1
|
Recka N, Simons A, Cornell RA, Van Otterloo E. Epidermal loss of PRMT5 leads to the emergence of an atypical basal keratinocyte-like cell population and defective skin stratification. J Invest Dermatol 2025:S0022-202X(25)00449-X. [PMID: 40339790 DOI: 10.1016/j.jid.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 05/10/2025]
Abstract
During skin development, ectoderm-derived cells undergo precisely coordinated proliferation, differentiation, and adhesion to yield stratified epidermis. Disruptions in these processes can result in congenital anomalies including ectodermal dysplasia and harlequin ichthyosis. Protein Arginine Methyl Transferase 5 (PRMT5)-an enzyme responsible for methylating arginine residues in histones and other proteins-maintains progenitor status in germ and limb bud cells. Similarly, in vitro evidence suggests that PRMT5 prevents differentiation of basal keratinocytes, leading us to hypothesize that PRMT5 preserves the stem-cell phenotype of keratinocytes in vivo. To test this possibility, we generated conditional knockout (cKO) mice lacking Prmt5 in early ectoderm (E7.5), impacting the entire epidermis. Prmt5 cKOs exhibited gross skin defects, compromised skin barrier function, and reduced postnatal viability. Histological analyses revealed significant defects in epidermal stratification, without alterations in apoptosis or proliferation. Single-cell RNA and ATAC-seq analysis identified an atypical population of basal keratinocyte-like cells in Prmt5 cKOs, that exhibited a senescence-like program, characterized by increased Cdkn1a (p21), elevated senescence-associated secretory phenotype (SASP) molecules (Igfbp2), and decreased developmental transcription factor (Trp63) expression. Our findings suggest that PRMT5 prevents basal keratinocyte senescence by repressing Cdkn1a, shedding light on the epigenetic regulation of basal keratinocyte maintenance and senescence in congenital skin disorders.
Collapse
Affiliation(s)
- Nicole Recka
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA; Iowa Institute of Oral Health Research, College of Dentistry & Dental Clinics, University of Iowa, Iowa City, IA, 52242, USA; Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, 52242, USA
| | - Andrean Simons
- Department of Radiation Oncology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Robert A Cornell
- Department of Oral Health Sciences, University of Washington, School of Dentistry, Seattle, WA, 98195, USA
| | - Eric Van Otterloo
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA; Iowa Institute of Oral Health Research, College of Dentistry & Dental Clinics, University of Iowa, Iowa City, IA, 52242, USA; Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, 52242, USA; Department of Periodontics, College of Dentistry & Dental Clinics, University of Iowa, Iowa City, IA, 52242, USA; Craniofacial Anomalies Research Center, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
2
|
Ramkumar N, Richardson C, O'Brien M, Butt FA, Park J, Chao AT, Bagnat M, Poss KD, Di Talia S. Phased ERK responsiveness and developmental robustness regulate teleost skin morphogenesis. Proc Natl Acad Sci U S A 2025; 122:e2410430122. [PMID: 40042905 PMCID: PMC11912398 DOI: 10.1073/pnas.2410430122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 01/09/2025] [Indexed: 03/12/2025] Open
Abstract
Elongation of the vertebrate embryonic axis necessitates rapid expansion of the epidermis to accommodate the growth of underlying tissues. Here, we generated a toolkit to visualize and quantify signaling in entire cell populations of the periderm, the outermost layer of the epidermis, in live developing zebrafish. We find that oriented cell divisions facilitate growth of the early periderm during axial elongation rather than cell addition from the basal layer. Activity levels of Extracellular signal-regulated kinase (ERK), a downstream effector of the MAPK pathway, gauged by a live biosensor, predict cell cycle entry, and optogenetic ERK activation regulates cell cycling dynamics. As development proceeds, rates of peridermal cell proliferation decrease, and ERK activity becomes more pulsatile and functionally transitions to promote hypertrophic cell growth. Targeted genetic blockade of cell division generates animals with oversized periderm cells, yet, unexpectedly, development to adulthood is not impaired. Our findings reveal stage-dependent differential responsiveness to ERK signaling and marked developmental robustness in growing teleost skin.
Collapse
Affiliation(s)
- Nitya Ramkumar
- Department of Cell Biology, Duke University Medical Center, Durham, NC27710
- Duke Regeneration Center, Duke University Medical Center, Durham, NC27710
- Duke Center for Quantitative Living Systems, Duke University Medical Center, Durham, NC27710
| | - Christian Richardson
- Department of Cell Biology, Duke University Medical Center, Durham, NC27710
- Duke Center for Quantitative Living Systems, Duke University Medical Center, Durham, NC27710
| | - Makinnon O'Brien
- Department of Cell Biology, Duke University Medical Center, Durham, NC27710
| | - Faraz Ahmed Butt
- Department of Cell Biology, Duke University Medical Center, Durham, NC27710
- Duke Regeneration Center, Duke University Medical Center, Durham, NC27710
| | - Jieun Park
- Department of Cell Biology, Duke University Medical Center, Durham, NC27710
| | - Anna T. Chao
- Department of Cell Biology, Duke University Medical Center, Durham, NC27710
- Duke Center for Quantitative Living Systems, Duke University Medical Center, Durham, NC27710
| | - Michel Bagnat
- Department of Cell Biology, Duke University Medical Center, Durham, NC27710
| | - Kenneth D. Poss
- Department of Cell Biology, Duke University Medical Center, Durham, NC27710
- Duke Regeneration Center, Duke University Medical Center, Durham, NC27710
- Morgridge Institute for Research, Madison, WI53715
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, WI53705
| | - Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham, NC27710
- Duke Regeneration Center, Duke University Medical Center, Durham, NC27710
- Duke Center for Quantitative Living Systems, Duke University Medical Center, Durham, NC27710
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC27710
| |
Collapse
|
3
|
Molina MA, Biswas S, Jiménez-Vázquez O, Bodily JM. Regulation of epithelial growth factor receptors by the oncoprotein E5 during the HPV16 differentiation-dependent life cycle. Tumour Virus Res 2025; 19:200315. [PMID: 40057277 PMCID: PMC11928765 DOI: 10.1016/j.tvr.2025.200315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/25/2025] Open
Abstract
Human papillomavirus (HPV) 16 infection initiates upon viral entry into the basal cells of the epithelium. The virus manipulates signaling pathways to complete its life cycle, which depends on cellular differentiation. The virus expresses the oncoproteins E5, E6, and E7 to promote immune evasion, cell cycle progression, apoptosis inhibition, and viral replication. The least studied viral oncoprotein is E5 (16E5), which can regulate epithelial growth factor receptor (GFR) signaling pathways. GFRs such as transforming growth factor-beta receptor (TGFBR), epidermal growth factor receptor (EGFR), and keratinocyte growth factor receptor (KGFR) have essential roles in cell growth, differentiation, and proliferation. These receptors obtain their ligands from the microenvironment, and once activated, regulate cellular behavior in the epithelium. GFRs therefore represent valuable targets for the virus to establish and maintain a cellular environment supportive of infection. The ability of 16E5 to regulate proliferation and differentiation varies through the differentiating epithelium, making it necessary to adequately describe the association between 16E5 and GFRs. Here we summarize the regulation of GFR signaling pathways by 16E5, discuss the roles of stromal growth factors, and outline unresolved questions over cellular differentiation and proliferation during the HPV life cycle.
Collapse
Affiliation(s)
- Mariano A Molina
- Department of Pathology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands; Instituto de Ciencias Médicas, Las Tablas, Panama.
| | | | | | - Jason M Bodily
- Department of Microbiology and Immunology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| |
Collapse
|
4
|
Srivastava A, Noble A, Payne SL. Sensory nerve-secreted factors regulate basal keratinocyte function in vitro. Integr Org Biol 2025; 7:obaf009. [PMID: 40151298 PMCID: PMC11945292 DOI: 10.1093/iob/obaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
Basal keratinocytes in the skin epidermis respond to microenvironmental signals during homeostatic maintenance of the skin and following injury by proliferating, migrating, and differentiating to restore the epidermal barrier. Injuries to the skin can result in non-healing wounds, characterized by prolonged inflammation, failure to close, and chronic pain. The skin is densely innervated by peripheral sensory nerves, which contribute to the wound repair response. Although it is known that nerves are important for successful wound healing, the underlying cellular mechanisms of this phenomenon, and particularly the role of nerves in directing keratinocyte re-epithelialization, are poorly understood. To explore the relationship between sensory nerves and keratinocyte function in vitro, we cultured keratinocytes with conditioned media collected from dorsal root ganglia (DRG) in both homeostatic and post-wounding conditions and found that keratinocyte migration, proliferation, and phenotype, functions essential for re-epithelialization, were modulated by DRG conditioned media. Using a proteomic approach, we characterized the secretome of cultured DRG and identified key factors essential for wound healing, including extracellular matrix proteins, growth factors, and metabolic factors involved with ATP production, which was correlated with alternations in keratinocyte metabolism when cultured in DRG conditioned medium. Our results advance our understanding of the microenvironmental cues that direct keratinocyte function during normal cellular turnover and cutaneous wound healing in vitro, helping to drive the development of therapeutics that target dysregulated re-epithelialization.
Collapse
Affiliation(s)
- A Srivastava
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, ON N1G2W1, Guelph, Ontario, Canada
| | - A Noble
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, ON N1G2W1, Guelph, Ontario, Canada
| | - S L Payne
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, ON N1G2W1, Guelph, Ontario, Canada
| |
Collapse
|
5
|
Sparr C, Meitinger F. Prolonged mitosis: A key indicator for detecting stressed and damaged cells. Curr Opin Cell Biol 2025; 92:102449. [PMID: 39721293 DOI: 10.1016/j.ceb.2024.102449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024]
Abstract
During mitosis, chromosomes condense, align to form a metaphase plate and segregate to the two daughter cells. Mitosis is one of the most complex recurring transformations in the life of a cell and requires a high degree of reliability to ensure the error-free transmission of genetic information to the next cell generation. An abnormally prolonged mitosis indicates potential defects that compromise genomic integrity. The mitotic stopwatch pathway detects even moderately prolonged mitoses by integrating memories of mitotic durations, ultimately leading to p53-mediated cell cycle arrest or death. This mechanism competes with mitogen signaling to stop the proliferation of damaged and potentially dangerous cells at a pre-oncogenic stage. Mitosis is a highly vulnerable phase, which is affected by multiple types of cellular damages and diverse stresses. We discuss the hypothesis that the duration of mitosis serves as an indicator of cell health.
Collapse
Affiliation(s)
- Carmen Sparr
- Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Franz Meitinger
- Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan.
| |
Collapse
|
6
|
Meyer‐Gerards C, Bazzi H. Developmental and tissue-specific roles of mammalian centrosomes. FEBS J 2025; 292:709-726. [PMID: 38935637 PMCID: PMC11839934 DOI: 10.1111/febs.17212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/08/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
Centrosomes are dominant microtubule organizing centers in animal cells with a pair of centrioles at their core. They template cilia during interphase and help organize the mitotic spindle for a more efficient cell division. Here, we review the roles of centrosomes in the early developing mouse and during organ formation. Mammalian cells respond to centrosome loss-of-function by activating the mitotic surveillance pathway, a timing mechanism that, when a defined mitotic duration is exceeded, leads to p53-dependent cell death in the descendants. Mouse embryos without centrioles are highly susceptible to this pathway and undergo embryonic arrest at mid-gestation. The complete loss of the centriolar core results in earlier and more severe phenotypes than that of other centrosomal proteins. Finally, different developing tissues possess varying thresholds and mount graded responses to the loss of centrioles that go beyond the germ layer of origin.
Collapse
Affiliation(s)
- Charlotte Meyer‐Gerards
- Department of Cell Biology of the Skin, Medical FacultyUniversity of CologneGermany
- Department of Dermatology and Venereology, Medical FacultyUniversity of CologneGermany
- The Cologne Cluster of Excellence in Cellular Stress Responses in Aging‐associated Diseases (CECAD), Medical FacultyUniversity of CologneGermany
- Graduate School for Biological SciencesUniversity of CologneGermany
- Center for Molecular Medicine Cologne (CMMC), Medical FacultyUniversity of CologneGermany
| | - Hisham Bazzi
- Department of Cell Biology of the Skin, Medical FacultyUniversity of CologneGermany
- Department of Dermatology and Venereology, Medical FacultyUniversity of CologneGermany
- The Cologne Cluster of Excellence in Cellular Stress Responses in Aging‐associated Diseases (CECAD), Medical FacultyUniversity of CologneGermany
- Center for Molecular Medicine Cologne (CMMC), Medical FacultyUniversity of CologneGermany
- Present address:
Cell & Developmental BiologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
| |
Collapse
|
7
|
Belal H, Ying Ng EF, Meitinger F. 53BP1-mediated activation of the tumor suppressor p53. Curr Opin Cell Biol 2024; 91:102424. [PMID: 39244835 DOI: 10.1016/j.ceb.2024.102424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024]
Abstract
In recent years, the role of 53BP1 as a cell cycle regulator has come into the spotlight. 53BP1 is best understood for its role in controlling DNA double-strand break repair. However, 53BP1 was initially discovered as an interaction partner of the tumor suppressor p53, which proved to be independent of DNA repair. The importance of this interaction is becoming increasingly clear. 53BP1 responds to mitotic stress, which prolongs mitosis, or to DNA damage and triggers the stabilization of p53 by the deubiquitinase USP28 to stop the proliferation of potentially damaged cells. The ability of 53BP1 to respond to mitotic stress or DNA damage is controlled by cell cycle-specific post-translational modifications and is therefore restricted to specific cell cycle phases. 53BP1-mediated p53 activation is likely involved in tumor suppression and is associated with genetic diseases such as primary microcephaly. This review emphasizes the importance of these mechanisms for the development and maintenance of healthy tissues.
Collapse
Affiliation(s)
- Hazrat Belal
- Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Esther Feng Ying Ng
- Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Franz Meitinger
- Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan.
| |
Collapse
|
8
|
Gadre P, Markova P, Ebrahimkutty M, Jiang Y, Bouzada FM, Watt FM. Emergence and properties of adult mammalian epidermal stem cells. Dev Biol 2024; 515:129-138. [PMID: 39059680 DOI: 10.1016/j.ydbio.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/08/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
In this review we discuss how the mammalian interfollicular epidermis forms during development, maintains homeostasis, and is repaired following wounding. Recent studies have provided new insights into the relationship between the stem cell compartment and the differentiating cell layers; the ability of differentiated cells to dedifferentiate into stem cells; and the epigenetic memory of epidermal cells following wounding.
Collapse
Affiliation(s)
- Purna Gadre
- Directors' Unit, EMBL-Heidelberg, Meyerhofstr. 1, 69117, Heidelberg, Germany
| | - Pavlina Markova
- Directors' Unit, EMBL-Heidelberg, Meyerhofstr. 1, 69117, Heidelberg, Germany
| | | | - Yidan Jiang
- Directors' Unit, EMBL-Heidelberg, Meyerhofstr. 1, 69117, Heidelberg, Germany
| | - Francisco M Bouzada
- Directors' Unit, EMBL-Heidelberg, Meyerhofstr. 1, 69117, Heidelberg, Germany
| | - Fiona M Watt
- Directors' Unit, EMBL-Heidelberg, Meyerhofstr. 1, 69117, Heidelberg, Germany.
| |
Collapse
|
9
|
Tang X, Wang J, Chen J, Liu W, Qiao P, Quan H, Li Z, Dang E, Wang G, Shao S. Epidermal stem cells: skin surveillance and clinical perspective. J Transl Med 2024; 22:779. [PMID: 39169334 PMCID: PMC11340167 DOI: 10.1186/s12967-024-05600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024] Open
Abstract
The skin epidermis is continually influenced by a myriad of internal and external elements. At its basal layer reside epidermal stem cells, which fuels epidermal renovation and hair regeneration with powerful self-renewal ability, as well as keeping diverse signals that direct their activity under surveillance with quick response. The importance of epidermal stem cells in wound healing and immune-related skin conditions has been increasingly recognized, and their potential for clinical applications is attracting attention. In this review, we delve into recent advancements and the various physiological and psychological factors that govern distinct epidermal stem cell populations, including psychological stress, mechanical forces, chronic aging, and circadian rhythm, as well as providing an overview of current methodological approaches. Furthermore, we discuss the pathogenic role of epidermal stem cells in immune-related skin disorders and their potential clinical applications.
Collapse
Affiliation(s)
- Xin Tang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Jiaqi Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Jiaoling Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Wanting Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Pei Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Huiyi Quan
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Zhiguo Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China.
| | - Shuai Shao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China.
| |
Collapse
|
10
|
Wang L, Ma X, Pan Y, Ye H, Liu Z, Kuang Z, Zhao Z, Liu A, Ji Y. pH-Responsive Calcium Ions and Crocetin Releasing Hydrogel for Accelerating Skin Wound Healing. Chem Asian J 2024; 19:e202400198. [PMID: 38558255 DOI: 10.1002/asia.202400198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/04/2024]
Abstract
The ideal and highly anticipated dressing for skin wounds should provide a moist environment, possess antibacterial properties, and ensure sustained drug release. In the present work, a hyaluronic acid-based hydrogel was formed by cross-linking crocetin and CaCO3@polyelectrolyte materials (CaCO3@PEM) microspheres with HA hydrogels via hydrogen bond and amido bonding (CaCO3@PEM@Cro@HA hydrogel, CPC@HA hydrogel). Moreover, the CPC@HA hydrogel had the capability of sustained, controlled release of calcium ions and crocetin via pH-sensitive and accelerated skin wound healing. The experiment results showed that the CPC@HA hydrogel exhibited porous network structures, stable physical properties, and had antibacterial properties and biocompatibility in vitro. In addition, the CPC@HA hydrogel covering on the skin wound could reduce inflammation and promote wound healing. The high expression of angiogenic cytokines (CD31) and epidermal terminal differentiation markers (Loricrin) of wound healing tissue suggested the CPC@HA hydrogel also had the function of promoting the remodeling of regenerated skin. Overall, CPC@HA hydrogel has promising potential for clinical applications in accelerating skin wound repair.
Collapse
Affiliation(s)
- Li Wang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xuemei Ma
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yanan Pan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Haoxiang Ye
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zike Liu
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zaoyuan Kuang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhongxiang Zhao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Aijun Liu
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yuxing Ji
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| |
Collapse
|
11
|
Ramkumar N, Richardson C, O'Brien M, Butt FA, Park J, Chao AT, Bagnat M, Poss K, Di Talia S. Phased ERK-responsiveness and developmental robustness regulate teleost skin morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593750. [PMID: 38798380 PMCID: PMC11118522 DOI: 10.1101/2024.05.13.593750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Elongation of the vertebrate embryonic axis necessitates rapid expansion of the epidermis to accommodate the growth of underlying tissues. Here, we generated a toolkit to visualize and quantify signaling in entire cell populations of periderm, the outermost layer of the epidermis, in live developing zebrafish. We find that oriented cell divisions facilitate growth of the early periderm during axial elongation rather than cell addition from the basal layer. Activity levels of ERK, a downstream effector of MAPK pathway, gauged by a live biosensor, predicts cell cycle entry, and optogenetic ERK activation controls proliferation dynamics. As development proceeds, rates of peridermal cell proliferation decrease, ERK activity becomes more pulsatile and functionally transitions to promote hypertrophic cell growth. Targeted genetic blockade of cell division generates animals with oversized periderm cells, yet, unexpectedly, development to adulthood is not impaired. Our findings reveal stage-dependent differential responsiveness to ERK signaling and marked developmental robustness in growing teleost skin.
Collapse
|
12
|
Takashima S, Sun W, Otten ABC, Cai P, Peng SI, Tong E, Bui J, Mai M, Amarbayar O, Cheng B, Odango RJ, Li Z, Qu K, Sun BK. Alternative mRNA splicing events and regulators in epidermal differentiation. Cell Rep 2024; 43:113814. [PMID: 38402585 PMCID: PMC11293371 DOI: 10.1016/j.celrep.2024.113814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/22/2023] [Accepted: 02/01/2024] [Indexed: 02/27/2024] Open
Abstract
Alternative splicing (AS) of messenger RNAs occurs in ∼95% of multi-exon human genes and generates diverse RNA and protein isoforms. We investigated AS events associated with human epidermal differentiation, a process crucial for skin function. We identified 6,413 AS events, primarily involving cassette exons. We also predicted 34 RNA-binding proteins (RBPs) regulating epidermal AS, including 19 previously undescribed candidate regulators. From these results, we identified FUS as an RBP that regulates the balance between keratinocyte proliferation and differentiation. Additionally, we characterized the function of a cassette exon AS event in MAP3K7, which encodes a kinase involved in cell signaling. We found that a switch from the short to long isoform of MAP3K7, triggered during differentiation, enforces the demarcation between proliferating basal progenitors and overlying differentiated strata. Our findings indicate that AS occurs extensively in the human epidermis and has critical roles in skin homeostasis.
Collapse
Affiliation(s)
- Shota Takashima
- Department of Dermatology, University of California San Diego, La Jolla, CA 92109, USA
| | - Wujianan Sun
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Auke B C Otten
- Department of Dermatology, University of California San Diego, La Jolla, CA 92109, USA
| | - Pengfei Cai
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Shaohong Isaac Peng
- Department of Dermatology, University of California San Diego, La Jolla, CA 92109, USA
| | - Elton Tong
- Department of Dermatology, University of California San Diego, La Jolla, CA 92109, USA
| | - Jolina Bui
- Department of Dermatology, University of California San Diego, La Jolla, CA 92109, USA
| | - McKenzie Mai
- Department of Dermatology, University of California San Diego, La Jolla, CA 92109, USA
| | - Oyumergen Amarbayar
- Department of Dermatology, University of California San Diego, La Jolla, CA 92109, USA
| | - Binbin Cheng
- Department of Dermatology, University of California San Diego, La Jolla, CA 92109, USA
| | - Rowen Jane Odango
- Department of Dermatology, University of California San Diego, La Jolla, CA 92109, USA
| | - Zongkai Li
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Kun Qu
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Bryan K Sun
- Department of Dermatology, University of California San Diego, La Jolla, CA 92109, USA.
| |
Collapse
|
13
|
Jones RA, Trejo B, Sil P, Little KA, Pasolli HA, Joyce B, Posfai E, Devenport D. An mTurq2-Col4a1 mouse model allows for live visualization of mammalian basement membrane development. J Cell Biol 2024; 223:e202309074. [PMID: 38051393 PMCID: PMC10697824 DOI: 10.1083/jcb.202309074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/03/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
Basement membranes (BMs) are specialized sheets of extracellular matrix that underlie epithelial and endothelial tissues. BMs regulate the traffic of cells and molecules between compartments, and participate in signaling, cell migration, and organogenesis. The dynamics of mammalian BMs, however, are poorly understood, largely due to a lack of models in which core BM components are endogenously labeled. Here, we describe the mTurquoise2-Col4a1 mouse in which we fluorescently tag collagen IV, the main component of BMs. Using an innovative planar-sagittal live imaging technique to visualize the BM of developing skin, we directly observe BM deformation during hair follicle budding and basal progenitor cell divisions. The BM's inherent pliability enables dividing cells to remain attached to and deform the BM, rather than lose adhesion as generally thought. Using FRAP, we show BM collagen IV is extremely stable, even during periods of rapid epidermal growth. These findings demonstrate the utility of the mTurq2-Col4a1 mouse to shed new light on mammalian BM developmental dynamics.
Collapse
Affiliation(s)
- Rebecca A. Jones
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Brandon Trejo
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Parijat Sil
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | - H. Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA
| | - Bradley Joyce
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
14
|
Liu Z, Meng Y, Ishikura A, Kawakami A. Live tracking of basal stem cells of the epidermis during growth, homeostasis and injury response in zebrafish. Development 2024; 151:dev202315. [PMID: 38265193 DOI: 10.1242/dev.202315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024]
Abstract
Basal stem cells of the epidermis continuously differentiate into keratinocytes and replenish themselves via self-renewal to maintain skin homeostasis. Numerous studies have attempted to reveal how basal cells undergo differentiation or self-renewal; however, this has been hampered by a lack of robust basal cell markers and analytical platforms that allow single-cell tracking. Here, we report that zebrafish integrin beta 4 is a useful marker for basal cell labelling, irrespective of the body region, stage and regenerative status. We employed Cre-loxP recombination in combination with live cell tracking of single basal clones in the caudal fin and investigated the embryonic origin and behaviour of basal cells during fish growth and homeostasis. Although most basal cells, including those in fins, became quiescent in the adult stage, genetic cell ablation showed that basal cells were reactivated to either self-renew or differentiate, depending on the injured cell type. Our study provides a simple and easy-to-use platform for quantitative in vivo imaging of basal stem cells at wider stages and under various conditions.
Collapse
Affiliation(s)
- Zhengcheng Liu
- School of Life Science and Technology , Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Yidan Meng
- School of Life Science and Technology , Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Ayu Ishikura
- School of Life Science and Technology , Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Atsushi Kawakami
- School of Life Science and Technology , Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
15
|
Li X, Xie R, Luo Y, Shi R, Ling Y, Zhao X, Xu X, Chu W, Wang X. Cooperation of TGF-β and FGF signalling pathways in skin development. Cell Prolif 2023; 56:e13489. [PMID: 37150846 PMCID: PMC10623945 DOI: 10.1111/cpr.13489] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/27/2023] [Accepted: 04/13/2023] [Indexed: 05/09/2023] Open
Abstract
The skin is a multi-layered structure composed of the epidermis, dermis and hypodermis. The epidermis originates entirely from the ectoderm, whereas the dermis originates from various germ layers depending on its anatomical location; thus, there are different developmental patterns of the skin. Although the regulatory mechanisms of epidermal formation are well understood, mechanisms regulating dermis development are not clear owing to the complex origin. It has been shown that several morphogenetic pathways regulate dermis development. Of these, transforming growth factor-β (TGF-β) and fibroblast growth factor (FGF) signalling pathways are the main modulators regulating skin cell induction, fate decision, migration and differentiation. Recently, the successful generation of human skin by modulating TGF-β and FGF signals further demonstrated the irreplaceable roles of these pathways in skin regeneration. This review provides evidence of the role of TGF-β and FGF signalling pathways in the development of different skin layers, especially the disparate dermis of different body regions. This review also provides new perspectives on the distinct developmental patterns of skin and explores new ideas for clinical applications in the future.
Collapse
Affiliation(s)
- Xinxin Li
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐Sen UniversityShenzhenChina
| | - Rongfang Xie
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐Sen UniversityShenzhenChina
| | - Yilin Luo
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐Sen UniversityShenzhenChina
| | - Runlu Shi
- Institute of Biopharmaceutical and Health Engineering (iBHE), Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| | - Yuanqiang Ling
- Guangzhou Wishing Tree Hair Medical Technology Limited CompanyGuangzhouChina
| | - Xiaojing Zhao
- Guangzhou Wishing Tree Hair Medical Technology Limited CompanyGuangzhouChina
| | - Xuejuan Xu
- Department of EndocrinologyThe First People's Hospital of FoshanFoshanChina
| | - Weiwei Chu
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐Sen UniversityShenzhenChina
| | - Xusheng Wang
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐Sen UniversityShenzhenChina
| |
Collapse
|
16
|
Jacob T, Annusver K, Czarnewski P, Dalessandri T, Kalk C, Levra Levron C, Campamà Sanz N, Kastriti ME, Mikkola ML, Rendl M, Lichtenberger BM, Donati G, Björklund ÅK, Kasper M. Molecular and spatial landmarks of early mouse skin development. Dev Cell 2023; 58:2140-2162.e5. [PMID: 37591247 PMCID: PMC11088744 DOI: 10.1016/j.devcel.2023.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 05/05/2023] [Accepted: 07/21/2023] [Indexed: 08/19/2023]
Abstract
A wealth of specialized cell populations within the skin facilitates its hair-producing, protective, sensory, and thermoregulatory functions. How the vast cell-type diversity and tissue architecture develops is largely unexplored. Here, with single-cell transcriptomics, spatial cell-type assignment, and cell-lineage tracing, we deconstruct early embryonic mouse skin during the key transitions from seemingly uniform developmental precursor states to a multilayered, multilineage epithelium, and complex dermal identity. We identify the spatiotemporal emergence of hair-follicle-inducing, muscle-supportive, and fascia-forming fibroblasts. We also demonstrate the formation of the panniculus carnosus muscle (PCM), sprouting blood vessels without pericyte coverage, and the earliest residence of mast and dendritic immune cells in skin. Finally, we identify an unexpected epithelial heterogeneity within the early single-layered epidermis and a signaling-rich periderm layer. Overall, this cellular and molecular blueprint of early skin development-which can be explored at https://kasperlab.org/tools-establishes histological landmarks and highlights unprecedented dynamic interactions among skin cells.
Collapse
Affiliation(s)
- Tina Jacob
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Karl Annusver
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Paulo Czarnewski
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, 17165 Stockholm, Sweden
| | - Tim Dalessandri
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Christina Kalk
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Chiara Levra Levron
- Department of Life Sciences and Systems Biology, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy
| | - Nil Campamà Sanz
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Maria Eleni Kastriti
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Marja L Mikkola
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Michael Rendl
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Beate M Lichtenberger
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Giacomo Donati
- Department of Life Sciences and Systems Biology, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy
| | - Åsa K Björklund
- Department of Life Science, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Maria Kasper
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
17
|
Thai VL, Ramos-Rodriguez DH, Mesfin M, Leach JK. Hydrogel degradation promotes angiogenic and regenerative potential of cell spheroids for wound healing. Mater Today Bio 2023; 22:100769. [PMID: 37636986 PMCID: PMC10450977 DOI: 10.1016/j.mtbio.2023.100769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023] Open
Abstract
Chronic nonhealing wounds are debilitating and diminish one's quality of life, necessitating the development of improved strategies for effective treatment. Biomaterial- and cell-based therapies offer an alternative treatment compared to conventional wound care for regenerating damaged tissues. Cell-based approaches frequently utilize endothelial cells (ECs) to promote vascularization and mesenchymal stromal cells (MSCs) for their potent secretome that promotes host cell recruitment. Spheroids have improved therapeutic potential over monodisperse cells, while degradable scaffolds can influence cellular processes conducive to long-term tissue regeneration. However, the role of biomaterial degradation on the therapeutic potential of heterotypic EC-MSC spheroids for wound healing is largely unknown. We formed poly(ethylene) glycol (PEG) hydrogels with varying ratios of matrix metalloproteinase (MMP)-degradable and non-degradable crosslinkers to develop three distinct constructs - fully degradable, partially degradable, and non-degradable - and interrogate the influence of degradation rate on engineered cell carriers for wound healing. We found that the vulnerability to degradation was critical for cellular proliferation, while inhibition of degradation impaired spheroid metabolic activity. Higher concentrations of degradable crosslinker promoted robust cell spreading, outgrowth, and secretion of proangiogenic cytokines (i.e., VEGF, HGF) that are critical in wound healing. The degree of degradation dictated the unique secretory profile of spheroids. When applied to a clinically relevant full-thickness ex vivo skin model, degradable spheroid-loaded hydrogels restored stratification of the epidermal layer, confirming the efficacy of scaffolds to promote wound healing. These results highlight the importance of matrix remodeling and its essential role in the therapeutic potential of heterotypic spheroids.
Collapse
Affiliation(s)
- Victoria L. Thai
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA, 95817, USA
- Department of Biomedical Engineering, UC Davis, Davis, CA, 95616, USA
| | | | - Meron Mesfin
- Department of Biomedical Engineering, UC Davis, Davis, CA, 95616, USA
| | - J. Kent Leach
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA, 95817, USA
- Department of Biomedical Engineering, UC Davis, Davis, CA, 95616, USA
| |
Collapse
|
18
|
Jones RA, Trejo B, Sil P, Little KA, Pasolli HA, Joyce B, Posfai E, Devenport D. A Window into Mammalian Basement Membrane Development: Insights from the mTurq2-Col4a1 Mouse Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559396. [PMID: 37808687 PMCID: PMC10557719 DOI: 10.1101/2023.09.27.559396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Basement membranes (BMs) are specialized sheets of extracellular matrix that underlie epithelial and endothelial tissues. BMs regulate traffic of cells and molecules between compartments, and participate in signaling, cell migration and organogenesis. The dynamics of mammalian BMs, however, are poorly understood, largely due to a lack of models in which core BM components are endogenously labelled. Here, we describe the mTurquoise2-Col4a1 mouse, in which we fluorescently tag collagen IV, the main component of BMs. Using an innovative Planar-Sagittal live imaging technique to visualize the BM of developing skin, we directly observe BM deformation during hair follicle budding and basal progenitor cell divisions. The BM's inherent pliability enables dividing cells to remain attached to and deform the BM, rather than lose adhesion as generally thought. Using FRAP, we show BM collagen IV is extremely stable, even during periods of rapid epidermal growth. These findings demonstrate the utility of the mTurq2-Col4a1 mouse to shed new light on mammalian BM developmental dynamics.
Collapse
Affiliation(s)
- Rebecca A Jones
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Brandon Trejo
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Parijat Sil
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Katherine A Little
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - H Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, 1230 York Ave., New York, NY 10065
| | - Bradley Joyce
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| |
Collapse
|
19
|
Sulic AM, Das Roy R, Papagno V, Lan Q, Saikkonen R, Jernvall J, Thesleff I, Mikkola ML. Transcriptomic landscape of early hair follicle and epidermal development. Cell Rep 2023; 42:112643. [PMID: 37318953 DOI: 10.1016/j.celrep.2023.112643] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 04/04/2023] [Accepted: 05/29/2023] [Indexed: 06/17/2023] Open
Abstract
Morphogenesis of ectodermal organs, such as hair, tooth, and mammary gland, starts with the formation of local epithelial thickenings, or placodes, but it remains to be determined how distinct cell types and differentiation programs are established during ontogeny. Here, we use bulk and single-cell transcriptomics and pseudotime modeling to address these questions in developing hair follicles and epidermis and produce a comprehensive transcriptomic profile of cellular populations in the hair placode and interplacodal epithelium. We report previously unknown cell populations and marker genes, including early suprabasal and genuine interfollicular basal markers, and propose the identity of suprabasal progenitors. By uncovering four different hair placode cell populations organized in three spatially distinct areas, with fine gene expression gradients between them, we posit early biases in cell fate establishment. This work is accompanied by a readily accessible online tool to stimulate further research on skin appendages and their progenitors.
Collapse
Affiliation(s)
- Ana-Marija Sulic
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Rishi Das Roy
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Verdiana Papagno
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Qiang Lan
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Riikka Saikkonen
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Jukka Jernvall
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland; Department of Geosciences and Geography, University of Helsinki, 00014 Helsinki, Finland
| | - Irma Thesleff
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Marja L Mikkola
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland.
| |
Collapse
|
20
|
Yin H, Hu M, Li D. Regulation of epidermal stratification and development by basal keratinocytes. J Cell Physiol 2023; 238:742-748. [PMID: 36815398 DOI: 10.1002/jcp.30978] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/23/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023]
Abstract
The epidermis is a stratified squamous epithelium distributed in the outermost layer of the skin and is intimately involved in the formation of a physical barrier to pathogens. Basal keratinocytes possess the properties of stem cells and play an essential role in epidermal development and skin damage recovery. Therefore, understanding the molecular mechanism of how basal keratinocytes participate in epidermal development and stratification is vital for preventing and treating skin lesions. During epidermal morphogenesis, the symmetric division of basal keratinocytes contributes to the extension of skin tissues, while their asymmetric division and migration facilitate epidermal stratification. In this review, we summarize the process of epidermal stratification and illustrate the molecular mechanisms underlying epidermal morphogenesis. Furthermore, we discuss the coordination of multiple signaling pathways and transcription factors in epidermal stratification, together with the roles of cell polarity and cell dynamics during the process.
Collapse
Affiliation(s)
- Hanxiao Yin
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Mingzheng Hu
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
21
|
Hegazy M, Koetsier JL, Huffine AL, Broussard JA, Godsel BM, Cohen-Barak E, Sprecher E, Wolfgeher DJ, Kron SJ, Godsel LM, Green KJ. Epidermal stratification requires retromer-mediated desmoglein-1 recycling. Dev Cell 2022; 57:2683-2698.e8. [PMID: 36495876 PMCID: PMC9973369 DOI: 10.1016/j.devcel.2022.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 09/12/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022]
Abstract
Sorting transmembrane cargo is essential for tissue development and homeostasis. However, mechanisms of intracellular trafficking in stratified epidermis are poorly understood. Here, we identify an interaction between the retromer endosomal trafficking component, VPS35, and the desmosomal cadherin, desmoglein-1 (Dsg1). Dsg1 is specifically expressed in stratified epidermis and, when properly localized on the plasma membrane of basal keratinocytes, promotes stratification. We show that the retromer drives Dsg1 recycling from the endo-lysosomal system to the plasma membrane to support human keratinocyte stratification. The retromer-enhancing chaperone, R55, promotes the membrane localization of Dsg1 and a trafficking-deficient mutant associated with a severe inflammatory skin disorder, enhancing its ability to promote stratification. In the absence of Dsg1, retromer association with and expression of the glucose transporter GLUT1 increases, exposing a potential link between Dsg1 deficiency and epidermal metabolism. Our work provides evidence for retromer function in epidermal regeneration, identifying it as a potential therapeutic target.
Collapse
Affiliation(s)
- Marihan Hegazy
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jennifer L Koetsier
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Amber L Huffine
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Joshua A Broussard
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Brendan M Godsel
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Eran Cohen-Barak
- Department of Dermatology, Emek Medical Center, Afula, Israel; Bruce and Ruth Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Eli Sprecher
- Department of Dermatology, Tel Aviv Medical Center, Tel Aviv, Israel; Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Donald J Wolfgeher
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA
| | - Stephen J Kron
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA
| | - Lisa M Godsel
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Kathleen J Green
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
22
|
Soffer A, Mahly A, Padmanabhan K, Cohen J, Adir O, Loushi E, Fuchs Y, Williams SE, Luxenburg C. Apoptosis and tissue thinning contribute to symmetric cell division in the developing mouse epidermis in a nonautonomous way. PLoS Biol 2022; 20:e3001756. [PMID: 35969606 PMCID: PMC9410552 DOI: 10.1371/journal.pbio.3001756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 08/25/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022] Open
Abstract
Mitotic spindle orientation (SO) is a conserved mechanism that governs cell fate and tissue morphogenesis. In the developing epidermis, a balance between self-renewing symmetric divisions and differentiative asymmetric divisions is necessary for normal development. While the cellular machinery that executes SO is well characterized, the extrinsic cues that guide it are poorly understood. Here, we identified the basal cell adhesion molecule (BCAM), a β1 integrin coreceptor, as a novel regulator of epidermal morphogenesis. In utero RNAi-mediated depletion of Bcam in the mouse embryo did not hinder β1 integrin distribution or cell adhesion and polarity. However, Bcam depletion promoted apoptosis, thinning of the epidermis, and symmetric cell division, and the defects were reversed by concomitant overexpression of the apoptosis inhibitor Xiap. Moreover, in mosaic epidermis, depletion of Bcam or Xiap induced symmetric divisions in neighboring wild-type cells. These results identify apoptosis and epidermal architecture as extrinsic cues that guide SO in the developing epidermis.
Collapse
Affiliation(s)
- Arad Soffer
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adnan Mahly
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Krishnanand Padmanabhan
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jonathan Cohen
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orit Adir
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eidan Loushi
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yaron Fuchs
- Department of Biology, Technion—Israel Institute of Technology, Haifa, Israel
| | - Scott E. Williams
- Departments of Pathology & Laboratory Medicine and Biology, Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Chen Luxenburg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
23
|
Lei T, Du S, Peng Z, Chen L. Multifaceted regulation and functions of 53BP1 in NHEJ‑mediated DSB repair (Review). Int J Mol Med 2022; 50:90. [PMID: 35583003 PMCID: PMC9162042 DOI: 10.3892/ijmm.2022.5145] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/29/2022] [Indexed: 12/02/2022] Open
Abstract
The repair of DNA double-strand breaks (DSBs) is crucial for the preservation of genomic integrity and the maintenance of cellular homeostasis. Non-homologous DNA end joining (NHEJ) is the predominant repair mechanism for any type of DNA DSB during the majority of the cell cycle. NHEJ defects regulate tumor sensitivity to ionizing radiation and anti-neoplastic agents, resulting in immunodeficiencies and developmental abnormalities in malignant cells. p53-binding protein 1 (53BP1) is a key mediator involved in DSB repair, which functions to maintain a balance in the repair pathway choices and in preserving genomic stability. 53BP1 promotes DSB repair via NHEJ and antagonizes DNA end overhang resection. At present, novel lines of evidence have revealed the molecular mechanisms underlying the recruitment of 53BP1 and DNA break-responsive effectors to DSB sites, and the promotion of NHEJ-mediated DSB repair via 53BP1, while preventing homologous recombination. In the present review article, recent advances made in the elucidation of the structural and functional characteristics of 53BP1, the mechanisms of 53BP1 recruitment and interaction with the reshaping of the chromatin architecture around DSB sites, the post-transcriptional modifications of 53BP1, and the up- and downstream pathways of 53BP1 are discussed. The present review article also focuses on the application perspectives, current challenges and future directions of 53BP1 research.
Collapse
Affiliation(s)
- Tiantian Lei
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, P.R. China
| | - Suya Du
- Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Zhe Peng
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, P.R. China
| | - Lin Chen
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, P.R. China
| |
Collapse
|
24
|
Park S. Building vs. Rebuilding Epidermis: Comparison Embryonic Development and Adult Wound Repair. Front Cell Dev Biol 2022; 9:796080. [PMID: 35145968 PMCID: PMC8822150 DOI: 10.3389/fcell.2021.796080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/31/2021] [Indexed: 01/05/2023] Open
Abstract
Wound repair is essential to restore tissue function through the rebuilding of pre-existing structures. The repair process involves the re-formation of tissue, which was originally generated by embryonic development, with as similar a structure as possible. Therefore, these two processes share many similarities in terms of creating tissue architecture. However, fundamental differences still exist, such as differences in the cellular components, the status of neighboring tissues, and the surrounding environment. Recent advances in single-cell transcriptomics, in vivo lineage tracing, and intravital imaging revealed subpopulations, long-term cell fates, and dynamic cellular behaviors in live animals that were not detectable previously. This review highlights similarities and differences between adult wound repair and embryonic tissue development with a particular emphasis on the epidermis of the skin.
Collapse
Affiliation(s)
- Sangbum Park
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, United States
- Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, United States
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
25
|
Hobbs C, Formstone CJ. Planar cell polarity proteins determine basal cell height in the later stage embryonic mouse epidermis'. Wellcome Open Res 2022; 7:138. [PMID: 36938121 PMCID: PMC10020738 DOI: 10.12688/wellcomeopenres.17733.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
Background: Complex organ formation requires the coordinated morphogenesis of adjacent tissue layers. Here, we report a role for the planar cell polarity (PCP) proteins Fz6 and Celsr1 in generating squamous basal cells in the later stage embryonic epidermis of the mouse is reported, which may impact upon the shape of overlying suprabasal cells. Methods: The depth of the epidermis and basal layer as well as cell proliferation index was scored from immunostained wax sections taken from different mouse embryos mutant in planar cell polarity signalling and their wild-type littermates. Orientation of epidermal cell division in Celsr1 Crash/Crash mutants was determined from thick frozen immunostained sections. Immunostained wax sections of wild-type skin explants cultured using the Lumox method enabled any changes in epidermal and basal layer depth to be measured following the release of surface tension upon dissection of skin away from the whole embryo. Results: Increased numbers of columnar and cuboidal basal epidermal cells were observed in fz6-/- mutant and Celsr1 mouse mutant Crash/Crash which correlated with visibly more rounded suprabasal cells and a thicker epidermis. Conclusions: Altogether these data support tissue intrinsic roles for PCP proteins in 'outside-in' (radial) skin architecture.
Collapse
Affiliation(s)
- Carl Hobbs
- Wolfson CARD, King's College London, London, SE1 1UL, UK
| | - Caroline J. Formstone
- Wolfson CARD, King's College London, London, SE1 1UL, UK
- Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
- Centre for Developmental Neurobiology, King's College London, London, SE1 1UL, UK
| |
Collapse
|
26
|
Niehues H, Rikken G, van Vlijmen-Willems IM, Rodijk-Olthuis D, van Erp PE, Zeeuwen PL, Schalkwijk J, van den Bogaard EH. Identification of Keratinocyte Mitogens: Implications for Hyperproliferation in Psoriasis and Atopic Dermatitis. JID INNOVATIONS 2022; 2:100066. [PMID: 35146480 PMCID: PMC8801538 DOI: 10.1016/j.xjidi.2021.100066] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/12/2021] [Accepted: 08/09/2021] [Indexed: 02/08/2023] Open
Abstract
Psoriasis and atopic dermatitis are chronic inflammatory skin diseases characterized by keratinocyte (KC) hyperproliferation and epidermal acanthosis (hyperplasia). The milieu of disease-associated cytokines and soluble factors is considered a mitogenic factor; however, pinpointing the exact mitogens in this complex microenvironment is challenging. We employed organotypic human epidermal equivalents, faithfully mimicking native epidermal proliferation and stratification, to evaluate the proliferative effects of a broad panel of (literature-based) potential mitogens. The KC GF molecule, the T-helper 2 cytokines IL-4 and IL-13, and the psoriasis-associated cytokine IL-17A caused acanthosis by hyperplasia through a doubling in the number of proliferating KCs. In contrast, IFN-γ lowered proliferation, whereas IL-6, IL-20, IL-22, and oncostatin M induced acanthosis not by hyperproliferation but by hypertrophy. The T-helper 2‒cytokine‒mediated hyperproliferation was Jak/signal transducer and activator of transcription 3 dependent, whereas IL-17A and KC GF induced MAPK/extracellular signal‒regulated kinase kinase/extracellular signal‒regulated kinase‒dependent proliferation. This discovery that key regulators in atopic dermatitis and psoriasis are direct KC mitogens not only adds evidence to their crucial role in the pathophysiological processes but also highlights an additional therapeutic pillar for the mode of action of targeting biologicals (e.g., dupilumab) or small-molecule drugs (e.g., tofacitinib) by the normalization of KC turnover within the epidermal compartment.
Collapse
Key Words
- 3D, three-dimensional
- AD, atopic dermatitis
- ERK, extracellular signal‒regulated kinase
- EdU, 5-ethynyl-2′-deoxyuridine
- HEE, human epidermal equivalent
- KC, keratinocyte
- KGF, keratinocyte GF
- MEK, MAPK/ extracellular signal‒regulated kinase kinase
- STAT, signal transducer and activator of transcription
- Th, T helper
Collapse
Affiliation(s)
- Hanna Niehues
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
| | - Gijs Rikken
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
| | - Ivonne M.J.J. van Vlijmen-Willems
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
| | - Diana Rodijk-Olthuis
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
| | - Piet E.J. van Erp
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
| | - Patrick L.J.M. Zeeuwen
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
| | - Joost Schalkwijk
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
| | - Ellen H. van den Bogaard
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
| |
Collapse
|
27
|
Hobbs C, Formstone CJ. Planar cell polarity protein-dependent basal cell height in the later stage embryonic mouse epidermis impacts on the shape of overlying suprabasal cells. Wellcome Open Res 2022; 7:138. [PMID: 36938121 PMCID: PMC10020738 DOI: 10.12688/wellcomeopenres.17733.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Complex organ formation requires the coordinated morphogenesis of adjacent tissue layers. Here, a role for the planar cell polarity (PCP) proteins Fz6 and Celsr1 in generating squamous basal cells in the later stage embryonic epidermis of the mouse is reported, which impacts upon the shape of overlying suprabasal cells. Methods: The depth of the epidermis and basal layer as well as cell proliferation index was scored from immunostained wax sections taken from different mouse embryos mutant in planar cell polarity signalling and their wild-type littermates. Orientation of epidermal cell division in Celsr1 Crash/Crash mutants was determined from thick frozen immunostained sections. Immunostained wax sections of wild-type skin explants cultured using the Lumox method enabled any changes in epidermal and basal layer depth to be measured following the release of surface tension upon dissection of skin away from the whole embryo. Results: Increased numbers of columnar and cuboidal basal epidermal cells were observed in fz6 and Celsr1 mouse mutants including Celsr1 Crash/Crash which correlated with more rounded suprabasal cells and a thicker epidermis. Conclusions: Altogether these data support tissue intrinsic roles for PCP proteins in 'outside-in' (radial) skin architecture.
Collapse
Affiliation(s)
- Carl Hobbs
- Wolfson CARD, King's College London, London, SE1 1UL, UK
| | - Caroline J. Formstone
- Wolfson CARD, King's College London, London, SE1 1UL, UK
- Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
- Centre for Developmental Neurobiology, King's College London, London, SE1 1UL, UK
| |
Collapse
|
28
|
Leucosceptoside A from Devil's Claw Modulates Psoriasis-like Inflammation via Suppression of the PI3K/AKT Signaling Pathway in Keratinocytes. Molecules 2021; 26:molecules26227014. [PMID: 34834106 PMCID: PMC8618597 DOI: 10.3390/molecules26227014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 02/06/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin condition characterized by abnormal keratinocyte proliferation and differentiation that is accompanied with dysregulated immune response and abnormal vascularization. Devil’s claw (Harpagophytum procumbens (Burch.) DC. ex Meisn.) tubers extract has been used both systemically and topically for treatment of chronic inflammatory diseases such as arthritis, osteoporosis, inflammatory bowel disease, among others. However, its potential mechanisms of action against psoriasis remains poorly investigated. The human keratinocyte HaCaT cell line is a well-accepted in vitro model system for inflammatory skin disorders such as psoriasis. The present study involved an exploration of the effect of biotechnologically produced H. procumbens (HP) cell suspension extract and pure phenylethanoid glycosides verbascoside (VER) and leucosceptoside A (LEU) in interferon (IFN)-γ/interleukin (IL)-17A/IL-22-stimulated HaCaT cells as a model of psoriasis-like inflammation. Changes in key inflammatory signaling pathways related to psoriasis development were detected by reverse transcription polymerase chain reaction and western blotting. Treatment with LEU, but not VER and HP extract improved psoriasis-related inflammation via suppression of the PI3K/AKT signaling in IFN-γ/IL-17A/IL-22-stimulated HaCaT cells. Our results suggest that LEU may exhibit therapeutic potential against psoriasis by regulating keratinocyte differentiation through inhibition of the PI3K/AKT pathway.
Collapse
|
29
|
Ryniawec JM, Rogers GC. Centrosome instability: when good centrosomes go bad. Cell Mol Life Sci 2021; 78:6775-6795. [PMID: 34476544 PMCID: PMC8560572 DOI: 10.1007/s00018-021-03928-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/10/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023]
Abstract
The centrosome is a tiny cytoplasmic organelle that organizes and constructs massive molecular machines to coordinate diverse cellular processes. Due to its many roles during both interphase and mitosis, maintaining centrosome homeostasis is essential to normal health and development. Centrosome instability, divergence from normal centrosome number and structure, is a common pathognomonic cellular state tightly associated with cancers and other genetic diseases. As novel connections are investigated linking the centrosome to disease, it is critical to understand the breadth of centrosome functions to inspire discovery. In this review, we provide an introduction to normal centrosome function and highlight recent discoveries that link centrosome instability to specific disease states.
Collapse
Affiliation(s)
- John M Ryniawec
- University of Arizona Cancer Center, University of Arizona, 1515 N. Campbell Ave., Tucson, AZ, 85724, USA
| | - Gregory C Rogers
- University of Arizona Cancer Center, University of Arizona, 1515 N. Campbell Ave., Tucson, AZ, 85724, USA.
| |
Collapse
|