1
|
Li X, Liu X, Hussain M, Li J, Chen Z, Fang Y, Su C, He C, Lu J. Engineering Local Coordination and Electronic Structures of Dual-Atom Catalysts. ACS NANO 2025; 19:17114-17139. [PMID: 40310690 DOI: 10.1021/acsnano.5c02353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Heterogeneous dual-atom catalysts (DACs), defined by atomically precise and isolated metal pairs on solid supports, have garnered significant interest in advancing catalytic processes and technologies aimed at achieving sustainable energy and chemical production. DACs present board opportunities for atomic-level structural and property engineering to enhance catalytic performance, which can effectively address the limitations of single-atom catalysts, including restricted active sites, spatial constraints, and the typically positive charge nature of supported single metal species. Despite the rapid progress in this field, the intricate relationship between local atomic environments and the catalytic behavior of dual-metal active sites remains insufficiently understood. This review highlights recent progress and major challenges in this field. We begin by discussing the local modulation of coordination and electronic structures in DACs and its impact on catalytic performance. Through specific case studies, we demonstrate the importance of optimizing the entire catalytic ensemble to achieve efficient, selective, and stable performance in both model and industrially relevant reactions. Additionally, we also outline future research directions, emphasizing the challenges and opportunities in synthesis, characterization, and practical applications, aiming to fully unlock the potential of these advanced catalysts.
Collapse
Affiliation(s)
- Xinzhe Li
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xuan Liu
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Muzammil Hussain
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jiali Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Zhongxin Chen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518000, China
| | - Yiyun Fang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Chenliang Su
- International Collaboration Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Chi He
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- National University of Singapore (Suzhou) Research Institute, No. 377 Linquan Street, Suzhou, Jiangsu 215000, China
| |
Collapse
|
2
|
Kabiraz MK, Wahidah H, Hong JW, Choi SI. Platinum Metallenes: Advanced Electrocatalysts for Sustainable Energy Solutions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500858. [PMID: 40357808 DOI: 10.1002/smll.202500858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/23/2025] [Indexed: 05/15/2025]
Abstract
Platinum (Pt) metallenes, an emerging class of ultrathin 2D nanomaterials, have redefined the field of electrocatalysis, offering physicochemical properties that are completely new to conventional catalyst materials. Characterized by their high surface-to-volume ratios, abundant active sites, and tunable electronic structures, Pt metallenes exhibit remarkable efficiencies across key reactions in fuel cells and electrolyzers, including the oxygen reduction reaction (ORR), hydrogen evolution reaction (HER), and liquid fuel oxidation reaction (LFOR). Overcoming the inherent limitations of rigid Pt-Pt bonds and the face-centered cubic structure, recent advances in synthesis, such as bottom-up methods and top-down exfoliation, have enabled precise control over the atomic thickness, morphology, and composition of 2D Pt metallenes. In addition, advanced engineering strategies, such as defect creation, ligand modulation, and strain optimization, have further enhanced the intrinsic activity of the active sites and tailored the electronic structures to accelerate reaction kinetics. This review provides a comprehensive analysis of the latest progress in Pt metallene research, emphasizing challenges in synthesis, structural design, and electrocatalytic applications. It is anticipated that the Pt metallenes, promising catalysts for sustainable energy technologies, will offer transformative solutions for efficient energy conversion and environmental remediation.
Collapse
Affiliation(s)
- Mrinal Kanti Kabiraz
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hafidatul Wahidah
- Department of Chemistry, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Jong Wook Hong
- Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju, 58330, Republic of Korea
| | - Sang-Il Choi
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|
3
|
Chen Y, Tang Z, Liu Z, Huang WH, Yeh MH, Pao CW, Tao H, Xu M, Dong Z, Yuan L, Pu M, Li B, Yang G, Guo Y, Hu Z, Zhu Y. Toward the Ideal Alkaline Hydrogen Evolution Electrocatalyst: a Noble Metal-Free Antiperovskite Optimized with A-Site Tuning. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2504607. [PMID: 40317578 DOI: 10.1002/adma.202504607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/17/2025] [Indexed: 05/07/2025]
Abstract
To achieve the ideal non-noble-metal HER electrocatalyst in alkaline media, developing conductive systems with multiple active sites targeting every elementary step in the alkaline HER, is highly desirable but remains a great challenge. Herein, a conductive noble metal-free antiperovskite CdNNi3 is reported with intrinsic metallic characteristics as a highly efficient alkaline HER electrocatalyst, which is designed by the facile A-site tuning strategy with the modulation the electronic structures and interfacial water configurations of antiperovskites. Impressively, the HER performance of CdNNi3 antiperovskite is superior to various state-of-the-art non-noble metal catalysts ever reported, and also outperforms the commercial Raney Ni catalyst when assemble as the cathode in the practical anion exchange membrane water electrolyzer (AEMWE) device. With insights from comprehensive experiments and theoretical calculations, the CdNNi3 can create synergistic dual active sites for catalyzing different elementary steps of the alkaline HER; namely, the Ni site can effectively facilitate the H2O dissociation and OH- desorption, while the unusual Cd-Ni bridge site is active for the optimal H* adsorption and H2 evolution. Such multifunction-site synergy, together with inherent high electrical conductivity, enables the CdNNi3 antiperovskite to fulfill the essential criteria for an ideal non-noble-metal alkaline HER electrocatalyst with excellent performance.
Collapse
Affiliation(s)
- Yan Chen
- Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Zheng Tang
- Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Zuoqing Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu, 300092, Taiwan
- Sustainable Electrochemical Energy Development (SEED) Center, National Taiwan University of Science and Technology, Taipei, 106, Taiwan
| | - Min-Hsin Yeh
- Sustainable Electrochemical Energy Development (SEED) Center, National Taiwan University of Science and Technology, Taipei, 106, Taiwan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu, 300092, Taiwan
- Sustainable Electrochemical Energy Development (SEED) Center, National Taiwan University of Science and Technology, Taipei, 106, Taiwan
| | - Huanhuan Tao
- Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Mingkai Xu
- Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Zhongliang Dong
- Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Lingjie Yuan
- Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Mingjie Pu
- School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou, 213164, China
| | - Bowen Li
- Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Guangming Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yufeng Guo
- State Key Laboratory of Mechanics and Control for Aerospace Structures, MOE Key Laboratory for Intelligent Nano Materials and Devices, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, 01187, Dresden, Germany
| | - Yinlong Zhu
- Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| |
Collapse
|
4
|
Qin L, Guo Z, Shu Q, Lv L, Jia L, Yang Y, Jiang W, Lv X, Zhou J. Activating Basal Plane Inert Sites of Iron Telluride for Motivational Electromagnetic Microwave Absorption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502920. [PMID: 40317704 DOI: 10.1002/smll.202502920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/01/2025] [Indexed: 05/07/2025]
Abstract
The basal plane inert sites and inadequate intrinsic dielectric relaxation are the major bottlenecks limiting the electromagnetic microwave (EMW) absorption performance of transition metal tellurides (TMTs). Here, an effective dual defect model based on electron polarization relaxation is established on iron telluride (FeTe) flakes via one-step O2 plasma treatment. Therefore, the basal plane inert sites of FeTe are activated by Te vacancies and O incorporation, which form abundant polarization centers, resulting in charge redistribution and increased dipole site density, thereby effectively optimizing dielectric relaxation loss. Consequently, the optimal EMW attenuation performance achieves a minimum reflection loss exceeding -69.6 dB at a thickness of 2.2 mm, with an absorption bandwidth of up to 4.9 GHz at a thickness of 1.3 mm. Besides, FeTe with dual defect exhibits a prominent radar cross-section reduction of 42 dBsm, indicating excellent radar wave attenuation capability. This study illustrates an innovative model system for elucidating dielectric relaxation loss mechanisms and provides a feasible approach to developing high-loss TMTs-based absorbers.
Collapse
Affiliation(s)
- Liyuan Qin
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Ziyang Guo
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Qinghai Shu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Lu Lv
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Lin Jia
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Yang Yang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Wei Jiang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Xijuan Lv
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiadong Zhou
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
5
|
Liu J, Xu Y, Duan R, Zhang M, Hu Y, Chen M, Han B, Dong J, Lee C, Kumara LSR, Seo O, Tseng J, Watanabe T, Liu Z, Zhu Q, Xu J, Ng MF, Wu D, Yan Q. Reaction-driven formation of anisotropic strains in FeTeSe nanosheets boosts low-concentration nitrate reduction to ammonia. Nat Commun 2025; 16:3595. [PMID: 40234408 PMCID: PMC12000605 DOI: 10.1038/s41467-025-58940-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 04/03/2025] [Indexed: 04/17/2025] Open
Abstract
FeM (M = Se, Te) chalcogenides have been well studied as promising magnets and superconductors, yet their potential as electrocatalysts is often considered limited due to anion dissolution and oxidation during electrochemical reactions. Here, we show that by using two-dimensional (2D) FeTeSe nanosheets, these conventionally perceived limitations can be leveraged to enable the reaction-driven in-situ generation of anisotropic in-plane tensile and out-of-plane compressive strains during the alkaline low-concentration nitrate reduction reaction (NO3-RR). The reconstructed catalyst demonstrates enhanced performance, yielding ammonia with a near-unity Faradaic efficiency and a high yield rate of 42.14 ± 2.06 mg h-1 mgcat-1. A series of operando synchrotron-based X-ray measurements and ex-situ characterizations, alongside theoretical calculations, reveal that strain formation is ascribed to chalcogen vacancies created by partial Se/Te leaching, which facilitate the adsorption and dissociation of OH-/NO3- from the electrolyte, resulting in an O(H)-doped strained lattice. Combined electrochemical and computational investigations suggest that the superior catalytic performance arises from the synergistic contributions from the exposed strained Fe sites and surface hydroxyl groups. These findings highlight the potential of 2D transition metal chalcogenides for in-situ structural engineering during electrochemical reactions to enhance catalytic activity for NO3-RR and beyond.
Collapse
Affiliation(s)
- Jiawei Liu
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore
| | - Yifan Xu
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | - Ruihuan Duan
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | - Mingsheng Zhang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Yue Hu
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | - Mengxin Chen
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | - Bo Han
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | - Jinfeng Dong
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | - Carmen Lee
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | | | - Okkyun Seo
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Jochi Tseng
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Takeshi Watanabe
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | - Qiang Zhu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Jianwei Xu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Man-Fai Ng
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, Connexis #16-16, Singapore, 138632, Republic of Singapore.
| | - Dongshuang Wu
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore.
| | - Qingyu Yan
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore.
| |
Collapse
|
6
|
Zhao J, Han X, Li J, Han Z, Zhao X. Atomically Dispersed Catalytic Platinum Anti-Substitutions in Molybdenum Ditelluride. J Am Chem Soc 2025; 147:9825-9835. [PMID: 40043101 DOI: 10.1021/jacs.5c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Atomic defects, e.g., vacancies, substitutions, and dopants, play crucial roles in determining the functionalities of two-dimensional (2D) materials, including spin glass, single-photon emitters, and energy storage and conversion, due to the introduction of abnormal charge states and noncentrosymmetric distortion. In particular, anti-substitutions are regarded as promising topological defect types, in which substitution occurs at opposite charge sites, fundamentally modifying the atomic and electronic structures of pristine lattices. However, the fabrication of large-scale anti-substitutions remains challenging due to high formation energies and complex reaction paths. Here, we propose an approach for synthesizing atomically dispersed Pt anti-substitutions in defective 1T'-MoTe2 using the electrochemical exfoliation-assisted leaching-redeposition (EELR) method. Atomic-resolution scanning transmission electron microscopy (STEM) imaging reveals that Pt atoms substitute Te sites, forming unconventional Mo-Pt bonds. A rich variety of Pt anti-substitution configurations and Pt anti-substitutions coupling with Te vacancies have been fabricated by controlled electrochemical conditions. Density functional theory (DFT) calculations suggest that Pt atoms preferentially occupy the Te vacancy sites coupled with neighboring Te vacancies, stabilizing the anti-substitution configurations. The coupled Pt-Te defect complexes exhibit excellent hydrogen evolution reaction, with an overpotential of only 12.9 mV because the paired defect complexes cause charge redistribution and regulate the d-band center of the active sites as suggested by DFT. These findings introduce an effective approach for engineering atomically dispersed anti-substitutions in 2D materials, presenting new opportunities for the precise design of atomic features with targeted functionalities in catalytic and other advanced applications.
Collapse
Affiliation(s)
- Jun Zhao
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Xiaocang Han
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Junxian Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Ziyi Han
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Xiaoxu Zhao
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Jeon H, Kwon HJ, Lee J, Han SK, Kim H, Heo J, Han J, Shin S, Park J, Cho MK, Preston DJ, Kim IS, Kim M, Lee WK. Strain-Enabled Band Structure Engineering in Layered PtSe 2 for Water Electrolysis under Ultralow Overpotential. ACS NANO 2025; 19:9107-9120. [PMID: 40012087 DOI: 10.1021/acsnano.4c18077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
This paper describes a simple design methodology to develop layered PtSe2 catalysts for hydrogen evolution reaction (HER) in water electrolysis operating under ultralow overpotentials. This approach relies on the transfer of mechanically exfoliated PtSe2 flakes to gold thin films on prestrained thermoplastic substrates. By relieving the prestrain, a tunable level of uniaxial internal compressive and tensile strain is developed in the flakes as a result of spontaneously formed surface wrinkles, giving rise to band structure modulations with overlapped values of the valence band maximum and conduction band minimum. This strain-engineered PtSe2 with an optimized level of internal tensile strain amplifies the HER performance of the PtSe2, with performance far greater than that of pure platinum due to significantly reduced charge transfer resistance. Density functional theory calculations provide fundamental insight into how strain-induced band structure engineering correlates with the promoted HER activity, especially at the atomic edge sites of the materials.
Collapse
Affiliation(s)
- Hotae Jeon
- Department of Materials Science and Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Hee Jung Kwon
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jaehyun Lee
- Department of Materials Science and Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Sun Kyung Han
- Department of Materials Science and Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Hyunjin Kim
- Department of Materials Science and Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Jaewon Heo
- Nanophotonics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Junhwi Han
- Department of Materials Science and Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Seunghun Shin
- Department of Materials Science and Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Jiheon Park
- Department of Materials Science and Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Min Kyung Cho
- Advanced Analysis and Data Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Daniel J Preston
- Department of Mechanical Engineering, Rice University, Houston, Texas 77005, United States
- Rice Advanced Materials Institute (RAMI), Rice University, Houston, Texas 77005, United States
| | - In Soo Kim
- Nanophotonics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Minho Kim
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Won-Kyu Lee
- Department of Materials Science and Engineering, Hongik University, Seoul 04066, Republic of Korea
| |
Collapse
|
8
|
Wang J, Peng Y, Zhou T, Fu J, Quan W, Cheng Y, Ding H, Zhang Y. Direct Syntheses of 2D Noble Transition Metal Dichalcogenides Toward Electronics, Optoelectronics, and Electrocatalysis-Related Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2407233. [PMID: 39924733 DOI: 10.1002/smll.202407233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 01/26/2025] [Indexed: 02/11/2025]
Abstract
2D noble transition metal dichalcogenides (nTMDCs, PdX2 and PtX2, where X═S, Se, Te) have emerged as a new class of 2D materials, owing to their unique puckered pentagonal structure in 2D PdS2 and PdSe2, largely tunable band structures or band gaps with decreasing the layer thickness at the 2D limit, strong interlayer interactions, superior optoelectronic properties, high edge catalytic properties, etc. Directly synthesizing 2D nTMDCs domains or thin films with large-area uniformity, tunable thickness, and high crystalline quality is the premise for exploring these salient properties and developing a wide range of applications. Hereby, this review summarizes recent progress in the direct syntheses and characterizations of 2D nTMDCs, mainly focusing on the thermally assisted conversion (TAC) and chemical vapor deposition (CVD) methods, by using various metal and chalcogen-contained precursors. Meanwhile, the applications of directly synthesized 2D nTMDCs in various fields, such as high-performance field effect transistors (FETs), broadband photodetectors, superior catalysts in hydrogen evolution reactions, and ultra-sensitive piezo resistance sensors, are also discussed. Finally, challenges and prospects regarding the direct syntheses of high-quality 2D nTMDCs and their applications in next-generation electronic and optoelectronic devices, as well as novel catalysts beyond noble metals are overviewed.
Collapse
Affiliation(s)
- Jialong Wang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - You Peng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Tong Zhou
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Jiatian Fu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Wenzhi Quan
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Yujin Cheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Haoxuan Ding
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yanfeng Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
9
|
Liu D, Wang Y, Zhu J, Gu X, Yang H, Xiong Y, Shao M, Shao Q. A two-dimensional amorphous iridium-cobalt oxide for an acidic oxygen evolution reaction. Chem Commun (Camb) 2025; 61:2119-2122. [PMID: 39801483 DOI: 10.1039/d4cc05227g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
A two-dimensional (2D) amorphous iridium cobalt oxide (Am-IrCoyOx) was prepared using the molten salt method. The optimal catalyst shows a low overpotential of 230 mV at 10 mA cm-2 in 0.5 M H2SO4. DFT calculations show that the unsaturated Ir active sites on the surface are responsible for the excellent electrocatalytic performance. This work exhibits the advantages of 2D oxides and might find potential applications in other fields.
Collapse
Affiliation(s)
- Da Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Jiangsu, China.
| | - Yue Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Jiangsu, China.
| | - Jiarui Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| | - Xuewei Gu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| | - Hao Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| | - Yutian Xiong
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Jiangsu, China.
| | - Mingwang Shao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Jiangsu, China.
| |
Collapse
|
10
|
Xu X, Wang X, Yu S, Wang C, Liu G, Li H, Yang J, Li J, Sun T, Hai X, Li L, Liu X, Zhang Y, Zhang W, Zhang Q, Wang K, Xu N, Ma Y, Ming F, Cui P, Lu J, Zhang Z, Xiao X. Two-Dimensional Topological Platinum Telluride Superstructures with Periodic Tellurium Vacancies for Efficient and Robust Catalysis. ACS NANO 2024; 18:32635-32649. [PMID: 39530547 DOI: 10.1021/acsnano.4c10085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Defect engineering in the inherently inert basal planes of transition metal dichalcogenides (TMDs), involving the introduction of chalcogen vacancies, represents a pivotal approach to enhance catalytic activity by exposing high-density catalytic metal single-atom sites. However, achieving a single-atom limit spacing between chalcogen vacancies to form ordered superstructures remains challenging for creating uniformly distributed high-density metal single-atom sites on TMDs comparable to carbon-supported single-atom catalysts (SACs). Here we unveil an efficient TMD-based topological catalyst for hydrogen evolution reaction (HER), featuring high-density single-atom reactive centers on a few-layer (7 × 7)-PtTe2-x superstructure. Compared with pristine Pt(111), PtTe2, and (2 × 2)-PtTe2-x, (7 × 7)-PtTe2-x exhibits superior HER performance owing to its substantially increased density of undercoordinated Pt sites, alongside exceptional catalytic stability when operating at high current densities. First-principles calculations confirm that multiple types of undercoordinated Pt sites on (7 × 7)-PtTe2-x exhibit favorable hydrogen adsorption Gibbs free energies, and remain active upon increasing hydrogen coverage. Furthermore, (7 × 7)-PtTe2-x possesses nontrivial band topologies with robust edge states, suggesting potential enhancements for HER. Our findings are expected to advance TMD-based catalysts and exploration of topological materials in catalysis.
Collapse
Affiliation(s)
- Xin Xu
- State Key Lab of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology and School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, P. R. China
- School of Physical Science and Technology and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan 430072, P. R. China
- School of Future Technology, Henan Key Laboratory of Quantum Materials and Quantum Energy, Henan University, Zhengzhou 450046, P. R. China
| | - Xuechun Wang
- International Center for Quantum Design of Functional Materials (ICQD) and Hefei National Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Shuming Yu
- Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Chenhui Wang
- School of Physical Science and Technology and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan 430072, P. R. China
- School of Future Technology, Henan Key Laboratory of Quantum Materials and Quantum Energy, Henan University, Zhengzhou 450046, P. R. China
| | - Guowei Liu
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Hao Li
- School of Physical Science and Technology and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan 430072, P. R. China
| | - Jiangang Yang
- School of Physical Science and Technology and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan 430072, P. R. China
| | - Jing Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Tao Sun
- School of Chemical Engineering, Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an 710069, P. R. China
| | - Xiao Hai
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Lei Li
- Core Facility of Wuhan University, Wuhan 430072, P. R. China
| | - Xue Liu
- Center of Free Electron Laser & High Magnetic Field, Anhui University, Hefei 230601, P. R. China
| | - Ying Zhang
- Core Facility of Wuhan University, Wuhan 430072, P. R. China
| | - Weifeng Zhang
- School of Future Technology, Henan Key Laboratory of Quantum Materials and Quantum Energy, Henan University, Zhengzhou 450046, P. R. China
- Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou 450046, P. R. China
| | - Quan Zhang
- College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| | - Kedong Wang
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Nan Xu
- Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yaping Ma
- School of Physical Science and Technology and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan 430072, P. R. China
- School of Future Technology, Henan Key Laboratory of Quantum Materials and Quantum Energy, Henan University, Zhengzhou 450046, P. R. China
- Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou 450046, P. R. China
| | - Fangfei Ming
- State Key Lab of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology and School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Ping Cui
- International Center for Quantum Design of Functional Materials (ICQD) and Hefei National Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Zhenyu Zhang
- International Center for Quantum Design of Functional Materials (ICQD) and Hefei National Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xudong Xiao
- School of Physical Science and Technology and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
11
|
Chen K, Li G, Gong X, Ren Q, Wang J, Zhao S, Liu L, Yan Y, Liu Q, Cao Y, Ren Y, Qin Q, Xin Q, Liu SL, Yao P, Zhang B, Yang J, Zhao R, Li Y, Luo R, Fu Y, Li Y, Long W, Zhang S, Dai H, Liu C, Zhang J, Chang J, Mu X, Zhang XD. Atomic-scale strain engineering of atomically resolved Pt clusters transcending natural enzymes. Nat Commun 2024; 15:8346. [PMID: 39333142 PMCID: PMC11436958 DOI: 10.1038/s41467-024-52684-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
Strain engineering plays an important role in tuning electronic structure and improving catalytic capability of biocatalyst, but it is still challenging to modify the atomic-scale strain for specific enzyme-like reactions. Here, we systematically design Pt single atom (Pt1), several Pt atoms (Ptn) and atomically-resolved Pt clusters (Ptc) on PdAu biocatalysts to investigate the correlation between atomic strain and enzyme-like catalytic activity by experimental technology and in-depth Density Functional Theory calculations. It is found that Ptc on PdAu (Ptc-PA) with reasonable atomic strain upshifts the d-band center and exposes high potential surface, indicating the sufficient active sites to achieve superior biocatalytic performances. Besides, the Pd shell and Au core serve as storage layers providing abundant energetic charge carriers. The Ptc-PA exhibits a prominent peroxidase (POD)-like activity with the catalytic efficiency (Kcat/Km) of 1.50 × 109 mM-1 min-1, about four orders of magnitude higher than natural horseradish peroxidase (HRP), while catalase (CAT)-like and superoxide dismutase (SOD)-like activities of Ptc-PA are also comparable to those of natural enzymes. Biological experiments demonstrate that the detection limit of the Ptc-PA-based catalytic detection system exceeds that of visual inspection by 132-fold in clinical cancer diagnosis. Besides, Ptc-PA can reduce multi-organ acute inflammatory damage and mitigate oxidative stress disorder.
Collapse
Affiliation(s)
- Ke Chen
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Guo Li
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, China
| | - Xiaoqun Gong
- School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin University, Tianjin, China
| | - Qinjuan Ren
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, China
| | - Junying Wang
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shuang Zhao
- School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin University, Tianjin, China
| | - Ling Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yuxing Yan
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Qingshan Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yang Cao
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yaoyao Ren
- Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiong Qin
- Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Qi Xin
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Peiyu Yao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Bo Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jingkai Yang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Ruoli Zhao
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, China
| | - Yuan Li
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, China
| | - Ran Luo
- School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin University, Tianjin, China
| | - Yikai Fu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, China
| | - Yonghui Li
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, China
| | - Wei Long
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine Chinese Academy of Medical, Sciences and Peking Union Medical College, Tianjin, China
| | - Shu Zhang
- Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Haitao Dai
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, China
| | - Changlong Liu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, China
| | - Jianning Zhang
- Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jin Chang
- School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin University, Tianjin, China
| | - Xiaoyu Mu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, China.
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, China.
| |
Collapse
|
12
|
Roy S, Joseph A, Zhang X, Bhattacharyya S, Puthirath AB, Biswas A, Tiwary CS, Vajtai R, Ajayan PM. Engineered Two-Dimensional Transition Metal Dichalcogenides for Energy Conversion and Storage. Chem Rev 2024; 124:9376-9456. [PMID: 39042038 DOI: 10.1021/acs.chemrev.3c00937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Designing efficient and cost-effective materials is pivotal to solving the key scientific and technological challenges at the interface of energy, environment, and sustainability for achieving NetZero. Two-dimensional transition metal dichalcogenides (2D TMDs) represent a unique class of materials that have catered to a myriad of energy conversion and storage (ECS) applications. Their uniqueness arises from their ultra-thin nature, high fractions of atoms residing on surfaces, rich chemical compositions featuring diverse metals and chalcogens, and remarkable tunability across multiple length scales. Specifically, the rich electronic/electrical, optical, and thermal properties of 2D TMDs have been widely exploited for electrochemical energy conversion (e.g., electrocatalytic water splitting), and storage (e.g., anodes in alkali ion batteries and supercapacitors), photocatalysis, photovoltaic devices, and thermoelectric applications. Furthermore, their properties and performances can be greatly boosted by judicious structural and chemical tuning through phase, size, composition, defect, dopant, topological, and heterostructure engineering. The challenge, however, is to design and control such engineering levers, optimally and specifically, to maximize performance outcomes for targeted applications. In this review we discuss, highlight, and provide insights on the significant advancements and ongoing research directions in the design and engineering approaches of 2D TMDs for improving their performance and potential in ECS applications.
Collapse
Affiliation(s)
- Soumyabrata Roy
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
- Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Antony Joseph
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Xiang Zhang
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Sohini Bhattacharyya
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Anand B Puthirath
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Abhijit Biswas
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Chandra Sekhar Tiwary
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Robert Vajtai
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
13
|
Zuo C, Tang X, Wang H, Su Q. A Review of the Effect of Defect Modulation on the Photocatalytic Reduction Performance of Carbon Dioxide. Molecules 2024; 29:2308. [PMID: 38792169 PMCID: PMC11123808 DOI: 10.3390/molecules29102308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Constructive defect engineering has emerged as a prominent method for enhancing the performance of photocatalysts. The mechanisms of the influence of defect types, concentrations, and distributions on the efficiency, selectivity, and stability of CO2 reduction were revealed for this paper by analyzing the effects of different types of defects (e.g., metallic defects, non-metallic defects, and composite defects) on the performance of photocatalysts. There are three fundamental steps in defect engineering techniques to promote photocatalysis, namely, light absorption, charge transfer and separation, and surface-catalyzed reactions. Defect engineering has demonstrated significant potential in recent studies, particularly in enhancing the light-harvesting, charge separation, and adsorption properties of semiconductor photocatalysts for reducing processes like carbon dioxide reduction. Furthermore, this paper discusses the optimization method used in defect modulation strategy to offer theoretical guidance and an experimental foundation for designing and preparing efficient and stable photocatalysts.
Collapse
Affiliation(s)
- Cheng Zuo
- College of Chemistry & Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Xiao Tang
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Haiquan Wang
- College of Chemistry & Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Qian Su
- College of Chemistry & Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| |
Collapse
|
14
|
Dai Y, He Q, Huang Y, Duan X, Lin Z. Solution-Processable and Printable Two-Dimensional Transition Metal Dichalcogenide Inks. Chem Rev 2024; 124:5795-5845. [PMID: 38639932 DOI: 10.1021/acs.chemrev.3c00791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) with layered crystal structures have been attracting enormous research interest for their atomic thickness, mechanical flexibility, and excellent electronic/optoelectronic properties for applications in diverse technological areas. Solution-processable 2D TMD inks are promising for large-scale production of functional thin films at an affordable cost, using high-throughput solution-based processing techniques such as printing and roll-to-roll fabrications. This paper provides a comprehensive review of the chemical synthesis of solution-processable and printable 2D TMD ink materials and the subsequent assembly into thin films for diverse applications. We start with the chemical principles and protocols of various synthesis methods for 2D TMD nanosheet crystals in the solution phase. The solution-based techniques for depositing ink materials into solid-state thin films are discussed. Then, we review the applications of these solution-processable thin films in diverse technological areas including electronics, optoelectronics, and others. To conclude, a summary of the key scientific/technical challenges and future research opportunities of solution-processable TMD inks is provided.
Collapse
Affiliation(s)
- Yongping Dai
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 99907, China
| | - Yu Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Zhaoyang Lin
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, China
| |
Collapse
|
15
|
Nie W, Ren T, Zhao W, Yao B, Yuan W, Liu X, Abdullah, Zhang J, Liu Q, Zhang T, Tang S, He C, Fang Y, Li X. Electrochemical Generation of Te Vacancy Pairs in PtTe for Efficient Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21828-21837. [PMID: 38639177 DOI: 10.1021/acsami.4c01273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Two-dimensional (2D) van der Waals materials are increasingly seen as potential catalysts due to their unique structures and unmatched properties. However, achieving precise synthesis of these remarkable materials and regulating their atomic and electronic structures at the most fundamental level to enhance their catalytic performance remain a significant challenge. In this study, we synthesized single-crystal bulk PtTe crystals via chemical vapor transport and subsequently produced atomically thin, large PtTe nanosheets (NSs) through electrochemical cathode intercalation. These NSs are characterized by a significant presence of Te vacancy pairs, leading to undercoordinated Pt atoms on their basal planes. Experimental and theoretical studies together reveal that Te vacancy pairs effectively optimize and enhance the electronic properties (such as charge distribution, density of states near the Fermi level, and d-band center) of the resultant undercoordinated Pt atoms. This optimization results in a significantly higher percentage of dangling O-H water, a decreased energy barrier for water dissociation, and an increased binding affinity of these Pt atoms to active hydrogen intermediates. Consequently, PtTe NSs featuring exposed and undercoordinated Pt atoms demonstrate outstanding electrocatalytic activity in hydrogen evolution reactions, significantly surpassing the performance of standard commercial Pt/C catalysts.
Collapse
Affiliation(s)
- Wenjie Nie
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, China
| | - Taotao Ren
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, China
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Wen Zhao
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Bingqing Yao
- Department of Materials Science and Engineering, National University of Singapore, Singapore 119077, Singapore
| | - Wenhao Yuan
- Department of Materials Science and Engineering, National University of Singapore, Singapore 119077, Singapore
| | - Xuan Liu
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Abdullah
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jiaxun Zhang
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, China
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Qiyuan Liu
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Tianqing Zhang
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shangfeng Tang
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Chi He
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yiyun Fang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xinzhe Li
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
16
|
Zhang H, Tan M, Hu L, Gui R, Liu X, Zhang X, Sun Z, Cao L, Yao T. Uncovering Structural Evolution during the Dealloying Process in Pt-Based Oxygen-Reduction Catalyst. J Phys Chem Lett 2024; 15:3071-3077. [PMID: 38466813 DOI: 10.1021/acs.jpclett.4c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The comprehensive understanding toward the dealloying process is crucial for designing alloy catalysts employed in the oxygen reduction reaction (ORR). However, the specific leaching procedure and subsequent reconstruction of the dealloyed catalyst still remain unclear. Herein, we employ in situ X-ray absorption fine structure spectroscopy to monitor the dealloying process of a two-dimensional PtTe ordered alloy, known for its enhanced ORR activity. Our findings reveal the unsynchronous evolutions of Pt and Te sites, wherein the Pt component undergoes a structural transformation prior to the complete leaching of Te, leading to the formation of a defect-rich Pt catalyst. This dealloyed catalyst exhibits a significant enhancement in ORR activity, featuring a half-wave potential of 0.90 V versus the reversible hydrogen electrode and a mass activity of 0.62 A mgPt-1, outperforming the performance of commercial Pt/C counterpart. This in-depth understanding of the dealloying mechanism enriches our knowledge for the development of high-performance Pt-based alloy catalysts.
Collapse
Affiliation(s)
- Huijuan Zhang
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230029, P.R. China
| | - Minyuan Tan
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230029, P.R. China
| | - Longfei Hu
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230029, P.R. China
| | - Renjie Gui
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaokang Liu
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230029, P.R. China
| | - Xue Zhang
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230029, P.R. China
| | - Zhiguo Sun
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230029, P.R. China
| | - Linlin Cao
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230029, P.R. China
| | - Tao Yao
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230029, P.R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
17
|
Gu J, Li L, Yang Q, Tian F, Zhao W, Xie Y, Yu J, Zhang A, Zhang L, Li H, Zhong J, Jiang J, Wang Y, Liu J, Lu J. Twinning Engineering of Platinum/Iridium Nanonets as Turing-Type Catalysts for Efficient Water Splitting. J Am Chem Soc 2024; 146:5355-5365. [PMID: 38358943 DOI: 10.1021/jacs.3c12419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The twin boundary, a common lattice plane of mirror-symmetric crystals, may have high reactivity due to special atomic coordination. However, twinning platinum and iridium nanocatalysts are grand challenges due to the high stacking fault energies that are nearly 1 order of magnitude larger than those of easy-twinning gold and silver. Here, we demonstrate that Turing structuring, realized by selective etching of superthin metal film, provides 14.3 and 18.9 times increases in twin-boundary densities for platinum and iridium nanonets, comparable to the highly twinned silver nanocatalysts. The Turing configurations with abundant low-coordination atoms contribute to the formation of nanotwins and create a large active surface area. Theoretical calculations reveal that the specific atom arrangement on the twin boundary changes the electronic structure and reduces the energy barrier of water dissociation. The optimal Turing-type platinum nanonets demonstrated excellent hydrogen-evolution-reaction performance with a 25.6 mV overpotential at 10.0 mA·cm-2 and a 14.8-fold increase in mass activity. And the bifunctional Turing iridium catalysts integrated in the water electrolyzer had a mass activity 23.0 times that of commercial iridium catalysts. This work opens a new avenue for nanocrystal twinning as a facile paradigm for designing high-performance nanocatalysts.
Collapse
Affiliation(s)
- Jialun Gu
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong 999077, China
| | - Lanxi Li
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong 999077, China
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Qi Yang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Fubo Tian
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Wei Zhao
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Youneng Xie
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong 999077, China
| | - Jinli Yu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - An Zhang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Lei Zhang
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong 999077, China
| | - Hongkun Li
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong 999077, China
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Jing Zhong
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong 999077, China
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Jiali Jiang
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong 999077, China
| | - Yanju Wang
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong 999077, China
| | - Jiahua Liu
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong 999077, China
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Jian Lu
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong 999077, China
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- CityU-Shenzhen Futian Research Institute, No. 3, Binglang Road, Futian District, Shenzhen 518000, China
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen 518000, China
| |
Collapse
|
18
|
Hsueh JW, Kuo LH, Chen PH, Chen WH, Chuang CY, Kuo CN, Lue CS, Lai YL, Liu BH, Wang CH, Hsu YJ, Lin CL, Chou JP, Luo MF. Investigating the role of undercoordinated Pt sites at the surface of layered PtTe 2 for methanol decomposition. Nat Commun 2024; 15:653. [PMID: 38253575 PMCID: PMC10803346 DOI: 10.1038/s41467-024-44840-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Transition metal dichalcogenides, by virtue of their two-dimensional structures, could provide the largest active surface for reactions with minimal materials consumed, which has long been pursued in the design of ideal catalysts. Nevertheless, their structurally perfect basal planes are typically inert; their surface defects, such as under-coordinated atoms at the surfaces or edges, can instead serve as catalytically active centers. Here we show a reaction probability > 90 % for adsorbed methanol (CH3OH) on under-coordinated Pt sites at surface Te vacancies, produced with Ar+ bombardment, on layered PtTe2 - approximately 60 % of the methanol decompose to surface intermediates CHxO (x = 2, 3) and 35 % to CHx (x = 1, 2), and an ultimate production of gaseous molecular hydrogen, methane, water and formaldehyde. The characteristic reactivity is attributed to both the triangular positioning and varied degrees of oxidation of the under-coordinated Pt at Te vacancies.
Collapse
Affiliation(s)
- Jing-Wen Hsueh
- Department of Physics, National Central University, No. 300 Jhongda Rd., Jhongli District, Taoyuan City, 320317, Taiwan
| | - Lai-Hsiang Kuo
- Department of Physics, National Central University, No. 300 Jhongda Rd., Jhongli District, Taoyuan City, 320317, Taiwan
| | - Po-Han Chen
- Department of Materials Science and Engineering, National Tsing Hua University, 101, Section 2 Kuang-Fu Road, Hsinchu, 300044, Taiwan
| | - Wan-Hsin Chen
- Department of Electrophysics, National Yang Ming Chiao Tung University, No. 1001 University Rd., Hsinchu, 300039, Taiwan
| | - Chi-Yao Chuang
- Department of Electrophysics, National Yang Ming Chiao Tung University, No. 1001 University Rd., Hsinchu, 300039, Taiwan
| | - Chia-Nung Kuo
- Department of Physics, National Cheng Kung University, No. 1 University Rd., Tainan, 701, Taiwan
- Taiwan Consortium of Emergent Crystalline Materials, National Science and Technology Council, Taipei, 10601, Taiwan
| | - Chin-Shan Lue
- Department of Physics, National Cheng Kung University, No. 1 University Rd., Tainan, 701, Taiwan
- Taiwan Consortium of Emergent Crystalline Materials, National Science and Technology Council, Taipei, 10601, Taiwan
- Program on Key Materials, Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yu-Ling Lai
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Rd., Hsinchu Science Park, Hsinchu, 300092, Taiwan
| | - Bo-Hong Liu
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Rd., Hsinchu Science Park, Hsinchu, 300092, Taiwan
| | - Chia-Hsin Wang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Rd., Hsinchu Science Park, Hsinchu, 300092, Taiwan
| | - Yao-Jane Hsu
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Rd., Hsinchu Science Park, Hsinchu, 300092, Taiwan
| | - Chun-Liang Lin
- Department of Electrophysics, National Yang Ming Chiao Tung University, No. 1001 University Rd., Hsinchu, 300039, Taiwan.
| | - Jyh-Pin Chou
- Department of Physics, National Changhua University of Education, No. 1, Jin-De Rd., Changhua, 50007, Taiwan.
| | - Meng-Fan Luo
- Department of Physics, National Central University, No. 300 Jhongda Rd., Jhongli District, Taoyuan City, 320317, Taiwan.
| |
Collapse
|
19
|
Using single vacancies to build quantum antidots with atomic precision. NATURE NANOTECHNOLOGY 2023; 18:1379-1380. [PMID: 37700070 DOI: 10.1038/s41565-023-01506-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
|
20
|
Fang H, Mahalingam H, Li X, Han X, Qiu Z, Han Y, Noori K, Dulal D, Chen H, Lyu P, Yang T, Li J, Su C, Chen W, Cai Y, Neto AHC, Novoselov KS, Rodin A, Lu J. Atomically precise vacancy-assembled quantum antidots. NATURE NANOTECHNOLOGY 2023; 18:1401-1408. [PMID: 37653051 DOI: 10.1038/s41565-023-01495-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/01/2023] [Indexed: 09/02/2023]
Abstract
Patterning antidots, which are regions of potential hills that repel electrons, into well-defined antidot lattices creates fascinating artificial periodic structures, leading to anomalous transport properties and exotic quantum phenomena in two-dimensional systems. Although nanolithography has brought conventional antidots from the semiclassical regime to the quantum regime, achieving precise control over the size of each antidot and its spatial period at the atomic scale has remained challenging. However, attaining such control opens the door to a new paradigm, enabling the creation of quantum antidots with discrete quantum hole states, which, in turn, offer a fertile platform to explore novel quantum phenomena and hot electron dynamics in previously inaccessible regimes. Here we report an atomically precise bottom-up fabrication of a series of atomic-scale quantum antidots through a thermal-induced assembly of a chalcogenide single vacancy in PtTe2. Such quantum antidots consist of highly ordered single-vacancy lattices, spaced by a single Te atom, reaching the ultimate downscaling limit of antidot lattices. Increasing the number of single vacancies in quantum antidots strengthens the cumulative repulsive potential and consequently enhances the collective interference of multiple-pocket scattered quasiparticles inside quantum antidots, creating multilevel quantum hole states with a tunable gap from the telecom to far-infrared regime. Moreover, precisely engineered quantum hole states of quantum antidots are geometry protected and thus survive on oxygen substitutional doping. Therefore, single-vacancy-assembled quantum antidots exhibit unprecedented robustness and property tunability, positioning them as highly promising candidates for advancing quantum information and photocatalysis technologies.
Collapse
Affiliation(s)
- Hanyan Fang
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Harshitra Mahalingam
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, Singapore
| | - Xinzhe Li
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Xu Han
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Zhizhan Qiu
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, Singapore
| | - Yixuan Han
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Keian Noori
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, Singapore
- Centre for Advanced 2D Materials (CA2DM), National University of Singapore, Singapore, Singapore
| | | | - Hongfei Chen
- Joint Key Laboratory of Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, China
| | - Pin Lyu
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Tianhao Yang
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Jing Li
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, China
| | - Chenliang Su
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China
| | - Wei Chen
- Department of Chemistry, National University of Singapore, Singapore, Singapore
- Centre for Advanced 2D Materials (CA2DM), National University of Singapore, Singapore, Singapore
| | - Yongqing Cai
- Joint Key Laboratory of Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, China
| | - A H Castro Neto
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, Singapore
- Centre for Advanced 2D Materials (CA2DM), National University of Singapore, Singapore, Singapore
| | - Kostya S Novoselov
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, Singapore
- Centre for Advanced 2D Materials (CA2DM), National University of Singapore, Singapore, Singapore
| | - Aleksandr Rodin
- Centre for Advanced 2D Materials (CA2DM), National University of Singapore, Singapore, Singapore.
- Yale-NUS College, Singapore, Singapore.
- Materials Science and Engineering, National University of Singapore, Singapore, Singapore.
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, Singapore.
- Centre for Advanced 2D Materials (CA2DM), National University of Singapore, Singapore, Singapore.
| |
Collapse
|
21
|
Li X, Mitchell S, Fang Y, Li J, Perez-Ramirez J, Lu J. Advances in heterogeneous single-cluster catalysis. Nat Rev Chem 2023; 7:754-767. [PMID: 37814032 DOI: 10.1038/s41570-023-00540-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 10/11/2023]
Abstract
Heterogeneous single-cluster catalysts (SCCs) comprising atomically precise and isolated metal clusters stabilized on appropriately chosen supports offer exciting prospects for enabling novel chemical reactions owing to their broad structural diversity with unparalled opportunities for engineering their properties. Although the pioneering work revealed intriguing performance trends of size-selected metal clusters deposited on supports, synthetic and analytical challenges hindered a thorough understanding of surface chemistry under realistic conditions. This Review underscores the importance of considering the cluster environment in SCCs, encompassing the development of robust metal-support interactions, precise control over the ligand sphere, the influence of reaction media and dynamic behaviour, to uncover new reactivities. Through examples, we illustrate the criticality of tailoring the entire catalytic ensemble in SCCs to achieve stable and selective performance with practically relevant metal coverages. This expansion in application scope transcends from model reactions to complex and technically relevant reactions. Furthermore, we provide a perspective on the opportunities and future directions for SCC design within this rapidly evolving field.
Collapse
Affiliation(s)
- Xinzhe Li
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Sharon Mitchell
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Yiyun Fang
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Jun Li
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing, China.
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, China.
| | - Javier Perez-Ramirez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
22
|
Ma H, Huang X, Li L, Peng W, Lin S, Ding Y, Mai L. Boosting the Hydrogen Evolution Reaction Performance of P-Doped PtTe 2 Nanocages via Spontaneous Defects Formation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302685. [PMID: 37312427 DOI: 10.1002/smll.202302685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/28/2023] [Indexed: 06/15/2023]
Abstract
PtTe2 , a member of the noble metal dichalcogenides (NMDs), has aroused great interest in exploring its behavior in the hydrogen evolution reaction (HER) due to the unique type-II topological semimetallic nature. In this work, a simple template-free hydrothermal method to obtain the phosphorus-doped (P-doped) PtTe2 nanocages with abundant amorphous and crystalline interface (A/C-P-PtTe2 ) is developed. Revealed by density functional theory calculations, the atomic Te vacancies can spontaneously form on the basal planes of PtTe2 by the P doping, which results in the unsaturated Pt atoms exposed as the active sites in the amorphous layer for HER. Owing to the defective structure, the A/C-P-PtTe2 catalysts have the fast Tafel step determined kinetics in HER, which contributes to an ultralow overpotential (η = 28 mV at 10 mA cm-2 ) and a small Tafel slope of 37 mV dec-1 . More importantly, benefiting from the inner stable crystalline P-PtTe2 nanosheets, limited decay of the performance is observed after chronopotentiometry test. This work reveals the important role of the inherent relationship between structure and activity in PtTe2 for HER, which may bring another enlightenment for the design of efficient catalysts based on NMDs in the near future.
Collapse
Affiliation(s)
- Hancheng Ma
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xiang Huang
- Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Luyu Li
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Wei Peng
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Sheng Lin
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yao Ding
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Liqiang Mai
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
23
|
Gu J, Li L, Xie Y, Chen B, Tian F, Wang Y, Zhong J, Shen J, Lu J. Turing structuring with multiple nanotwins to engineer efficient and stable catalysts for hydrogen evolution reaction. Nat Commun 2023; 14:5389. [PMID: 37666814 PMCID: PMC10477283 DOI: 10.1038/s41467-023-40972-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023] Open
Abstract
Low-dimensional nanocrystals with controllable defects or strain modifications are newly emerging active electrocatalysts for hydrogen-energy conversion and utilization; however, a crucial challenge remains in insufficient stability due to spontaneous structural degradation and strain relaxation. Here we report a Turing structuring strategy to activate and stabilize superthin metal nanosheets by incorporating high-density nanotwins. Turing configuration, realized by constrained orientation attachment of nanograins, yields intrinsically stable nanotwin network and straining effects, which synergistically reduce the energy barrier of water dissociation and optimize the hydrogen adsorption free energy for hydrogen evolution reaction. Turing PtNiNb nanocatalyst achieves 23.5 and 3.1 times increase in mass activity and stability index, respectively, compared against commercial 20% Pt/C. The Turing PtNiNb-based anion-exchange-membrane water electrolyser with a low Pt mass loading of 0.05 mg cm-2 demonstrates at least 500 h stability at 1000 mA cm-2, disclosing the stable catalysis. Besides, this new paradigm can be extended to Ir/Pd/Ag-based nanocatalysts, illustrating the universality of Turing-type catalysts.
Collapse
Affiliation(s)
- Jialun Gu
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
- CityU-Shenzhen Futian Research Institute, Shenzhen, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong, China
| | - Lanxi Li
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, China
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong, China
| | - Youneng Xie
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong, China
| | - Bo Chen
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Fubo Tian
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, China
| | - Yanju Wang
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong, China
| | - Jing Zhong
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Junda Shen
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong, China
| | - Jian Lu
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, China.
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China.
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China.
- CityU-Shenzhen Futian Research Institute, Shenzhen, China.
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
24
|
Liu K, Niu J, Liu L, Tian F, Nie H, Liu X, Chen K, Zhao R, Sun S, Jiao M, Tian M, Sun X, Niu L, Sun X, Wang H, Long W, Feng L, Mu X, Zhang XD. LUMO-Mediated Se and HOMO-Mediated Te Nanozymes for Selective Redox Biocatalysis. NANO LETTERS 2023; 23:5131-5140. [PMID: 37191492 DOI: 10.1021/acs.nanolett.3c01068] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Selenium (Se) and tellurium (Te) nanomaterials with novel chain-like structures have attracted widespread interest owing to their intriguing properties. Unfortunately, the still-unclear catalytic mechanisms have severely limited the development of biocatalytic performance. In this work, we developed chitosan-coated Se nanozymes with a 23-fold higher antioxidative activity than Trolox and bovine serum albumin coated Te nanozymes with stronger prooxidative biocatalytic effects. Based on density functional theory calculations, we first propose that the Se nanozyme with Se/Se2- active centers favored reactive oxygen species (ROS) clearance via a LUMO-mediated mechanism, while the Te nanozyme with Te/Te4+ active centers promoted ROS production through a HOMO-mediated mechanism. Furthermore, biological experiments confirmed that the survival rate of γ-irritated mice treated with the Se nanozyme was maintained at 100% for 30 days by inhibiting oxidation. However, the Te nanozyme had the opposite biological effect via promoting radiation oxidation. The present work provides a new strategy for improving the catalytic activities of Se and Te nanozymes.
Collapse
Affiliation(s)
- Kaijin Liu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, People's Republic of China
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jiaxue Niu
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People's Republic of China
| | - Ling Liu
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People's Republic of China
| | - Fangzhen Tian
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People's Republic of China
| | - Hongmei Nie
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Xiaoyu Liu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, People's Republic of China
| | - Ke Chen
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People's Republic of China
| | - Ruoli Zhao
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, People's Republic of China
| | - Si Sun
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, People's Republic of China
| | - Menglu Jiao
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, People's Republic of China
| | - Maoye Tian
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Xinyu Sun
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, People's Republic of China
| | - Lanfei Niu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, People's Republic of China
| | - Xinyi Sun
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, People's Republic of China
| | - Hao Wang
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People's Republic of China
| | - Wei Long
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Liefeng Feng
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, People's Republic of China
| | - Xiaoyu Mu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, People's Republic of China
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People's Republic of China
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, People's Republic of China
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
25
|
Zuo C, Su Q, Jiang Z. Advances in the Application of Bi-Based Compounds in Photocatalytic Reduction of CO 2. Molecules 2023; 28:molecules28103982. [PMID: 37241723 DOI: 10.3390/molecules28103982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Bi-based semiconductor materials have special layered structure and appropriate band gap, which endow them with excellent visible light response ability and stable photochemical characteristics. As a new type of environment-friendly photocatalyst, they have received extensive attention in the fields of environmental remediation and energy crisis resolution and have become a research hotspot in recent years. However, there are still some urgent issues that need to be addressed in the practical large-scale application of Bi-based photocatalysts, such as the high recombination rate of photogenerated carriers, limited response range to visible spectra, poor photocatalytic activity, and weak reduction ability. In this paper, the reaction conditions and mechanism of photocatalytic reduction of CO2 and the typical characteristics of Bi-based semiconductor materials are introduced. On this basis, the research progress and application results of Bi-based photocatalysts in the field of reducing CO2, including vacancy introduction, morphological control, heterojunction construction, and co-catalyst loading, are emphasized. Finally, the future prospects of Bi-based photocatalysts are prospected, and it is pointed out that future research directions should be focused on improving the selectivity and stability of catalysts, deeply exploring reaction mechanisms, and meeting industrial production requirements.
Collapse
Affiliation(s)
- Cheng Zuo
- College of Chemistry & Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Qian Su
- College of Chemistry & Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Zaiyong Jiang
- College of Chemistry & Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| |
Collapse
|
26
|
Xu Y, Wei S, Zhang L, Wu Q, Wang F, Fan J, Wang D, Wu T, Cui X. Ion-Assisted Preparation of Bimetallic Porous Nanodendrites for Active and Stable Water Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207332. [PMID: 36719997 DOI: 10.1002/smll.202207332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/01/2023] [Indexed: 06/18/2023]
Abstract
Delicate electrochemical active surface area (ECSA) engineering over the exposed catalytic interface and surface topology of platinum-based nanomaterial represents an effective pathway to boost its catalytic properties toward the clean energy conversion system. Here, for the first time, the facial and universal production of dendritic Pt-based nanoalloys (Pt-Ni, Co, Fe) with highly porous feature via a novel Zn2+ -mediated solution approach is demonstrated. In the presence of Zn2+ during synthesis, the competition of different galvanic replacement reactions and consequently generated "branch-to-branch" growth mode are believed to play key roles for the in situ fabrication of such unique nanostructure. Due to the fully exposed active sites and ligand effect-induced electronic optimization, electrochemical hydrogen evolution in alkaline media on these catalysts exhibit dramatic activity enhancement, delivering a current density of 30.6 mA cm-2 at a 70 mV overpotential for the Pt3 Ni nanodendrites and over 7.4 times higher than that of commercial Pt/C. This work highlights a general and powerful ion-assisted strategy for exploiting dendritic Pt-based nanostructures with efficient activities for water electrolysis.
Collapse
Affiliation(s)
- Yanchao Xu
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, P. R. China
- College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Shuting Wei
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, P. R. China
| | - Lei Zhang
- College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Qiong Wu
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, P. R. China
| | - Feng Wang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Jinchang Fan
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, P. R. China
| | - Dewen Wang
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, P. R. China
| | - Tianzhun Wu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Xiaoqiang Cui
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
27
|
Chen WH, Kawakami N, Hsueh JW, Kuo LH, Chen JY, Liao TW, Kuo CN, Lue CS, Lai YL, Hsu YJ, Lien DH, Hu C, Chou JP, Luo MF, Lin CL. Toward Perfect Surfaces of Transition Metal Dichalcogenides with Ion Bombardment and Annealing Treatment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16153-16161. [PMID: 36802501 DOI: 10.1021/acsami.2c21150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Layered transition metal dichalcogenides (TMDs) are two-dimensional materials exhibiting a variety of unique features with great potential for electronic and optoelectronic applications. The performance of devices fabricated with mono or few-layer TMD materials, nevertheless, is significantly affected by surface defects in the TMD materials. Recent efforts have been focused on delicate control of growth conditions to reduce the defect density, whereas the preparation of a defect-free surface remains challenging. Here, we show a counterintuitive approach to decrease surface defects on layered TMDs: a two-step process including Ar ion bombardment and subsequent annealing. With this approach, the defects, mainly Te vacancies, on the as-cleaved PtTe2 and PdTe2 surfaces were decreased by more than 99%, giving a defect density <1.0 × 1010 cm-2, which cannot be achieved solely with annealing. We also attempt to propose a mechanism behind the processes.
Collapse
Affiliation(s)
- Wan-Hsin Chen
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Naoya Kawakami
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Jing-Wen Hsueh
- Department of Physics, National Central University, Jhongli 320, Taiwan
| | - Lai-Hsiang Kuo
- Department of Physics, National Central University, Jhongli 320, Taiwan
| | - Jiun-Yu Chen
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Ting-Wei Liao
- Department of Physics, National Central University, Jhongli 320, Taiwan
| | - Chia-Nung Kuo
- Department of Physics, National Cheng Kung University, Tainan 701, Taiwan
- Taiwan Consortium of Emergent Crystalline Materials, National Science and Technology Council, Taipei 106, Taiwan
| | - Chin-Shan Lue
- Department of Physics, National Cheng Kung University, Tainan 701, Taiwan
- Taiwan Consortium of Emergent Crystalline Materials, National Science and Technology Council, Taipei 106, Taiwan
- Program on Key Materials, Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan 701, Taiwan
| | - Yu-Ling Lai
- Nanoscience Group, National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan
| | - Yao-Jane Hsu
- Nanoscience Group, National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan
| | - Der-Hsien Lien
- Institute of Electronic Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Chenming Hu
- International College of Semiconductor Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Jyh-Pin Chou
- Department of Physics, National Changhua University of Education, Changhua 500, Taiwan
| | - Meng-Fan Luo
- Department of Physics, National Central University, Jhongli 320, Taiwan
| | - Chun-Liang Lin
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
28
|
Huang X, Wang J, Zhao C, Gan LY, Xu H. The surface charge induced high activity of oxygen reduction reaction on the PdTe 2 bilayer. Phys Chem Chem Phys 2023; 25:4105-4112. [PMID: 36651805 DOI: 10.1039/d2cp05772g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Developing transition metal dichalcogenides as electrocatalysts has attracted great interest due to their tunable electronic properties and good thermal stabilities. Herein, we propose a PdTe2 bilayer as a promising electrocatalyst candidate towards the oxygen reduction reaction (ORR), based on extensive investigation of the electronic properties of PdTe2 thin films as well as atomic-level reaction kinetics at explicit electrode potentials. We verify that under electrochemical reducing conditions, the electron emerging on the electrode surface is directly transferred to O2 adsorbed on the PdTe2 bilayer, which greatly reduces the dissociation barrier of O2, and thereby facilitates the ORR to proceed via a dissociative pathway. Moreover, the barriers of the electrochemical steps in this pathway are all found to be less than 0.1 eV at the ORR limiting potential, demonstrating fast ORR kinetics at ambient conditions. This unique mechanism offers excellent energy efficiency and four-electron selectivity for the PdTe2 bilayer, and it is identified as a promising candidate for fuel cell applications.
Collapse
Affiliation(s)
- Xiang Huang
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Jiong Wang
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Changming Zhao
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Li-Yong Gan
- Institute for Structure and Function and Department of Physics, Chongqing University, Chongqing 400030, China
| | - Hu Xu
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China. .,Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen 518055, China.,Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
29
|
Chu X, Li J, Xu H, Qian W. Introducing Te for boosting electrocatalytic reactions. Dalton Trans 2023; 52:245-259. [PMID: 36519384 DOI: 10.1039/d2dt03253h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The deployment of robust catalysts for electrochemical reactions is a critical topic for energy conversion techniques. Te-based nanomaterials have attracted increasing attention for their application in electrochemical reactions due to their positive influence on the electrocatalytic performance induced by their distinctive electronic and physicochemical properties. Herein, we have summarized the recent progress on Te-based nanocatalysts for electrocatalytic reactions by primarily focusing on the positive influence of Te on electrocatalysts. Firstly, Te-based nanomaterials can serve as an ideal template for the construction of well-defined nanostructures. Secondly, Te doping can significantly modify the electronic structure of the host catalyst, thereby, leading to the optimization of binding strength with intermediates. Furthermore, the Te etching strategy can also create a high density of surface defects, thereby leading to substantial improvement in the electrocatalytic performance. Additionally, many representative Te-based nanocatalysts for electrocatalytic reactions are also summarized and systematically discussed. Finally, a conclusive and perspective discussion is also provided to provide guidance for the future development of more efficient electrocatalysts.
Collapse
Affiliation(s)
- Xianxu Chu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, Henan Province, PR China.
| | - Junru Li
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, Henan Province, PR China.
| | - Hui Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Weiyu Qian
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China
| |
Collapse
|
30
|
Shao D, Deng J, Sheng H, Zhang R, Weng H, Fang Z, Chen XQ, Sun Y, Wang Z. Large Spin Hall Conductivity and Excellent Hydrogen Evolution Reaction Activity in Unconventional PtTe 1.75 Monolayer. RESEARCH (WASHINGTON, D.C.) 2023; 6:0042. [PMID: 36930816 PMCID: PMC10013811 DOI: 10.34133/research.0042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023]
Abstract
Two-dimensional (2D) materials have gained lots of attention due to the potential applications. In this work, we propose that based on first-principles calculations, the (2 × 2) patterned PtTe2 monolayer with kagome lattice formed by the well-ordered Te vacancy (PtTe1.75) hosts large and tunable spin Hall conductivity (SHC) and excellent hydrogen evolution reaction (HER) activity. The unconventional nature relies on the A1 @ 1b band representation of the highest valence band without spin-orbit coupling (SOC). The large SHC comes from the Rashba SOC in the noncentrosymmetric structure induced by the Te vacancy. Even though it has a metallic SOC band structure, the ℤ2 invariant is well defined because of the existence of the direct bandgap and is computed to be nontrivial. The calculated SHC is as large as 1.25 × 103 ℏ e (Ω cm)-1 at the Fermi level (EF ). By tuning the chemical potential from EF - 0.3 to EF + 0.3 eV, it varies rapidly and monotonically from -1.2 × 103 to 3.1 × 1 0 3 ℏ e Ω cm - 1 . In addition, we also find that the Te vacancy in the patterned monolayer can induce excellent HER activity. Our results not only offer a new idea to search 2D materials with large SHC, i.e., by introducing inversion-symmetry breaking vacancies in large SOC systems, but also provide a feasible system with tunable SHC (by applying gate voltage) and excellent HER activity.
Collapse
Affiliation(s)
- Dexi Shao
- Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,Department of Physics, Hangzhou Normal University, Hangzhou 311121, China
| | - Junze Deng
- Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haohao Sheng
- Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruihan Zhang
- Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongming Weng
- Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong Fang
- Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing-Qiu Chen
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, Shenyang 110016, Liaoning, China.,School of Materials Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Yan Sun
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, Shenyang 110016, Liaoning, China.,School of Materials Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Zhijun Wang
- Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
31
|
Single atom catalysts in Van der Waals gaps. Nat Commun 2022; 13:6863. [DOI: 10.1038/s41467-022-34572-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
AbstractSingle-atom catalysts provide efficiently utilized active sites to improve catalytic activities while improving the stability and enhancing the activities to the level of their bulk metallic counterparts are grand challenges. Herein, we demonstrate a family of single-atom catalysts with different interaction types by confining metal single atoms into the van der Waals gap of two-dimensional SnS2. The relatively weak bonding between the noble metal single atoms and the host endows the single atoms with more intrinsic catalytic activity compared to the ones with strong chemical bonding, while the protection offered by the layered material leads to ultrahigh stability compared to the physically adsorbed single-atom catalysts on the surface. Specifically, the trace Pt-intercalated SnS2 catalyst has superior long-term durability and comparable performance to that of commercial 10 wt% Pt/C catalyst in hydrogen evolution reaction. This work opens an avenue to explore high-performance intercalated single-atom electrocatalysts within various two-dimensional materials.
Collapse
|
32
|
Wang X, Wu J, Zhang Y, Sun Y, Ma K, Xie Y, Zheng W, Tian Z, Kang Z, Zhang Y. Vacancy Defects in 2D Transition Metal Dichalcogenide Electrocatalysts: From Aggregated to Atomic Configuration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2206576. [PMID: 36189862 DOI: 10.1002/adma.202206576] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Vacancy defect engineering has been well leveraged to flexibly shape comprehensive physicochemical properties of diverse catalysts. In particular, growing research effort has been devoted to engineering chalcogen anionic vacancies (S/Se/Te) of 2D transition metal dichalcogenides (2D TMDs) toward the ultimate performance limit of electrocatalytic hydrogen evolution reaction (HER). In spite of remarkable progress achieved in the past decade, systematic and in-depth insights into the state-of-the-art vacancy engineering for 2D-TMDs-based electrocatalysis are still lacking. Herein, this review delivers a full picture of vacancy engineering evolving from aggregated to atomic configurations covering their development background, controllable manufacturing, thorough characterization, and representative HER application. Of particular interest, the deep-seated correlations between specific vacancy regulation routes and resulting catalytic performance improvement are logically clarified in terms of atomic rearrangement, charge redistribution, energy band variation, intermediate adsorption-desorption optimization, and charge/mass transfer facilitation. Beyond that, a broader vision is cast into the cutting-edge research fields of vacancy-engineering-based single-atom catalysis and dynamic structure-performance correlations across catalyst service lifetime. Together with critical discussion on residual challenges and future prospects, this review sheds new light on the rational design of advanced defect catalysts and navigates their broader application in high-efficiency energy conversion and storage fields.
Collapse
Affiliation(s)
- Xin Wang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Jing Wu
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yuwei Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yu Sun
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Kaikai Ma
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yong Xie
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Wenhao Zheng
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zhen Tian
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zhuo Kang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yue Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
33
|
Carrier Dynamics and Surface Reaction Boosted by Polymer-based Single-atom Photocatalysts. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2215-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Li T, Deng Y, Rong X, He C, Zhou M, Tang Y, Zhou H, Cheng C, Zhao C. Nanostructures and catalytic atoms engineering of tellurium‐based materials and their roles in electrochemical energy conversion. SMARTMAT 2022. [DOI: 10.1002/smm2.1142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Tiantian Li
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
| | - Yuting Deng
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
| | - Xiao Rong
- Department of Nephrology, Department of Ultrasound, West China Hospital Sichuan University Chengdu China
| | - Chao He
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
- Department of Physics, Chemistry and Pharmacy, Danish Institute for Advanced Study (DIAS) University of Southern Denmark Odense Denmark
| | - Mi Zhou
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
| | - Yuanjiao Tang
- Department of Nephrology, Department of Ultrasound, West China Hospital Sichuan University Chengdu China
| | - Hongju Zhou
- Department of Nephrology, Department of Ultrasound, West China Hospital Sichuan University Chengdu China
| | - Chong Cheng
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
- Med‐X Center for Materials Sichuan University Chengdu China
| | - Changsheng Zhao
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
- Med‐X Center for Materials Sichuan University Chengdu China
- College of Chemical Engineering Sichuan University Chengdu China
| |
Collapse
|
35
|
Wang J, Xin S, Xiao Y, Zhang Z, Li Z, Zhang W, Li C, Bao R, Peng J, Yi J, Chou S. Manipulating the Water Dissociation Electrocatalytic Sites of Bimetallic Nickel-Based Alloys for Highly Efficient Alkaline Hydrogen Evolution. Angew Chem Int Ed Engl 2022; 61:e202202518. [PMID: 35441413 DOI: 10.1002/anie.202202518] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Indexed: 01/13/2023]
Abstract
Transition-metal alloys are currently drawing increasing attention as promising electrocatalysts for the alkaline hydrogen evolution reaction (HER). However, traditional density-functional-theory-derived d-band theory fails to describe the hydrogen adsorption energy (ΔGH ) on hollow sites. Herein, by studying the ΔGH for a series of Ni-M (M=Ti, V, Cr, Mn, Fe, Co, Cu, Zn, Mo, W) bimetallic alloys, an improved d-band center was provided and a potential NiCu electrocatalyst with a near-optimal ΔGH was discovered. Moreover, oxygen atoms were introduced into Ni-M (O-NiM) to balance the adsorption/desorption of hydroxyl species. The tailored electrocatalytic sites for water dissociation can synergistically accelerate the multi-step alkaline HER. The prepared O-NiCu shows the optimum HER activity with a low overpotential of 23 mV at 10 mA cm-2 . This work not only broadens the applicability of d-band theory, but also provides crucial understanding for designing efficient HER electrocatalysts.
Collapse
Affiliation(s)
- Jinsong Wang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, 650093, Kunming, P. R. China
| | - Sisi Xin
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, 650093, Kunming, P. R. China
| | - Yao Xiao
- Institute of Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, 325035, Wenzhou, Zhejiang, P. R. China
| | - Zhengfu Zhang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, 650093, Kunming, P. R. China
| | - Zhimin Li
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, 650093, Kunming, P. R. China
| | - Wang Zhang
- College of Materials Science and Engineering, Shenzhen University, 518055, Shenzhen, P. R. China
| | - Caiju Li
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, 650093, Kunming, P. R. China
| | - Rui Bao
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, 650093, Kunming, P. R. China
| | - Jian Peng
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, New South Wales, 2500, Australia
| | - Jianhong Yi
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, 650093, Kunming, P. R. China
| | - Shulei Chou
- Institute of Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, 325035, Wenzhou, Zhejiang, P. R. China
| |
Collapse
|
36
|
Chen H, Wu Q, Wang Y, Zhao Q, Ai X, Shen Y, Zou X. d-sp orbital hybridization: a strategy for activity improvement of transition metal catalysts. Chem Commun (Camb) 2022; 58:7730-7740. [PMID: 35758107 DOI: 10.1039/d2cc02299k] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Orbital hybridization to regulate the electronic structures and surface chemisorption properties of transition metals has been extensively investigated for searching high-performance catalysts toward various reactions. Unlike conventional d-d hybridization, the d-sp hybridization interaction between transition metals and p-block elements could result in surprising electronic properties and catalytic activities. This feature article highlights the recent progress in the development of high-performance transition metal-based catalysts through the extraordinary d-sp hybridization strategy, particularly for energy-related electrocatalytic applications. We start by giving an introduction of fundamental concepts associated with electronic structures of transition metal catalysts, including the Sabatier principle, d-band theory, electronic descriptor, as well as the comparison of d-d hybridization and d-sp hybridization strategies. Then, we summarize the theoretical and experimental advances in d-sp hybridization catalysts, including p-block element-doped metal catalysts, intermetallic catalysts and supported metal catalysts, with emphasis on the important roles of d-sp hybridization in tuning catalytic performances. Finally, we present existing challenges and future development prospects for the rational design of advanced d-sp hybridization catalysts.
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Qiannan Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Yanfei Wang
- Petrochina Petrochemical Research Institute, Beijing 102206, China
| | - Qinfeng Zhao
- Petrochina Petrochemical Research Institute, Beijing 102206, China
| | - Xuan Ai
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Yucheng Shen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Xiaoxin Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| |
Collapse
|
37
|
Wang J, Xin S, Xiao Y, Zhang Z, Li Z, Zhang W, Li C, Bao R, Peng J, Yi J, Chou S. Manipulating the Water Dissociation Electrocatalytic Sites of Bimetallic Nickel‐Based Alloys for Highly Efficient Alkaline Hydrogen Evolution. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jinsong Wang
- Faculty of Materials Science and Engineering Kunming University of Science and Technology 650093 Kunming P. R. China
| | - Sisi Xin
- Faculty of Materials Science and Engineering Kunming University of Science and Technology 650093 Kunming P. R. China
| | - Yao Xiao
- Institute of Carbon Neutralization College of Chemistry and Materials Engineering Wenzhou University 325035 Wenzhou Zhejiang P. R. China
| | - Zhengfu Zhang
- Faculty of Materials Science and Engineering Kunming University of Science and Technology 650093 Kunming P. R. China
| | - Zhimin Li
- Faculty of Materials Science and Engineering Kunming University of Science and Technology 650093 Kunming P. R. China
| | - Wang Zhang
- College of Materials Science and Engineering Shenzhen University 518055 Shenzhen P. R. China
| | - Caiju Li
- Faculty of Materials Science and Engineering Kunming University of Science and Technology 650093 Kunming P. R. China
| | - Rui Bao
- Faculty of Materials Science and Engineering Kunming University of Science and Technology 650093 Kunming P. R. China
| | - Jian Peng
- Institute for Superconducting & Electronic Materials Australian Institute of Innovative Materials University of Wollongong, Innovation Campus Squires Way North Wollongong New South Wales 2500 Australia
| | - Jianhong Yi
- Faculty of Materials Science and Engineering Kunming University of Science and Technology 650093 Kunming P. R. China
| | - Shulei Chou
- Institute of Carbon Neutralization College of Chemistry and Materials Engineering Wenzhou University 325035 Wenzhou Zhejiang P. R. China
| |
Collapse
|
38
|
Zhao X, Levell ZH, Yu S, Liu Y. Atomistic Understanding of Two-dimensional Electrocatalysts from First Principles. Chem Rev 2022; 122:10675-10709. [PMID: 35561417 DOI: 10.1021/acs.chemrev.1c00981] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two-dimensional electrocatalysts have attracted great interest in recent years for renewable energy applications. However, the atomistic mechanisms are still under debate. Here we review the first-principles studies of the atomistic mechanisms of common 2D electrocatalysts. We first introduce the first-principles models for studying heterogeneous electrocatalysis then discuss the common 2D electrocatalysts with a focus on N doped graphene, single metal atoms in graphene, and transition metal dichalcogenides. The reactions include hydrogen evolution, oxygen evolution, oxygen reduction, and carbon dioxide reduction. Finally, we discuss the challenges and the future directions to improve the fundamental understanding of the 2D electrocatalyst at atomic level.
Collapse
Affiliation(s)
- Xunhua Zhao
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zachary H Levell
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Saerom Yu
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yuanyue Liu
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
39
|
Guleria A, Gandhi VV, Kunwar A, Debnath AK, Adhikari S. Highly stable spherical shaped and blue photoluminescent cyclodextrin-coated tellurium nanocomposites prepared by in situ generated solvated electrons: a rapid green method and mechanistic and anticancer studies. Dalton Trans 2022; 51:6366-6377. [PMID: 35384953 DOI: 10.1039/d2dt00276k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly stable blue photoluminescent tellurium nanocomposites (Te NCs) coated with a molecular assembly of α-cyclodextrin (α-CD) have been prepared by using in situ generated solvated electrons (esol-) in the reaction media. The methodology used is rapid and green as the preparation of colloids was over in a matter of a few seconds and no hazardous agents (reducing or stabilizing) were used. Furthermore, fine control over the size of Te NCs has been demonstrated by simply varying the absorbed irradiation dose. As a matter of fact, the anisotropic property exhibited by tellurium makes it difficult to control the phase and morphology of its nanomaterials. However, unlike the majority of the previous reports, Te NCs formed by the current approach were amorphous and spherical shaped. Another interesting aspect of this work is the cyan-blue photoluminescence (PL) exhibited by the NCs. Systematic photophysical investigations indicated bandgap radiative decay as the origin of photoluminescence. A compositional analysis indicated the presence of Te(0) along with tellurium oxides (TeOx). TGA studies revealed the formation of a dense coating (∼55%) of α-CD molecules on the NCs. Pulse radiolysis-based studies evidenced the formation of Te-based transients by the solvated electron-induced reaction. Importantly, no interference of α-CD was observed in the kinetics of the transient species. Remarkable concentration-dependent killing was observed only in the case of cancerous cells, while no such trend was seen in normal healthy cells. This is a significant observation that can be utilized to achieve differential toxicity of Te nanomaterials in tumor versus normal cells.
Collapse
Affiliation(s)
- Apurav Guleria
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India. .,Homi Bhabha National Institute, Trombay, Mumbai 400094, India
| | - Vishwa V Gandhi
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India. .,Homi Bhabha National Institute, Trombay, Mumbai 400094, India
| | - Amit Kunwar
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India. .,Homi Bhabha National Institute, Trombay, Mumbai 400094, India
| | - Anil K Debnath
- Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Soumyakanti Adhikari
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India. .,Homi Bhabha National Institute, Trombay, Mumbai 400094, India
| |
Collapse
|
40
|
Luo J, Jiang P, Wang D, Yuan X, Sun H, Gan L, Su C, Zhang Q. Electro-exfoliated PdTe 2 nanosheets for enhanced methanol electrooxidation performance in alkaline media. Chem Commun (Camb) 2022; 58:4755-4758. [PMID: 35333272 DOI: 10.1039/d2cc00398h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hydrogen-free cathodic exfoliation was utilized to obtain PdTe2 nanosheets (PTNS) with size 300 nm × 100 nm. Abundant highly exposed active sites and a strong electronic effect between Pd and Te endow PTNS with simultaneous superior methanol oxidation performance in alkaline media, which delivers a low onset potential, high mass and specific activity, and efficient CO elimination ability.
Collapse
Affiliation(s)
- Jingjing Luo
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoeletronics, Shenzhen University, Shenzhen 518060, China.
| | - Peng Jiang
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoeletronics, Shenzhen University, Shenzhen 518060, China. .,School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230027, China
| | - Dongdong Wang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230027, China
| | - Xueyou Yuan
- Department of Energy Engineering and Venture Business Laboratory, Nagoya University, Nagoya 464-8603, Japan
| | - Hongli Sun
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoeletronics, Shenzhen University, Shenzhen 518060, China.
| | - Lang Gan
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoeletronics, Shenzhen University, Shenzhen 518060, China.
| | - Chenliang Su
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoeletronics, Shenzhen University, Shenzhen 518060, China.
| | - Qitao Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoeletronics, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
41
|
Qin Y, Zhang W, Wang F, Li J, Ye J, Sheng X, Li C, Liang X, Liu P, Wang X, Zheng X, Ren Y, Xu C, Zhang Z. Extraordinary p-d Hybridization Interaction in Heterostructural Pd-PdSe Nanosheets Boosts C-C Bond Cleavage of Ethylene Glycol Electrooxidation. Angew Chem Int Ed Engl 2022; 61:e202200899. [PMID: 35083836 DOI: 10.1002/anie.202200899] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 01/14/2023]
Abstract
Advanced electrocatalysts for complete oxidation of ethylene glycol (EG) in direct EG fuel cells are strongly desired owing to the higher energy efficiency. Herein, Pd-PdSe heterostructural nanosheets (Pd-PdSe HNSs) have been successfully fabricated via a one-step approach. These Pd-PdSe HNSs feature unique electronic and geometrical structures, in which unconventional p-d hybridization interactions and tensile strain effect co-exist. Compared with commercial Pd/C and Pd NSs catalysts, Pd-PdSe HNSs display 5.5 (6.6) and 2.5 (2.6) fold enhancement of specific (mass) activity for the EG oxidation reaction (EGOR). Especially, the optimum C1 pathway selectivity of Pd-PdSe HNSs reaches 44.3 %, illustrating the superior C-C bond cleavage ability. Electrochemical in situ FTIR spectroscopy and theoretical calculations demonstrate that the extraordinary p-d hybridization interaction and tensile strain effect could effectively reduce the activation energy of C-C bond breaking and accelerate CO* oxidation, boosting the complete oxidation of EG and improving the catalytic performance.
Collapse
Affiliation(s)
- Yuchen Qin
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - Wenlong Zhang
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - Fengqi Wang
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - JunJun Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| | - Jinyu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, college of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Xia Sheng
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - Chenxi Li
- College of Life Science, Chongqing Normal University, Chongqing, 401331, P. R. China
| | - Xiaoyu Liang
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - Pei Liu
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - Xiaopeng Wang
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - Xin Zheng
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - Yunlai Ren
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - Cuilian Xu
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - Zhicheng Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| |
Collapse
|
42
|
Sun Y, Ding S, Xia B, Duan J, Antonietti M, Chen S. Biomimetic FeMo(Se, Te) as Joint Electron Pool Promoting Nitrogen Electrofixation. Angew Chem Int Ed Engl 2022; 61:e202115198. [DOI: 10.1002/anie.202115198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Yuntong Sun
- Key Laboratory for Soft Chemistry and Functional Materials School of Chemistry and Chemical Engineering School of Energy and Power Engineering Nanjing University of Science and Technology Nanjing 210094 China
| | - Shan Ding
- Key Laboratory for Soft Chemistry and Functional Materials School of Chemistry and Chemical Engineering School of Energy and Power Engineering Nanjing University of Science and Technology Nanjing 210094 China
| | - Baokai Xia
- Key Laboratory for Soft Chemistry and Functional Materials School of Chemistry and Chemical Engineering School of Energy and Power Engineering Nanjing University of Science and Technology Nanjing 210094 China
| | - Jingjing Duan
- Key Laboratory for Soft Chemistry and Functional Materials School of Chemistry and Chemical Engineering School of Energy and Power Engineering Nanjing University of Science and Technology Nanjing 210094 China
| | - Markus Antonietti
- Max Planck Institute of Colloids and Interfaces 14476 Potsdam Germany
| | - Sheng Chen
- Key Laboratory for Soft Chemistry and Functional Materials School of Chemistry and Chemical Engineering School of Energy and Power Engineering Nanjing University of Science and Technology Nanjing 210094 China
- Max Planck Institute of Colloids and Interfaces 14476 Potsdam Germany
| |
Collapse
|
43
|
Li Y, Peng CK, Hu H, Chen SY, Choi JH, Lin YG, Lee JM. Interstitial boron-triggered electron-deficient Os aerogels for enhanced pH-universal hydrogen evolution. Nat Commun 2022; 13:1143. [PMID: 35241652 PMCID: PMC8894469 DOI: 10.1038/s41467-022-28805-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/04/2022] [Indexed: 12/20/2022] Open
Abstract
Developing high-performance electrocatalysts for hydrogen evolution reaction (HER) is crucial for sustainable hydrogen production, yet still challenging. Here, we report boron-modulated osmium (B-Os) aerogels with rich defects and ultra-fine diameter as a pH-universal HER electrocatalyst. The catalyst shows the small overpotentials of 12, 19, and 33 mV at a current density of 10 mA cm−2 in acidic, alkaline, and neutral electrolytes, respectively, as well as excellent stability, surpassing commercial Pt/C. Operando X-ray absorption spectroscopy shows that interventional interstitial B atoms can optimize the electron structure of B-Os aerogels and stabilize Os as active sites in an electron-deficient state under realistic working conditions, and simultaneously reveals the HER catalytic mechanisms of B-Os aerogels in pH-universal electrolytes. The density functional theory calculations also indicate introducing B atoms can tailor the electronic structure of Os, resulting in the reduced water dissociation energy and the improved adsorption/desorption behavior of hydrogen, which synergistically accelerate HER. While noble metals can be active electrocatalysts for producing renewable H2, there are relatively few works examining osmium materials. Here, the authors prepare boron-doped osmium aerogels for H2 evolution electrocatalysis plus examine the mechanism using computational and in situ characterization.
Collapse
Affiliation(s)
- Yinghao Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Chun-Kuo Peng
- Department of Material Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Huimin Hu
- Soochow Institute for Energy and Materials Innovations & Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, College of Energy, Soochow University, Suzhou, 215006, China
| | - San-Yuan Chen
- Department of Material Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Jin-Ho Choi
- Soochow Institute for Energy and Materials Innovations & Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, College of Energy, Soochow University, Suzhou, 215006, China.
| | - Yan-Gu Lin
- Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan.
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.
| |
Collapse
|
44
|
Yao W, Tian C, Yang C, Xu J, Meng Y, Manke I, Chen N, Wu Z, Zhan L, Wang Y, Chen R. P-Doped NiTe 2 with Te-Vacancies in Lithium-Sulfur Batteries Prevents Shuttling and Promotes Polysulfide Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106370. [PMID: 35019192 DOI: 10.1002/adma.202106370] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Lithium-sulfur (Li-S) batteries have been hindered by the shuttle effect and sluggish polysulfide conversion kinetics. Here, a P-doped nickel tellurium electrocatalyst with Te-vacancies (P⊂NiTe2- x ) anchored on maize-straw carbon (MSC) nanosheets, served as a functional layer (MSC/P⊂NiTe2- x ) on the separator of high-performance Li-S batteries. The P⊂NiTe2- x electrocatalyst enhanced the intrinsic conductivity, strengthened the chemical affinity for polysulfides, and accelerated sulfur redox conversion. The MSC nanosheets enabled NiTe2 nanoparticle dispersion and Li+ diffusion. In situ Raman and ex situ X-ray absorption spectra confirmed that the MSC/P⊂NiTe2- x restrained the shuttle effect and accelerated the redox conversion. The MSC/P⊂NiTe2- x -based cell has a cyclability of 637 mAh g-1 at 4 C over 1800 cycles with a degradation rate of 0.0139% per cycle, high rate performance of 726 mAh g-1 at 6 C, and a high areal capacity of 8.47 mAh cm-2 under a sulfur configuration of 10.2 mg cm-2 , and a low electrolyte/sulfur usage ratio of 3.9. This work demonstrates that vacancy-induced doping of heterogeneous atoms enables durable sulfur electrochemistry and can impact future electrocatalytic designs related to various energy-storage applications.
Collapse
Affiliation(s)
- Weiqi Yao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chengxiang Tian
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Chao Yang
- Helmholtz Centre Berlin for Materials and Energy, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Jie Xu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yufeng Meng
- Shanghai Institute of Space Power Sources, Shanghai, 200245, China
| | - Ingo Manke
- Helmholtz Centre Berlin for Materials and Energy, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Nan Chen
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Ziling Wu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Liang Zhan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yanli Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Renjie Chen
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
45
|
Sun Y, Ding S, Xia B, Duan J, Antonietti M, Chen S. Biomimetic FeMo(Se, Te) as Joint Electron Pool Promoting Nitrogen Electrofixation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yuntong Sun
- Key Laboratory for Soft Chemistry and Functional Materials School of Chemistry and Chemical Engineering School of Energy and Power Engineering Nanjing University of Science and Technology Nanjing 210094 China
| | - Shan Ding
- Key Laboratory for Soft Chemistry and Functional Materials School of Chemistry and Chemical Engineering School of Energy and Power Engineering Nanjing University of Science and Technology Nanjing 210094 China
| | - Baokai Xia
- Key Laboratory for Soft Chemistry and Functional Materials School of Chemistry and Chemical Engineering School of Energy and Power Engineering Nanjing University of Science and Technology Nanjing 210094 China
| | - Jingjing Duan
- Key Laboratory for Soft Chemistry and Functional Materials School of Chemistry and Chemical Engineering School of Energy and Power Engineering Nanjing University of Science and Technology Nanjing 210094 China
| | - Markus Antonietti
- Max Planck Institute of Colloids and Interfaces 14476 Potsdam Germany
| | - Sheng Chen
- Key Laboratory for Soft Chemistry and Functional Materials School of Chemistry and Chemical Engineering School of Energy and Power Engineering Nanjing University of Science and Technology Nanjing 210094 China
- Max Planck Institute of Colloids and Interfaces 14476 Potsdam Germany
| |
Collapse
|
46
|
Zhang J, Wang E, Cui S, Yang S, Zou X, Gong Y. Single-Atom Pt Anchored on Oxygen Vacancy of Monolayer Ti 3C 2T x for Superior Hydrogen Evolution. NANO LETTERS 2022; 22:1398-1405. [PMID: 35041435 DOI: 10.1021/acs.nanolett.1c04809] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional (2D) MXene-loaded single-atom (SA) catalysts have drawn increasing attention. SAs immobilized on oxygen vacancies (OV) of MXene are predicted to have excellent catalytic performance; however, they have not yet been realized experimentally. Here Pt SAs immobilized on the OV of monolayer Ti3C2Tx flakes are constructed by a rapid thermal shock technique under a H2 atmosphere. The resultant Ti3C2Tx-PtSA catalyst exhibits excellent hydrogen evolution reaction (HER) performance, including a small overpotential of 38 mV at 10 mA cm-2, a high mass activity of 23.21 A mgPt-1, and a large turnover frequency of 23.45 s-1 at an overpotential of 100 mV. Furthermore, density functional theory calculations demonstrate that anchoring the Pt SA on the OV of Ti3C2Tx helps to decrease the binding energy and the hybridization strength between H atoms and the supports, contributing to rapid hydrogen adsorption-desorption kinetics and high activity for the HER.
Collapse
Affiliation(s)
- Jiangjiang Zhang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Erqing Wang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Shiqiang Cui
- College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Shubin Yang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Xiaolong Zou
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yongji Gong
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
47
|
Qin Y, Zhang W, Wang F, Li J, Ye J, Sheng X, Li C, Liang X, Liu P, Wang X, Zheng X, Ren Y, Xu C, Zhang Z. Extraordinary p–d Hybridization Interaction in Heterostructural Pd‐PdSe Nanosheets Boosts C−C Bond Cleavage of Ethylene Glycol Electrooxidation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yuchen Qin
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - Wenlong Zhang
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - Fengqi Wang
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - JunJun Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry School of Science Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 P. R. China
| | - Jinyu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces college of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 P. R. China
| | - Xia Sheng
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - Chenxi Li
- College of Life Science Chongqing Normal University Chongqing 401331 P. R. China
| | - Xiaoyu Liang
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - Pei Liu
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - Xiaopeng Wang
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - Xin Zheng
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - Yunlai Ren
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - Cuilian Xu
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - Zhicheng Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry School of Science Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 P. R. China
| |
Collapse
|
48
|
Qiao W, Zha M, Yang Y, Hu G, Feng L. Pd17Se15 alloy on Se sphere with high anti-poisoning ability for alcohol fuel electrooxidation. Chem Commun (Camb) 2022; 58:10651-10654. [DOI: 10.1039/d2cc04200b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron-deficient effect of Pd in the Pd17Se15 catalyst effectively weakens the adsorption of CO poisoning species and enhances the electrocatalytic performance of alcohol electrooxidation in an alkaline medium.
Collapse
|
49
|
Lu Z, Xie J, Hu J, Wang K, Cao Y. In Situ Replacement Synthesis of Co@NCNT Encapsulated CoPt 3 @Co 2 P Heterojunction Boosting Methanol Oxidation and Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104656. [PMID: 34741432 DOI: 10.1002/smll.202104656] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Simultaneous boosting electrochemical methanol oxidation reaction (MOR) for direct methanol fuel cells and production of hydrogen is meaningful but challenging. Herein, a sea urchin-shaped cobalt-embedded N-doped carbon nanotubes (Co@NCNT) encapsulated CoPt3 @Co2 P heterojunction (CoPt3 @Co2 P/Co@NCNT) is fabricated. Theoretical calculations confirm that electrons at the interfaces transfer from CoPt3 to Co2 P, where electron hole region on CoPt3 is beneficial to improving the MOR activity, whereas accumulation region on Co2 P favors to the optimization of H2 O and H* absorption energies for hydrogen evolution reaction (HER). Benefitting from its interfacial electronic reconfiguration, the CoPt3 @Co2 P/Co@NCNT heterojunction exhibits excellent electrocatalytic performances for MOR and HER, in which the mass activity (2981 mA mgPt -1 ) for MOR is 14.2 times than that of Pt/C (20%), and the smallest overpotentials only requires 19 mV to deliver a current density of 10 mA cm-2 for HER. Moreover, the electrolyzer employing CoPt3 @Co2 P/Co@NCNT for anodic MOR and cathodic H2 production only requires a low voltage of 1.43 V at 10 mA cm-2 with impressive long-life cycling stability, which is obviously better than that of commercial Pt/C//RuO2 . This study offers a novel strategy for other organics oxidation reaction coupled with HER catalyzed production of hydrogen.
Collapse
Affiliation(s)
- Zhenjiang Lu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China
| | - Jing Xie
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China
| | - Jindou Hu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China
| | - Kun Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China
| | - Yali Cao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China
| |
Collapse
|
50
|
Restructuring highly electron-deficient metal-metal oxides for boosting stability in acidic oxygen evolution reaction. Nat Commun 2021; 12:5676. [PMID: 34584105 PMCID: PMC8479065 DOI: 10.1038/s41467-021-26025-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/14/2021] [Indexed: 12/02/2022] Open
Abstract
The poor catalyst stability in acidic oxidation evolution reaction (OER) has been a long-time issue. Herein, we introduce electron-deficient metal on semiconducting metal oxides-consisting of Ir (Rh, Au, Ru)-MoO3 embedded by graphitic carbon layers (IMO) using an electrospinning method. We systematically investigate IMO’s structure, electron transfer behaviors, and OER catalytic performance by combining experimental and theoretical studies. Remarkably, IMO with an electron-deficient metal surface (Irx+; x > 4) exhibit a low overpotential of only ~156 mV at 10 mA cm−2 and excellent durability in acidic media due to the high oxidation state of metal on MoO3. Furthermore, the proton dissociation pathway is suggested via surface oxygen serving as proton acceptors. This study suggests high stability with high catalytic performance in these materials by creating electron-deficient surfaces and provides a general, unique strategy for guiding the design of other metal-semiconductor nanocatalysts. The poor catalyst stability for oxygen evolution in acidic media has been a long-time issue. Here, authors demonstrate iridium on MoO3 exhibits a low overpotential for oxygen evolution and excellent durability in acidic media due to the high oxidation state of iridium metal on MoO3.
Collapse
|