1
|
Zhang Y, Liu S, Liang X, Zheng J, Lu X, Zhao J, Li H, Zhan Y, Teng W, Li H, Han Y, Zhao X, Li Y. GmFER1, a soybean ferritin, enhances tolerance to salt stress and root rot disease and improves soybean yield. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40365869 DOI: 10.1111/pbi.70102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/06/2025] [Accepted: 04/11/2025] [Indexed: 05/15/2025]
Abstract
The plant stress response mechanism is activated by biotic and abiotic stresses, but its continuous activation typically affects growth. The role of ferritin in regulating biomass accumulation has been extensively characterized in diverse plant species; however, the underlying mechanisms through which it contributes to salt stress tolerance and Fusarium resistance remain poorly understood. Here, we confirm that overexpression of ferritin leads to iron accumulation and Fe3+ sequestration in both aboveground and roots, activating the iron uptake and transport system. More importantly, GmFER1 enhances salt stress tolerance and Fusarium resistance. First, GmFER1 is localized in chloroplasts and significantly induced by salt stress and Fusarium infection. Overexpression of GmFER1 increases soybean yield per plant by enhancing net photosynthetic rate and Rubisco enzyme activity, without activating the reactive oxygen scavenging mechanism. Under salt stress, GmFER1 enhances resistance by improving the activities of SOD and CAT enzymes, as well as Na+ efflux capacity. Under Fusarium infection, GmFER1 enhances resistance to the pathogen by boosting antioxidant capacity. Moreover, iron-deficiency tests revealed that increased CAT and SOD activities under salt stress are linked to iron ions accumulation. Lastly, we analysed the effects of GmFER1 gene variation on salt tolerance, disease resistance and 23 agronomic traits related to yield and quality. Further analysis of GmFER1 gene variation revealed that the Hap2 haplotypes could potentially enhance salt resistance, disease resistance, pod number and oil content in soybean. Our research offers a new way to reduce growth penalties while boosting plant resistance to salt stress and Fusarium infection.
Collapse
Affiliation(s)
- Yanzheng Zhang
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shuhan Liu
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaoyue Liang
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Jiqiang Zheng
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Xiangpeng Lu
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Jialiang Zhao
- Jiangxi Research and Development Center of Super Rice, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Haibin Li
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Yuhang Zhan
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Weili Teng
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Haiyan Li
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Yingpeng Han
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Xue Zhao
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Yongguang Li
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
2
|
Liu S, Wang Q, Zhong M, Lin G, Ye M, Wang Y, Zhang J, Wang Q. The CRY1-COP1-HY5 axis mediates blue-light regulation of Arabidopsis thermotolerance. PLANT COMMUNICATIONS 2025; 6:101264. [PMID: 39881540 PMCID: PMC12010382 DOI: 10.1016/j.xplc.2025.101264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/19/2024] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
High-temperature stress, also referred to as heat stress, often has detrimental effects on plant growth and development. Phytochromes have been implicated in the regulation of plant heat-stress responses, but the role of blue-light receptors, such as cryptochromes, in plant blue-light-dependent heat-stress responses remains unclear. We found that cryptochrome 1 (CRY1) negatively regulates heat-stress tolerance (thermotolerance) in Arabidopsis. Heat stress represses CRY1 phosphorylation. Unphosphorylated CRY1 exhibits decreased activity in suppressing the interaction of CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) with ELONGATED HYPOCOTYL 5 (HY5), leading to excessive degradation of HY5 under heat stress in blue light. This reduction in HY5 protein levels subsequently relieves its repression of the transcription of HY5 target genes, especially the heat-shock transcription factors. Our study thus reveals a novel mechanism by which CRY1-mediated blue-light signaling suppresses plant thermotolerance and highlights the dual function of the CRY1-COP1-HY5 module in both light- and heat-stress signaling, providing insights into how plants integrate heat stress and light signals to optimize their survival under heat stress.
Collapse
Affiliation(s)
- Siyuan Liu
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiongli Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ming Zhong
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guifang Lin
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meiling Ye
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Youren Wang
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing Zhang
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Qin Wang
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
3
|
Yang H, Jiang L, Bao X, Liu H, Xu Q, Yao X, Cai S, Fang Y, Su J, Li J. CeJAZ3 suppresses longifolene accumulation in Casuarina equisetifolia, affecting the host preference of Anoplophora chinensis. PEST MANAGEMENT SCIENCE 2025; 81:2202-2214. [PMID: 39723485 DOI: 10.1002/ps.8618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/27/2024] [Accepted: 12/08/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Casuarina equisetifolia, a crucial species of coastal windbreaks, is highly susceptible to infestation by Anoplophora chinensis. This stem-boring pest poses a significant threat to the health and sustainability of Casuarina equisetifolia forests. Understanding the molecular mechanisms underlying the host preference of A. chinensis to Casuarina equisetifolia is essential for developing effective pest management strategies. RESULTS Through field surveys, we identified two cultivars of Casuarina equisetifolia that exhibited differing levels of host preference for A. chinensis. Further analysis of multi-omics data (phenomics, transcriptomics, and metabolomics) from these cultivars revealed that longifolene plays a significant role in attracting A. chinensis to Casuarina equisetifolia. Additionally, the jasmonic acid (JA) signaling pathway was found to suppress longifolene accumulation, primarily through the interaction between the jasmonate ZIM-domain (JAZ) proteins and the terpene synthase (TPS) gene. Moreover, we identified a critical JAZ component, CeJAZ3, whose overexpression led to the down-regulation of TPS expression levels and, consequently, a reduced release of longifolene. CONCLUSION We confirmed that the negative regulator of host preference, CeJAZ3, in the JA signaling pathway can suppress the expression of TPSs, thereby down-regulating the accumulation of longifolene in Casuarina equisetifolia and indirectly suppressing the attraction of host plants to A. chinensis, which provides a basis for the integrated management of A. chinensis. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hua Yang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- The Higher Educational Key Laboratory for Forest Ecosystem Process and Management of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lijuan Jiang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- The Higher Educational Key Laboratory for Forest Ecosystem Process and Management of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaochun Bao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- The Higher Educational Key Laboratory for Forest Ecosystem Process and Management of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haolan Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- The Higher Educational Key Laboratory for Forest Ecosystem Process and Management of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qianle Xu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- The Higher Educational Key Laboratory for Forest Ecosystem Process and Management of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xingliang Yao
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shouping Cai
- Fujian Academy of Forestry Sciences, Fuzhou, China
| | - Yu Fang
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jun Su
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jian Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- The Higher Educational Key Laboratory for Forest Ecosystem Process and Management of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
4
|
Jiang H, Qu S, Liu F, Sun H, Li H, Teng W, Zhan Y, Li Y, Han Y, Zhao X. Multi-omics analysis identified the GmUGT88A1 gene, which coordinately regulates soybean resistance to cyst nematode and isoflavone content. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1291-1307. [PMID: 39831827 PMCID: PMC11933870 DOI: 10.1111/pbi.14586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 12/02/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025]
Abstract
Soybean cyst nematode (SCN, Heterodera glycines) is a major pathogen harmful to soybean all over the world, causing huge yield loss every year. Soybean resistance to SCN is a complex quantitative trait controlled by a small number of major genes (rhg1 and Rhg4) and multiple micro-effect genes. Therefore, the continuous identification of new resistant lines and genes is needed for the sustainable development of global soybean production. Here, a novel disease-resistance quantitative trait locus Rscn-16 was identified and fine mapped to an 8.4-kb interval on chromosome 16 using an F2 population. According to transcriptome and metabolome analysis, a UDP-glucosyltransferase encoding gene, GmUGT88A1, was identified as the most likely gene of Rscn-16. Soybean lines overexpressing GmUGT88A1 exhibited increased resistance to SCN, higher isoflavone glycosides and larger seed size while the phenotype of RNA-interference and knockout soybean lines showed sensitivity to SCN and decreased in seed size compared to wild-type plants. GmMYB29 gene could bind to the promoter of GmUGT88A1 and coordinate with GmUGT88A1 to regulate soybean resistance to SCN and isoflavone accumulation. Under SCN infection, GmUGT88A1 participated in the reorientation of isoflavone biosynthetic metabolic flow and the accumulation of isoflavone glycosides, thus protecting soybean from SCN stress. GmUGT88A1 was found to control soybean seed size by affecting transcription abundance of GmSWEET10b and GmFAD3C, which are known to control soybean seed weight. Our findings provide insights into the regulation of SCN resistance, isoflavone content and seed size through metabolic flux redirection, and offer a potential means for soybean improvement.
Collapse
Affiliation(s)
- Haipeng Jiang
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural AffairsNortheast Agricultural UniversityHarbinChina
- Heilongjiang Bayi Agricultural UniversityDaqingChina
| | - Shuo Qu
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural AffairsNortheast Agricultural UniversityHarbinChina
| | - Fang Liu
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural AffairsNortheast Agricultural UniversityHarbinChina
| | - Haowen Sun
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural AffairsNortheast Agricultural UniversityHarbinChina
| | - Haiyan Li
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural AffairsNortheast Agricultural UniversityHarbinChina
| | - Weili Teng
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural AffairsNortheast Agricultural UniversityHarbinChina
| | - Yuhang Zhan
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural AffairsNortheast Agricultural UniversityHarbinChina
| | - Yongguang Li
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural AffairsNortheast Agricultural UniversityHarbinChina
| | - Yingpeng Han
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural AffairsNortheast Agricultural UniversityHarbinChina
| | - Xue Zhao
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural AffairsNortheast Agricultural UniversityHarbinChina
| |
Collapse
|
5
|
Zhu L, Wang Y, Wu X, Wu G, Zhang G, Liu C, Zhang S. Protein design accelerates the development and application of optogenetic tools. Comput Struct Biotechnol J 2025; 27:717-732. [PMID: 40092664 PMCID: PMC11908464 DOI: 10.1016/j.csbj.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Optogenetics has substantially enhanced our understanding of biological processes by enabling high-precision tracking and manipulation of individual cells. It relies on photosensitive proteins to monitor and control cellular activities, thereby paving the way for significant advancements in complex system research. Photosensitive proteins play a vital role in the development of optogenetics, facilitating the establishment of cutting-edge methods. Recent breakthroughs in protein design have opened up opportunities to develop protein-based tools that can precisely manipulate and monitor cellular activities. These advancements will significantly accelerate the development and application of optogenetic tools. This article emphasizes the pivotal role of protein design in the development of optogenetic tools, offering insights into potential future directions. We begin by providing an introduction to the historical development and fundamental principles of optogenetics, followed by an exploration of the operational mechanisms of key photosensitive domains, which includes clarifying the conformational changes they undergo in response to light, such as allosteric modulation and dimerization processes. Building on this foundation, we reveal the development of protein design tools that will enable the creation of even more sophisticated optogenetic techniques.
Collapse
Affiliation(s)
| | | | - Xiaomin Wu
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Guohua Wu
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Guohao Zhang
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Chuanyang Liu
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Shaowei Zhang
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, Hunan 410073, China
| |
Collapse
|
6
|
Zhou H, Deng XW. The molecular basis of CONSTITUTIVE PHOTOMORPHOGENIC1 action during photomorphogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:664-676. [PMID: 38683181 DOI: 10.1093/jxb/erae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), a repressor of seedling photomorphogenesis, is tightly controlled by light. In Arabidopsis, COP1 primarily acts as a part of large E3 ligase complexes and targets key light-signaling factors for ubiquitination and degradation. Upon light perception, the action of COP1 is precisely modulated by active photoreceptors. During seedling development, light plays a predominant role in modulating seedling morphogenesis, including inhibition of hypocotyl elongation, cotyledon opening and expansion, and chloroplast development. These visible morphological changes evidently result from networks of molecular action. In this review, we summarize current knowledge about the molecular role of COP1 in mediating light-controlled seedling development.
Collapse
Affiliation(s)
- Hua Zhou
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Institute of Plant and Food Sciences, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xing Wang Deng
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Institute of Plant and Food Sciences, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Shandong 61000, China
- Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Wang X, Lin C. The two action mechanisms of plant cryptochromes. TRENDS IN PLANT SCIENCE 2025:S1360-1385(24)00337-6. [PMID: 39875298 DOI: 10.1016/j.tplants.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 01/30/2025]
Abstract
Plant cryptochromes (CRYs) are photolyase-like blue-light receptors that contain a flavin adenine dinucleotide (FAD) chromophore. In plants grown in darkness, CRYs are present as monomers. Photoexcited CRYs oligomerize to form homo-tetramers. CRYs physically interact with non-constitutive or constitutive CRY-interacting proteins to form the non-constitutive or constitutive CRY complexes, respectively. The non-constitutive CRY complexes exhibit a different affinity for CRYs in response to light, and act by a light-induced fit (lock-and-key) mechanism. The constitutive CRY complexes have a similar affinity for CRYs regardless of light, and act via a light-induced liquid-liquid phase separation (LLPS) mechanism. These CRY complexes mediate blue-light regulation of transcription, mRNA methylation, mRNA splicing, protein modification, and proteolysis to modulate plant growth and development.
Collapse
Affiliation(s)
- Xu Wang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261325, China
| | - Chentao Lin
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
8
|
Lu B, Li W, Zhang Y, Chen J. Origin and evolution of the blue light receptor cryptochromes (CRY1/2) in aquatic angiosperms. PLANT PHYSIOLOGY 2024; 197:kiae568. [PMID: 39446978 DOI: 10.1093/plphys/kiae568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024]
Abstract
Cryptochromes (CRYs), which are responsible for sensing blue light in plants, play a critical role in regulating blue light signals and circadian rhythms. However, their functions extend beyond light detection, as they also aid plants in adapting to stress and potentially other regulatory mechanisms. Aquatic angiosperms, which independently evolved from various angiosperm lineages, have developed specific adaptations to unique light qualities and environmental stressors found in aquatic habitats compared to terrestrial ones. It was hypothesized that the sequences and regulatory networks of angiosperm CRY1/2 underwent adaptive evolution in different aquatic angiosperm lineages. To test this hypothesis, we compiled comprehensive datasets consisting of 55 green plant genomes (including 37 angiosperm genomes), 80 angiosperm transcriptomes, and 4 angiosperm expression networks. Through comparative analysis, we found that CRY1 originated from a common ancestor of seed plants, whereas CRY2 originated from a common ancestor of land plants. In angiosperms, the CRY1/2 sequences of aquatic lineages exhibited positive selection, and the conserved valine-proline motif of CRY2 showed a convergent loss in 2 aquatic species. Coexpressed genes associated with blue light receptors (CRY) showed adaptations to aquatic environments, specifically in relation to flooding and osmotic stress. These discoveries shed light on the adaptive evolution of CRY1/2, encompassing their origins, sequences, and regulatory networks. Furthermore, these results provide valuable insights for investigating the uncharacterized functions and regulatory pathways of CRY and offer potential targets for enhancing growth and adaptation in agricultural plants.
Collapse
Affiliation(s)
- Bei Lu
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Wei Li
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Yue Zhang
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Jinming Chen
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
9
|
Zhang Y, Hou R, Yao X, Wang X, Li W, Fang X, Ma X, Li S. VrNIN1 interacts with VrNNC1 to regulate root nodulation in mungbean. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109131. [PMID: 39305558 DOI: 10.1016/j.plaphy.2024.109131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/30/2024] [Accepted: 09/15/2024] [Indexed: 11/08/2024]
Abstract
Node Inception (NIN) plays a crucial role in legume symbiosis by participating in both infection and nodule formation processes. However, its specific function in mungbean (Vigna radiata) remains poorly understood. This study aimed to functionally characterize the VrNIN1 gene in mungbean through an enhanced hairy root transformation approach. Examination of proVrNIN1: GUS hairy roots via GUS staining indicated the expression of VrNIN1 in later root promodia, nodule primordia, and nodules. Phenotypic evaluation revealed that overexpression or silencing of VrNIN1 led to a significant reduction in nodule numbers in hairy roots compared to controls. Additionally, interaction between VrNIN1 and VrNNC1 was confirmed through yeast two-hybrid, luciferase complementation and Co-immunoprecipitation assays. VrNNC1 expression was observed in the vascular bundle and cortex of roots and root nodules, where it notably suppressed nodule formation in transgenic hairy roots. Furthermore, gene expression analysis demonstrated the involvement of VrNIN1 and VrNNC1 in regulating root nodulation by modulating the expression of VrRIC1 and VrEDOD40. This study not only optimized the genetic transformation system for hairy roots in mungbean, but also provided mechanistic insights into the regulatory role of VrNIN1 in root nodule symbiosis in mungbean.
Collapse
Affiliation(s)
- Yanzheng Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Rui Hou
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaolin Yao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaotong Wang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wenyang Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaotong Fang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaofei Ma
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shuai Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
10
|
Eckardt NA, Avin-Wittenberg T, Bassham DC, Chen P, Chen Q, Fang J, Genschik P, Ghifari AS, Guercio AM, Gibbs DJ, Heese M, Jarvis RP, Michaeli S, Murcha MW, Mursalimov S, Noir S, Palayam M, Peixoto B, Rodriguez PL, Schaller A, Schnittger A, Serino G, Shabek N, Stintzi A, Theodoulou FL, Üstün S, van Wijk KJ, Wei N, Xie Q, Yu F, Zhang H. The lowdown on breakdown: Open questions in plant proteolysis. THE PLANT CELL 2024; 36:2931-2975. [PMID: 38980154 PMCID: PMC11371169 DOI: 10.1093/plcell/koae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/16/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024]
Abstract
Proteolysis, including post-translational proteolytic processing as well as protein degradation and amino acid recycling, is an essential component of the growth and development of living organisms. In this article, experts in plant proteolysis pose and discuss compelling open questions in their areas of research. Topics covered include the role of proteolysis in the cell cycle, DNA damage response, mitochondrial function, the generation of N-terminal signals (degrons) that mark many proteins for degradation (N-terminal acetylation, the Arg/N-degron pathway, and the chloroplast N-degron pathway), developmental and metabolic signaling (photomorphogenesis, abscisic acid and strigolactone signaling, sugar metabolism, and postharvest regulation), plant responses to environmental signals (endoplasmic-reticulum-associated degradation, chloroplast-associated degradation, drought tolerance, and the growth-defense trade-off), and the functional diversification of peptidases. We hope these thought-provoking discussions help to stimulate further research.
Collapse
Affiliation(s)
| | - Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Poyu Chen
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Qian Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jun Fang
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Pascal Genschik
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Abi S Ghifari
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Angelica M Guercio
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Edgbaston B1 2RU, UK
| | - Maren Heese
- Department of Developmental Biology, University of Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - R Paul Jarvis
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Simon Michaeli
- Department of Postharvest Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Monika W Murcha
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Sergey Mursalimov
- Department of Postharvest Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Sandra Noir
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Malathy Palayam
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Bruno Peixoto
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, Valencia ES-46022, Spain
| | - Andreas Schaller
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | - Arp Schnittger
- Department of Developmental Biology, University of Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - Giovanna Serino
- Department of Biology and Biotechnology, Sapienza Universita’ di Roma, p.le A. Moro 5, Rome 00185, Italy
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Annick Stintzi
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | | | - Suayib Üstün
- Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Bochum 44780, Germany
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA
| | - Ning Wei
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feifei Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100083, China
| | - Hongtao Zhang
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden AL5 2JQ, UK
| |
Collapse
|
11
|
Zhao Y, He Y, Chen X, Li N, Yang T, Hu T, Duan S, Luo X, Jiang L, Chen X, Tao X, Chen J. Different viral effectors hijack TCP17, a key transcription factor for host Auxin synthesis, to promote viral infection. PLoS Pathog 2024; 20:e1012510. [PMID: 39208401 PMCID: PMC11389919 DOI: 10.1371/journal.ppat.1012510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/11/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Auxin is an important class of plant hormones that play an important role in plant growth development, biotic stress response, and viruses often suppress host plant auxin levels to promote infection. However, previous research on auxin-mediated disease resistance has focused mainly on signaling pathway, and the molecular mechanisms of how pathogenic proteins manipulate the biosynthetic pathway of auxin remain poorly understood. TCP is a class of plant-specific transcription factors, of which TCP17 is a member that binds to the promoter of YUCCAs, a key rate-limiting enzyme for auxin synthesis, and promotes the expression of YUCCAs, which is involved in auxin synthesis in plants. In this study, we reported that Tomato spotted wilt virus (TSWV) infection suppressed the expression of YUCCAs through its interaction with TCP17. Further studies revealed that the NSs protein encoded by TSWV disrupts the dimerization of TCP17, thereby inhibit its transcriptional activation ability and reducing the auxin content in plants. Consequently, this interference inhibits the auxin response signal and promotes the TSWV infection. Transgenic plants overexpressing TCP17 exhibit resistance against TSWV infection, whereas plants knocking out TCP17 were more susceptible to TSWV infection. Additionally, proteins encoded by other RNA viruses (BSMV, RSV and TBSV) can also interact with TCP17 and interfere with its dimerization. Notably, overexpression of TCP17 enhanced resistance against BSMV. This suggests that TCP17 plays a crucial role in plant defense against different types of plant viruses that use viral proteins to target this key component of auxin synthesis and promote infection.
Collapse
Affiliation(s)
- Yanxiao Zhao
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Yong He
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Xinyue Chen
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Ninghong Li
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Tongqing Yang
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Tingting Hu
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Shujing Duan
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Xuanjie Luo
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Lei Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
| | - Xiaoyang Chen
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
| | - Xiaorong Tao
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Jing Chen
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
| |
Collapse
|
12
|
Rivière Q, Raskin V, de Melo R, Boutet S, Corso M, Defrance M, Webb AAR, Verbruggen N, Anoman AD. Effects of light regimes on circadian gene co-expression networks in Arabidopsis thaliana. PLANT DIRECT 2024; 8:e70001. [PMID: 39669405 PMCID: PMC11636548 DOI: 10.1002/pld3.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/21/2024] [Accepted: 08/06/2024] [Indexed: 12/14/2024]
Abstract
Light/dark (LD) cycles are responsible for oscillations in gene expression, which modulate several aspects of plant physiology. Those oscillations can persist under constant conditions due to regulation by the circadian oscillator. The response of the transcriptome to light regimes is dynamic and allows plants to adapt rapidly to changing environmental conditions. We compared the transcriptome of Arabidopsis under LD and constant light (LL) for 3 days and identified different gene co-expression networks in the two light regimes. Our studies yielded unforeseen insights into circadian regulation. Intuitively, we anticipated that gene clusters regulated by the circadian oscillator would display oscillations under LD cycles. However, we found transcripts encoding components of the flavonoid metabolism pathway that were rhythmic in LL but not in LD. We also discovered that the expressions of many stress-related genes were significantly increased during the dark period in LD relative to the subjective night in LL, whereas the expression of these genes in the light period was similar. The nocturnal pattern of these stress-related gene expressions suggested a form of "skotoprotection." The transcriptomics data were made available in a web application named Cyclath, which we believe will be a useful tool to contribute to a better understanding of the impact of light regimes on plants.
Collapse
Affiliation(s)
- Quentin Rivière
- Laboratory of Plant Physiology and Molecular GeneticsUniversité Libre de BruxellesBrusselsBelgium
- Biology CentreCzech Academy of Sciences, Institute of Plant Molecular BiologyČeské BudějoviceCzech Republic
| | - Virginie Raskin
- Laboratory of Plant Physiology and Molecular GeneticsUniversité Libre de BruxellesBrusselsBelgium
| | - Romário de Melo
- Laboratory of Plant Physiology and Molecular GeneticsUniversité Libre de BruxellesBrusselsBelgium
| | - Stéphanie Boutet
- Université Paris‐Saclay, INRAE, AgroParisTech, Institut Jean‐Pierre Bourgin (IJPB)VersaillesFrance
| | - Massimiliano Corso
- Université Paris‐Saclay, INRAE, AgroParisTech, Institut Jean‐Pierre Bourgin (IJPB)VersaillesFrance
| | - Matthieu Defrance
- Interuniversity Institute of Bioinformatics in BrusselsUniversité Libre de BruxellesBrusselsBelgium
| | - Alex A. R. Webb
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Nathalie Verbruggen
- Laboratory of Plant Physiology and Molecular GeneticsUniversité Libre de BruxellesBrusselsBelgium
| | - Armand D. Anoman
- Laboratory of Plant Physiology and Molecular GeneticsUniversité Libre de BruxellesBrusselsBelgium
| |
Collapse
|
13
|
Qu GP, Jiang B, Lin C. The dual-action mechanism of Arabidopsis cryptochromes. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:883-896. [PMID: 37902426 DOI: 10.1111/jipb.13578] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 10/31/2023]
Abstract
Photoreceptor cryptochromes (CRYs) mediate blue-light regulation of plant growth and development. It has been reported that Arabidopsis CRY1and CRY2 function by physically interacting with at least 84 proteins, including transcription factors or co-factors, chromatin regulators, splicing factors, messenger RNA methyltransferases, DNA repair proteins, E3 ubiquitin ligases, protein kinases and so on. Of these 84 proteins, 47 have been reported to exhibit altered binding affinity to CRYs in response to blue light, and 41 have been shown to exhibit condensation to CRY photobodies. The blue light-regulated composition or condensation of CRY complexes results in changes of gene expression and developmental programs. In this mini-review, we analyzed recent studies of the photoregulatory mechanisms of Arabidopsis CRY complexes and proposed the dual mechanisms of action, including the "Lock-and-Key" and the "Liquid-Liquid Phase Separation (LLPS)" mechanisms. The dual CRY action mechanisms explain, at least partially, the structural diversity of CRY-interacting proteins and the functional diversity of the CRY photoreceptors.
Collapse
Affiliation(s)
- Gao-Ping Qu
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bochen Jiang
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
| | - Chentao Lin
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
14
|
Hong Y, Liu S, Chen Y, Yao Z, Jiang S, Wang L, Zhu X, Xu W, Zhang J, Li Y. Amyloplast is involved in the MIZ1-modulated root hydrotropism. JOURNAL OF PLANT PHYSIOLOGY 2024; 296:154224. [PMID: 38507925 DOI: 10.1016/j.jplph.2024.154224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/10/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
Roots exhibit hydrotropism in response to moisture gradients, with the hydrotropism-related gene Mizu-kussei1 (MIZ1) playing a role in regulating root hydrotropism in an oblique orientation. However, the mechanisms underlying MIZ1-regulated root hydrotropism are not well understood. In this study, we employed obliquely oriented experimental systems to investigate root hydrotropism in Arabidopsis. We found that the miz1 mutant displays reduced root hydrotropism but increased root gravitropism following hydrostimulation, as compared to wild-type plants. Conversely, overexpression of AtMIZ1 leads to enhanced root hydrotropism but decreased root gravitropism following hydrostimulation, as compared to wild-type plants. Using co-immunoprecipitation followed by mass spectrometry (IP-MS), we explored proteins that interact with AtMIZ1, and we identified PGMC1 co-immunoprecipitated with MIZ1 in vivo. Furthermore, the miz1 mutant exhibited higher expression of the PGMC1 gene and increased phosphoglucomutase (PGM) activity, while AtMIZ1 overexpressors resulted in lower expression of the PGMC1 gene, reduced amyloplast amount, and reduced PGM activity in comparison to wild-type roots. In addition, different Arabidopsis natural accessions having difference in their hydrotropic response demonstrated expression level of PGMC1 was negatively correlated with hydrotropic root curvature and AtMIZ1 expression. Our results provide valuable insights into the role of amyloplast in MIZ1-regulated root hydrotropism.
Collapse
Affiliation(s)
- Yonghui Hong
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Siqi Liu
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Yadi Chen
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Zixuan Yao
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Shuqiu Jiang
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Lulu Wang
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Xinkai Zhu
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Weifeng Xu
- Joint International Research Laboratory of Water and Nutrient in Crops, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China; School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, 999077, China.
| | - Ying Li
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Water and Nutrient in Crops, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China.
| |
Collapse
|
15
|
Huq E, Lin C, Quail PH. Light signaling in plants-a selective history. PLANT PHYSIOLOGY 2024; 195:213-231. [PMID: 38431282 PMCID: PMC11060691 DOI: 10.1093/plphys/kiae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/15/2023] [Accepted: 02/16/2024] [Indexed: 03/05/2024]
Abstract
In addition to providing the radiant energy that drives photosynthesis, sunlight carries signals that enable plants to grow, develop and adapt optimally to the prevailing environment. Here we trace the path of research that has led to our current understanding of the cellular and molecular mechanisms underlying the plant's capacity to perceive and transduce these signals into appropriate growth and developmental responses. Because a fully comprehensive review was not possible, we have restricted our coverage to the phytochrome and cryptochrome classes of photosensory receptors, while recognizing that the phototropin and UV classes also contribute importantly to the full scope of light-signal monitoring by the plant.
Collapse
Affiliation(s)
- Enamul Huq
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Chentao Lin
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peter H Quail
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Plant Gene Expression Center, Agricultural Research Service, US Department of Agriculture, Albany, CA 94710, USA
| |
Collapse
|
16
|
Chen P, Ye M, Chen Y, Wang Q, Wang Q, Zhong M. Dual-transgenic BiFC vector systems for protein-protein interaction analysis in plants. Front Genet 2024; 15:1355568. [PMID: 38525241 PMCID: PMC10957565 DOI: 10.3389/fgene.2024.1355568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
Protein-protein interaction (PPI) play a pivotal role in cellular signal transduction. The bimolecular fluorescence complementation (BiFC) assay offers a rapid and intuitive means to ascertain the localization and interactions of target proteins within living cells. BiFC is based on fluorescence complementation by reconstitution of a functional fluorescent protein by co-expression of N- and C-terminal fragments of this protein. When fusion proteins interact, the N- and C-terminal fragments come into close proximity, leading to the reconstitution of the fluorescent protein. In the conventional approach, the N-terminal and C-terminal fragments of the fluorescent protein are typically expressed using two separate vectors, which largely relies on the efficiency of the transformation of the two vectors in the same cells. Furthermore, issues of vector incompatibility can often result in loss of one plasmid. To address these challenges, we have developed novel dual-transgenic BiFC vectors, designed as pDTQs, derived from the previously published pDT1 vector. This set of BiFC vectors offers the following advantages: 1) Both fluorescent fusion proteins are expressed sequentially within a single vector, enhancing expression efficiency; 2) Independent promoters and terminators regulate the expression of the two proteins potentially mitigating vector compatibility issues; 3) A long linker is inserted between the fluorescent protein fragment and the gene of interest, facilitating the recombination of the fused fluorescent protein into an active form; 4) Four distinct types of fluorescent proteins, namely, EYFP, mVenus, mRFP1Q66T and mCherry are available for BiFC analysis. We assessed the efficiency of the pDTQs system by investigating the oligomerization of Arabidopsis CRY2 and CRY2-BIC2 interactions in N. benthamiana. Notably, the pDTQs were found to be applicable in rice, underscoring their potential utility across various plant species.
Collapse
Affiliation(s)
| | | | | | | | | | - Ming Zhong
- College of Agriculture, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
17
|
Zhang Y, Zheng J, Zhan Y, Yu Z, Liu S, Lu X, Li Y, Li Z, Liang X, Li H, Feng Y, Teng W, Li W, Han Y, Zhao X, Li Y. GmPLP1 negatively regulates soybean resistance to high light stress by modulating photosynthetic capacity and reactive oxygen species accumulation in a blue light-dependent manner. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2625-2640. [PMID: 37594728 PMCID: PMC10651158 DOI: 10.1111/pbi.14158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/19/2023]
Abstract
High light stress is an important factor limiting crop yield. Light receptors play an important role in the response to high light stress, but their mechanisms are still poorly understood. Here, we found that the abundance of GmPLP1, a positive blue light receptor protein, was significantly inhibited by high light stress and mainly responded to high blue light. GmPLP1 RNA-interference soybean lines exhibited higher light energy utilization ability and less light damage and reactive oxygen species (ROS) accumulation in leaves under high light stress, while the phenotype of GmPLP1:GmPLP1-Flag overexpression soybean showed the opposite characteristics. Then, we identified a protein-protein interaction between GmPLP1 and GmVTC2, and the intensity of this interaction was primarily affected by sensing the intensity of blue light. More importantly, overexpression of GmVTC2b improved soybean tolerance to high light stress by enhancing the ROS scavenging capability through increasing the biosynthesis of ascorbic acid. This regulation was significantly enhanced after interfering with a GmPLP1-interference fragment in GmVTC2b-ox soybean leaves, but was weakened when GmPLP1 was transiently overexpressed. These findings demonstrate that GmPLP1 regulates the photosynthetic capacity and ROS accumulation of soybean to adapt to changes in light intensity by sensing blue light. In summary, this study discovered a new mechanism through which GmPLP1 participates in high light stress in soybean, which has great significance for improving soybean yield and the adaptability of soybean to high light.
Collapse
Affiliation(s)
- Yanzheng Zhang
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural AffairsNortheast Agricultural UniversityHarbinChina
| | - Jiqiang Zheng
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural AffairsNortheast Agricultural UniversityHarbinChina
| | - Yuhang Zhan
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural AffairsNortheast Agricultural UniversityHarbinChina
| | - Zhenhai Yu
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural AffairsNortheast Agricultural UniversityHarbinChina
- Heilongjiang Green Food Science Research InstituteHarbinChina
| | - Shuhan Liu
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural AffairsNortheast Agricultural UniversityHarbinChina
| | - Xiangpeng Lu
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural AffairsNortheast Agricultural UniversityHarbinChina
| | - Yue Li
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural AffairsNortheast Agricultural UniversityHarbinChina
| | - Zeyang Li
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural AffairsNortheast Agricultural UniversityHarbinChina
| | - Xiaoyue Liang
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural AffairsNortheast Agricultural UniversityHarbinChina
| | - Haibin Li
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural AffairsNortheast Agricultural UniversityHarbinChina
| | - Yuan Feng
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural AffairsNortheast Agricultural UniversityHarbinChina
| | - Weili Teng
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural AffairsNortheast Agricultural UniversityHarbinChina
| | - Wenbin Li
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural AffairsNortheast Agricultural UniversityHarbinChina
| | - Yingpeng Han
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural AffairsNortheast Agricultural UniversityHarbinChina
| | - Xue Zhao
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural AffairsNortheast Agricultural UniversityHarbinChina
| | - Yongguang Li
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural AffairsNortheast Agricultural UniversityHarbinChina
| |
Collapse
|
18
|
Jiang B, Zhong Z, Gu L, Zhang X, Wei J, Ye C, Lin G, Qu G, Xiang X, Wen C, Hummel M, Bailey-Serres J, Wang Q, He C, Wang X, Lin C. Light-induced LLPS of the CRY2/SPA1/FIO1 complex regulating mRNA methylation and chlorophyll homeostasis in Arabidopsis. NATURE PLANTS 2023; 9:2042-2058. [PMID: 38066290 PMCID: PMC10724061 DOI: 10.1038/s41477-023-01580-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 10/30/2023] [Indexed: 12/17/2023]
Abstract
Light regulates chlorophyll homeostasis and photosynthesis via various molecular mechanisms in plants. The light regulation of transcription and protein stability of nuclear-encoded chloroplast proteins have been extensively studied, but how light regulation of mRNA metabolism affects abundance of nuclear-encoded chloroplast proteins and chlorophyll homeostasis remains poorly understood. Here we show that the blue light receptor cryptochrome 2 (CRY2) and the METTL16-type m6A writer FIONA1 (FIO1) regulate chlorophyll homeostasis in response to blue light. In contrast to the CRY2-mediated photo-condensation of the mRNA adenosine methylase (MTA), photoexcited CRY2 co-condenses FIO1 only in the presence of the CRY2-signalling protein SUPPRESSOR of PHYTOCHROME A (SPA1). CRY2 and SPA1 synergistically or additively activate the RNA methyltransferase activity of FIO1 in vitro, whereas CRY2 and FIO1, but not MTA, are required for the light-induced methylation and translation of the mRNAs encoding multiple chlorophyll homeostasis regulators in vivo. Our study demonstrates that the light-induced liquid-liquid phase separation of the photoreceptor/writer complexes is commonly involved in the regulation of photoresponsive changes of mRNA methylation, whereas the different photo-condensation mechanisms of the CRY/FIO1 and CRY/MTA complexes explain, at least partially, the writer-specific functions in plant photomorphogenesis.
Collapse
Affiliation(s)
- Bochen Jiang
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China.
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA, USA.
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
| | - Zhenhui Zhong
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lianfeng Gu
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xueyang Zhang
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiangbo Wei
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Chang Ye
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Guifang Lin
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Gaoping Qu
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xian Xiang
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chenjin Wen
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Maureen Hummel
- Center for Plant Cell Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Julia Bailey-Serres
- Center for Plant Cell Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Qin Wang
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Xu Wang
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China.
- Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang, China.
| | - Chentao Lin
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China.
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
19
|
Jiang B, Zhong Z, Su J, Zhu T, Yueh T, Bragasin J, Bu V, Zhou C, Lin C, Wang X. Co-condensation with photoexcited cryptochromes facilitates MAC3A to positively control hypocotyl growth in Arabidopsis. SCIENCE ADVANCES 2023; 9:eadh4048. [PMID: 37556549 PMCID: PMC10411877 DOI: 10.1126/sciadv.adh4048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/06/2023] [Indexed: 08/11/2023]
Abstract
Cryptochromes (CRYs) are blue light receptors that mediate plant photoresponses through regulating gene expressions. We recently reported that Arabidopsis CRY2 could form light-elicited liquid condensates to control RNA methylation. However, whether CRY2 condensation is involved in other gene expression-regulatory processes remains unclear. Here, we show that MOS4-associated complex subunits 3A and 3B (MAC3A/3B) are CRY-interacting proteins and assembled into nuclear CRY condensates. mac3a3b double mutants exhibit hypersensitive photoinhibition of hypocotyl elongation, suggesting that MAC3A/3B positively control hypocotyl growth. We demonstrate the noncanonical activity of MAC3A as a DNA binding protein that modulates transcription. Genome-wide mapping of MAC3A-binding sites reveals that blue light enhances the association of MAC3A with its DNA targets, which requires CRYs. Further evidence indicates that MAC3A and ELONGATED HYPOCOTYL 5 (HY5) occupy overlapping genomic regions and compete for the same targets. These results argue that photocondensation of CRYs fine-tunes light-responsive hypocotyl growth by balancing the opposed effects of HY5 and MAC3A.
Collapse
Affiliation(s)
- Bochen Jiang
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Zhenhui Zhong
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jun Su
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tengfei Zhu
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261325, China
| | - Timothy Yueh
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Jielena Bragasin
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Victoria Bu
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Charles Zhou
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Chentao Lin
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xu Wang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261325, China
| |
Collapse
|
20
|
Wang W, Gao L, Zhao T, Chen J, Chen T, Lin W. Arabidopsis NF-YC7 Interacts with CRY2 and PIF4/5 to Repress Blue Light-Inhibited Hypocotyl Elongation. Int J Mol Sci 2023; 24:12444. [PMID: 37569819 PMCID: PMC10419918 DOI: 10.3390/ijms241512444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 08/13/2023] Open
Abstract
Light is an important environmental factor. Plants adapt to their light environment by developing the optimal phenotypes. Light-mediated hypocotyl growth is an ideal phenotype for studying how plants respond to light. Thus far, many signaling components in light-mediated hypocotyl growth have been reported. Here, we focused on identifying the transcription factors (TFs) involved in blue light-mediated hypocotyl growth. We analyzed the blue-light-mediated hypocotyl lengths of Arabidopsis TF-overexpressing lines and identified three NF-YC proteins, NF-YC7, NF-YC5, and NF-YC8 (NF-YCs being the short name), as the negative regulators in blue light-inhibited hypocotyl elongation. NF-YC-overexpressing lines developed longer hypocotyls than those of the wild type under blue light, while the deficient mutants nf-yc5nf-yc7 and nf-yc7nf-yc8 failed to exhibit hypocotyl elongation under blue light. NF-YCs physically interacted with CRY2 (cryptochrome 2) and PIF4/5 (phytochrome interacting factor 4 or 5), while the NF-YCs-PIF4/5 interactions were repressed by CRY2. Moreover, the overexpression of CRY2 or deficiency of PIF4/5 repressed NF-YC7-induced hypocotyl elongation under blue light. Further investigation revealed that NF-YC7 may increase CRY2 degradation and regulate PIF4/5 activities under blue light. Taken together, this study will provide new insight into the mechanism of how blue light inhibits hypocotyl elongation.
Collapse
Affiliation(s)
- Wei Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Ningde Normal University, Ningde 352100, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin Gao
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tianliang Zhao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiamei Chen
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ting Chen
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
21
|
Jung JH, Seo PJ, Oh E, Kim J. Temperature perception by plants. TRENDS IN PLANT SCIENCE 2023; 28:924-940. [PMID: 37045740 DOI: 10.1016/j.tplants.2023.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/16/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Plants constantly face fluctuating ambient temperatures and must adapt to survive under stressful conditions. Temperature affects many aspects of plant growth and development through a complex network of transcriptional responses. Although temperature sensing is a crucial primary step in initiating transcriptional responses via Ca2+ and/or reactive oxygen species signaling, an understanding of how plants perceive temperature has remained elusive. However, recent studies have yielded breakthroughs in our understanding of temperature sensors and thermosensation mechanisms. We review recent findings on potential temperature sensors and emerging thermosensation mechanisms, including biomolecular condensate formation through phase separation in plants. We also compare the temperature perception mechanisms of plants with those of other organisms to provide insights into understanding temperature sensing by plants.
Collapse
Affiliation(s)
- Jae-Hoon Jung
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Eunkyoo Oh
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Jungmook Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Korea; Department of Integrative Food, Bioscience, and Technology, Chonnam National University, Gwangju 61186, Korea.
| |
Collapse
|
22
|
Wang P, Zhu L, Li Z, Cheng M, Chen X, Wang A, Wang C, Zhang X. Genome-Wide Identification of the U-Box E3 Ubiquitin Ligase Gene Family in Cabbage ( Brassica oleracea var. capitata) and Its Expression Analysis in Response to Cold Stress and Pathogen Infection. PLANTS (BASEL, SWITZERLAND) 2023; 12:1437. [PMID: 37050063 PMCID: PMC10097260 DOI: 10.3390/plants12071437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Plant U-box E3 ubiquitin ligases (PUBs) play an important role in growth, development, and stress responses in many species. However, the characteristics of U-box E3 ubiquitin ligase genes in cabbage (Brassica oleracea var. capitata) are still unclear. Here, we carry out the genome-wide analysis of U-box E3 ubiquitin ligase genes in cabbage and identify 65 Brassica oleracea var. capitata U-box E3 ubiquitin ligase (BoPUB) genes in the cabbage genome. Phylogenetic analysis indicates that all 65 BoPUB genes are grouped into six subfamilies, whose members are relatively conserved in the protein domain and exon-intron structure. Chromosomal localization and synteny analyses show that segmental and tandem duplication events contribute to the expansion of the U-box E3 ubiquitin ligase gene family in cabbage. Protein interaction prediction presents that heterodimerization may occur in BoPUB proteins. In silico promoter analysis and spatio-temporal expression profiling of BoPUB genes reveal their involvement in light response, phytohormone response, and growth and development. Furthermore, we find that BoPUB genes participate in the biosynthesis of cuticular wax and in response to cold stress and pathogenic attack. Our findings provide a deep insight into the U-box E3 ubiquitin ligase gene family in cabbage and lay a foundation for the further functional analysis of BoPUB genes in different biological processes.
Collapse
Affiliation(s)
- Peiwen Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (P.W.); (L.Z.); (Z.L.); (M.C.); (X.C.); (A.W.); (C.W.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Lin Zhu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (P.W.); (L.Z.); (Z.L.); (M.C.); (X.C.); (A.W.); (C.W.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Ziheng Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (P.W.); (L.Z.); (Z.L.); (M.C.); (X.C.); (A.W.); (C.W.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Mozhen Cheng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (P.W.); (L.Z.); (Z.L.); (M.C.); (X.C.); (A.W.); (C.W.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Xiuling Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (P.W.); (L.Z.); (Z.L.); (M.C.); (X.C.); (A.W.); (C.W.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Aoxue Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (P.W.); (L.Z.); (Z.L.); (M.C.); (X.C.); (A.W.); (C.W.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Chao Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (P.W.); (L.Z.); (Z.L.); (M.C.); (X.C.); (A.W.); (C.W.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoxuan Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (P.W.); (L.Z.); (Z.L.); (M.C.); (X.C.); (A.W.); (C.W.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
23
|
Wang Y, Jiang Z, Qin A, Wang F, Chang E, Liu Y, Nie W, Tan C, Yuan Y, Dong Y, Huang R, Jia Z, Wang J. Population Structure, Genetic Diversity and Candidate Genes for the Adaptation to Environmental Stress in Picea koraiensis. PLANTS (BASEL, SWITZERLAND) 2023; 12:1266. [PMID: 36986954 PMCID: PMC10055018 DOI: 10.3390/plants12061266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Picea koraiensis is major silvicultural and timber species in northeast China, and its distribution area is an important transition zone for genus spruce migration. The degree of intraspecific differentiation of P. koraiensis is high, but population structure and differentiation mechanisms are not clear. In this study, 523,761 single nucleotide polymorphisms (SNPs) were identified in 113 individuals from 9 populations of P. koraiensis by genotyping-by-sequencing (GBS). Population genomic analysis showed that P. koraiensis was divided into three geoclimatic regions: Great Khingan Mountains climatic region, Lesser Khingan Mountains climatic region, and Changbai Mountain climatic region. Mengkeshan (MKS) population on the northern edge of the distribution area and Wuyiling (WYL) population located in the mining area are two highly differentiated groups. Selective sweep analysis showed that MKS and WYL populations had 645 and 1126 selected genes, respectively. Genes selected in the MKS population were associated with flowering and photomorphogenesis, cellular response to water deficit, and glycerophospholipid metabolism; genes selected in the WYL population were associated with metal ion transport, biosynthesis of macromolecules, and DNA repair. Climatic factors and heavy metal stress drives divergence in MKS and WYL populations, respectively. Our findings provide insights into adaptive divergence mechanisms in Picea and will contribute to molecular breeding studies.
Collapse
Affiliation(s)
- Ya Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Zeping Jiang
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Aili Qin
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Fude Wang
- Forestry Research Institute in Heilongjiang Province, Harbin 150081, China
| | - Ermei Chang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yifu Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Wen Nie
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Cancan Tan
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Yanchao Yuan
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Yao Dong
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Ruizhi Huang
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Zirui Jia
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
24
|
Hu Y, Rosado D, Lindbäck LN, Micko J, Pedmale UV. Cryptochromes and UBP12/13 deubiquitinases antagonistically regulate DNA damage response in Arabidopsis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.15.524001. [PMID: 36712126 PMCID: PMC9882212 DOI: 10.1101/2023.01.15.524001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cryptochromes (CRYs) are evolutionarily conserved blue-light receptors that evolved from bacterial photolyases that repair damaged DNA. Today, CRYs have lost their ability to repair damaged DNA; however, prior reports suggest that human CRYs can respond to DNA damage. Currently, the role of CRYs in the DNA damage response (DDR) is lacking, especially in plants. Therefore, we evaluated the role of plant CRYs in DDR along with UBP12/13 deubiquitinases, which interact with and regulate the CRY2 protein. We found that cry1cry2 was hypersensitive, while ubp12ubp13 was hyposensitive to UVC-induced DNA damage. Elevated UV-induced cyclobutane pyrimidine dimers (CPDs) and the lack of DNA repair protein RAD51 accumulation in cry1cry2 plants indicate that CRYs are required for DNA repair. On the contrary, CPD levels diminished and RAD51 protein levels elevated in plants lacking UBP12 and UBP13, indicating their role in DDR repression. Temporal transcriptomic analysis revealed that DDR-induced transcriptional responses were subdued in cry1cry2, but elevated in ubp12ubp13 compared to WT. Through transcriptional modeling of the time-course transcriptome, we found that genes quickly induced by UVC (15 min) are targets of CAMTA 1-3 transcription factors, which we found are required for DDR. This transcriptional regulation seems, however, diminished in the cry1cry2 mutant, indicating that CAMTAs are required for CRY2-mediated DDR. Furthermore, we observed enhanced CRY2-UBP13 interaction and formation of CRY2 nuclear speckles under UVC, suggesting that UVC activates CRY2 similarly to blue light. Together, our data reveal the temporal dynamics of the transcriptional events underlying UVC-induced genotoxicity and expand our knowledge of the role of CRY and UBP12/13 in DDR.
Collapse
Affiliation(s)
- Yuzhao Hu
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724
| | - Daniele Rosado
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724
| | - Louise N. Lindbäck
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724
| | - Julie Micko
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724
| | - Ullas V. Pedmale
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724
| |
Collapse
|
25
|
Wang Q, Zhu Z. Light signaling-mediated growth plasticity in Arabidopsis grown under high-temperature conditions. STRESS BIOLOGY 2022; 2:53. [PMID: 37676614 PMCID: PMC10441904 DOI: 10.1007/s44154-022-00075-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/11/2022] [Indexed: 09/08/2023]
Abstract
Growing concern around global warming has led to an increase in research focused on plant responses to increased temperature. In this review, we highlight recent advances in our understanding of plant adaptation to high ambient temperature and heat stress, emphasizing the roles of plant light signaling in these responses. We summarize how high temperatures regulate plant cotyledon expansion and shoot and root elongation and explain how plants use light signaling to combat severe heat stress. Finally, we discuss several future avenues for this research and identify various unresolved questions within this field.
Collapse
Affiliation(s)
- Qi Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Ziqiang Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
26
|
He Y, Yu Y, Wang X, Qin Y, Su C, Wang L. Aschoff's rule on circadian rhythms orchestrated by blue light sensor CRY2 and clock component PRR9. Nat Commun 2022; 13:5869. [PMID: 36198686 PMCID: PMC9535003 DOI: 10.1038/s41467-022-33568-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
Circadian pace is modulated by light intensity, known as the Aschoff’s rule, with largely unrevealed mechanisms. Here we report that photoreceptor CRY2 mediates blue light input to the circadian clock by directly interacting with clock core component PRR9 in blue light dependent manner. This physical interaction dually blocks the accessibility of PRR9 protein to its co-repressor TPL/TPRs and the resulting kinase PPKs. Notably, phosphorylation of PRR9 by PPKs is critical for its DNA binding and repressive activity, hence to ensure proper circadian speed. Given the labile nature of CRY2 in strong blue light, our findings provide a mechanistic explanation for Aschoff’s rule in plants, i.e., blue light triggers CRY2 turnover in proportional to its intensity, which accordingly releasing PRR9 to fine tune circadian speed. Our findings not only reveal a network mediating light input into the circadian clock, but also unmask a mechanism by which the Arabidopsis circadian clock senses light intensity. Circadian pace is modulated by light intensity. Here the authors show that CRY2 interacts with PRR9 to mediate blue light input to the circadian clock and is degraded at higher light intensity offering a mechanistic explanation as to how intensity can modify clock place.
Collapse
Affiliation(s)
- Yuqing He
- Key laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingjun Yu
- Key laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiling Wang
- Key laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yumei Qin
- Key laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen Su
- Key laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Wang
- Key laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
27
|
Gao L, Liu Q, Zhong M, Zeng N, Deng W, Li Y, Wang D, Liu S, Wang Q. Blue light-induced phosphorylation of Arabidopsis cryptochrome 1 is essential for its photosensitivity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1724-1738. [PMID: 35894630 DOI: 10.1111/jipb.13331] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Plants possess two cryptochrome photoreceptors, cryptochrome 1 (CRY1) and cryptochrome 2 (CRY2), that mediate overlapping and distinct physiological responses. Both CRY1 and CRY2 undergo blue light-induced phosphorylation, but the molecular details of CRY1 phosphorylation remain unclear. Here we identify 19 in vivo phosphorylation sites in CRY1 using mass spectrometry and systematically analyze the physiological and photobiochemical activities of CRY1 variants with phosphosite substitutions. We demonstrate that nonphosphorylatable CRY1 variants have impaired phosphorylation, degradation, and physiological functions, whereas phosphomimetic variants mimic the physiological functions of phosphorylated CRY1 to constitutively inhibit hypocotyl elongation. We further demonstrate that phosphomimetic CRY1 variants exhibit enhanced interaction with the E3 ubiquitin ligase COP1 (CONSTITUTIVELY PHOTOMORPHOGENIC 1). This finding is consistent with the hypothesis that phosphorylation of CRY1 is required for COP1-dependent signaling and regulation of CRY1. We also determine that PHOTOREGULATORY PROTEIN KINASEs (PPKs) phosphorylate CRY1 in a blue light-dependent manner and that this phosphorylation is critical for CRY1 signaling and regulation. These results indicate that, similar to CRY2, blue light-dependent phosphorylation of CRY1 determines its photosensitivity.
Collapse
Affiliation(s)
- Lin Gao
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qing Liu
- School of Life Sciences, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Zhong
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Nannan Zeng
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Weixian Deng
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Yaxing Li
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dong Wang
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Siyuan Liu
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qin Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
28
|
Kang H, Zhang TT, Li YY, Lin-Wang K, Espley RV, Du YP, Guan QM, Ma FW, Hao YJ, You CX, Wang XF. The apple BTB protein MdBT2 positively regulates MdCOP1 abundance to repress anthocyanin biosynthesis. PLANT PHYSIOLOGY 2022; 190:305-318. [PMID: 35674376 PMCID: PMC9434159 DOI: 10.1093/plphys/kiac279] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/11/2022] [Indexed: 05/27/2023]
Abstract
The ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) plays a central role in light-induced anthocyanin biosynthesis. However, the upstream regulatory factors of COP1 remain poorly understood, particularly in horticultural plants. Here, we identified an MdCOP1-interacting protein, BROAD-COMPLEX, TRAMTRACK AND BRIC A BRAC2 (MdBT2), in apple (Malus domestica). MdBT2 is a BTB protein that directly interacts with and stabilizes MdCOP1 by inhibiting self-ubiquitination. Fluorescence observation and cell fractionation assays showed that MdBT2 increased the abundance of MdCOP1 in the nucleus. Moreover, a series of phenotypic analyses indicated that MdBT2 promoted MdCOP1-mediated ubiquitination and degradation of the MdMYB1 transcription factor, inhibiting the expression of anthocyanin biosynthesis genes and anthocyanin accumulation. Overall, our findings reveal a molecular mechanism by which MdBT2 positively regulates MdCOP1, providing insight into MdCOP1-mediated anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Hui Kang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yang-Ling, Shaanxi 712100, China
| | - Ting-Ting Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Yuan-Yuan Li
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Kui Lin-Wang
- The New Zealand Institute for Plant and Food Research Limited, Mt. Albert, Auckland 92169, New Zealand
| | - Richard V Espley
- The New Zealand Institute for Plant and Food Research Limited, Mt. Albert, Auckland 92169, New Zealand
| | - Yuan-Peng Du
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Qing-Mei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yang-Ling, Shaanxi 712100, China
| | - Feng-Wang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yang-Ling, Shaanxi 712100, China
| | | | | | | |
Collapse
|
29
|
Lindbäck LN, Hu Y, Ackermann A, Artz O, Pedmale UV. UBP12 and UBP13 deubiquitinases destabilize the CRY2 blue light receptor to regulate Arabidopsis growth. Curr Biol 2022; 32:3221-3231.e6. [PMID: 35700731 PMCID: PMC9378456 DOI: 10.1016/j.cub.2022.05.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/22/2022] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
Abstract
Light is a crucial exogenous signal sensed by cryptochrome (CRY) blue light receptors to modulate growth and the circadian clock in plants and animals. However, how CRYs interpret light quantity to regulate growth in plants remains poorly understood. Furthermore, CRY2 protein levels and activity are tightly regulated in light to fine-tune hypocotyl growth; however, details of the mechanisms that explain precise control of CRY2 levels are not fully understood. We show that in Arabidopsis, UBP12 and UBP13 deubiquitinases physically interact with CRY2 in light. UBP12/13 negatively regulates CRY2 by promoting its ubiquitination and turnover to modulate hypocotyl growth. Growth and development were explicitly affected in blue light when UBP12/13 were disrupted or overexpressed, indicating their role alongside CRY2. UBP12/13 also interacted with and stabilized COP1, which is partially required for CRY2 turnover. Our combined genetic and molecular data support a mechanistic model in which UBP12/13 interact with CRY2 and COP1, leading to the stabilization of COP1. Stabilized COP1 then promotes the ubiquitination and degradation of CRY2 under blue light. Despite decades of studies on deubiquitinases, the knowledge of how their activity is regulated is limited. Our study provides insight into how exogenous signals and ligands, along with their receptors, regulate deubiquitinase activity by protein-protein interaction. Collectively, our results provide a framework of cryptochromes and deubiquitinases to detect and interpret light signals to control plant growth at the most appropriate time.
Collapse
Affiliation(s)
- Louise N Lindbäck
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Yuzhao Hu
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Amanda Ackermann
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Oliver Artz
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Ullas V Pedmale
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
30
|
Miao L, Zhao J, Yang G, Xu P, Cao X, Du S, Xu F, Jiang L, Zhang S, Wei X, Liu Y, Chen H, Mao Z, Guo T, Kou S, Wang W, Yang HQ. Arabidopsis cryptochrome 1 undergoes COP1 and LRBs-dependent degradation in response to high blue light. THE NEW PHYTOLOGIST 2022; 234:1347-1362. [PMID: 34449898 DOI: 10.1111/nph.17695] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/11/2021] [Indexed: 05/26/2023]
Abstract
Arabidopsis cryptochrome 1 (CRY1) is an important blue light photoreceptor that promotes photomorphogenesis under blue light. The blue light photoreceptors CRY2 and phototropin 1, and the red/far-red light photoreceptors phytochromes B and A undergo degradation in response to blue and red light, respectively. This study investigated whether and how CRY1 might undergo degradation in response to high-intensity blue light (HBL). We demonstrated that CRY1 is ubiquitinated and degraded through the 26S proteasome pathway in response to HBL. We found that the E3 ubiquitin ligase constitutive photomorphogenic 1 (COP1) is involved in mediating HBL-induced ubiquitination and degradation of CRY1. We also found that the E3 ubiquitin ligases LRBs physically interact with CRY1 and are also involved in mediating CRY1 ubiquitination and degradation in response to HBL. We further demonstrated that blue-light inhibitor of cryptochromes 1 interacts with CRY1 in a blue-light-dependent manner to inhibit CRY1 dimerization/oligomerization, leading to the repression of HBL-induced degradation of CRY1. Our findings indicate that the regulation of CRY1 stability in HBL is coordinated by COP1 and LRBs, which provides a mechanism by which CRY1 attenuates its own signaling and optimizes photomorphogenesis under HBL.
Collapse
Affiliation(s)
- Langxi Miao
- School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jiachen Zhao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Guangqiong Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Peng Xu
- School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xiaoli Cao
- School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Shasha Du
- School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Feng Xu
- School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Lu Jiang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Shilong Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xuxu Wei
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yao Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Huiru Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhilei Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Tongtong Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Shuang Kou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Wenxiu Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Hong-Quan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
31
|
Chen Z, Li M, Liu S, Chen X, Zhang W, Zhu Q, Kohnen MV, Wang Q. The Function and Photoregulatory Mechanisms of Cryptochromes From Moso Bamboo ( Phyllostachys edulis). FRONTIERS IN PLANT SCIENCE 2022; 13:866057. [PMID: 35432389 PMCID: PMC9006058 DOI: 10.3389/fpls.2022.866057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Light is one of the most important environmental factors affecting growth and geographic distribution of forestry plants. Moso bamboo is the largest temperate bamboo on earth and an important non-woody forestry species that serves not only important functions in the economy of rural areas but also carbon sequestration in the world. Due to its decades-long reproductive timing, the germplasm of moso bamboo cannot be readily improved by conventional breeding methods, arguing for a greater need to study the gene function and regulatory mechanisms of this species. We systematically studied the photoregulatory mechanisms of the moso bamboo (Phyllostachys edulis) cryptochrome 1, PheCRY1. Our results show that, similar to its Arabidopsis counterpart, the bamboo PheCRY1s are functionally restricted to the blue light inhibition of cell elongation without an apparent activity in promoting floral initiation. We demonstrate that PheCRY1s undergo light-dependent oligomerization that is inhibited by PheBIC1s, and light-dependent phosphorylation that is catalyzed by PhePPKs. We hypothesize that light-induced phosphorylation of PheCRY1s facilitate their degradation, which control availability of the PheCRY1 proteins and photosensitivity of bamboo plants. Our results demonstrate the evolutionary conservation of not only the function but also photoregulatory mechanism of PheCRY1 in this monocot forestry species.
Collapse
Affiliation(s)
- Ziyin Chen
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Min Li
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Siyuan Liu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaojie Chen
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenxiang Zhang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiang Zhu
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Markus V Kohnen
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qin Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
32
|
Li X, Liang T, Liu H. How plants coordinate their development in response to light and temperature signals. THE PLANT CELL 2022; 34:955-966. [PMID: 34904672 PMCID: PMC8894937 DOI: 10.1093/plcell/koab302] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/06/2021] [Indexed: 05/12/2023]
Abstract
Light and temperature change constantly under natural conditions and profoundly affect plant growth and development. Light and warmer temperatures promote flowering, higher light intensity inhibits hypocotyl and petiole elongation, and warmer temperatures promote hypocotyl and petiole elongation. Moreover, exogenous light and temperature signals must be integrated with endogenous signals to fine-tune phytohormone metabolism and plant morphology. Plants perceive and respond to light and ambient temperature using common sets of factors, such as photoreceptors and multiple light signal transduction components. These highly structured signaling networks are critical for plant survival and adaptation. This review discusses how plants respond to variable light and temperature conditions using common elements to coordinate their development. Future directions for research on light and temperature signaling pathways are also discussed.
Collapse
Affiliation(s)
- Xu Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Tong Liang
- Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA
| | - Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Author for correspondence:
| |
Collapse
|
33
|
Ma L, Li X, Zhao Z, Hao Y, Shang R, Zeng D, Liu H. Light-Response Bric-A-Brack/Tramtrack/Broad proteins mediate cryptochrome 2 degradation in response to low ambient temperature. THE PLANT CELL 2021; 33:3610-3620. [PMID: 34463721 PMCID: PMC8643628 DOI: 10.1093/plcell/koab219] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/26/2021] [Indexed: 05/20/2023]
Abstract
Cryptochromes (crys) are photolyase-like blue-light receptors first discovered in Arabidopsis thaliana and later identified in all major evolutionary lineages. Crys are involved in not only blue light responses but also in temperature responses; however, whether and how cry protein stability is regulated by temperature remains unknown. Here, we show that cry2 protein abundance is modulated by ambient temperature and cry2 protein is degraded under low ambient temperature via the 26S proteasome. Consistent with this, cry2 shows high levels of ubiquitination under low ambient temperatures. Interestingly, cry2 degradation at low ambient temperatures occurs only under blue light and not under red light or dark conditions, indicating blue-light-dependent degradation of cry2 at low ambient temperature. Furthermore, low ambient temperature promotes physical interaction of Light-Response Bric-a-Brack/Tramtrack/Broad (LRB) proteins with cry2 to modulate its ubiquitination and protein stability in response to ambient temperature. LRBs promote high-temperature-induced hypocotyl elongation by modulating the protein stability of cry2 protein. These results indicate that cry2 accumulation is regulated by not only blue light but also ambient temperature, and LRBs are responsible for cry2 degradation at low ambient temperature. The stabilization of cry2 by high temperature makes cry2 a better negative regulator of temperature responses.
Collapse
Affiliation(s)
- Libang Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Xu Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhiwei Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuhao Hao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ruixin Shang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Desheng Zeng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
34
|
Li Y, Shi Y, Li M, Fu D, Wu S, Li J, Gong Z, Liu H, Yang S. The CRY2-COP1-HY5-BBX7/8 module regulates blue light-dependent cold acclimation in Arabidopsis. THE PLANT CELL 2021; 33:3555-3573. [PMID: 34427646 PMCID: PMC8566302 DOI: 10.1093/plcell/koab215] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/19/2021] [Indexed: 05/20/2023]
Abstract
Light and temperature are two key environmental factors that coordinately regulate plant growth and development. Although the mechanisms that integrate signaling mediated by cold and red light have been unraveled, the roles of the blue light photoreceptors cryptochromes in plant responses to cold remain unclear. In this study, we demonstrate that the CRYPTOCHROME2 (CRY2)-COP1-HY5-BBX7/8 module regulates blue light-dependent cold acclimation in Arabidopsis thaliana. We show that phosphorylated forms of CRY2 induced by blue light are stabilized by cold stress and that cold-stabilized CRY2 competes with the transcription factor HY5 to attenuate the HY5-COP1 interaction, thereby allowing HY5 to accumulate at cold temperatures. Furthermore, our data demonstrate that B-BOX DOMAIN PROTEIN7 (BBX7) and BBX8 function as direct HY5 targets that positively regulate freezing tolerance by modulating the expression of a set of cold-responsive genes, which mainly occurs independently of the C-repeat-binding factor pathway. Our study uncovers a mechanistic framework by which CRY2-mediated blue-light signaling enhances freezing tolerance, shedding light on the molecular mechanisms underlying the crosstalk between cold and light signaling pathways in plants.
Collapse
Affiliation(s)
- Youping Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yiting Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Minze Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Diyi Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shifeng Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jigang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Author for correspondence:
| |
Collapse
|
35
|
Wang X, Jiang B, Gu L, Chen Y, Mora M, Zhu M, Noory E, Wang Q, Lin C. A photoregulatory mechanism of the circadian clock in Arabidopsis. NATURE PLANTS 2021; 7:1397-1408. [PMID: 34650267 DOI: 10.1038/s41477-021-01002-z] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/03/2021] [Indexed: 05/04/2023]
Abstract
Cryptochromes (CRYs) are photoreceptors that mediate light regulation of the circadian clock in plants and animals. Here we show that CRYs mediate blue-light regulation of N6-methyladenosine (m6A) modification of more than 10% of messenger RNAs in the Arabidopsis transcriptome, especially those regulated by the circadian clock. CRY2 interacts with three subunits of the METTL3/14-type N6-methyladenosine RNA methyltransferase (m6A writer): MTA, MTB and FIP37. Photo-excited CRY2 undergoes liquid-liquid phase separation (LLPS) to co-condense m6A writer proteins in vivo, without obviously altering the affinity between CRY2 and the writer proteins. mta and cry1cry2 mutants share common defects of a lengthened circadian period, reduced m6A RNA methylation and accelerated degradation of mRNA encoding the core component of the molecular oscillator circadian clock associated 1 (CCA1). These results argue for a photoregulatory mechanism by which light-induced phase separation of CRYs modulates m6A writer activity, mRNA methylation and abundance, and the circadian rhythms in plants.
Collapse
Affiliation(s)
- Xu Wang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Bochen Jiang
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yadi Chen
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Manuel Mora
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Mulangma Zhu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Eliace Noory
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Qin Wang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Chentao Lin
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA.
| |
Collapse
|