1
|
Zhong L, Boopathi S, Wang X, Chen H, Bai X, Shi X, Yang Q, Bian X, Zhang Y. Expanding the Horizon of Natural Products: The Role of Starter Units in Nonribosomal Lipopeptide Biosynthesis. ACS Synth Biol 2025; 14:1336-1351. [PMID: 40238931 DOI: 10.1021/acssynbio.4c00893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Nonribosomal lipopeptides (NRLPs) are structurally complex natural products that play crucial ecological and biological roles. They are also valuable sources and lead structures for developing new pharmaceuticals. These compounds are typically synthesized using a molecular assembly machinery known as nonribosomal peptide synthetases (NRPSs) or hybrid polyketide synthases-NRPSs. Unlike conventional NRPS, NRLPs are characterized by a starter module that loads lipid chains and a substrate synthesis pathway that supplies the necessary substrates during the initiation stages. Unique lipid chains are critical determinants of the biological activity of NRLPs. Therefore, modifying these lipid chains through combinatorial biosynthesis holds great promise for unlocking their full therapeutic potential. Herein, we use the term "Starter Unit" to refer to the initial modules and lipoinitiation pathway involved in the lipid chain initiation process of NRLPs. This Review provides a comprehensive summary of recent advances in the combinatorial biosynthesis of starter units and offers insights into future directions for further development.
Collapse
Affiliation(s)
- Lin Zhong
- Institute of Synthetic Biology Industry, Hunan University of Arts and Science, Changde 415000, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Seenivasan Boopathi
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, China
| | - Xingyan Wang
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, China
| | - Hanna Chen
- School of Medicine, Linyi University, Linyi 276000, Shandong, China
| | - Xianping Bai
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, China
| | - Xingxing Shi
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, China
| | - Qingsheng Yang
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, China
| | - Youming Zhang
- Institute of Synthetic Biology Industry, Hunan University of Arts and Science, Changde 415000, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, China
| |
Collapse
|
2
|
Mei Q, Wu S, Luo M, Ji S, Guo J, Dong C, Sun G, Wang J, Deng Z, Zhao YL, Zhang Z, Sun Y. Formation of the Diketopiperazine Moiety by a Distinct Condensation-Like Domain in Hangtaimycin Biosynthesis. Angew Chem Int Ed Engl 2025; 64:e202421950. [PMID: 40000413 DOI: 10.1002/anie.202421950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 02/27/2025]
Abstract
Non-ribosomal peptide synthetases (NRPSs) are key enzymes in pharmaceutical synthesis, with condensation (C) domains catalyzing amide bond formation between aminoacyl substrates. However, recent research has elucidated that the catalytic capabilities of C domains extend beyond the traditional formation of peptide bonds. In this study, we elucidate the cyclization mechanism of the NRPS-derived natural products hangtaimycin (HTM), characterized by the formation of a 2,5-diketopiperazine (DKP) moiety which involves an intramolecular vinylamide-mediated nucleophilic attack instead of an N-terminal amino group. This cyclization is catalyzed by a terminal condensation-like (CT) domain within the NRPS enzyme HtmB2. We investigated the evolutionary specificity of the HtmB2-CT within Streptomyces spectabilis CCTCC M2017417. Employing a multidisciplinary analytical approach, we have delineated the molecular underpinnings of DKP formation within the HTM biosynthesis. This process is facilitated by residue R2776, which modulates the formation of reactive species and stabilizes the amidate through electrostatic interactions. Besides, we found a positive correlation between the alkaline strength of the residue at position 2776 and the activity of HtmB2-CT. Our study elucidates the formation mechanism of DKPs in NRPS-derived natural products, thereby bridging a critical gap in the structural and mechanistic understanding of this field.
Collapse
Affiliation(s)
- Qing Mei
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, No. 185 East Lake Road, Wuhan, 430071, People's Republic of China
| | - Shijuan Wu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, No. 185 East Lake Road, Wuhan, 430071, People's Republic of China
| | - Minghe Luo
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, No. 185 East Lake Road, Wuhan, 430071, People's Republic of China
| | - Shunjia Ji
- State Key Laboratory of Microbial Metabolism, and Department of Bioinformatics and Biostatistics, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, No. 800 Dong Chuan Road, Shanghai, 200240, People's Republic of China
| | - Jiayi Guo
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, No. 185 East Lake Road, Wuhan, 430071, People's Republic of China
| | - Chuan Dong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, No. 185 East Lake Road, Wuhan, 430071, People's Republic of China
| | - Guo Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, No. 185 East Lake Road, Wuhan, 430071, People's Republic of China
| | - Jian Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, No. 185 East Lake Road, Wuhan, 430071, People's Republic of China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, No. 185 East Lake Road, Wuhan, 430071, People's Republic of China
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, and Department of Bioinformatics and Biostatistics, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, No. 800 Dong Chuan Road, Shanghai, 200240, People's Republic of China
| | - Zhengyu Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, No. 185 East Lake Road, Wuhan, 430071, People's Republic of China
| | - Yuhui Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, No. 185 East Lake Road, Wuhan, 430071, People's Republic of China
- School of Pharmacy, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| |
Collapse
|
3
|
Pistofidis A, Schmeing TM. Protein ligation for the assembly and study of nonribosomal peptide synthetase megaenzymes. RSC Chem Biol 2025; 6:590-603. [PMID: 39957992 PMCID: PMC11824870 DOI: 10.1039/d4cb00306c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/06/2025] [Indexed: 02/18/2025] Open
Abstract
Nonribosomal peptide synthetases (NRPSs) are biosynthetic enzymes found in bacteria and fungi, that synthesize a plethora of pharmaceutically relevant compounds. NRPSs consist of repeating sets of functional domains called modules, and each module is responsible for the incorporation of a single amino acid to the growing peptidyl intermediate. The synthetic logic of an NRPS resembles an assembly line, with growing biosynthesis intermediates covalently attached to the prosthetic 4'-phosphopantetheine (ppant) moieties of T (thiolation or transfer) domains for shuttling within and between modules. Therefore, NRPSs must have each T domain phosphopantetheinylated to be functional, and host organisms encode ppant transferases that affix ppant to T domains. Ppant transferases can be promiscuous with respect to the T domain substrate and with respect to chemical modifications of the ppant thiol, which has been a useful characteristic for study of megaenzymes and other systems. However, defined studies of multimodular megaenzymes, where different analogs are required to be affixed to different T domains within the same multimodular protein, are hindered by this promiscuity. Study of NRPS peptide bond formation, for which two T domains simultaneously deliver substrates to the condensation domain, is a prime example where one would want two T domains bearing different acyl/peptidyl groups. Here, we report a strategy where two NRPS modules that are normally part of the same protein are expressed as separate constructs, modified separately with different acyl-ppants, and then ligated together by sortase A of Staphylococcus aureus or asparaginyl endopeptidase 1 of Oldenlandia affinis (OaAEP1). We assessed various reaction conditions to optimize the ligation reactions and maximize the yield of the complex of interest. Finally, we apply this method in large scale and show it allows the complex built by OaAEP1-mediated ligation to be characterized by X-ray crystallography.
Collapse
Affiliation(s)
- Angelos Pistofidis
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University Montréal QC H3G 0B1 Canada
| | - T Martin Schmeing
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University Montréal QC H3G 0B1 Canada
| |
Collapse
|
4
|
Osiro KO, Gil-Ley A, Fernandes FC, de Oliveira KBS, de la Fuente-Nunez C, Franco OL. Paving the way for new antimicrobial peptides through molecular de-extinction. MICROBIAL CELL (GRAZ, AUSTRIA) 2025; 12:1-8. [PMID: 40012704 PMCID: PMC11853161 DOI: 10.15698/mic2025.02.841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 02/28/2025]
Abstract
Molecular de-extinction has emerged as a novel strategy for studying biological molecules throughout evolutionary history. Among the myriad possibilities offered by ancient genomes and proteomes, antimicrobial peptides (AMPs) stand out as particularly promising alternatives to traditional antibiotics. Various strategies, including software tools and advanced deep learning models, have been used to mine these host defense peptides. For example, computational analysis of disulfide bond patterns has led to the identification of six previously uncharacterized β-defensins in extinct and critically endangered species. Additionally, artificial intelligence and machine learning have been utilized to uncover ancient antibiotics, revealing numerous candidates, including mammuthusin, and elephasin, which display inhibitory effects toward pathogens in vitro and in vivo. These innovations promise to discover novel antibiotics and deepen our insight into evolutionary processes.
Collapse
Affiliation(s)
- Karen O Osiro
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília70790-160Brazil
| | - Abel Gil-Ley
- S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom BoscoCampo Grande, Mato Grosso do SulBrazil
| | - Fabiano C Fernandes
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília70790-160Brazil
- Departamento de Ciência da Computação, Instituto Federal de Brasília, Campus Taguatinga, Brasília, Brazil
| | - Kamila B S de Oliveira
- S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom BoscoCampo Grande, Mato Grosso do SulBrazil
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of PennsylvaniaPhiladelphia, PennsylvaniaUnited States of America
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of PennsylvaniaPhiladelphia, PennsylvaniaUnited States of America
- Department of Chemistry, School of Arts and Sciences, University of PennsylvaniaPhiladelphia, PennsylvaniaUnited States of America
- Penn Institute for Computational Science, University of PennsylvaniaPhiladelphia, PennsylvaniaUnited States of America
| | - Octavio L Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília70790-160Brazil
- S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom BoscoCampo Grande, Mato Grosso do SulBrazil
| |
Collapse
|
5
|
Pistofidis A, Ma P, Li Z, Munro K, Houk KN, Schmeing TM. Structures and mechanism of condensation in non-ribosomal peptide synthesis. Nature 2025; 638:270-278. [PMID: 39662504 DOI: 10.1038/s41586-024-08417-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/15/2024] [Indexed: 12/13/2024]
Abstract
Non-ribosomal peptide synthetases (NRPSs) are megaenzymes responsible for the biosynthesis of many clinically important natural products, from early modern medicines (penicillin, bacitracin) to current blockbuster drugs (cubicin, vancomycin) and newly approved therapeutics (rezafungin)1,2. The key chemical step in these biosyntheses is amide bond formation between aminoacyl building blocks, catalysed by the condensation (C) domain3. There has been much debate over the mechanism of this reaction3-12. NRPS condensation has been difficult to fully characterize because it is one of many successive reactions in the NRPS synthetic cycle and because the canonical substrates are each attached transiently as thioesters to mobile carrier domains, which are often both contained in the same very flexible protein as the C domain. Here we have produced a dimodular NRPS protein in two parts, modified each with appropriate non-hydrolysable substrate analogues13,14, assembled the two parts with protein ligation15, and solved the structures of the substrate- and product-bound states. The structures show the precise orientation of the megaenzyme preparing the nucleophilic attack of its key chemical step, and enable biochemical assays and quantum mechanical simulations to precisely interrogate the reaction. These data suggest that NRPS C domains use a concerted reaction mechanism, whereby the active-site histidine likely functions not as a general base, but as a crucial stabilizing hydrogen bond acceptor for the developing ammonium.
Collapse
Affiliation(s)
- Angelos Pistofidis
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Quebec, Canada
| | - Pengchen Ma
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Zihao Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Kim Munro
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Quebec, Canada
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - T Martin Schmeing
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
6
|
Heberlig GW, La Clair JJ, Burkart MD. Crosslinking intermodular condensation in non-ribosomal peptide biosynthesis. Nature 2025; 638:261-269. [PMID: 39663458 DOI: 10.1038/s41586-024-08306-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/30/2024] [Indexed: 12/13/2024]
Abstract
Non-ribosomal peptide synthetases are assembly line biosynthetic pathways that are used to produce critical therapeutic drugs and are typically arranged as large multi-domain proteins called megasynthetases1. They synthesize polypeptides using peptidyl carrier proteins that shuttle each amino acid through modular loading, modification and elongation2 steps, and remain challenging to structurally characterize, owing in part to the inherent dynamics of their multi-domain and multi-modular architectures3. Here we have developed site-selective crosslinking probes to conformationally constrain and resolve the interactions between carrier proteins and their partner enzymatic domains4,5. We apply tetrazine click chemistry to trap the condensation of two carrier protein substrates within the active site of the condensation domain that unites the first two modules of tyrocidine biosynthesis and report the high-resolution cryo-EM structure of this complex. Together with the X-ray crystal structure of the first carrier protein crosslinked to its epimerization domain, these structures highlight captured intermodular recognition events and define the processive movement of a carrier protein from one catalytic step to the next. Characterization of these structural relationships remains central to understanding the molecular details of these unique synthetases and critically informs future synthetic biology design of these pathways.
Collapse
Affiliation(s)
- Graham W Heberlig
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - James J La Clair
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
7
|
Zhang S, Fan S, He H, Zhu J, Murray L, Liang G, Ran S, Zhu YZ, Cryle MJ, He HY, Zhang Y. Cyclic natural product oligomers: diversity and (bio)synthesis of macrocycles. Chem Soc Rev 2025; 54:396-464. [PMID: 39584260 DOI: 10.1039/d2cs00909a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Cyclic compounds are generally preferred over linear compounds for functional studies due to their enhanced bioavailability, stability towards metabolic degradation, and selective receptor binding. This has led to a need for effective cyclization strategies for compound synthesis and hence increased interest in macrocyclization mediated by thioesterase (TE) domains, which naturally boost the chemical diversity and bioactivities of cyclic natural products. Many non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) derived natural products are assembled to form cyclodimeric compounds, with these molecules possessing diverse structures and biological activities. There is significant interest in identifying the biosynthetic pathways that produce such molecules given the challenge that cyclodimerization represents from a biosynthetic perspective. In the last decade, many groups have pursued the characterization of TE domains and have provided new insights into this biocatalytic machinery: however, the enzymes involved in formation of cyclodimeric compounds have proven far more elusive. In this review we focus on natural products that involve macrocyclization in their biosynthesis and chemical synthesis, with an emphasis on the function and biosynthetic investigation on the special family of TE domains responsible for forming cyclodimeric natural products. We also introduce additional macrocyclization catalysts, including butelase and the CT-mediated cyclization of peptides, alongside the formation of cyclodipeptides mediated by cyclodipeptide synthases (CDPS) and single-module NRPSs. Due to the interdisciplinary nature of biosynthetic research, we anticipate that this review will prove valuable to synthetic chemists, drug discovery groups, enzymologists, and the biosynthetic community in general, and inspire further efforts to identify and exploit these biocatalysts for the formation of novel bioactive molecules.
Collapse
Affiliation(s)
- Songya Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shuai Fan
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Haocheng He
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jing Zhu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lauren Murray
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
- EMBL Australia, Monash University, Clayton, Victoria, 3800, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, 3800, Australia
| | - Gong Liang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shi Ran
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yi Zhun Zhu
- School of Pharmacy & State Key Lab. for the Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Max J Cryle
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
- EMBL Australia, Monash University, Clayton, Victoria, 3800, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, 3800, Australia
| | - Hai-Yan He
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Youming Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
8
|
Gavriilidou A, Adamek M, Rodler JP, Kubach N, Voigtländer A, Kokkoliadis L, Hughes CC, Cryle MJ, Stegmann E, Ziemert N. Animating insights into the biosynthesis of glycopeptide antibiotics. Curr Opin Microbiol 2024; 82:102561. [PMID: 39615955 DOI: 10.1016/j.mib.2024.102561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 12/18/2024]
Abstract
The realm of natural product (NP) research is constantly expanding, with diverse applications in both medicine and industry. In this interdisciplinary field, scientists collaborate to investigate various aspects of NPs, including understanding the mode of action of these compounds, unraveling their biosynthetic pathways, studying evolutionary aspects, and biochemically characterizing the enzymes involved. However, this collaboration can be challenging as all parties involved come from very different backgrounds (such as microbiology, synthetic chemistry, biochemistry, or bioinformatics) and may not use the same terminology. Fortunately, contemporary technologies, such as videos, provide novel avenues for effective engagement. Recognizing the potency of visual stimuli in explaining complex processes, we envision a future where animations become more and more common in interdisciplinary communication, accompanying perspectives, and reviews. To demonstrate how such approaches can enhance the understanding of complex processes, we have animated the biosynthesis of the glycopeptide antibiotic vancomycin (https://youtu.be/TGAgC4c8hvo).
Collapse
Affiliation(s)
- Athina Gavriilidou
- Translational Genome Mining for Natural Products, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Tübingen, Germany
| | - Martina Adamek
- Translational Genome Mining for Natural Products, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Tübingen, Germany; Cluster of Excellence EXC 2124: Controlling Microbes to Fight Infections (CMFI), University of Tübingen, Tübingen, Germany; German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Jens-Peter Rodler
- Cluster of Excellence EXC 2124: Controlling Microbes to Fight Infections (CMFI), University of Tübingen, Tübingen, Germany; Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Noel Kubach
- Translational Genome Mining for Natural Products, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Tübingen, Germany; Cluster of Excellence EXC 2124: Controlling Microbes to Fight Infections (CMFI), University of Tübingen, Tübingen, Germany
| | - Anna Voigtländer
- Center for Media Competence (ZFM), University of Tübingen, Tübingen, Germany
| | - Leon Kokkoliadis
- Cluster of Excellence EXC 2124: Controlling Microbes to Fight Infections (CMFI), University of Tübingen, Tübingen, Germany
| | - Chambers C Hughes
- Cluster of Excellence EXC 2124: Controlling Microbes to Fight Infections (CMFI), University of Tübingen, Tübingen, Germany; German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany; Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Max J Cryle
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; EMBL Australia, Monash University, Clayton, Victoria 3800, Australia; ARC Centre of Excellence for Innovations in Peptide and Protein Science, Clayton, Victoria 3800, Australia
| | - Evi Stegmann
- Cluster of Excellence EXC 2124: Controlling Microbes to Fight Infections (CMFI), University of Tübingen, Tübingen, Germany; German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany; Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| | - Nadine Ziemert
- Translational Genome Mining for Natural Products, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Tübingen, Germany; Cluster of Excellence EXC 2124: Controlling Microbes to Fight Infections (CMFI), University of Tübingen, Tübingen, Germany; German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany.
| |
Collapse
|
9
|
Huang Z, Peng Z, Zhang M, Li X, Qiu X. Structure, Function and Engineering of the Nonribosomal Peptide Synthetase Condensation Domain. Int J Mol Sci 2024; 25:11774. [PMID: 39519324 PMCID: PMC11546977 DOI: 10.3390/ijms252111774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
The nonribosomal peptide synthetase (NRPS) is a highly precise molecular assembly machinery for synthesizing structurally diverse peptides, which have broad medicinal applications. Withinthe NRPS, the condensation (C) domain is a core catalytic domain responsible for the formation of amide bonds between individual monomer residues during peptide elongation. This review summarizes various aspects of the C domain, including its structural characteristics, catalytic mechanisms, substrate specificity, substrate gating function, and auxiliary functions. Moreover, through case analyses of the NRPS engineering targeting the C domains, the vast potential of the C domain in the combinatorial biosynthesis of peptide natural product derivatives is demonstrated.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoting Qiu
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; (Z.H.); (Z.P.); (M.Z.); (X.L.)
| |
Collapse
|
10
|
Ratnayake M, Ho YTC, Jian X, Cryle MJ. An in vitro assay to explore condensation domain specificity from non-ribosomal peptide synthesis. Methods Enzymol 2024; 702:89-119. [PMID: 39155122 DOI: 10.1016/bs.mie.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Non-ribosomal peptide synthesis produces a wide range of bioactive peptide natural products and is reliant on a modular architecture based on repeating catalytic domains able to generate diverse peptide sequences. In this chapter we detail an in vitro biochemical assay to explore the substrate specificity of condensation domains, which are responsible for peptide elongation, from the biosynthetic machinery that produces from the siderophore fuscachelin. This assay removes the requirement to utilise the specificity of adjacent adenylation domains and allows the acceptance of a wide range of synthetic substrates to be explored.
Collapse
Affiliation(s)
- Minuri Ratnayake
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; EMBL Australia, Monash University, Clayton, VIC, Australia; ARC Centre of Excellence for Innovations in Peptide and Protein Science
| | - Y T Candace Ho
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | - Xinyun Jian
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; EMBL Australia, Monash University, Clayton, VIC, Australia; ARC Centre of Excellence for Innovations in Peptide and Protein Science
| | - Max J Cryle
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; EMBL Australia, Monash University, Clayton, VIC, Australia; ARC Centre of Excellence for Innovations in Peptide and Protein Science.
| |
Collapse
|
11
|
Heard SC, Winter JM. Structural, biochemical and bioinformatic analyses of nonribosomal peptide synthetase adenylation domains. Nat Prod Rep 2024; 41:1180-1205. [PMID: 38488017 PMCID: PMC11253843 DOI: 10.1039/d3np00064h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Indexed: 07/18/2024]
Abstract
Covering: 1997 to July 2023The adenylation reaction has been a subject of scientific intrigue since it was first recognized as essential to many biological processes, including the homeostasis and pathogenicity of some bacteria and the activation of amino acids for protein synthesis in mammals. Several foundational studies on adenylation (A) domains have facilitated an improved understanding of their molecular structures and biochemical properties, in particular work on nonribosomal peptide synthetases (NRPSs). In NRPS pathways, A domains activate their respective acyl substrates for incorporation into a growing peptidyl chain, and many nonribosomal peptides are bioactive. From a natural product drug discovery perspective, improving existing bioinformatics platforms to predict unique NRPS products more accurately from genomic data is desirable. Here, we summarize characterization efforts of A domains primarily from NRPS pathways from July 1997 up to July 2023, covering protein structure elucidation, in vitro assay development, and in silico tools for improved predictions.
Collapse
Affiliation(s)
- Stephanie C Heard
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jaclyn M Winter
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
12
|
Mansour B, Gauld JW. Computational Insights into Amide Bond Formation Catalyzed by the Condensation Domain of Nonribosomal Peptide Synthetases. ACS OMEGA 2024; 9:28556-28563. [PMID: 38973878 PMCID: PMC11223147 DOI: 10.1021/acsomega.4c02531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 07/09/2024]
Abstract
Nonribosomal peptide synthetases (NRPSs) are important enzymes that synthesize an array of nongenetically encoded peptides. The latter have diverse physicochemical properties and roles. NRPSs are modular enzymes in which, for example, the condensation (C-) domain catalyzes the formation of amide bonds. The NRPS tyrocidine synthetase from Brevibacillus brevis is responsible for synthesizing the cyclic-peptide antibiotic tyrocidine. The first step is formation of an amide bond between a proline and phenylalanine which is catalyzed by a C-domain. In this study, a multiscale computational approach (molecular dynamics and QM/MM) has been used to investigate substrate binding and catalytic mechanism of the C-domain of tyrocidine synthetase. Overall, the mechanism is found to proceed through three exergonic steps in which an active site Histidine, His222, acts as a base and acid. First, His222 acts as a base to facilitate nucleophilic attack of the prolyl nitrogen at the phenylalanyl's carbonyl carbon. This is also the rate-limiting step with a free energy barrier of 38.8 kJ mol-1. The second step is collapse of the resulting tetrahedral intermediate with cleavage of the S-C bond between the phenylalanyl and its Ppant arm, along with formation of the above amide bond. Meanwhile, the now protonated His222 imidazole has rotated toward the newly formed thiolate of the Ppant arm. In the final step, His222 acts as an acid, protonating the thiolate and regenerating a neutral His222. The overall mechanism is found to be exergonic with the final product complex being 46.3 kJ mol-1 lower in energy than the initial reactant complex.
Collapse
Affiliation(s)
- Basel Mansour
- Department of Chemistry and
Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - James W. Gauld
- Department of Chemistry and
Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
13
|
Fan W, Hu L, Yang Y, Liu P, Feng Y, Gu RX, Liu Q. Engineering of the start condensation domain with improved N-decanoyl catalytic activity for daptomycin biosynthesis. Biotechnol J 2024; 19:e2400202. [PMID: 38896411 DOI: 10.1002/biot.202400202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Daptomycin, a lipopeptide comprising an N-decanoyl fatty acyl chain and a peptide core, is used clinically as an antimicrobial agent. The start condensation domain (dptC1) is an enzyme that catalyzes the lipoinitiation step of the daptomycin synthesis. In this study, we integrated enzymology, protein engineering, and computer simulation to study the substrate selectivity of the start condensation domain (dptC1) and to screen mutants with improved activity for decanoyl loading. Through molecular docking and computer simulation, the fatty acyl substrate channel and the protein-protein interaction interface of dptC1 are analyzed. Key residues at the protein-protein interface between dptC1 and the acyl carrier were mutated, and a single-point mutant showed more than three-folds improved catalytic efficiency of the target n-decanoyl substrate in comparing with the wild type. Moreover, molecular dynamics simulations suggested that mutants with increased catalytic activity may correlated with a more "open" and contracted substrate binding channel. Our work provides a new perspective for the elucidation of lipopeptide natural products biosynthesis, and also provides new resources to enrich its diversity and optimize the production of important components.
Collapse
Affiliation(s)
- Wenjie Fan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lyubin Hu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Panpan Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ruo-Xu Gu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
Feldberg AL, Mayerthaler F, Rüschenbaum J, Kröger J, Mootz HD. Carrier Protein Interaction with Competing Adenylation and Epimerization Domains in a Nonribosomal Peptide Synthetase Analyzed by FRET. Angew Chem Int Ed Engl 2024; 63:e202317753. [PMID: 38488324 DOI: 10.1002/anie.202317753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Indexed: 04/11/2024]
Abstract
In multi-domain nonribosomal peptide synthetases (NRPSs) the order of domains and their catalytic specificities dictate the structure of the peptide product. Peptidyl-carrier proteins (PCPs) bind activated amino acids and channel elongating peptidyl intermediates along the protein template. To this end, fine-tuned interactions with the catalytic domains and large-scale PCP translocations are necessary. Despite crystal structure snapshots of several PCP-domain interactions, the conformational dynamics under catalytic conditions in solution remain poorly understood. We report a FRET reporter of gramicidin S synthetase 1 (GrsA; with A-PCP-E domains) to study for the first time the interaction between PCP and adenylation (A) domain in the presence of an epimerization (E) domain, a competing downstream partner for the PCP. Bulk FRET measurements showed that upon PCP aminoacylation a conformational shift towards PCP binding to the A domain occurs, indicating the E domain acts on its PCP substrate out of a disfavored conformational equilibrium. Furthermore, the A domain was found to preferably bind the D-Phe-S-Ppant-PCP stereoisomer, suggesting it helps in establishing the stereoisomeric mixture in favor of the D-aminoacyl moiety. These observations surprisingly show that the conformational logic can deviate from the order of domains and thus reveal new principles in the multi-domain interplay of NRPSs.
Collapse
Affiliation(s)
- Anna-Lena Feldberg
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Florian Mayerthaler
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Jennifer Rüschenbaum
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Jonas Kröger
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Henning D Mootz
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| |
Collapse
|
15
|
Ratnayake MS, Hansen MH, Cryle MJ. Enzyme engineering lets us play with new building blocks in non-ribosomal peptide synthesis. Structure 2024; 32:520-522. [PMID: 38701750 DOI: 10.1016/j.str.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 05/05/2024]
Abstract
In a recent issue of Nature Chemical Biology, Folger et al. demonstrated a high-throughput approach for engineering peptide bond forming domains from non-ribosomal peptide synthesis. A non-ribosomal peptide synthetase module from surfactin biosynthesis was reprogrammed to accept a fatty acid substrate into peptide biosynthesis, thus illustrating the potential of this approach for generating novel bioactive peptides.
Collapse
Affiliation(s)
- Minuri S Ratnayake
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; EMBL Australia, Monash University, Clayton, VIC 3800, Australia; ARC Centre of Excellence for Innovations in Peptide and Protein Science, Clayton, VIC 3800, Australia
| | - Mathias H Hansen
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; EMBL Australia, Monash University, Clayton, VIC 3800, Australia; ARC Centre of Excellence for Innovations in Peptide and Protein Science, Clayton, VIC 3800, Australia
| | - Max J Cryle
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; EMBL Australia, Monash University, Clayton, VIC 3800, Australia; ARC Centre of Excellence for Innovations in Peptide and Protein Science, Clayton, VIC 3800, Australia.
| |
Collapse
|
16
|
Peng H, Schmiederer J, Chen X, Panagiotou G, Kries H. Controlling Substrate- and Stereospecificity of Condensation Domains in Nonribosomal Peptide Synthetases. ACS Chem Biol 2024; 19:599-606. [PMID: 38395426 PMCID: PMC10949931 DOI: 10.1021/acschembio.3c00678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/30/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024]
Abstract
Nonribosomal peptide synthetases (NRPSs) are sophisticated molecular machines that biosynthesize peptide drugs. In attempts to generate new bioactive compounds, some parts of NRPSs have been successfully manipulated, but especially the influence of condensation (C-)domains on substrate specificity remains enigmatic and poorly controlled. To understand the influence of C-domains on substrate preference, we extensively evaluated the peptide formation of C-domain mutants in a bimodular NRPS system. Thus, we identified three key mutations that govern the preference for stereoconfiguration and side-chain identity. These mutations show similar effects in three different C-domains (GrsB1, TycB1, and SrfAC) when di- or pentapeptides are synthesized in vitro or in vivo. Strikingly, mutation E386L allows the stereopreference to be switched from d- to l-configured donor substrates. Our findings provide valuable insights into how cryptic specificity filters in C-domains can be re-engineered to clear roadblocks for NRPS engineering and enable the production of novel bioactive compounds.
Collapse
Affiliation(s)
- Huiyun Peng
- Junior
Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and
Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
| | - Julian Schmiederer
- Junior
Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and
Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
| | - Xiuqiang Chen
- Department
of Microbiome Dynamics, Leibniz Institute
for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
| | - Gianni Panagiotou
- Department
of Microbiome Dynamics, Leibniz Institute
for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
- Faculty
of Biological Sciences, Friedrich Schiller
University, 07745 Jena, Germany
- Department
of Medicine, The University of Hong Kong, 999999 Hong Kong
SAR, China
| | - Hajo Kries
- Junior
Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and
Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
- Department
of Chemistry, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| |
Collapse
|
17
|
Heard SC, Diehl KL, Winter JM. Biosynthesis of the fungal nonribosomal peptide penilumamide A and biochemical characterization of a pterin-specific adenylation domain. RSC Chem Biol 2023; 4:748-753. [PMID: 37799585 PMCID: PMC10549243 DOI: 10.1039/d3cb00088e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
We report the characterization of the penilumamide biosynthetic cluster from Aspergillus flavipes CNL-338. In vitro reconstitution experiments demonstrated that three nonribosomal peptide synthetases are required for constructing the tripeptide and studies with dissected adenylation domains allowed for the first biochemical characterization of a domain that selects a pterin-derived building block.
Collapse
Affiliation(s)
- Stephanie C Heard
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah Salt Lake City UT 84112 USA +1 (801) 585-7117
| | - Katharine L Diehl
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah Salt Lake City UT 84112 USA
| | - Jaclyn M Winter
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah Salt Lake City UT 84112 USA +1 (801) 585-7117
| |
Collapse
|
18
|
Li Y, Chen S. Structure modification of an antibiotic: by engineering the fusaricidin bio-synthetase A in Paenibacillus polymyxa. Front Microbiol 2023; 14:1239958. [PMID: 37822742 PMCID: PMC10562733 DOI: 10.3389/fmicb.2023.1239958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/04/2023] [Indexed: 10/13/2023] Open
Abstract
Fusaricidin, a lipopeptide antibiotic, is specifically produced by Paenibacillus polymyxa strains, which could strongly inhibit Fusarium species fungi. Fusaricidin bio-synthetase A (FusA) is composed of six modules and is essential for synthesizing the peptide moiety of fusaricidin. In this study, we confirmed the FusA of Paenibacillus polymyxa strain WLY78 involved in producing Fusaricidin LI-F07a. We constructed six engineered strains by deletion of each module within FusA from the genome of strain WLY78. One of the engineered strains is able to produce a novel compound that exhibits better antifungal activity than that of fusaricidin LI-F07a. This new compound, known as fusaricidin [ΔAla6] LI-F07a, has a molecular weight of 858. Our findings reveal that it exhibits a remarkable 1-fold increase in antifungal activity compared to previous fusaricidin, and the fermentation yield reaches ~55 mg/L. This research holds promising implications for plant protection against infections caused by Fusarium and Botrytis pathogen infection.
Collapse
Affiliation(s)
- Yunlong Li
- Chengdu NewSun Crop Science Co. Ltd., Chengdu, China
| | - Sanfeng Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
19
|
Patel KD, MacDonald MR, Ahmed SF, Singh J, Gulick AM. Structural advances toward understanding the catalytic activity and conformational dynamics of modular nonribosomal peptide synthetases. Nat Prod Rep 2023; 40:1550-1582. [PMID: 37114973 PMCID: PMC10510592 DOI: 10.1039/d3np00003f] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Indexed: 04/29/2023]
Abstract
Covering: up to fall 2022.Nonribosomal peptide synthetases (NRPSs) are a family of modular, multidomain enzymes that catalyze the biosynthesis of important peptide natural products, including antibiotics, siderophores, and molecules with other biological activity. The NRPS architecture involves an assembly line strategy that tethers amino acid building blocks and the growing peptides to integrated carrier protein domains that migrate between different catalytic domains for peptide bond formation and other chemical modifications. Examination of the structures of individual domains and larger multidomain proteins has identified conserved conformational states within a single module that are adopted by NRPS modules to carry out a coordinated biosynthetic strategy that is shared by diverse systems. In contrast, interactions between modules are much more dynamic and do not yet suggest conserved conformational states between modules. Here we describe the structures of NRPS protein domains and modules and discuss the implications for future natural product discovery.
Collapse
Affiliation(s)
- Ketan D Patel
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Monica R MacDonald
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Syed Fardin Ahmed
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Jitendra Singh
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Andrew M Gulick
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| |
Collapse
|
20
|
Muangkaew P, De Roo V, Zhou L, Girard L, Cesa-Luna C, Höfte M, De Mot R, Madder A, Geudens N, Martins JC. Stereomeric Lipopeptides from a Single Non-Ribosomal Peptide Synthetase as an Additional Source of Structural and Functional Diversification in Pseudomonas Lipopeptide Biosynthesis. Int J Mol Sci 2023; 24:14302. [PMID: 37762605 PMCID: PMC10531924 DOI: 10.3390/ijms241814302] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
In Pseudomonas lipopeptides, the D-configuration of amino acids is generated by dedicated, dual-function epimerization/condensation (E/C) domains. The increasing attention to stereochemistry in lipopeptide structure elucidation efforts has revealed multiple examples where epimerization does not occur, even though an E/C-type domain is present. While the origin of the idle epimerization in those E/C-domains remains elusive, epimerization activity has so far shown a binary profile: it is either 'on' (active) or 'off' (inactive). Here, we report the unprecedented observation of an E/C-domain that acts 'on and off', giving rise to the production of two diastereoisomeric lipopeptides by a single non-ribosomal peptide synthetase system. Using dereplication based on solid-phase peptide synthesis and NMR fingerprinting, we first show that the two cyclic lipopeptides produced by Pseudomonas entomophila COR5 correspond to entolysin A and B originally described for P. entomophila L48. Next, we prove that both are diastereoisomeric homologues differing only in the configuration of a single amino acid. This configurational variability is maintained in multiple Pseudomonas strains and typically occurs in a 3:2 ratio. Bioinformatic analysis reveals a possible correlation with the composition of the flanking sequence of the N-terminal secondary histidine motif characteristic for dual-function E/C-type domains. In permeabilization assays, using propidium iodide entolysin B has a higher antifungal activity compared to entolysin A against Botrytis cinerea and Pyricularia oryzae spores. The fact that configurational homologues are produced by the same NRPS system in a Pseudomonas strain adds a new level of structural and functional diversification to those already known from substrate flexibility during the recruitment of the amino acids and fatty acids and underscores the importance of complete stereochemical elucidation of non-ribosomal lipopeptide structures.
Collapse
Affiliation(s)
- Penthip Muangkaew
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Faculty of Science, Ghent University, B-9000 Ghent, Belgium; (P.M.); (V.D.R.); (A.M.)
| | - Vic De Roo
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Faculty of Science, Ghent University, B-9000 Ghent, Belgium; (P.M.); (V.D.R.); (A.M.)
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Faculty of Science, Ghent University, B-9000 Ghent, Belgium
| | - Lu Zhou
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium; (L.Z.); (M.H.)
| | - Léa Girard
- Centre of Microbial and Plant Genetics, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, B-3001 Heverlee, Belgium; (L.G.); (C.C.-L.); (R.D.M.)
| | - Catherine Cesa-Luna
- Centre of Microbial and Plant Genetics, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, B-3001 Heverlee, Belgium; (L.G.); (C.C.-L.); (R.D.M.)
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium; (L.Z.); (M.H.)
| | - René De Mot
- Centre of Microbial and Plant Genetics, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, B-3001 Heverlee, Belgium; (L.G.); (C.C.-L.); (R.D.M.)
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Faculty of Science, Ghent University, B-9000 Ghent, Belgium; (P.M.); (V.D.R.); (A.M.)
| | - Niels Geudens
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Faculty of Science, Ghent University, B-9000 Ghent, Belgium
| | - José C. Martins
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Faculty of Science, Ghent University, B-9000 Ghent, Belgium
| |
Collapse
|
21
|
Zhang K, Kries H. Biomimetic engineering of nonribosomal peptide synthesis. Biochem Soc Trans 2023; 51:1521-1532. [PMID: 37409512 DOI: 10.1042/bst20221264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/07/2023]
Abstract
Nonribosomal peptides (NRPs) have gained attention due to their diverse biological activities and potential applications in medicine and agriculture. The natural diversity of NRPs is a result of evolutionary processes that have occurred over millions of years. Recent studies have shed light on the mechanisms by which nonribosomal peptide synthetases (NRPSs) evolve, including gene duplication, recombination, and horizontal transfer. Mimicking natural evolution could be a useful strategy for engineering NRPSs to produce novel compounds with desired properties. Furthermore, the emergence of antibiotic-resistant bacteria has highlighted the urgent need for new drugs, and NRPs represent a promising avenue for drug discovery. This review discusses the engineering potential of NRPSs in light of their evolutionary history.
Collapse
Affiliation(s)
- Kexin Zhang
- Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI Jena), 07745 Jena, Germany
| | - Hajo Kries
- Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI Jena), 07745 Jena, Germany
- Organic Chemistry I, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
22
|
Stephan P, Langley C, Winkler D, Basquin J, Caputi L, O'Connor SE, Kries H. Directed Evolution of Piperazic Acid Incorporation by a Nonribosomal Peptide Synthetase. Angew Chem Int Ed Engl 2023; 62:e202304843. [PMID: 37326625 DOI: 10.1002/anie.202304843] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/17/2023]
Abstract
Engineering of biosynthetic enzymes is increasingly employed to synthesize structural analogues of antibiotics. Of special interest are nonribosomal peptide synthetases (NRPSs) responsible for the production of important antimicrobial peptides. Here, directed evolution of an adenylation domain of a Pro-specific NRPS module completely switched substrate specificity to the non-standard amino acid piperazic acid (Piz) bearing a labile N-N bond. This success was achieved by UPLC-MS/MS-based screening of small, rationally designed mutant libraries and can presumably be replicated with a larger number of substrates and NRPS modules. The evolved NRPS produces a Piz-derived gramicidin S analogue. Thus, we give new impetus to the too-early dismissed idea that widely accessible low-throughput methods can switch the specificity of NRPSs in a biosynthetically useful fashion.
Collapse
Affiliation(s)
- Philipp Stephan
- Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
| | - Chloe Langley
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Daniela Winkler
- Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
| | - Jérôme Basquin
- Department of Structural Cell Biology, Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152, Planegg Martinsried, Germany
| | - Lorenzo Caputi
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Hajo Kries
- Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
| |
Collapse
|
23
|
Zhang S, Zhang L, Greule A, Tailhades J, Marschall E, Prasongpholchai P, Leng DJ, Zhang J, Zhu J, Kaczmarski JA, Schittenhelm RB, Einsle O, Jackson CJ, Alberti F, Bechthold A, Zhang Y, Tosin M, Si T, Cryle MJ. P450-mediated dehydrotyrosine formation during WS9326 biosynthesis proceeds via dehydrogenation of a specific acylated dipeptide substrate. Acta Pharm Sin B 2023; 13:3561-3574. [PMID: 37655329 PMCID: PMC10465960 DOI: 10.1016/j.apsb.2023.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
WS9326A is a peptide antibiotic containing a highly unusual N-methyl-E-2-3-dehydrotyrosine (NMet-Dht) residue that is incorporated during peptide assembly on a non-ribosomal peptide synthetase (NRPS). The cytochrome P450 encoded by sas16 (P450Sas) has been shown to be essential for the formation of the alkene moiety in NMet-Dht, but the timing and mechanism of the P450Sas-mediated α,β-dehydrogenation of Dht remained unclear. Here, we show that the substrate of P450Sas is the NRPS-associated peptidyl carrier protein (PCP)-bound dipeptide intermediate (Z)-2-pent-1'-enyl-cinnamoyl-Thr-N-Me-Tyr. We demonstrate that P450Sas-mediated incorporation of the double bond follows N-methylation of the Tyr by the N-methyl transferase domain found within the NRPS, and further that P450Sas appears to be specific for substrates containing the (Z)-2-pent-1'-enyl-cinnamoyl group. A crystal structure of P450Sas reveals differences between P450Sas and other P450s involved in the modification of NRPS-associated substrates, including the substitution of the canonical active site alcohol residue with a phenylalanine (F250), which in turn is critical to P450Sas activity and WS9326A biosynthesis. Together, our results suggest that P450Sas catalyses the direct dehydrogenation of the NRPS-bound dipeptide substrate, thus expanding the repertoire of P450 enzymes that can be used to produce biologically active peptides.
Collapse
Affiliation(s)
- Songya Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lin Zhang
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg 79104, Germany
| | - Anja Greule
- Department of Biochemistry and Molecular Biology, the Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia
| | - Julien Tailhades
- Department of Biochemistry and Molecular Biology, the Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia
- EMBL Australia, Monash University, Clayton 3800, VIC, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Clayton 3800, VIC, Australia
| | - Edward Marschall
- Department of Biochemistry and Molecular Biology, the Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia
- EMBL Australia, Monash University, Clayton 3800, VIC, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Clayton 3800, VIC, Australia
| | | | - Daniel J. Leng
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Jingfan Zhang
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry CV4 7AL, UK
| | - Jing Zhu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Joe A. Kaczmarski
- Research School of Chemistry, the Australian National University, Acton 2601, ACT, Australia
| | - Ralf B. Schittenhelm
- Department of Biochemistry and Molecular Biology, the Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia
- Monash Proteomics and Metabolomics Facility, Monash University, Clayton 3800, VIC, Australia
| | - Oliver Einsle
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg 79104, Germany
| | - Colin J. Jackson
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Clayton 3800, VIC, Australia
- Research School of Chemistry, the Australian National University, Acton 2601, ACT, Australia
| | - Fabrizio Alberti
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry CV4 7AL, UK
| | - Andreas Bechthold
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg 79104, Germany
| | - Youming Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Manuela Tosin
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Tong Si
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Max J. Cryle
- Department of Biochemistry and Molecular Biology, the Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia
- EMBL Australia, Monash University, Clayton 3800, VIC, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Clayton 3800, VIC, Australia
| |
Collapse
|
24
|
Xu D, Zhang Z, Yao L, Wu L, Zhu Y, Zhao M, Xu H. Advances in the adenylation domain: discovery of diverse non-ribosomal peptides. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12585-2. [PMID: 37233756 DOI: 10.1007/s00253-023-12585-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
Non-ribosomal peptide synthetases are mega-enzyme assembly lines that synthesize many clinically useful compounds. As a gatekeeper, they have an adenylation (A)-domain that controls substrate specificity and plays an important role in product structural diversity. This review summarizes the natural distribution, catalytic mechanism, substrate prediction methods, and in vitro biochemical analysis of the A-domain. Taking genome mining of polyamino acid synthetases as an example, we introduce research on mining non-ribosomal peptides based on A-domains. We discuss how non-ribosomal peptide synthetases can be engineered based on the A-domain to obtain novel non-ribosomal peptides. This work provides guidance for screening non-ribosomal peptide-producing strains, offers a method to discover and identify A-domain functions, and will accelerate the engineering and genome mining of non-ribosomal peptide synthetases. KEY POINTS: • Introducing adenylation domain structure, substrate prediction, and biochemical analysis methods • Advances in mining homo polyamino acids based on adenylation domain analysis • Creating new non-ribosomal peptides by engineering adenylation domains.
Collapse
Affiliation(s)
- Delei Xu
- College of Biological and Food Engineering, Changshu Institute of Technology, Changshu, 215500, China.
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
- Nanjing Xuankai Biotechnology Co., Ltd, Nanjing, 210000, China.
| | - Zihan Zhang
- College of Biological and Food Engineering, Changshu Institute of Technology, Changshu, 215500, China
| | - Luye Yao
- College of Biological and Food Engineering, Changshu Institute of Technology, Changshu, 215500, China
| | - LingTian Wu
- College of Biological and Food Engineering, Changshu Institute of Technology, Changshu, 215500, China
| | - Yibo Zhu
- College of Biological and Food Engineering, Changshu Institute of Technology, Changshu, 215500, China
| | - Meilin Zhao
- College of Biological and Food Engineering, Changshu Institute of Technology, Changshu, 215500, China
| | - Hong Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
25
|
He R, Zhang J, Shao Y, Gu S, Song C, Qian L, Yin WB, Li Z. Knowledge-guided data mining on the standardized architecture of NRPS: Subtypes, novel motifs, and sequence entanglements. PLoS Comput Biol 2023; 19:e1011100. [PMID: 37186644 DOI: 10.1371/journal.pcbi.1011100] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 05/25/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Non-ribosomal peptide synthetase (NRPS) is a diverse family of biosynthetic enzymes for the assembly of bioactive peptides. Despite advances in microbial sequencing, the lack of a consistent standard for annotating NRPS domains and modules has made data-driven discoveries challenging. To address this, we introduced a standardized architecture for NRPS, by using known conserved motifs to partition typical domains. This motif-and-intermotif standardization allowed for systematic evaluations of sequence properties from a large number of NRPS pathways, resulting in the most comprehensive cross-kingdom C domain subtype classifications to date, as well as the discovery and experimental validation of novel conserved motifs with functional significance. Furthermore, our coevolution analysis revealed important barriers associated with re-engineering NRPSs and uncovered the entanglement between phylogeny and substrate specificity in NRPS sequences. Our findings provide a comprehensive and statistically insightful analysis of NRPS sequences, opening avenues for future data-driven discoveries.
Collapse
Affiliation(s)
- Ruolin He
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jinyu Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, PR China
| | - Yuanzhe Shao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Shaohua Gu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Chen Song
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Long Qian
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, PR China
| | - Zhiyuan Li
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
26
|
Zhang S, Chen Y, Zhu J, Lu Q, Cryle MJ, Zhang Y, Yan F. Structural diversity, biosynthesis, and biological functions of lipopeptides from Streptomyces. Nat Prod Rep 2023; 40:557-594. [PMID: 36484454 DOI: 10.1039/d2np00044j] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: up to 2022Streptomyces are ubiquitous in terrestrial and marine environments, where they display a fascinating metabolic diversity. As a result, these bacteria are a prolific source of active natural products. One important class of these natural products is the nonribosomal lipopeptides, which have diverse biological activities and play important roles in the lifestyle of Streptomyces. The importance of this class is highlighted by the use of related antibiotics in the clinic, such as daptomycin (tradename Cubicin). By virtue of recent advances spanning chemistry and biology, significant progress has been made in biosynthetic studies on the lipopeptide antibiotics produced by Streptomyces. This review will serve as a comprehensive guide for researchers working in this multidisciplinary field, providing a summary of recent progress regarding the investigation of lipopeptides from Streptomyces. In particular, we highlight the structures, properties, biosynthetic mechanisms, chemical and chemoenzymatic synthesis, and biological functions of lipopeptides. In addition, the application of genome mining techniques to Streptomyces that have led to the discovery of many novel lipopeptides is discussed, further demonstrating the potential of lipopeptides from Streptomyces for future development in modern medicine.
Collapse
Affiliation(s)
- Songya Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yunliang Chen
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
- The Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 1000050, China.
| | - Jing Zhu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qiujie Lu
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Max J Cryle
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800 Australia
- EMBL Australia, Monash University, Clayton, Victoria, 3800 Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, 3800 Australia
| | - Youming Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Fu Yan
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
27
|
Tseng CC, Chen L, Lee C, Tu Z, Lin CH, Lin HC. Characterization and catalytic investigation of fungal single-module nonribosomal peptide synthetase in terpene-amino acid meroterpenoid biosynthesis. J Ind Microbiol Biotechnol 2023; 50:kuad043. [PMID: 38049376 PMCID: PMC10720950 DOI: 10.1093/jimb/kuad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
Hybrid natural products are compounds that originate from diverse biosynthetic pathways and undergo a conjugation process, which enables them to expand their chemical diversity and biological functionality. Terpene-amino acid meroterpenoids have garnered increasing attention in recent years, driven by the discovery of noteworthy examples such as the anthelmintic CJ-12662, the insecticidal paeciloxazine, and aculene A (1). In the biosynthesis of terpene-amino acid natural products, single-module nonribosomal peptide synthetases (NRPSs) have been identified to be involved in the esterification step, catalyzing the fusion of modified terpene and amino acid components. Despite prior investigations into these NRPSs through gene deletion or in vivo experiments, the enzymatic basis and mechanistic insights underlying this family of single-module NRPSs remain unclear. In this study, we performed biochemical characterization of AneB by in vitro characterization, molecular docking, and site-directed mutagenesis. The enzyme reaction analyses, performed with L-proline and daucane/nordaucane sesquiterpene substrates, revealed that AneB specifically esterifies the C10-OH of aculenes with L-proline. Notably, in contrast to ThmA in CJ-12662 biosynthesis, which exclusively recognizes oxygenated amorpha-4,11-diene sesquiterpenes for L-tryptophan transfer, AneB demonstrates broad substrate selectivity, including oxygenated amorpha-4,11-diene and 2-phenylethanol, resulting in the production of diverse unnatural prolyl compounds. Furthermore, site-directed mutagenesis experiments indicated the involvement of H794 and D798 in the esterification catalyzed by AneB. Lastly, domain swapping between AneB and ThmA unveiled that the A‒T domains of ThmA can be effectively harnessed by the C domain of AneB for L-tryptophan transfer, thus highlighting the potential of the C domain of AneB for generating various terpene-amino acid meroterpenoid derivatives. ONE-SENTENCE SUMMARY The enzymatic basis and mechanistic insights into AneB, a single-module NRPS, highlight its capacity to generate various terpene-amino acid meroterpenoid derivatives.
Collapse
Affiliation(s)
- Cheng-Chung Tseng
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C
- School of Pharmacy, National Taiwan University, Taipei 100, Taiwan R.O.C
| | - Li‐Xun Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan R.O.C
| | - Chi‐Fang Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan R.O.C
| | - Zhijay Tu
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan R.O.C
| | - Hsiao-Ching Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C
- School of Pharmacy, National Taiwan University, Taipei 100, Taiwan R.O.C
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan R.O.C
| |
Collapse
|
28
|
Dynamics and mechanistic interpretations of nonribosomal peptide synthetase cyclization domains. Curr Opin Chem Biol 2023; 72:102228. [PMID: 36402006 DOI: 10.1016/j.cbpa.2022.102228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022]
Abstract
Ox-/thiazoline groups in nonribosomal peptides are formed by a variant of peptide-forming condensation domains called heterocyclization (Cy) domains and appear in a range of pharmaceutically important natural products and virulence factors. Recent cryo-EM, crystallographic, and NMR studies of Cy domains make it opportune to revisit outstanding questions regarding their molecular mechanisms. This review covers structural and dynamical findings about Cy domains that will inform future bioengineering efforts and our understanding of natural product synthesis.
Collapse
|
29
|
Dhakal D, Kokkaliari S, Rubin GM, Paul VJ, Ding Y, Luesch H. Biosynthesis of Lyngbyastatins 1 and 3, Cytotoxic Depsipeptides from an Okeania sp. Marine Cyanobacterium. JOURNAL OF NATURAL PRODUCTS 2023; 86:85-93. [PMID: 36546857 PMCID: PMC10197921 DOI: 10.1021/acs.jnatprod.2c00782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Lyngbyastatins (Lbns) 1 (1) and 3 (2) belong to a group of cyclic depsipeptides that inhibit cancer cell proliferation. These compounds have been isolated from different marine cyanobacterial collections, while further development of these compounds relies on their lengthy total synthesis. Biosynthetic studies of these compounds can provide viable strategies to access these compounds and develop new analogs. In this study, we report the identification and characterization of one Lbn biosynthetic gene cluster (BGC) from the marine cyanobacterium Okeania sp. VPG18-21. We initially identified 1 and 2 in the organic extract by mass spectrometry and performed the targeted isolation of these compounds, which feature a (2S,3R)-3-amino-2-methylpentanoic acid (MAP) and a (2S,3R)-3-amino-2-methylhexanoic acid (Amha) moiety, respectively. Parallel metagenomic sequencing of VPG18-21 led to the identification of a putative Lbn BGC that encodes six megaenzymes (LbnA-F), including one polyketide synthase (PKS, LbnE), four nonribosomal peptide synthetases (NRPSs, LbnB-D and -F), and one PKS-NRPS hybrid (LbnA). Bioinformatic analysis of these enzymes suggested that the BGC produces 1 and 2. Furthermore, our biochemical studies of three recombinant adenylation domains uncovered their substrate specificities, supporting the identity of the BGC. Finally, we identified near-complete Lbn-like BGCs in the genomes of two other marine cyanobacteria.
Collapse
Affiliation(s)
- Dipesh Dhakal
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Sofia Kokkaliari
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Garret M. Rubin
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Valerie J. Paul
- Smithsonian Marine Station at Ft. Pierce, 701 Seaway Drive, Ft. Pierce, Florida 34949, United States
| | - Yousong Ding
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Hendrik Luesch
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| |
Collapse
|
30
|
Ho YTC, Zhao Y, Tailhades J, Cryle MJ. A Chemoenzymatic Approach to Investigate Cytochrome P450 Cross-Linking in Glycopeptide Antibiotic Biosynthesis. Methods Mol Biol 2023; 2670:187-206. [PMID: 37184705 DOI: 10.1007/978-1-0716-3214-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Glycopeptide antibiotics (GPAs) are important and medically relevant peptide natural products. In the context of antimicrobial resistance (AMR), understanding and manipulating GPA biosynthesis is essential to discover new bioactive derivatives of these peptides. Among all the enzymatic steps in GPA biosynthesis, the most complex occurs during the maturation (cross-linking) of the peptide aglycone. This is achieved-while the peptide remains attached to the nonribosomal peptide synthetase (NRPS) machinery-through the action of a cytochrome P450 (CYP450 or Oxy)-mediated cyclization cascade. There is great interest in understanding the formation of the cross-links between the aromatic side chains in GPAs as this process leads to the cup-shaped aglycone, which is itself a requirement for antibiotic activity. In this regard, the use of in vitro experiments is crucial to study this process. To address the process of peptide cyclization during GPA biosynthesis, a series of peptide substrates and different Oxy enzymes are required. In this chapter, we describe a practical and efficient route for the synthesis of peptidyl-CoAs, the expression of proteins/enzymes involved in the in vitro cyclization assay, the loading of the PCP with peptidyl-CoAs, an optimized CYP450-mediated cyclization cascade and assay workup followed by mass spectrometry (MS) characterization. This in vitro assay affords high conversion to cyclic peptides and demonstrates the tolerance of the P450s for novel GPA precursor peptide substrates.
Collapse
Affiliation(s)
- Y T Candace Ho
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Yongwei Zhao
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Julien Tailhades
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Max J Cryle
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
31
|
Recent advances in the structural biology of modular polyketide synthases and nonribosomal peptide synthetases. Curr Opin Chem Biol 2022; 71:102223. [PMID: 36265331 DOI: 10.1016/j.cbpa.2022.102223] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 01/27/2023]
Abstract
Polyketides and nonribosomal peptides are an important class of natural products with useful bioactivities. These compounds are similarly biosynthesized using enzymes with modular structures despite having different physicochemical properties. These enzymes are attractive targets for bioengineering to produce "unnatural" natural products owing to their modular structures. Therefore, their structures have been studied for a long time; however, the main focus was on truncated-single domains. Surprisingly, there is an increasing number of the structures of whole modules reported, most of which have been enabled through the recent advances in cryogenic electron microscopy technology. In this review, we have summarized the recent advances in the structural elucidation of whole modules.
Collapse
|
32
|
Rüschenbaum J, Steinchen W, Mayerthaler F, Feldberg A, Mootz HD. FRET Monitoring of a Nonribosomal Peptide Synthetase Elongation Module Reveals Carrier Protein Shuttling between Catalytic Domains. Angew Chem Int Ed Engl 2022; 61:e202212994. [PMID: 36169151 PMCID: PMC9828546 DOI: 10.1002/anie.202212994] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Indexed: 01/12/2023]
Abstract
Nonribosomal peptide synthetases (NRPSs) employ multiple domains, specifically arranged in modules, for the assembly-line biosynthesis of a plethora of bioactive peptides. It is poorly understood how catalysis is correlated with the domain interplay and associated conformational changes. We developed FRET sensors of an elongation module to study in solution the intramodular interactions of the peptidyl carrier protein (PCP) with adenylation (A) and condensation (C) domains. Backed by HDX-MS analysis, we discovered dynamic mixtures of conformations that undergo distinct population changes in favor of the PCP-A and PCP-C interactions upon completion of the adenylation and thiolation reactions, respectively. To probe this model we blocked PCP binding to the C domain by photocaging and triggered peptide bond formation with light. Changing intramodular domain affinities of the PCP appear to result in conformational shifts according to the logic of the templated assembly process.
Collapse
Affiliation(s)
- Jennifer Rüschenbaum
- University of MünsterInstitute of BiochemistryCorrensstraße 3648149MünsterGermany
| | - Wieland Steinchen
- Philipps-University MarburgSYNMIKRO Research Center & Faculty of ChemistryKarl-von-Frisch-Straße 1435043MarburgGermany
| | - Florian Mayerthaler
- University of MünsterInstitute of BiochemistryCorrensstraße 3648149MünsterGermany
| | - Anna‐Lena Feldberg
- University of MünsterInstitute of BiochemistryCorrensstraße 3648149MünsterGermany
| | - Henning D. Mootz
- University of MünsterInstitute of BiochemistryCorrensstraße 3648149MünsterGermany
| |
Collapse
|
33
|
Terlouw BR, Blin K, Navarro-Muñoz JC, Avalon NE, Chevrette MG, Egbert S, Lee S, Meijer D, Recchia MJ, Reitz Z, van Santen J, Selem-Mojica N, Tørring T, Zaroubi L, Alanjary M, Aleti G, Aguilar C, Al-Salihi SA, Augustijn H, Avelar-Rivas J, Avitia-Domínguez L, Barona-Gómez F, Bernaldo-Agüero J, Bielinski VA, Biermann F, Booth T, Carrion Bravo V, Castelo-Branco R, Chagas F, Cruz-Morales P, Du C, Duncan K, Gavriilidou A, Gayrard D, Gutiérrez-García K, Haslinger K, Helfrich EN, van der Hooft JJ, Jati A, Kalkreuter E, Kalyvas N, Kang K, Kautsar S, Kim W, Kunjapur A, Li YX, Lin GM, Loureiro C, Louwen JR, Louwen NL, Lund G, Parra J, Philmus B, Pourmohsenin B, Pronk LU, Rego A, Rex D, Robinson S, Rosas-Becerra L, Roxborough E, Schorn M, Scobie D, Singh K, Sokolova N, Tang X, Udwary D, Vigneshwari A, Vind K, Vromans SJM, Waschulin V, Williams S, Winter J, Witte T, Xie H, Yang D, Yu J, Zdouc M, Zhong Z, Collemare J, Linington R, Weber T, Medema M. MIBiG 3.0: a community-driven effort to annotate experimentally validated biosynthetic gene clusters. Nucleic Acids Res 2022; 51:D603-D610. [PMID: 36399496 PMCID: PMC9825592 DOI: 10.1093/nar/gkac1049] [Citation(s) in RCA: 209] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/07/2022] [Accepted: 10/21/2022] [Indexed: 11/19/2022] Open
Abstract
With an ever-increasing amount of (meta)genomic data being deposited in sequence databases, (meta)genome mining for natural product biosynthetic pathways occupies a critical role in the discovery of novel pharmaceutical drugs, crop protection agents and biomaterials. The genes that encode these pathways are often organised into biosynthetic gene clusters (BGCs). In 2015, we defined the Minimum Information about a Biosynthetic Gene cluster (MIBiG): a standardised data format that describes the minimally required information to uniquely characterise a BGC. We simultaneously constructed an accompanying online database of BGCs, which has since been widely used by the community as a reference dataset for BGCs and was expanded to 2021 entries in 2019 (MIBiG 2.0). Here, we describe MIBiG 3.0, a database update comprising large-scale validation and re-annotation of existing entries and 661 new entries. Particular attention was paid to the annotation of compound structures and biological activities, as well as protein domain selectivities. Together, these new features keep the database up-to-date, and will provide new opportunities for the scientific community to use its freely available data, e.g. for the training of new machine learning models to predict sequence-structure-function relationships for diverse natural products. MIBiG 3.0 is accessible online at https://mibig.secondarymetabolites.org/.
Collapse
Affiliation(s)
| | | | - Jorge C Navarro-Muñoz
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg, 6708 PB Wageningen, The Netherlands,Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Nicole E Avalon
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0212, USA
| | - Marc G Chevrette
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Susan Egbert
- Department of Chemistry, University of Manitoba, 66 Chancellors Cir, Winnipeg, MB R3T 2N2, Canada
| | - Sanghoon Lee
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - David Meijer
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg, 6708 PB Wageningen, The Netherlands
| | - Michael J J Recchia
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Zachary L Reitz
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg, 6708 PB Wageningen, The Netherlands
| | - Jeffrey A van Santen
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada,Unnatural Products, 2161 Delaware Ave. Suite A, Santa Cruz, CA 95060, USA
| | | | - Thomas Tørring
- Department of Biological and Chemical Engineering, Aarhus University, Denmark
| | - Liana Zaroubi
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Mohammad Alanjary
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg, 6708 PB Wageningen, The Netherlands
| | - Gajender Aleti
- Food and Animal Sciences, Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - César Aguilar
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | | | - Hannah E Augustijn
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg, 6708 PB Wageningen, The Netherlands,Institute of Biology, Leiden University, Sylviusweg 72, 2333BE Leiden, The Netherlands
| | - J Abraham Avelar-Rivas
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Cinvestav. Km 9.6 Libramiento Norte Carretera Irapuato-León, CP 36824 Irapuato, Gto., México
| | - Luis A Avitia-Domínguez
- Institute of Biology, Leiden University, Sylviusweg 72, 2333BE Leiden, The Netherlands,Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Cinvestav. Km 9.6 Libramiento Norte Carretera Irapuato-León, CP 36824 Irapuato, Gto., México
| | - Francisco Barona-Gómez
- Institute of Biology, Leiden University, Sylviusweg 72, 2333BE Leiden, The Netherlands,Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Cinvestav. Km 9.6 Libramiento Norte Carretera Irapuato-León, CP 36824 Irapuato, Gto., México
| | - Jordan Bernaldo-Agüero
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Vincent A Bielinski
- Synthetic Biology and Bioenergy Group, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Friederike Biermann
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg, 6708 PB Wageningen, The Netherlands,Institute of Molecular Bio Science, Goethe-University Frankfurt, D-60438 Frankfurt am Main, Germany,LOEWE Center for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Thomas J Booth
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark,School of Molecular Sciences, University of Western Australia, Perth, Australia
| | - Victor J Carrion Bravo
- Institute of Biology, Leiden University, Sylviusweg 72, 2333BE Leiden, The Netherlands,Departamento de Microbiología, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, Spain,Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Raquel Castelo-Branco
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Portugal,Faculty of Sciences, University of Porto, 4150-179 Porto, Portugal
| | - Fernanda O Chagas
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-599, Brazil
| | - Pablo Cruz-Morales
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Chao Du
- Institute of Biology, Leiden University, Sylviusweg 72, 2333BE Leiden, The Netherlands
| | - Katherine R Duncan
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences, 141 Cathedral Street, Glasgow, G4 ORE UK
| | - Athina Gavriilidou
- Translational Genome Mining for Natural Products, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany,Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Tübingen, Germany
| | - Damien Gayrard
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Karina Gutiérrez-García
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD 21218, USA
| | - Kristina Haslinger
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Eric J N Helfrich
- Institute of Molecular Bio Science, Goethe-University Frankfurt, D-60438 Frankfurt am Main, Germany,LOEWE Center for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Justin J J van der Hooft
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg, 6708 PB Wageningen, The Netherlands,Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa
| | - Afif P Jati
- Indonesian Society of Bioinformatics And Biodiversity, Indonesia
| | - Edward Kalkreuter
- Department of Chemistry, University of Florida Scripps Biomedical Research, 110 Scripps Way, Jupiter, FL 33458, USA
| | - Nikolaos Kalyvas
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Kyo Bin Kang
- College of Pharmacy, Sookmyung Women's University, Seoul, South Korea
| | - Satria Kautsar
- Department of Chemistry, University of Florida Scripps Biomedical Research, 110 Scripps Way, Jupiter, FL 33458, USA
| | - Wonyong Kim
- Korean Lichen Research Institute, Sunchon National Universtiy, Suncheon, South Korea
| | - Aditya M Kunjapur
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Yong-Xin Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China
| | - Geng-Min Lin
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Catarina Loureiro
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Joris J R Louwen
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg, 6708 PB Wageningen, The Netherlands
| | - Nico L L Louwen
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg, 6708 PB Wageningen, The Netherlands
| | - George Lund
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Jonathan Parra
- Instituto de Investigaciones Farmacéuticas (INIFAR), Facultad de Farmacia, Universidad de Costa Rica, San José, 11501-2060, Costa Rica,Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José, 11501-2060, Costa Rica,Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200, San José, Costa Rica
| | - Benjamin Philmus
- Department of Pharmaceutical Sciences, Oregon State University, USA
| | - Bita Pourmohsenin
- Translational Genome Mining for Natural Products, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany,Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Tübingen, Germany
| | - Lotte J U Pronk
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg, 6708 PB Wageningen, The Netherlands
| | - Adriana Rego
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Portugal,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Portugal
| | | | - Serina Robinson
- Department of Environmental Microbiology, Eawag: Swiss Federal Institute for Aquatic Science and Technology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | - L Rodrigo Rosas-Becerra
- Institute of Biology, Leiden University, Sylviusweg 72, 2333BE Leiden, The Netherlands,Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Cinvestav. Km 9.6 Libramiento Norte Carretera Irapuato-León, CP 36824 Irapuato, Gto., México
| | - Eve T Roxborough
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Michelle A Schorn
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Darren J Scobie
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences, 141 Cathedral Street, Glasgow, G4 ORE UK
| | - Kumar Saurabh Singh
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg, 6708 PB Wageningen, The Netherlands
| | - Nika Sokolova
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Xiaoyu Tang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Daniel Udwary
- DOE Joint Genome Institute, Lawrence Berkeley National Lab, Berkeley, CA, USA
| | | | - Kristiina Vind
- Host-Microbe Interactomics Group, Wageningen University, 6708 WD Wageningen, The Netherlands,NAICONS Srl, 20139 Milan, Italy
| | - Sophie P J M Vromans
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg, 6708 PB Wageningen, The Netherlands
| | - Valentin Waschulin
- School of Life Sciences, The University of Warwick, Coventry CV4 7AL, UK
| | - Sam E Williams
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Jaclyn M Winter
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Thomas E Witte
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - Huali Xie
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg, 6708 PB Wageningen, The Netherlands,Key laboratory of Detection for Biotoxins, Ministry of Agriculture and Rural Affairs and Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430061, China
| | - Dong Yang
- Department of Chemistry and Natural Products Discovery Center, UF Scripps Biomedical Research, University of Florida, Jupiter, FL 33458, USA
| | - Jingwei Yu
- SUSTech-PKU Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Mitja Zdouc
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg, 6708 PB Wageningen, The Netherlands
| | - Zheng Zhong
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Jérôme Collemare
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Roger G Linington
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Tilmann Weber
- Correspondence may also be addressed to Tilmann Weber. Tel: +45 24896132;
| | - Marnix H Medema
- To whom correspondence should be addressed. Tel: +31 317484706;
| |
Collapse
|
34
|
Chiu S, Hancock AM, Schofner BW, Sniezek KJ, Soto-Echevarria N, Leon G, Sivaloganathan DM, Wan X, Brynildsen MP. Causes of polymyxin treatment failure and new derivatives to fill the gap. J Antibiot (Tokyo) 2022; 75:593-609. [PMID: 36123537 DOI: 10.1038/s41429-022-00561-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/08/2022]
Abstract
Polymyxins are a class of antibiotics that were discovered in 1947 from programs searching for compounds effective in the treatment of Gram-negative infections. Produced by the Gram-positive bacterium Paenibacillus polymyxa and composed of a cyclic peptide chain with a peptide-fatty acyl tail, polymyxins exert bactericidal effects through membrane disruption. Currently, polymyxin B and colistin (polymyxin E) have been developed for clinical use, where they are reserved as "last-line" therapies for multidrug-resistant (MDR) infections. Unfortunately, the incidences of strains resistant to polymyxins have been increasing globally, and polymyxin heteroresistance has been gaining appreciation as an important clinical challenge. These phenomena, along with bacterial tolerance to this antibiotic class, constitute important contributors to polymyxin treatment failure. Here, we review polymyxins and their mechanism of action, summarize the current understanding of how polymyxin treatment fails, and discuss how the next generation of polymyxins holds promise to invigorate this antibiotic class.
Collapse
Affiliation(s)
- Selena Chiu
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Anna M Hancock
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Bob W Schofner
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Katherine J Sniezek
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | | | - Gabrielle Leon
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | | | - Xuanqing Wan
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
35
|
Han P, Chen Z, Liu Y, Ma A, Li S, Jia Y. An accurate strategy for pointing the key biocatalytic sites of bre2691A protein for modification of the brevilaterin from Brevibacillus laterosporus. Microb Cell Fact 2022; 21:196. [PMID: 36123650 PMCID: PMC9484153 DOI: 10.1186/s12934-022-01918-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Brevilaterin A-E, a novel class of multi-component cationic antimicrobial lipopeptides, were biosynthesized by a non-ribosomal peptides synthetase (NRPS) in Brevibacillus laterosporus. However, the antimicrobial abilities of different brevilaterin components varied greatly, and this multi-component form was impeding the scale production of the excellent component, and a little information about the brevilaterin biosynthesis mechanism was available to apply in brevilaterin design modification. In this study, we used an accurate strategy that revealed the reason for producing multi-component was the substrate selectivity of bre2691A protein being not enough specific and pinpointed the key design sites to make the specificity of bre2691A enhanced. RESULTS Bioinformatic analysis revealed that the biocatalytic site of bre2691A, which was an adenylation domain catalyzed and recognized methionine, leucine, valine and isoleucine and thus introduced them into brevilaterins and caused different components (brevilaterin A-E), was consisted of A1 ~ A10 residues named specificity-conferring code. Coupling molecular docking simulations with mutation studies identified A2 and A7 as critical residues, where determined substrate-specificity and impacted activity. The in virto activity assay showed that the A2 mutant (G193A) would lose activity against methionine and have no effect on the other three amino acids, the A7 mutant (G285C) would enhance the catalytic activity against four substrates, especially against leucine at almost a double activity. When the A2 and A7 residues were synchronously mutated, this mutant would be more focused on recognizing leucine. CONCLUSIONS An accurate strategy that combined with bioinformatics and site-directed mutation techniques revealed the pivotal site A2 and A7 positions of bre2691A protein that could be used to design and modify brevilaterins, thus further providing a reasonable direction of genetic engineering for Brevibacillus laterosporus. A deeper understanding of the function of crucial residues in the adenylation domain would make it get more accurate and highly efficient design and more fully utilized. Furthermore, it would contribute to biotechnological applications, namely for the large centralized synthesis of antimicrobial peptides, or for the optimization of their production.
Collapse
Affiliation(s)
- Panpan Han
- School of Food and Health, Beijing Technology and Business University, No.33 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Zhou Chen
- School of Food and Health, Beijing Technology and Business University, No.33 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Yangliu Liu
- School of Food and Health, Beijing Technology and Business University, No.33 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Aijin Ma
- School of Food and Health, Beijing Technology and Business University, No.33 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Siting Li
- School of Food and Health, Beijing Technology and Business University, No.33 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Yingmin Jia
- School of Food and Health, Beijing Technology and Business University, No.33 Fucheng Road, Haidian District, Beijing, 100048, China.
| |
Collapse
|
36
|
Gnann AD, Xia Y, Soule J, Barthélemy C, Mawani JS, Musoke SN, Castellano BM, Brignole EJ, Frueh DP, Dowling DP. High-resolution structures of a siderophore-producing cyclization domain from Yersinia pestis offer a refined proposal of substrate binding. J Biol Chem 2022; 298:102454. [PMID: 36063993 PMCID: PMC9547227 DOI: 10.1016/j.jbc.2022.102454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 01/01/2023] Open
Abstract
Nonribosomal peptide synthetase heterocyclization (Cy) domains generate biologically important oxazoline/thiazoline groups found in natural products, including pharmaceuticals and virulence factors such as some siderophores. Cy domains catalyze consecutive condensation and cyclodehydration reactions, although the mechanism is unknown. To better understand Cy domain catalysis, here we report the crystal structure of the second Cy domain (Cy2) of yersiniabactin synthetase from the causative agent of the plague, Yersinia pestis. Our high-resolution structure of Cy2 adopts a conformation that enables exploration of interactions with the extended thiazoline-containing cyclodehydration intermediate and the acceptor carrier protein (CP) to which it is tethered. We also report complementary electrostatic interfaces between Cy2 and its donor CP that mediate donor binding. Finally, we explored domain flexibility through normal mode analysis and identified small-molecule fragment-binding sites that may inform future antibiotic design targeting Cy function. Our results suggest how CP binding may influence global Cy conformations, with consequences for active-site remodeling to facilitate the separate condensation and cyclodehydration steps as well as potential inhibitor development.
Collapse
Affiliation(s)
- Andrew D. Gnann
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Yuan Xia
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Jess Soule
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Clara Barthélemy
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Jayata S. Mawani
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Sarah Nzikoba Musoke
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Brian M. Castellano
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Edward J. Brignole
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Dominique P. Frueh
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel P. Dowling
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts, USA,For correspondence: Daniel P. Dowling
| |
Collapse
|
37
|
Wang CK, Craik DJ. CIPPS, an Australian Centre for Peptide and Protein Research, goes live! Peptides 2022; 155:170835. [PMID: 35753503 DOI: 10.1016/j.peptides.2022.170835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Conan K Wang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
38
|
Marincin KA, Hwang Y, Kengmana ES, Meyers DJ, Frueh DP. NMR as a readout to monitor and restore the integrity of complex chemoenzymatic reactions. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 342:107265. [PMID: 35849973 PMCID: PMC9463103 DOI: 10.1016/j.jmr.2022.107265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The non-invasive nature of NMR offers a means to monitor biochemical reactions in situ at the atomic level. We harness this advantage to monitor a complex chemoenzymatic reaction that sequentially modifies reagents and loads the product on a nonribosomal peptide synthetase carrier protein. We present a protocol including a pulse sequence that permits to assess both the integrity of reagents and the completion of each step in the reaction, thus alleviating otherwise time-consuming and costly approaches to debug and repeat inefficient reactions. This study highlights the importance of NMR as a tool to establish reliable and reproducible experimental conditions in biochemical studies.
Collapse
Affiliation(s)
- Kenneth A Marincin
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Yousang Hwang
- Department of Pharmacology and Molecular Sciences Synthetic Core Facility, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Everett S Kengmana
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Whiting School of Engineering, Baltimore, MD 21218, USA
| | - David J Meyers
- Department of Pharmacology and Molecular Sciences Synthetic Core Facility, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Dominique P Frueh
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
39
|
Wheadon MJ, Townsend CA. Accurate Substrate-Like Probes for Trapping Late-Stage Intermediates in Nonribosomal Peptide Synthetase Condensation Domains. ACS Chem Biol 2022; 17:2046-2053. [PMID: 35914245 PMCID: PMC10029145 DOI: 10.1021/acschembio.2c00474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nonribosomal peptide synthetases (NRPSs) are a family of multidomain enzymes dedicated to the production of peptide natural products. Central to NRPS function are condensation (C) domains, which catalyze peptide bond formation and a number of specialized transformations including dehydroamino acid and β-lactam synthesis. Structures of C domains in catalytically informative states are limited due to a lack of clear strategies for stabilizing C domain interactions with their substrates and client domains. Inspired by a β-lactam forming C domain, we report herein the synthesis and application of 1, which forms irreversible cross-links with engineered thiol nucleophiles in a C domain active site. Deployment of 1 demonstrates the synthetic tractability of trapping late-stage nascent peptides in C domains and provides a readily adaptable tactic for stabilizing C domain interactions in multidomain NRPS fragments.
Collapse
Affiliation(s)
- Michael J Wheadon
- Johns Hopkins University, 3400 N Charles St., Baltimore, Maryland 21218, United States
| | - Craig A Townsend
- Johns Hopkins University, 3400 N Charles St., Baltimore, Maryland 21218, United States
| |
Collapse
|
40
|
Hansen MH, Stegmann E, Cryle MJ. Beyond vancomycin: recent advances in the modification, reengineering, production and discovery of improved glycopeptide antibiotics to tackle multidrug-resistant bacteria. Curr Opin Biotechnol 2022; 77:102767. [PMID: 35933924 DOI: 10.1016/j.copbio.2022.102767] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/01/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022]
Abstract
Glycopeptide antibiotics (GPAs), which include vancomycin and teicoplanin, are important last-resort antibiotics used to treat multidrug-resistant Gram-positive bacterial infections. Whilst second-generation GPAs - generated through chemical modification of natural GPAs - have proven successful, the emergence of GPA resistance has underlined the need to develop new members of this compound class. Significant recent advances have been made in GPA research, including gaining an in-depth understanding of their biosynthesis, improving titre in production strains, developing new derivatives via novel chemical modifications and identifying a new mode of action for structurally diverse type-V GPAs. Taken together, these advances demonstrate significant untapped potential for the further development of GPAs to tackle the growing threat of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Mathias H Hansen
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; EMBL Australia, Monash University, Clayton, Victoria 3800, Australia; ARC Centre of Excellence for Innovations in Peptide and Protein Science, Australia
| | - Evi Stegmann
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany; Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Max J Cryle
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; EMBL Australia, Monash University, Clayton, Victoria 3800, Australia; ARC Centre of Excellence for Innovations in Peptide and Protein Science, Australia.
| |
Collapse
|
41
|
Patteson JB, Fortinez CM, Putz AT, Rodriguez-Rivas J, Bryant LH, Adhikari K, Weigt M, Schmeing TM, Li B. Structure and Function of a Dehydrating Condensation Domain in Nonribosomal Peptide Biosynthesis. J Am Chem Soc 2022; 144:14057-14070. [PMID: 35895935 DOI: 10.1021/jacs.1c13404] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dehydroamino acids are important structural motifs and biosynthetic intermediates for natural products. Many bioactive natural products of nonribosomal origin contain dehydroamino acids; however, the biosynthesis of dehydroamino acids in most nonribosomal peptides is not well understood. Here, we provide biochemical and bioinformatic evidence in support of the role of a unique class of condensation domains in dehydration (CmodAA). We also obtain the crystal structure of a CmodAA domain, which is part of the nonribosomal peptide synthetase AmbE in the biosynthesis of the antibiotic methoxyvinylglycine. Biochemical analysis reveals that AmbE-CmodAA modifies a peptide substrate that is attached to the donor carrier protein. Mutational studies of AmbE-CmodAA identify several key residues for activity, including four residues that are mostly conserved in the CmodAA subfamily. Alanine mutation of these conserved residues either significantly increases or decreases AmbE activity. AmbE exhibits a dimeric conformation, which is uncommon and could enable transfer of an intermediate between different protomers. Our discovery highlights a central dehydrating function for CmodAA domains that unifies dehydroamino acid biosynthesis in diverse nonribosomal peptide pathways. Our work also begins to shed light on the mechanism of CmodAA domains. Understanding CmodAA domain function may facilitate identification of new natural products that contain dehydroamino acids and enable engineering of dehydroamino acids into nonribosomal peptides.
Collapse
Affiliation(s)
- Jon B Patteson
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Camille Marie Fortinez
- Department of Biochemistry and Centre de recherche en biologie structurale, McGill University, Montréal, Canada H3G 0B1
| | - Andrew T Putz
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Juan Rodriguez-Rivas
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biologie Computationnelle et Quantitative - LCQB, Paris 75005, France
| | - L Henry Bryant
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kamal Adhikari
- Department of Biochemistry and Centre de recherche en biologie structurale, McGill University, Montréal, Canada H3G 0B1
| | - Martin Weigt
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biologie Computationnelle et Quantitative - LCQB, Paris 75005, France
| | - T Martin Schmeing
- Department of Biochemistry and Centre de recherche en biologie structurale, McGill University, Montréal, Canada H3G 0B1
| | - Bo Li
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
42
|
Mishra SH, Kancherla AK, Marincin KA, Bouvignies G, Nerli S, Sgourakis N, Dowling DP, Frueh DP. Global protein dynamics as communication sensors in peptide synthetase domains. SCIENCE ADVANCES 2022; 8:eabn6549. [PMID: 35857508 PMCID: PMC9286511 DOI: 10.1126/sciadv.abn6549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/28/2022] [Indexed: 05/04/2023]
Abstract
Biological activity is governed by the timely redistribution of molecular interactions, and static structural snapshots often appear insufficient to provide the molecular determinants that choreograph communication. This conundrum applies to multidomain enzymatic systems called nonribosomal peptide synthetases (NRPSs), which assemble simple substrates into complex metabolites, where a dynamic domain organization challenges rational design to produce new pharmaceuticals. Using a nuclear magnetic resonance (NMR) atomic-level readout of biochemical transformations, we demonstrate that global structural fluctuations help promote substrate-dependent communication and allosteric responses, and impeding these global dynamics by a point-site mutation hampers allostery and molecular recognition. Our results establish global structural dynamics as sensors of molecular events that can remodel domain interactions, and they provide new perspectives on mechanisms of allostery, protein communication, and NRPS synthesis.
Collapse
Affiliation(s)
- Subrata H. Mishra
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aswani K. Kancherla
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth A. Marincin
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guillaume Bouvignies
- Laboratoire des Biomolécules (LBM), Département de Chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Santrupti Nerli
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Nikolaos Sgourakis
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel P. Dowling
- Department of Chemistry, University of Massachusetts Boston, Boston, MA, USA
| | - Dominique P. Frueh
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
43
|
Mogany T, Kumari S, Swalaha FM, Bux F. In silico analysis of enzymes involved in mycosporine-like amino acids biosynthesis in Euhalothece sp.: Structural and functional characterization. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Corpuz JC, Sanlley JO, Burkart MD. Protein-protein interface analysis of the non-ribosomal peptide synthetase peptidyl carrier protein and enzymatic domains. Synth Syst Biotechnol 2022; 7:677-688. [PMID: 35224236 PMCID: PMC8857579 DOI: 10.1016/j.synbio.2022.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/16/2022] Open
Abstract
Non-ribosomal peptide synthetases (NRPSs) are attractive targets for biosynthetic pathway engineering due to their modular architecture and the therapeutic relevance of their products. With catalysis mediated by specific protein-protein interactions formed between the peptidyl carrier protein (PCP) and its partner enzymes, NRPS enzymology and control remains fertile ground for discovery. This review focuses on the recent efforts within structural biology by compiling high-resolution structural data that shed light into the various protein-protein interfaces formed between the PCP and its partner enzymes, including the phosphopantetheinyl transferase (PPTase), adenylation (A) domain, condensation (C) domain, thioesterase (TE) domain and other tailoring enzymes within the synthetase. Integrating our understanding of how the PCP recognizes partner proteins with the potential to use directed evolution and combinatorial biosynthetic methods will enhance future efforts in discovery and production of new bioactive compounds.
Collapse
Affiliation(s)
- Joshua C. Corpuz
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - Javier O. Sanlley
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| |
Collapse
|
45
|
Abbood N, Duy Vo T, Watzel J, Bozhueyuek KAJ, Bode HB. Type S Non‐Ribosomal Peptide Synthetases for the Rapid Generation of Tailormade Peptide Libraries**. Chemistry 2022; 28:e202103963. [PMID: 35176184 PMCID: PMC9315016 DOI: 10.1002/chem.202103963] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 11/23/2022]
Abstract
Bacterial natural products in general, and non‐ribosomally synthesized peptides in particular, are structurally diverse and provide us with a broad range of pharmaceutically relevant bioactivities. Yet, traditional natural product research suffers from rediscovering the same scaffolds and has been stigmatized as inefficient, time‐, labour‐ and cost‐intensive. Combinatorial chemistry, on the other hand, can produce new molecules in greater numbers, cheaper and in less time than traditional natural product discovery, but also fails to meet current medical needs due to the limited biologically relevant chemical space that can be addressed. Consequently, methods for the high throughput generation of new natural products would offer a new approach to identifying novel bioactive chemical entities for the hit to lead phase of drug discovery programs. As a follow‐up to our previously published proof‐of‐principle study on generating bipartite type S non‐ribosomal peptide synthetases (NRPSs), we now envisaged the de novo generation of non‐ribosomal peptides (NRPs) on an unreached scale. Using synthetic zippers, we split NRPSs in up to three subunits and rapidly generated different bi‐ and tripartite NRPS libraries to produce 49 peptides, peptide derivatives, and de novo peptides at good titres up to 145 mg L−1. A further advantage of type S NRPSs not only is the possibility to easily expand the created libraries by re‐using previously created type S NRPS, but that functions of individual domains as well as domain‐domain interactions can be studied and assigned rapidly.
Collapse
Affiliation(s)
- Nadya Abbood
- Max-Planck-Institute for Terrestrial Microbiology Department of Natural Products in Organismic Interactions 35043 Marburg Germany
- Molecular Biotechnology Institute of Molecular Biosciences Goethe University Frankfurt 60438 Frankfurt am Main Germany
| | - Tien Duy Vo
- Molecular Biotechnology Institute of Molecular Biosciences Goethe University Frankfurt 60438 Frankfurt am Main Germany
| | - Jonas Watzel
- Molecular Biotechnology Institute of Molecular Biosciences Goethe University Frankfurt 60438 Frankfurt am Main Germany
| | - Kenan A. J. Bozhueyuek
- Max-Planck-Institute for Terrestrial Microbiology Department of Natural Products in Organismic Interactions 35043 Marburg Germany
- Molecular Biotechnology Institute of Molecular Biosciences Goethe University Frankfurt 60438 Frankfurt am Main Germany
| | - Helge B. Bode
- Max-Planck-Institute for Terrestrial Microbiology Department of Natural Products in Organismic Interactions 35043 Marburg Germany
- Molecular Biotechnology Institute of Molecular Biosciences Goethe University Frankfurt 60438 Frankfurt am Main Germany
- Senckenberg Gesellschaft für Naturforschung 60325 Frankfurt am Main Germany
| |
Collapse
|
46
|
Chu Yuan Kee MJ, Bharath SR, Wee S, Bowler MW, Gunaratne J, Pan S, Zhang L, Song H. Structural insights into the substrate-bound condensation domains of non-ribosomal peptide synthetase AmbB. Sci Rep 2022; 12:5353. [PMID: 35354859 PMCID: PMC8968710 DOI: 10.1038/s41598-022-09188-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/15/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractNon-ribosomal peptide synthetases (NRPS) are multi-modular/domain enzymes that catalyze the synthesis of bioactive peptides. A crucial step in the process is peptide elongation accomplished by the condensation (C) domain with the aid of a peptidyl carrier or thiolation (T) domain. Here, we examined condensation reaction carried out by NRPS AmbB involved in biosynthesis of l-2-amino-4-methoxy-trans-3-butenoic acid (AMB) in P. aeruginosa. We determined crystal structures of the truncated T–C bidomain of AmbB in three forms, the apo enzyme with disordered T domain, the holo form with serine linked phosphopantetheine (Ppant) and a holo form with substrate (l-alanine) loaded onto Ppant. The two holo forms feature the T domain in a substrate-donation conformation. Mutagenesis combined with functional assays identified residues essential for the attachment of Ppant, anchoring the Ppant-l-Ala in the donor catalytic channel and the role of the conserved His953 in condensation activity. Altogether, these results provide structural insights into the condensation reaction at the donor site with a substrate-bound C domain of AmbB and lay the foundation for understanding the molecular mechanism of condensation which is crucial for AMB synthesis.
Collapse
|
47
|
Ijaq J, Chandra D, Ray MK, Jagannadham MV. Investigating the Functional Role of Hypothetical Proteins From an Antarctic Bacterium Pseudomonas sp. Lz4W: Emphasis on Identifying Proteins Involved in Cold Adaptation. Front Genet 2022; 13:825269. [PMID: 35360867 PMCID: PMC8963723 DOI: 10.3389/fgene.2022.825269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/07/2022] [Indexed: 11/28/2022] Open
Abstract
Exploring the molecular mechanisms behind bacterial adaptation to extreme temperatures has potential biotechnological applications. In the present study, Pseudomonas sp. Lz4W, a Gram-negative psychrophilic bacterium adapted to survive in Antarctica, was selected to decipher the molecular mechanism underlying the cold adaptation. Proteome analysis of the isolates grown at 4°C was performed to identify the proteins and pathways that are responsible for the adaptation. However, many proteins from the expressed proteome were found to be hypothetical proteins (HPs), whose function is unknown. Investigating the functional roles of these proteins may provide additional information in the biological understanding of the bacterial cold adaptation. Thus, our study aimed to assign functions to these HPs and understand their role at the molecular level. We used a structured insilico workflow combining different bioinformatics tools and databases for functional annotation. Pseudomonas sp. Lz4W genome (CP017432, version 1) contains 4493 genes and 4412 coding sequences (CDS), of which 743 CDS were annotated as HPs. Of these, from the proteome analysis, 61 HPs were found to be expressed consistently at the protein level. The amino acid sequences of these 61 HPs were submitted to our workflow and we could successfully assign a function to 18 HPs. Most of these proteins were predicted to be involved in biological mechanisms of cold adaptations such as peptidoglycan metabolism, cell wall organization, ATP hydrolysis, outer membrane fluidity, catalysis, and others. This study provided a better understanding of the functional significance of HPs in cold adaptation of Pseudomonas sp. Lz4W. Our approach emphasizes the importance of addressing the “hypothetical protein problem” for a thorough understanding of mechanisms at the cellular level, as well as, provided the assessment of integrating proteomics methods with various annotation and curation approaches to characterize hypothetical or uncharacterized protein data. The MS proteomics data generated from this study has been deposited to the ProteomeXchange through PRIDE with the dataset identifier–PXD029741.
Collapse
Affiliation(s)
- Johny Ijaq
- Metabolomics Facility, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Deepika Chandra
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Malay Kumar Ray
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - M. V. Jagannadham
- Metabolomics Facility, School of Life Sciences, University of Hyderabad, Hyderabad, India
- *Correspondence: M. V. Jagannadham,
| |
Collapse
|
48
|
Duban M, Cociancich S, Leclère V. Nonribosomal Peptide Synthesis Definitely Working Out of the Rules. Microorganisms 2022; 10:577. [PMID: 35336152 PMCID: PMC8949500 DOI: 10.3390/microorganisms10030577] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/04/2022] Open
Abstract
Nonribosomal peptides are microbial secondary metabolites exhibiting a tremendous structural diversity and a broad range of biological activities useful in the medical and agro-ecological fields. They are built up by huge multimodular enzymes called nonribosomal peptide synthetases. These synthetases are organized in modules constituted of adenylation, thiolation, and condensation core domains. As such, each module governs, according to the collinearity rule, the incorporation of a monomer within the growing peptide. The release of the peptide from the assembly chain is finally performed by a terminal core thioesterase domain. Secondary domains with modifying catalytic activities such as epimerization or methylation are sometimes included in the assembly lines as supplementary domains. This assembly line structure is analyzed by bioinformatics tools to predict the sequence and structure of the final peptides according to the sequence of the corresponding synthetases. However, a constantly expanding literature unravels new examples of nonribosomal synthetases exhibiting very rare domains and noncanonical organizations of domains and modules, leading to several amazing strategies developed by microorganisms to synthesize nonribosomal peptides. In this review, through several examples, we aim at highlighting these noncanonical pathways in order for the readers to perceive their complexity.
Collapse
Affiliation(s)
- Matthieu Duban
- Université de Lille, Université de Liège, UMRT 1158 BioEcoAgro, Métabolites Secondaires d’origine Microbienne, Institut Charles Viollette, F-59000 Lille, France;
| | - Stéphane Cociancich
- CIRAD, UMR PHIM, F-34398 Montpellier, France;
- PHIM, Université Montpellier, CIRAD, INRAE, Institut Agro, IRD, F-34398 Montpellier, France
| | - Valérie Leclère
- Université de Lille, Université de Liège, UMRT 1158 BioEcoAgro, Métabolites Secondaires d’origine Microbienne, Institut Charles Viollette, F-59000 Lille, France;
| |
Collapse
|
49
|
Wenski SL, Thiengmag S, Helfrich EJ. Complex peptide natural products: Biosynthetic principles, challenges and opportunities for pathway engineering. Synth Syst Biotechnol 2022; 7:631-647. [PMID: 35224231 PMCID: PMC8842026 DOI: 10.1016/j.synbio.2022.01.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 01/03/2023] Open
Abstract
Complex peptide natural products exhibit diverse biological functions and a wide range of physico-chemical properties. As a result, many peptides have entered the clinics for various applications. Two main routes for the biosynthesis of complex peptides have evolved in nature: ribosomally synthesized and post-translationally modified peptide (RiPP) biosynthetic pathways and non-ribosomal peptide synthetases (NRPSs). Insights into both bioorthogonal peptide biosynthetic strategies led to the establishment of universal principles for each of the two routes. These universal rules can be leveraged for the targeted identification of novel peptide biosynthetic blueprints in genome sequences and used for the rational engineering of biosynthetic pathways to produce non-natural peptides. In this review, we contrast the key principles of both biosynthetic routes and compare the different biochemical strategies to install the most frequently encountered peptide modifications. In addition, the influence of the fundamentally different biosynthetic principles on past, current and future engineering approaches is illustrated. Despite the different biosynthetic principles of both peptide biosynthetic routes, the arsenal of characterized peptide modifications encountered in RiPP and NRPS systems is largely overlapping. The continuous expansion of the biocatalytic toolbox of peptide modifying enzymes for both routes paves the way towards the production of complex tailor-made peptides and opens up the possibility to produce NRPS-derived peptides using the ribosomal route and vice versa.
Collapse
Affiliation(s)
- Sebastian L. Wenski
- Institute for Molecular Bio Science, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), 60325, Frankfurt am Main, Germany
| | - Sirinthra Thiengmag
- Institute for Molecular Bio Science, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), 60325, Frankfurt am Main, Germany
| | - Eric J.N. Helfrich
- Institute for Molecular Bio Science, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), 60325, Frankfurt am Main, Germany
| |
Collapse
|
50
|
Konanov DN, Krivonos DV, Ilina EN, Babenko VV. BioCAT: search for biosynthetic gene clusters producing nonribosomal peptides with known structure. Comput Struct Biotechnol J 2022; 20:1218-1226. [PMID: 35317229 PMCID: PMC8914306 DOI: 10.1016/j.csbj.2022.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Dmitry N. Konanov
- Federal Research and Clinical Centre of Physical and Chemical Medicine, Federal Medical and Biological Agency of Russia, ul. Malaya Pirogovskaya., 1s3, Moscow 119435, Russian Federation
- Corresponding author.
| | - Danil V. Krivonos
- Federal Research and Clinical Centre of Physical and Chemical Medicine, Federal Medical and Biological Agency of Russia, ul. Malaya Pirogovskaya., 1s3, Moscow 119435, Russian Federation
| | - Elena N. Ilina
- Federal Research and Clinical Centre of Physical and Chemical Medicine, Federal Medical and Biological Agency of Russia, ul. Malaya Pirogovskaya., 1s3, Moscow 119435, Russian Federation
| | - Vladislav V. Babenko
- Federal Research and Clinical Centre of Physical and Chemical Medicine, Federal Medical and Biological Agency of Russia, ul. Malaya Pirogovskaya., 1s3, Moscow 119435, Russian Federation
| |
Collapse
|