack of multiple molecular monolayers. Our research provides a new material platform for realizing strong light-matter interactions inside optical microcavities at room temperature and may motivate the development of molecular-crystal-based exciton-polaritonic devices with novel functions and new possibilities.
Collapse
Affiliation(s)
- Lan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Maowen Ge
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Boxiang Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Kai Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Wenhao Xie
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Zhen Zou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Wenfei Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Jiaxin Zhao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Tao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Wei Du
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| |
Collapse
|
5
|
Berghuis AM, Boom A, Argante RP, Murai S, Gómez Rivas J. Condensation of Exciton-Polaritons in a Bound State in the Continuum: Effects of the Excitation Spot Size and Polariton Transport. ACS NANO 2024; 18:31987-31994. [PMID: 39520678 PMCID: PMC11580381 DOI: 10.1021/acsnano.4c09970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
We report the formation of polariton condensates from strongly coupled molecules to bound states in the continuum with quadrupolar character in a metasurface of silicon nanoparticles. Our experiments demonstrate a strong dependence of the condensation threshold on the excitation spot size. The condensation threshold decreases as the excitation spot size increases, achieving thresholds below 3 μm cm-2 for spot sizes of around 1 mm2 and condensate lifetimes exceeding 20 ps. The strong dependence of the condensation threshold on the spot size is caused by the long propagation length of the polaritons. We reproduce this dependence in simulations by including a term for the ballistic transport of exciton-polaritons in the rate equations describing the condensation. These results illustrate the critical role that polariton transport plays in condensation and highlight the relevance of considering the size of the excitation in condensation experiments.
Collapse
Affiliation(s)
- Anton Matthijs Berghuis
- Department
of Applied Physics and Science Education and Eindhoven Hendrik Casimir
Institute, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
| | - Arjan Boom
- Department
of Applied Physics and Science Education and Eindhoven Hendrik Casimir
Institute, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
| | - Rafael P. Argante
- Department
of Applied Physics and Science Education and Eindhoven Hendrik Casimir
Institute, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
| | - Shunsuke Murai
- Department
of Material Chemistry, Graduate School of
Engineering, Kyoto University, Katsura, Nishikyo, 6158510 Kyoto, Japan
| | - Jaime Gómez Rivas
- Department
of Applied Physics and Science Education and Eindhoven Hendrik Casimir
Institute, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
- Institute
for Complex Molecular Systems-ICMS, Eindhoven University of Technology, P.O. Box 513, 5612 AJ Eindhoven, the Netherlands
| |
Collapse
|
6
|
Peng K, Rabani E. Polariton-assisted incoherent to coherent excitation energy transfer between colloidal nanocrystal quantum dots. J Chem Phys 2024; 161:154107. [PMID: 39417420 DOI: 10.1063/5.0223369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
We explore the dynamics of energy transfer between two nanocrystal quantum dots placed within an optical microcavity. By adjusting the coupling strength between the cavity photon mode and the quantum dots, we have the capacity to fine-tune the effective coupling between the donor and acceptor. Introducing a non-adiabatic parameter, γ, governed by the coupling to the cavity mode, we demonstrate the system's capability to shift from the overdamped Förster regime (γ ≪ 1) to an underdamped coherent regime (γ ≫ 1). In the latter regime, characterized by swift energy transfer rates, the dynamics are influenced by decoherence time. To illustrate this, we study the exciton energy transfer dynamics between two closely positioned CdSe/CdS core/shell quantum dots with sizes and separations relevant to experimental conditions. Employing an atomistic approach, we calculate the excitonic level arrangement, exciton-phonon interactions, and transition dipole moments of the quantum dots within the microcavity. These parameters are then utilized to define a model Hamiltonian. Subsequently, we apply a generalized non-Markovian quantum Redfield equation to delineate the dynamics within the polaritonic framework.
Collapse
Affiliation(s)
- Kaiyue Peng
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Eran Rabani
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
7
|
De PK, Jain A. Exciton energy transfer inside cavity-A benchmark study of polaritonic dynamics using the surface hopping method. J Chem Phys 2024; 161:054117. [PMID: 39105549 DOI: 10.1063/5.0216787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024] Open
Abstract
Strong coupling between the molecular system and photon inside the cavity generates polaritons, which can alter reaction rates by orders of magnitude. In this work, we benchmark the surface hopping method to simulate non-adiabatic dynamics in a cavity. The comparison is made against a numerically exact method (the hierarchical equations of motion) for a model system investigating excitonic energy transfer for a broad range of parameters. Surface hopping captures the effects of the radiation mode well, both at resonance and off-resonance. We have further investigated parameters that can increase or decrease the rate of population transfer, and we find that surface hopping in general can capture both effects well. Finally, we show that the dipole self-energy term within our parameter regime does not significantly affect the system's dynamics.
Collapse
Affiliation(s)
- Priyam Kumar De
- Department of Chemistry, Indian Institute of Technology, Mumbai 400076, India
| | - Amber Jain
- Department of Chemistry, Indian Institute of Technology, Mumbai 400076, India
| |
Collapse
|
8
|
Cargioli A, Lednev M, Lavista L, Camposeo A, Sassella A, Pisignano D, Tredicucci A, Garcia-Vidal FJ, Feist J, Persano L. Active control of polariton-enabled long-range energy transfer. NANOPHOTONICS 2024; 13:2541-2551. [PMID: 38836104 PMCID: PMC11147494 DOI: 10.1515/nanoph-2023-0677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/27/2023] [Indexed: 06/06/2024]
Abstract
Optical control is achieved on the excited state energy transfer between spatially separated donor and acceptor molecules, both coupled to the same optical mode of a cavity. The energy transfer occurs through the formed hybrid polaritons and can be switched on and off by means of ultraviolet and visible light. The control mechanism relies on a photochromic component used as donor, whose absorption and emission properties can be varied reversibly through light irradiation, whereas in-cavity hybridization with acceptors through polariton states enables a 6-fold enhancement of acceptor/donor contribution to the emission intensity with respect to a reference multilayer. These results pave the way for synthesizing effective gating systems for the transport of energy by light, relevant for light-harvesting and light-emitting devices, and for photovoltaic cells.
Collapse
Affiliation(s)
- Alessio Cargioli
- Dipartimento di Fisica “E. Fermi”, Università di Pisa, Largo B. Pontecorvo 3, I-56127Pisa, Italy
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127Pisa, Italy
| | - Maksim Lednev
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049Madrid, Spain
| | - Lorenzo Lavista
- Dipartimento di Fisica “E. Fermi”, Università di Pisa, Largo B. Pontecorvo 3, I-56127Pisa, Italy
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127Pisa, Italy
| | - Andrea Camposeo
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127Pisa, Italy
| | - Adele Sassella
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca, Via Roberto Cozzi 55, I-20125Milano, Italy
| | - Dario Pisignano
- Dipartimento di Fisica “E. Fermi” and Center for Instrument Sharing (CISUP), Università di Pisa, Largo B. Pontecorvo 3, I-56127Pisa, Italy
- NEST, Istituto Nanoscienze-CNR, I-56127Pisa, Italy
| | - Alessandro Tredicucci
- Dipartimento di Fisica “E. Fermi” and Center for Instrument Sharing (CISUP), Università di Pisa, Largo B. Pontecorvo 3, I-56127Pisa, Italy
- NEST, Istituto Nanoscienze-CNR, I-56127Pisa, Italy
| | - Francisco J. Garcia-Vidal
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049Madrid, Spain
| | - Johannes Feist
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049Madrid, Spain
| | - Luana Persano
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127Pisa, Italy
| |
Collapse
|
9
|
Aroeira GJR, Kairys KT, Ribeiro RF. Coherent transient exciton transport in disordered polaritonic wires. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:2553-2564. [PMID: 39678656 PMCID: PMC11636474 DOI: 10.1515/nanoph-2023-0797] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/07/2024] [Indexed: 12/17/2024]
Abstract
Excitation energy transport can be significantly enhanced by strong light-matter interactions. In the present work, we explore intriguing features of coherent transient exciton wave packet dynamics on a lossless disordered polaritonic wire. Our main results can be understood in terms of the effective exciton group velocity, a new quantity we obtain from the polariton dispersion. Under weak and moderate disorder, we find that the early wave packet spread velocity is controlled by the overlap of the initial exciton momentum distribution and its effective group velocity. Conversely, when disorder is stronger, the initial state is nearly irrelevant, and red-shifted cavities support excitons with greater mobility. Our findings provide guiding principles for optimizing ultrafast coherent exciton transport based on the magnitude of disorder and the polariton dispersion. The presented perspectives may be valuable for understanding and designing new polaritonic platforms for enhanced exciton energy transport.
Collapse
Affiliation(s)
- Gustavo J. R. Aroeira
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, GA, USA
| | - Kyle T. Kairys
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, GA, USA
| | - Raphael F. Ribeiro
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, GA, USA
| |
Collapse
|
10
|
de Jong LMA, Berghuis AM, Abdelkhalik MS, van der Pol TPA, Wienk MM, Janssen RAJ, Gómez Rivas J. Enhancement of the internal quantum efficiency in strongly coupled P3HT-C 60 organic photovoltaic cells using Fabry-Perot cavities with varied cavity confinement. NANOPHOTONICS 2024; 13:2531-2540. [PMID: 38836103 PMCID: PMC11147493 DOI: 10.1515/nanoph-2023-0613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/05/2023] [Indexed: 06/06/2024]
Abstract
The short exciton diffusion length in organic semiconductors results in a strong dependence of the conversion efficiency of organic photovoltaic (OPV) cells on the morphology of the donor-acceptor bulk-heterojunction blend. Strong light-matter coupling provides a way to circumvent this dependence by combining the favorable properties of light and matter via the formation of hybrid exciton-polaritons. By strongly coupling excitons in P3HT-C60 OPV cells to Fabry-Perot optical cavity modes, exciton-polaritons are formed with increased propagation lengths. We exploit these exciton-polaritons to enhance the internal quantum efficiency of the cells, determined from the external quantum efficiency and the absorptance. Additionally, we find a consistent decrease in the Urbach energy for the strongly coupled cells, which indicates the reduction of energetic disorder due to the delocalization of exciton-polaritons in the optical cavity.
Collapse
Affiliation(s)
- Lianne M. A. de Jong
- Department of Applied Physics and Science Education, Eindhoven Hendrik Casimir Institute, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MBEindhoven, The Netherlands
| | - Anton Matthijs Berghuis
- Department of Applied Physics and Science Education, Eindhoven Hendrik Casimir Institute, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MBEindhoven, The Netherlands
| | - Mohamed S. Abdelkhalik
- Department of Applied Physics and Science Education, Eindhoven Hendrik Casimir Institute, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MBEindhoven, The Netherlands
| | - Tom P. A. van der Pol
- Department of Chemical Engineering and Chemistry, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MBEindhoven, The Netherlands
| | - Martijn M. Wienk
- Department of Chemical Engineering and Chemistry, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MBEindhoven, The Netherlands
| | - Rene A. J. Janssen
- Department of Chemical Engineering and Chemistry, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MBEindhoven, The Netherlands
| | - Jaime Gómez Rivas
- Department of Applied Physics and Science Education, Eindhoven Hendrik Casimir Institute, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MBEindhoven, The Netherlands
| |
Collapse
|
11
|
Chuang YT, Hsu LY. Microscopic theory of exciton-polariton model involving multiple molecules: Macroscopic quantum electrodynamics formulation and essence of direct intermolecular interactions. J Chem Phys 2024; 160:114105. [PMID: 38501476 DOI: 10.1063/5.0192704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/28/2024] [Indexed: 03/20/2024] Open
Abstract
Cavity quantum electrodynamics (CQED) and its extensions are widely used for the description of exciton-polariton systems. However, the exciton-polariton models based on CQED vary greatly within different contexts. One of the most significant discrepancies among these CQED models is whether one should include direct intermolecular interactions in the CQED Hamiltonian. To answer this question, in this article, we derive an effective dissipative CQED model including free-space dipole-dipole interactions (CQED-DDI) from a microscopic Hamiltonian based on macroscopic quantum electrodynamics. Dissipative CQED-DDI successfully captures the nature of vacuum fluctuations in dielectric media and separates them into free-space effects and dielectric-induced effects. The former include spontaneous emissions, dephasings, and dipole-dipole interactions in free space; the latter include exciton-polariton interactions and photonic losses due to dielectric media. We apply dissipative CQED-DDI to investigate the exciton-polariton dynamics (the population dynamics of molecules above a plasmonic surface) and compare the results with those based on the methods proposed by several previous studies. We find that direct intermolecular interactions are a crucial element when employing CQED-like models to study exciton-polariton systems involving multiple molecules.
Collapse
Affiliation(s)
- Yi-Ting Chuang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Liang-Yan Hsu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Physics Division, National Center for Theoretical Sciences, Taipei 10617, Taiwan
| |
Collapse
|
12
|
Xiang B, Xiong W. Molecular Polaritons for Chemistry, Photonics and Quantum Technologies. Chem Rev 2024; 124:2512-2552. [PMID: 38416701 PMCID: PMC10941193 DOI: 10.1021/acs.chemrev.3c00662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/22/2024] [Accepted: 02/08/2024] [Indexed: 03/01/2024]
Abstract
Molecular polaritons are quasiparticles resulting from the hybridization between molecular and photonic modes. These composite entities, bearing characteristics inherited from both constituents, exhibit modified energy levels and wave functions, thereby capturing the attention of chemists in the past decade. The potential to modify chemical reactions has spurred many investigations, alongside efforts to enhance and manipulate optical responses for photonic and quantum applications. This Review centers on the experimental advances in this burgeoning field. Commencing with an introduction of the fundamentals, including theoretical foundations and various cavity architectures, we discuss outcomes of polariton-modified chemical reactions. Furthermore, we navigate through the ongoing debates and uncertainties surrounding the underpinning mechanism of this innovative method of controlling chemistry. Emphasis is placed on gaining a comprehensive understanding of the energy dynamics of molecular polaritons, in particular, vibrational molecular polaritons─a pivotal facet in steering chemical reactions. Additionally, we discuss the unique capability of coherent two-dimensional spectroscopy to dissect polariton and dark mode dynamics, offering insights into the critical components within the cavity that alter chemical reactions. We further expand to the potential utility of molecular polaritons in quantum applications as well as precise manipulation of molecular and photonic polarizations, notably in the context of chiral phenomena. This discussion aspires to ignite deeper curiosity and engagement in revealing the physics underpinning polariton-modified molecular properties, and a broad fascination with harnessing photonic environments to control chemistry.
Collapse
Affiliation(s)
- Bo Xiang
- Department
of Chemistry, School of Science and Research Center for Industries
of the Future, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Wei Xiong
- Department
of Chemistry and Biochemistry, University
of California, San Diego, California 92126, United States
- Materials
Science and Engineering Program, University
of California, San Diego, California 92126, United States
- Department
of Electrical and Computer Engineering, University of California, San
Diego, California 92126, United States
| |
Collapse
|
13
|
Parolin G, Peruffo N, Mancin F, Collini E, Corni S. Molecularly Detailed View of Strong Coupling in Supramolecular Plexcitonic Nanohybrids. NANO LETTERS 2024; 24:2273-2281. [PMID: 38261782 DOI: 10.1021/acs.nanolett.3c04514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Plexcitons constitute a peculiar example of light-matter hybrids (polaritons) originating from the (strong) coupling of plasmonic modes and molecular excitations. Here we propose a fully quantum approach to model plexcitonic systems and test it against existing experiments on peculiar hybrids formed by Au nanoparticles and a well-known porphyrin derivative, involving the Q branch of the organic dye absorption spectrum. Our model extends simpler descriptions of polaritonic systems to account for the multilevel structure of the dyes, spatially varying interactions with a given plasmon mode, and the simultaneous occurrence of plasmon-molecule and intermolecular interactions. By keeping a molecularly detailed view, we were able to gain insights into the local structure and individual contributions to the resulting plexcitons. Our model can be applied to rationalize and predict energy funneling toward specific molecular sites within a plexcitonic assembly, which is highly valuable for designing and controlling chemical transformations in the new polaritonic landscapes.
Collapse
Affiliation(s)
- Giovanni Parolin
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Nicola Peruffo
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Fabrizio Mancin
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Elisabetta Collini
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
- Padua Quantum Technologies Research Center, University of Padova, 35131 Padova, Italy
| | - Stefano Corni
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
- Padua Quantum Technologies Research Center, University of Padova, 35131 Padova, Italy
- CNR Institute of Nanoscience, 41125 Modena, Italy
| |
Collapse
|
14
|
Hirai K, Andell Hutchison J, Uji-I H. Optical Cavity Design and Functionality for Molecular Strong Coupling. Chemistry 2024; 30:e202303110. [PMID: 37941155 DOI: 10.1002/chem.202303110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/10/2023]
Abstract
Optical cavity/molecule strong coupling offers attractive opportunities to modulate photochemical or photophysical processes. When atoms or molecules are placed in an optical cavity, they can coherently exchange photonic energy with optical cavity vacuum fields, entering the strong coupling interaction regime. Recent work suggests that the thermodynamic and kinetic properties of molecules can be significantly changed by strong coupling, resulting in the emergence of intriguing photochemical and photophysical phenomena. As more and more physico-chemical systems are studied under strong coupling conditions, optical cavities have also advanced in their sophistication, responsiveness, and (multi)functionality. In this review, we highlight some of these recent developments, particularly focusing on Fabry-Perot microcavities.
Collapse
Affiliation(s)
- Kenji Hirai
- Research Institute for Electronic Science (RIES), Hokkaido University, N20 W10, Sapporo, Hokkaido, 001-0020, Japan
| | - James Andell Hutchison
- School of Chemistry and, Australian Research Council Centre of Excellence in Exciton Science, The University of Melbourne, Masson Rd, Parkville, VIC, 3052, Australia
| | - Hiroshi Uji-I
- Research Institute for Electronic Science (RIES), Hokkaido University, N20 W10, Sapporo, Hokkaido, 001-0020, Japan
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
| |
Collapse
|
15
|
Weight BM, Li X, Zhang Y. Theory and modeling of light-matter interactions in chemistry: current and future. Phys Chem Chem Phys 2023; 25:31554-31577. [PMID: 37842818 DOI: 10.1039/d3cp01415k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Light-matter interaction not only plays an instrumental role in characterizing materials' properties via various spectroscopic techniques but also provides a general strategy to manipulate material properties via the design of novel nanostructures. This perspective summarizes recent theoretical advances in modeling light-matter interactions in chemistry, mainly focusing on plasmon and polariton chemistry. The former utilizes the highly localized photon, plasmonic hot electrons, and local heat to drive chemical reactions. In contrast, polariton chemistry modifies the potential energy curvatures of bare electronic systems, and hence their chemistry, via forming light-matter hybrid states, so-called polaritons. The perspective starts with the basic background of light-matter interactions, molecular quantum electrodynamics theory, and the challenges of modeling light-matter interactions in chemistry. Then, the recent advances in modeling plasmon and polariton chemistry are described, and future directions toward multiscale simulations of light-matter interaction-mediated chemistry are discussed.
Collapse
Affiliation(s)
- Braden M Weight
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, 14627, USA
| | - Xinyang Li
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| | - Yu Zhang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| |
Collapse
|
16
|
Bhuyan R, Mony J, Kotov O, Castellanos GW, Gómez Rivas J, Shegai TO, Börjesson K. The Rise and Current Status of Polaritonic Photochemistry and Photophysics. Chem Rev 2023; 123:10877-10919. [PMID: 37683254 PMCID: PMC10540218 DOI: 10.1021/acs.chemrev.2c00895] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Indexed: 09/10/2023]
Abstract
The interaction between molecular electronic transitions and electromagnetic fields can be enlarged to the point where distinct hybrid light-matter states, polaritons, emerge. The photonic contribution to these states results in increased complexity as well as an opening to modify the photophysics and photochemistry beyond what normally can be seen in organic molecules. It is today evident that polaritons offer opportunities for molecular photochemistry and photophysics, which has caused an ever-rising interest in the field. Focusing on the experimental landmarks, this review takes its reader from the advent of the field of polaritonic chemistry, over the split into polariton chemistry and photochemistry, to present day status within polaritonic photochemistry and photophysics. To introduce the field, the review starts with a general description of light-matter interactions, how to enhance these, and what characterizes the coupling strength. Then the photochemistry and photophysics of strongly coupled systems using Fabry-Perot and plasmonic cavities are described. This is followed by a description of room-temperature Bose-Einstein condensation/polariton lasing in polaritonic systems. The review ends with a discussion on the benefits, limitations, and future developments of strong exciton-photon coupling using organic molecules.
Collapse
Affiliation(s)
- Rahul Bhuyan
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 412 96 Göteborg, Sweden
| | - Jürgen Mony
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 412 96 Göteborg, Sweden
| | - Oleg Kotov
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Gabriel W. Castellanos
- Department
of Applied Physics and Science Education, Eindhoven Hendrik Casimir
Institute and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands
| | - Jaime Gómez Rivas
- Department
of Applied Physics and Science Education, Eindhoven Hendrik Casimir
Institute and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands
| | - Timur O. Shegai
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Karl Börjesson
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 412 96 Göteborg, Sweden
| |
Collapse
|
17
|
Peruffo N, Bruschi M, Fresch B, Mancin F, Collini E. Identification of Design Principles for the Preparation of Colloidal Plexcitonic Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12793-12806. [PMID: 37641919 PMCID: PMC10501205 DOI: 10.1021/acs.langmuir.3c01642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/07/2023] [Indexed: 08/31/2023]
Abstract
Colloidal plexcitonic materials (CPMs) are a class of nanosystems where molecular dyes are strongly coupled with colloidal plasmonic nanoparticles, acting as nanocavities that enhance the light field. As a result of this strong coupling, new hybrid states are formed, called plexcitons, belonging to the broader family of polaritons. With respect to other families of polaritonic materials, CPMs are cheap and easy to prepare through wet chemistry methodologies. Still, clear structure-to-properties relationships are not available, and precise rules to drive the materials' design to obtain the desired optical properties are still missing. To fill this gap, in this article, we prepared a dataset with all CPMs reported in the literature, rationalizing their design by focusing on their three main relevant components (the plasmonic nanoparticles, the molecular dyes, and the capping layers) and identifying the most used and efficient combinations. With the help of statistical analysis, we also found valuable correlations between structure, coupling regime, and optical properties. The results of this analysis are expected to be relevant for the rational design of new CPMs with controllable and predictable photophysical properties to be exploited in a vast range of technological fields.
Collapse
Affiliation(s)
- Nicola Peruffo
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Matteo Bruschi
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Barbara Fresch
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
- Padua
Quantum Technologies Research Center, via Gradenigo 6/A, 35122 Padova, Italy
| | - Fabrizio Mancin
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Elisabetta Collini
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
- Padua
Quantum Technologies Research Center, via Gradenigo 6/A, 35122 Padova, Italy
| |
Collapse
|
18
|
Wang Y, Dou W. Nonadiabatic dynamics near metal surfaces under Floquet engineering: Floquet electronic friction vs Floquet surface hopping. J Chem Phys 2023; 159:094103. [PMID: 37655774 DOI: 10.1063/5.0161292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/10/2023] [Indexed: 09/02/2023] Open
Abstract
In the previous study Wang and Dou [J. Chem. Phys. 158, 224109 (2023)], we have derived a Floquet classical master equation (FCME) to treat nonadiabatic dynamics near metal surfaces under Floquet engineering. We have also proposed a trajectory surface hopping algorithm to solve the FCME. In this study, we map the FCME into a Floquet Fokker-Planck equation in the limit of fast Floquet driving and fast electron motion as compared to nuclear motion. The Fokker-Planck equation is then being solved using Langevin dynamics with explicit friction and random force from the nonadiabatic effects of hybridized electrons and Floquet states. We benchmark the Floquet electronic friction dynamics against Floquet quantum master equation and Floquet surface hopping. We find that Floquet driving results in a violation of the second fluctuation-dissipation theorem, which further gives rise to heating effects.
Collapse
Affiliation(s)
- Yu Wang
- Department of Chemistry, School of Science, Westlake University, Hangzhou 310024, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Wenjie Dou
- Department of Chemistry, School of Science, Westlake University, Hangzhou 310024, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
- Department of Physics, School of Science, Westlake University, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
19
|
Palo E, Papachatzakis MA, Abdelmagid A, Qureshi H, Kumar M, Salomäki M, Daskalakis KS. Developing Solution-Processed Distributed Bragg Reflectors for Microcavity Polariton Applications. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:14255-14262. [PMID: 37529668 PMCID: PMC10388359 DOI: 10.1021/acs.jpcc.3c01457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/26/2023] [Indexed: 08/03/2023]
Abstract
Improving the performance of organic optoelectronics has been under vigorous research for decades. Recently, polaritonics has been introduced as a technology that has the potential to improve the optical, electrical, and chemical properties of materials and devices. However, polaritons have been mainly studied in optical microcavities that are made by vacuum deposition processes, which are costly, unavailable to many, and incompatible with printed optoelectronics methods. Efforts toward the fabrication of polariton microcavities with solution-processed techniques have been utterly absent. Herein, we demonstrate for the first time strong light-matter coupling and polariton photoluminescence in an organic microcavity consisting of an aluminum mirror and a distributed Bragg reflector (DBR) made by sequential dip coating of titanium hydroxide/poly(vinyl alcohol) (TiOH/PVA) and Nafion films. To fabricate and develop the solution-processed DBRs and microcavities, we automatized a dip-coating device that allowed us to produce sub-100 nm films consistently over many dip-coating cycles. Owning to the solution-based nature of our DBRs, our results pave the way to the realization of polariton optoelectronic devices beyond physical deposition methods.
Collapse
Affiliation(s)
- Emilia Palo
- Department
of Mechanical and Materials Engineering, University of Turku, FI-20014 Turku, Finland
| | - Michael A. Papachatzakis
- Department
of Mechanical and Materials Engineering, University of Turku, FI-20014 Turku, Finland
| | - Ahmed Abdelmagid
- Department
of Mechanical and Materials Engineering, University of Turku, FI-20014 Turku, Finland
| | - Hassan Qureshi
- Department
of Mechanical and Materials Engineering, University of Turku, FI-20014 Turku, Finland
| | - Manish Kumar
- Department
of Mechanical and Materials Engineering, University of Turku, FI-20014 Turku, Finland
| | - Mikko Salomäki
- Department
of Chemistry, University of Turku, FI-20014 Turku, Finland
| | | |
Collapse
|
20
|
Koner A, Du M, Pannir-Sivajothi S, Goldsmith RH, Yuen-Zhou J. A path towards single molecule vibrational strong coupling in a Fabry-Pérot microcavity. Chem Sci 2023; 14:7753-7761. [PMID: 37476723 PMCID: PMC10355109 DOI: 10.1039/d3sc01411h] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/31/2023] [Indexed: 07/22/2023] Open
Abstract
Interaction between light and molecular vibrations leads to hybrid light-matter states called vibrational polaritons. Even though many intriguing phenomena have been predicted for single-molecule vibrational strong coupling (VSC), several studies suggest that these effects tend to be diminished in the many-molecule regime due to the presence of dark states. Achieving single or few-molecule vibrational polaritons has been constrained by the need for fabricating extremely small mode volume infrared cavities. In this theoretical work, we propose an alternative strategy to achieve single-molecule VSC in a cavity-enhanced Raman spectroscopy (CERS) setup, based on the physics of cavity optomechanics. We then present a scheme harnessing few-molecule VSC to thermodynamically couple two reactions, such that a spontaneous electron transfer can now fuel a thermodynamically uphill reaction that was non-spontaneous outside the cavity.
Collapse
Affiliation(s)
- Arghadip Koner
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla California 92093 USA
| | - Matthew Du
- Department of Chemistry, University of Chicago 5735 S Ellis Ave Chicago Illinois 60637 USA
| | - Sindhana Pannir-Sivajothi
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla California 92093 USA
| | - Randall H Goldsmith
- Department of Chemistry, University of Wisconsin-Madison Madison Wisconsin 53706-1322 USA
| | - Joel Yuen-Zhou
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla California 92093 USA
| |
Collapse
|
21
|
Abstract
The coherent exchange of energy between materials and optical fields leads to strong light-matter interactions and so-called polaritonic states with intriguing properties, halfway between light and matter. Two decades ago, research on these strong light-matter interactions, using optical cavity (vacuum) fields, remained for the most part the province of the physicist, with a focus on inorganic materials requiring cryogenic temperatures and carefully fabricated, high-quality optical cavities for their study. This review explores the history and recent acceleration of interest in the application of polaritonic states to molecular properties and processes. The enormous collective oscillator strength of dense films of organic molecules, aggregates, and materials allows cavity vacuum field strong coupling to be achieved at room temperature, even in rapidly fabricated, highly lossy metallic optical cavities. This has put polaritonic states and their associated coherent phenomena at the fingertips of laboratory chemists, materials scientists, and even biochemists as a potentially new tool to control molecular chemistry. The exciting phenomena that have emerged suggest that polaritonic states are of genuine relevance within the molecular and material energy landscape.
Collapse
Affiliation(s)
- Kenji Hirai
- Division of Photonics and Optical Science, Research Institute for Electronic Science (RIES), Hokkaido University, North 20 West 10, Kita ward, Sapporo, Hokkaido 001-0020, Japan
| | - James A Hutchison
- School of Chemistry and ARC Centre of Excellence in Exciton Science, The University of Melbourne, Masson Road, Parkville, Victoria 3052 Australia
| | - Hiroshi Uji-I
- Division of Photonics and Optical Science, Research Institute for Electronic Science (RIES), Hokkaido University, North 20 West 10, Kita ward, Sapporo, Hokkaido 001-0020, Japan
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee Leuven Belgium
| |
Collapse
|
22
|
Aroeira GR, Kairys KT, Ribeiro RF. Theoretical Analysis of Exciton Wave Packet Dynamics in Polaritonic Wires. J Phys Chem Lett 2023; 14:5681-5691. [PMID: 37314883 PMCID: PMC10291640 DOI: 10.1021/acs.jpclett.3c01082] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
We present a comprehensive study of the exciton wave packet evolution in disordered lossless polaritonic wires. Our simulations reveal signatures of ballistic, diffusive, and subdiffusive exciton dynamics under strong light-matter coupling and identify the typical time scales associated with the transitions between these qualitatively distinct transport phenomena. We determine optimal truncations of the matter and radiation subsystems required for generating reliable time-dependent data from computational simulations at an affordable cost. The time evolution of the photonic part of the wave function reveals that many cavity modes contribute to the dynamics in a nontrivial fashion. Hence, a sizable number of photon modes is needed to describe exciton propagation with a reasonable accuracy. We find and discuss an intriguingly common lack of dominance of the photon mode on resonance with matter in both the presence and absence of disorder. We discuss the implications of our investigations for the development of theoretical models and analysis of experiments where coherent intermolecular energy transport and static disorder play an important role.
Collapse
Affiliation(s)
- Gustavo
J. R. Aroeira
- Department of Chemistry and Cherry
Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Kyle T. Kairys
- Department of Chemistry and Cherry
Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Raphael F. Ribeiro
- Department of Chemistry and Cherry
Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
23
|
Bhatt P, Dutta J, Kaur K, George J. Long-Range Energy Transfer in Strongly Coupled Donor-Acceptor Phototransistors. NANO LETTERS 2023. [PMID: 37235844 DOI: 10.1021/acs.nanolett.3c00867] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Strong light-matter coupling offers a way to tailor the optoelectronic properties of materials. Energy transfer between strongly coupled donor-acceptor pairs shows remarkable efficiency beyond the Förster distance via coupling through a confined photon. This long-range energy transfer is facilitated through the collective nature of polaritonic states. Here, the cooperative, strong coupling of a donor (MoS2 monolayer) and an acceptor (BRK) generates mixed polaritonic states. The photocurrent spectrum of the MoS2 monolayer is measured in a field effect transistor while coupling the two oscillators to the confined cavity mode. The strongly coupled system shows efficient energy transfer, which is observed through the photoresponsivity even the donor and acceptor are physically separated by 500 Å. These studies are further correlated with the Hopfield coefficients and the overlap integral of the lower polaritonic and uncoupled/dark states. Cavity detuning and distance-dependent studies support the above evidence. These observations open new avenues for using long-range interaction of polaritonic states in optoelectronic devices.
Collapse
Affiliation(s)
- Pooja Bhatt
- Indian Institute of Science Education and Research (IISER), Mohali, Punjab 140306, India
| | - Jhuma Dutta
- Indian Institute of Science Education and Research (IISER), Mohali, Punjab 140306, India
| | - Kuljeet Kaur
- Indian Institute of Science Education and Research (IISER), Mohali, Punjab 140306, India
| | - Jino George
- Indian Institute of Science Education and Research (IISER), Mohali, Punjab 140306, India
| |
Collapse
|
24
|
Mukherjee A, Feist J, Börjesson K. Quantitative Investigation of the Rate of Intersystem Crossing in the Strong Exciton-Photon Coupling Regime. J Am Chem Soc 2023; 145:5155-5162. [PMID: 36813757 PMCID: PMC9999416 DOI: 10.1021/jacs.2c11531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Strong interactions between excitons and photons lead to the formation of exciton-polaritons, which possess completely different properties compared to their constituents. The polaritons are created by incorporating a material in an optical cavity where the electromagnetic field is tightly confined. Over the last few years, the relaxation of polaritonic states has been shown to enable a new kind of energy transfer event, which is efficient at length scales substantially larger than the typical Förster radius. However, the importance of such energy transfer depends on the ability of the short-lived polaritonic states to efficiently decay to molecular localized states that can perform a photochemical process, such as charge transfer or triplet states. Here, we investigate quantitatively the interaction between polaritons and triplet states of erythrosine B in the strong coupling regime. We analyze the experimental data, collected mainly employing angle-resolved reflectivity and excitation measurements, using a rate equation model. We show that the rate of intersystem crossing from the polariton to the triplet states depends on the energy alignment of the excited polaritonic states. Furthermore, it is demonstrated that the rate of intersystem crossing can be substantially enhanced in the strong coupling regime to the point where it approaches the rate of the radiative decay of the polariton. In light of the opportunities that transitions from polaritonic to molecular localized states offer within molecular photophysics/chemistry and organic electronics, we hope that the quantitative understanding of such interactions gained from this study will aid in the development of polariton-empowered devices.
Collapse
Affiliation(s)
- Arpita Mukherjee
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 412 96 Gothenburg, Sweden
| | - Johannes Feist
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid E-28049, Spain
| | - Karl Börjesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 412 96 Gothenburg, Sweden
| |
Collapse
|
25
|
Liu L, Wei Z, Meskers SCJ. Polaritons in a Polycrystalline Layer of Non-fullerene Acceptor. J Am Chem Soc 2023; 145:2040-2044. [PMID: 36689605 PMCID: PMC9896558 DOI: 10.1021/jacs.2c11968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Non-fullerene acceptor molecules developed for organic solar cells feature a very intense absorption band in the near-infrared. In the solid phase, the strong interaction between light and the transition dipole moment for molecular excitation should induce formation of polaritons. The reflection spectra for polycrystalline films of a non-fullerene acceptor with a thienothienopyrrolo-thienothienoindole core of the so-called Y6 type indeed show a signature of polaritons. A local minimum in the middle of the reflection band is associated with the allowed molecular transition. The minimum in reflection allows efficient entry of light into the solid, resulting in a local maximum in external quantum efficiency of a photovoltaic cell made of the pure acceptor.
Collapse
Affiliation(s)
- Lixuan Liu
- Molecular
Materials and Nanosystems, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands,CAS
Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing100190, China,School
of Future Technology, University of Chinese
Academy of Sciences, Beijing100049, China
| | - Zhixiang Wei
- CAS
Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing100190, China,School
of Future Technology, University of Chinese
Academy of Sciences, Beijing100049, China,
| | - Stefan C. J. Meskers
- Molecular
Materials and Nanosystems, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands,
| |
Collapse
|
26
|
Cheng CY, Krainova N, Brigeman AN, Khanna A, Shedge S, Isborn C, Yuen-Zhou J, Giebink NC. Molecular polariton electroabsorption. Nat Commun 2022; 13:7937. [PMID: 36566224 DOI: 10.1038/s41467-022-35589-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/09/2022] [Indexed: 12/25/2022] Open
Abstract
We investigate electroabsorption (EA) in organic semiconductor microcavities to understand whether strong light-matter coupling non-trivially alters their nonlinear optical [[Formula: see text]] response. Focusing on strongly-absorbing squaraine (SQ) molecules dispersed in a wide-gap host matrix, we find that classical transfer matrix modeling accurately captures the EA response of low concentration SQ microcavities with a vacuum Rabi splitting of [Formula: see text] meV, but fails for high concentration cavities with [Formula: see text] meV. Rather than new physics in the ultrastrong coupling regime, however, we attribute the discrepancy at high SQ concentration to a nearly dark H-aggregate state below the SQ exciton transition, which goes undetected in the optical constant dispersion on which the transfer matrix model is based, but nonetheless interacts with and enhances the EA response of the lower polariton mode. These results indicate that strong coupling can be used to manipulate EA (and presumably other optical nonlinearities) from organic microcavities by controlling the energy of polariton modes relative to other states in the system, but it does not alter the intrinsic optical nonlinearity of the organic semiconductor inside the cavity.
Collapse
Affiliation(s)
- Chiao-Yu Cheng
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Nina Krainova
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Alyssa N Brigeman
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ajay Khanna
- Department of Chemistry and Biochemistry, University of California Merced, Merced, CA, 95343, USA
| | - Sapana Shedge
- Department of Chemistry and Biochemistry, University of California Merced, Merced, CA, 95343, USA
| | - Christine Isborn
- Department of Chemistry and Biochemistry, University of California Merced, Merced, CA, 95343, USA
| | - Joel Yuen-Zhou
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Noel C Giebink
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
27
|
Pandya R, Ashoka A, Georgiou K, Sung J, Jayaprakash R, Renken S, Gai L, Shen Z, Rao A, Musser AJ. Tuning the Coherent Propagation of Organic Exciton-Polaritons through Dark State Delocalization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105569. [PMID: 35474309 PMCID: PMC9218652 DOI: 10.1002/advs.202105569] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/15/2022] [Indexed: 06/12/2023]
Abstract
While there have been numerous reports of long-range polariton transport at room-temperature in organic cavities, the spatiotemporal evolution of the propagation is scarcely reported, particularly in the initial coherent sub-ps regime, where photon and exciton wavefunctions are inextricably mixed. Hence the detailed process of coherent organic exciton-polariton transport and, in particular, the role of dark states has remained poorly understood. Here, femtosecond transient absorption microscopy is used to directly image coherent polariton motion in microcavities of varying quality factor. The transport is found to be well-described by a model of band-like propagation of an initially Gaussian distribution of exciton-polaritons in real space. The velocity of the polaritons reaches values of ≈ 0.65 × 106 m s-1 , substantially lower than expected from the polariton dispersion. Further, it is found that the velocity is proportional to the quality factor of the microcavity. This unexpected link between the quality-factor and polariton velocity is suggested to be a result of varying admixing between delocalized dark and polariton states.
Collapse
Affiliation(s)
- Raj Pandya
- Cavendish LaboratoryUniversity of CambridgeJ.J. Thomson AvenueCambridgeCB3 0HEUK
- Laboratoire Kastler BrosselÉcole Normale Superiéure‐Université PSLCNRSSorbonne UniversitéCollege de FranceParis75005France
| | - Arjun Ashoka
- Cavendish LaboratoryUniversity of CambridgeJ.J. Thomson AvenueCambridgeCB3 0HEUK
| | - Kyriacos Georgiou
- Department of Physics and AstronomyUniversity of SheffieldSheffieldS3 7RHUK
- Department of PhysicsUniversity of CyprusP. O. Box 20537Nicosia1678Cyprus
| | - Jooyoung Sung
- Cavendish LaboratoryUniversity of CambridgeJ.J. Thomson AvenueCambridgeCB3 0HEUK
| | - Rahul Jayaprakash
- Department of Physics and AstronomyUniversity of SheffieldSheffieldS3 7RHUK
| | - Scott Renken
- Department of Chemistry and Chemical BiologyCornell UniversityIthacaNY14853USA
| | - Lizhi Gai
- Key Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationHangzhou Normal UniversityHangzhou311121China
- State Key Laboratory of Coordination and ChemistrySchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210046China
| | - Zhen Shen
- State Key Laboratory of Coordination and ChemistrySchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210046China
| | - Akshay Rao
- Cavendish LaboratoryUniversity of CambridgeJ.J. Thomson AvenueCambridgeCB3 0HEUK
| | - Andrew J. Musser
- Department of Chemistry and Chemical BiologyCornell UniversityIthacaNY14853USA
| |
Collapse
|
28
|
Mony J, Yu Y, Schäfer C, Mallick S, Kushwaha K, Börjesson K. Interplay between Polaritonic and Molecular Trap States. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:7965-7972. [PMID: 35592736 PMCID: PMC9109220 DOI: 10.1021/acs.jpcc.2c01239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Strong exciton-photon coupling exhibits the possibility to modify the photophysical properties of organic molecules. This is due to the introduction of hybrid light-matter states, called polaritons, which have unique physical and optical properties. Those strongly coupled systems provide altered excited-state dynamics in comparison to the bare molecule case. In this study, we investigate the interplay between polaritonic and molecular trap states, such as excimers. The molecules used in this study show either prompt or delayed emission from trap states. For both cases, a clear dependency on the exciton-photon energy tuning was observed. Polaritonic emission gradually increased with a concurrent removal of aggregation-induced emission when the systems were tuned toward lower energies. For prompt emission, it is not clear whether the experimental results are best explained by a predominant relaxation toward the lower polariton after excitation or by a direct excimer to polariton transition. However, for the delayed emission case, trap states are formed on the initially formed triplet manifold, making it evident that an excimer-to-polariton transition has occurred. These results unveil the possibility to control the trap state population by creating a strongly coupled system, which may form a mitigation strategy to counteract detrimental trap states in photonic applications.
Collapse
|
29
|
Dimitriev OP. Dynamics of Excitons in Conjugated Molecules and Organic Semiconductor Systems. Chem Rev 2022; 122:8487-8593. [PMID: 35298145 DOI: 10.1021/acs.chemrev.1c00648] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The exciton, an excited electron-hole pair bound by Coulomb attraction, plays a key role in photophysics of organic molecules and drives practically important phenomena such as photoinduced mechanical motions of a molecule, photochemical conversions, energy transfer, generation of free charge carriers, etc. Its behavior in extended π-conjugated molecules and disordered organic films is very different and very rich compared with exciton behavior in inorganic semiconductor crystals. Due to the high degree of variability of organic systems themselves, the exciton not only exerts changes on molecules that carry it but undergoes its own changes during all phases of its lifetime, that is, birth, conversion and transport, and decay. The goal of this review is to give a systematic and comprehensive view on exciton behavior in π-conjugated molecules and molecular assemblies at all phases of exciton evolution with emphasis on rates typical for this dynamic picture and various consequences of the above dynamics. To uncover the rich variety of exciton behavior, details of exciton formation, exciton transport, exciton energy conversion, direct and reverse intersystem crossing, and radiative and nonradiative decay are considered in different systems, where these processes lead to or are influenced by static and dynamic disorder, charge distribution symmetry breaking, photoinduced reactions, electron and proton transfer, structural rearrangements, exciton coupling with vibrations and intermediate particles, and exciton dissociation and annihilation as well.
Collapse
Affiliation(s)
- Oleg P Dimitriev
- V. Lashkaryov Institute of Semiconductor Physics NAS of Ukraine, pr. Nauki 41, Kyiv 03028, Ukraine
| |
Collapse
|
30
|
Jiang Z, Ren A, Yan Y, Yao J, Zhao YS. Exciton-Polaritons and Their Bose-Einstein Condensates in Organic Semiconductor Microcavities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106095. [PMID: 34881466 DOI: 10.1002/adma.202106095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Exciton-polaritons are half-light, half-matter bosonic quasiparticles formed by strong exciton-photon coupling in semiconductor microcavities. These hybrid particles possess the strong nonlinear interactions of excitons and keep most of the characteristics of the underlying photons. As bosons, above a threshold density they can undergo Bose-Einstein condensation to a polariton condensate phase and exhibit a rich variety of exotic macroscopic quantum phenomena in solids. Recently, organic semiconductors have been considered as a promising material platform for these studies due to their room-temperature stability, good processability, and abundant photophysics and photochemistry. Herein, recent advances of exciton-polaritons and their Bose-Einstein condensates in organic semiconductor microcavities are summarized. First, the basic physics is introduced, and then their emerging applications are highlighted. The remaining questions are also discussed and a personal viewpoint about the potential directions for future research is given.
Collapse
Affiliation(s)
- Zhengjun Jiang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ang Ren
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongli Yan
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
31
|
Satapathy S, Khatoniar M, Parappuram DK, Liu B, John G, Feist J, Garcia-Vidal FJ, Menon VM. Selective isomer emission via funneling of exciton polaritons. SCIENCE ADVANCES 2021; 7:eabj0997. [PMID: 34714684 PMCID: PMC8555889 DOI: 10.1126/sciadv.abj0997] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Polaritons in organic systems has shown the potential to modify chemical properties and to mediate long-range energy transfer between individual chromophores, among other capabilities. Here, we demonstrate that strong coupling and formation of organic exciton-polaritons can be used to selectively tune the isomer emission of organic molecules. By taking advantage of their delocalized and hybrid character, polaritons emerging in the strong coupling regime open a new relaxation pathway that allows for an efficient funneling of the excitation between the molecular isomers. We implement this by strong coupling to trans-DCS (E-4-dimethylamino-4′cyanostilbene)molecules, which present two isomers in different amounts when immersed in a polymer matrix. Thanks to this new relaxation pathway, the photoexcitation that is first shared by the common polaritonic mode is then selectively funneled to the excited states of one of the isomers, recognizing pure emission from the isomeric states that do not contribute to emission under normal conditions.
Collapse
Affiliation(s)
- Sitakanta Satapathy
- Department of Physics, Center for Discovery and Innovation, City College of New York, City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA
| | - Mandeep Khatoniar
- Department of Physics, Center for Discovery and Innovation, City College of New York, City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA
- PhD Program in Physics, The Graduate Center, City University of New York, 365 5th Avenue, New York, NY, 10016, USA
| | - Divya K. Parappuram
- Department of Chemistry, Center for Discovery and Innovation, City College of New York, City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA
| | - Bin Liu
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - George John
- Department of Chemistry, Center for Discovery and Innovation, City College of New York, City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA
| | - Johannes Feist
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Francisco J. Garcia-Vidal
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Vinod M. Menon
- Department of Physics, Center for Discovery and Innovation, City College of New York, City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA
- PhD Program in Physics, The Graduate Center, City University of New York, 365 5th Avenue, New York, NY, 10016, USA
| |
Collapse
|
32
|
DelPo CA, Khan SUZ, Park KH, Kudisch B, Rand BP, Scholes GD. Polariton Decay in Donor-Acceptor Cavity Systems. J Phys Chem Lett 2021; 12:9774-9782. [PMID: 34595929 DOI: 10.1021/acs.jpclett.1c02644] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Enhanced delocalization is beneficial for absorbing molecules in organic solar cells, and in particular bilayer devices, where excitons face small diffusion lengths as a barrier to reaching the charge-generating donor-acceptor interface. As hybrid light-matter states, polaritons offer exceptional delocalization which could be used to improve the efficiency of bilayer organic photovoltaics. Polariton delocalization can aid in delivering excitons to the donor-acceptor interface, but the subsequent charge transfer event must compete with the fast decay of the polariton. To evaluate the viability of polaritons as tools to improve bilayer organic solar cells, we studied the decay of the lower polariton in three cavity systems: a donor only, a donor-acceptor bilayer, and a donor-acceptor blend. Using several spectroscopic techniques, we identified an additional decay pathway through charge transfer for the polariton in the bilayer cavity, demonstrating charge transfer from the polariton is fast enough to outcompete the decay to the ground state.
Collapse
Affiliation(s)
- Courtney A DelPo
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Saeed-Uz-Zaman Khan
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Kyu Hyung Park
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Bryan Kudisch
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Barry P Rand
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
33
|
Anantharaman SB, Jo K, Jariwala D. Exciton-Photonics: From Fundamental Science to Applications. ACS NANO 2021; 15:12628-12654. [PMID: 34310122 DOI: 10.1021/acsnano.1c02204] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Semiconductors in all dimensionalities ranging from 0D quantum dots and molecules to 3D bulk crystals support bound electron-hole pair quasiparticles termed excitons. Over the past two decades, the emergence of a variety of low-dimensional semiconductors that support excitons combined with advances in nano-optics and photonics has burgeoned an advanced area of research that focuses on engineering, imaging, and modulating the coupling between excitons and photons, resulting in the formation of hybrid quasiparticles termed exciton-polaritons. This advanced area has the potential to bring about a paradigm shift in quantum optics, as well as classical optoelectronic devices. Here, we present a review on the coupling of light in excitonic semiconductors and previous investigations of the optical properties of these hybrid quasiparticles via both far-field and near-field imaging and spectroscopy techniques. Special emphasis is given to recent advances with critical evaluation of the bottlenecks that plague various materials toward practical device implementations including quantum light sources. Our review highlights a growing need for excitonic material development together with optical engineering and imaging techniques to harness the utility of excitons and their host materials for a variety of applications.
Collapse
Affiliation(s)
- Surendra B Anantharaman
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kiyoung Jo
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Deep Jariwala
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
34
|
Lee MW, Chuang YT, Hsu LY. Theory of molecular emission power spectra. II. Angle, frequency, and distance dependence of electromagnetic environment factor of a molecular emitter in plasmonic environments. J Chem Phys 2021; 155:074101. [PMID: 34418923 DOI: 10.1063/5.0057018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Our previous study [S. Wang et al., J. Chem. Phys. 153, 184102 (2020)] has shown that in a complex dielectric environment, molecular emission power spectra can be expressed as the product of the lineshape function and the electromagnetic environment factor (EEF). In this work, we focus on EEFs in a vacuum-NaCl-silver system and investigate molecular emission power spectra in the strong exciton-polariton coupling regime. A numerical method based on computational electrodynamics is presented to calculate the EEFs of single-molecule emitters in a dispersive and lossy dielectric environment with arbitrary shapes. The EEFs in the far-field region depend on the detector position, emission frequency, and molecular orientation. We quantitatively analyze the asymptotic behavior of the EFFs in the far-field region and qualitatively provide a physical picture. The concept of EEF should be transferable to other types of spectra in a complex dielectric environment. Finally, our study indicates that molecular emission power spectra cannot be simply interpreted by the lineshape function (quantum dynamics of a molecular emitter), and the effect of the EEFs (photon propagation in a dielectric environment) has to be carefully considered.
Collapse
Affiliation(s)
- Ming-Wei Lee
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Yi-Ting Chuang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Liang-Yan Hsu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
35
|
Barrier-free reverse-intersystem crossing in organic molecules by strong light-matter coupling. Nat Commun 2021; 12:3255. [PMID: 34059685 PMCID: PMC8167092 DOI: 10.1038/s41467-021-23481-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/30/2021] [Indexed: 11/17/2022] Open
Abstract
Strong light-matter coupling provides the means to challenge the traditional rules of chemistry. In particular, an energy inversion of singlet and triplet excited states would be fundamentally remarkable since it would violate the classical Hund’s rule. An organic chromophore possessing a lower singlet excited state can effectively harvest the dark triplet states, thus enabling 100% internal quantum efficiency in electrically pumped light-emitting diodes and lasers. Here we demonstrate unambiguously an inversion of singlet and triplet excited states of a prototype molecule by strong coupling to an optical cavity. The inversion not only implies that the polaritonic state lies at a lower energy, but also a direct energy pathway between the triplet and polaritonic states is opened. The intrinsic photophysics of reversed-intersystem crossing are thereby completely overturned from an endothermic process to an exothermic one. By doing so, we show that it is possible to break the limit of Hund’s rule and manipulate the energy flow in molecular systems by strong light-matter coupling. Our results will directly promote the development of organic light-emitting diodes based on reversed-intersystem crossing. Moreover, we anticipate that it provides the pathway to the creation of electrically pumped polaritonic lasers in organic systems. Strong coupling of organic materials with optical cavities allows to manipulate the rate of energy transfer between their internal states. Here, the authors show a hybrid state of singlet character with energy lower than the triplet state, and a flow of energy from the triplet to the hybrid state.
Collapse
|