1
|
Zhu H, Terashi G, Farheen F, Nakamura T, Kihara D. AI-based quality assessment methods for protein structure models from cryo-EM. Curr Res Struct Biol 2025; 9:100164. [PMID: 39996138 PMCID: PMC11848767 DOI: 10.1016/j.crstbi.2025.100164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/26/2025] Open
Abstract
Cryogenic electron microscopy (cryo-EM) has revolutionized structural biology, with an increasing number of structures being determined by cryo-EM each year, many at higher resolutions. However, challenges remain in accurately interpreting cryo-EM maps. Inaccuracies can arise in regions of locally low resolution, where manual model building is more prone to errors. Validation scores for structure models have been developed to assess both the compatibility between map density and the structure, as well as the geometric and stereochemical properties of protein models. Recent advancements have introduced artificial intelligence (AI) into this field. These emerging AI-driven tools offer unique capabilities in the validation and refinement of cryo-EM-derived protein atomic models, potentially leading to more accurate protein structures and deeper insights into complex biological systems.
Collapse
Affiliation(s)
- Han Zhu
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Genki Terashi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Farhanaz Farheen
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Tsukasa Nakamura
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Structural Biology Research Center, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, 305-0801, Japan
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
2
|
Wu D, Zhang S, Wu Y, Bi X, Zhou Y, Wu W. Sulforaphane downregulates mitochondrial TIGAR via inhibiting mitochondrial transmembrane assembly and LONP1/CASP3 axis causing apoptosis. Biochem Biophys Res Commun 2025; 760:151689. [PMID: 40157290 DOI: 10.1016/j.bbrc.2025.151689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/17/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
TP53-induced glycolysis and apoptosis regulator (TIGAR) was implicated to be a brand-new target for sulforaphane (SFN) in human non-small cell lung cancer (NSCLC), while the mechanism was elusive. We found that highly expressed TIGAR was positively correlated to pathological grading and contributed to poor survival in NSCLC patients. Western blot showed that SFN downregulated α-tubulin, TIGAR, Timm23 and Timm17A in cytosolic and/or mitochondrial lysate. Besides, SFN downregulated α-tubulin contributing to TIGAR reduction, and also decreased interactions of α-tubulin to Timm23, Timm17A and TIGAR in mitochondria; thus, SFN disrupted the microtubule-mediated mitochondrial transmembrane complexes blocking the entry of cytosolic TIGAR into mitochondria. Further, SFN downregulated mitoprotease LONP1 and decreased the binding of LONP1 to TIGAR; knockdown of LONP1 activated mitochondrial caspase-3 causing the cleavage of mitochondrial TIGAR; SFN-mediated the reduction of TIGAR decreased NADPH leading to ROS elevation and apoptosis in NSCLC. These studies will provide key targets for anti-NSCLC therapy.
Collapse
Affiliation(s)
- Dongxue Wu
- Neonatal Intensive Care Unit, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Sitian Zhang
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yaheng Wu
- Department of Education, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaoyu Bi
- Core Facility, Capital Medical University, Beijing, China
| | - Yan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| | - Wei Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Douglas C, Jain S, Lomeli N, Lepe J, Di K, Nandwana NK, Mohammed AS, Vu T, Pham J, Kenney MC, Das B, Bota DA. Dual targeting of the mitochondrial Lon peptidase 1 and the chymotrypsin-like proteasome activity as a potential therapeutic strategy in malignant astrocytoma models. Pharmacol Res 2025; 215:107697. [PMID: 40088962 DOI: 10.1016/j.phrs.2025.107697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025]
Abstract
Malignant astrocytomas are aggressive primary brain tumors characterized by extensive hypoxia-induced, mitochondria-dependent changes such as altered respiration, increased chymotrypsin-like (CT-L) proteasome activity, decreased apoptosis, drug resistance, stemness, and increased invasiveness. Mitochondrial Lon Peptidase 1 (LonP1) overexpression and increased CT-L proteasome activity are biomarkers of an aggressive high-grade phenotype and found to be associated with recurrence and poor patient survival. In preclinical models, small molecule agents targeting either LonP1 or the proteasome CT-L activity have anti-astrocytoma activity. Here, we present evidence that the dual inhibition of LonP1 and CT-L proteasome activity effectively induces ROS production, leading to apoptosis in malignant astrocytoma established cell lines and patient-derived glioma stem cell-like cultures. We also evaluated a novel small molecule, BT317, derived from the coumarinic compound 4 (CC4) using structure-activity modeling, which we found to inhibit both LonP1 and CT-L proteasome activity. Using gain- and loss-of-function genetic models, we discovered that LonP1 is both necessary and sufficient to drive BT317 drug sensitivity in established and patient-derived glioma stem-like cells by generating ROS and inducing apoptosis. In vitro, BT317 had activity as a single agent but, more importantly, enhanced synergy with the standard of care commonly used chemotherapeutic temozolomide (TMZ). In an orthotopic xenograft astrocytoma model, BT317 crossed the blood-brain barrier, showed selective activity at the tumor site, and demonstrated therapeutic efficacy as a single agent and combined with TMZ. BT317 defines an emerging class of LonP1 and CT-L inhibitors that exhibited promising anti-tumor activity and could be a potential candidate for malignant astrocytoma therapeutics. SIMPLE SUMMARY: Malignant astrocytoma patients have poor clinical outcomes, and novel treatments are needed to limit tumor recurrence and improve their overall survival. These tumors have a malignant phenotype mediated by altered mitochondrial metabolism, abnormal protein processing, and adaptation to hypoxia. We have previously published that astrocytomas are especially vulnerable to proteasome inhibitors as well as to inhibitors of the mitochondrial Lon Peptidase 1 (LonP1), but the effect of combining the two strategies has not been reported. Here, we present evidence that the dual inhibition of LonP1 and Chymotrypsin-like (CT-L) proteasome activity effectively induces cellular reactive oxygen species (ROS) production, leading to apoptosis in malignant astrocytoma established cell lines and patient-derived glioma stem cell-like cultures. We developed BT317, a small molecule dual inhibitor, which crosses the blood-brain barrier and shows strong synergy with the standard of care, temozolomide (TMZ), in the astrocytoma cell lines independent of their isocitrate dehydrogenase (IDH) profile and in an orthotopic glioma murine model. This preclinical study demonstrated the potential of dual LonP1 and CT-L proteasome inhibition as a novel therapeutic strategy for malignant astrocytoma and provides insight for future clinical translational studies alone or in combination with other chemotherapies.
Collapse
Affiliation(s)
- Christopher Douglas
- Department of Experimental Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, USA
| | - Shashi Jain
- Department of Neurology, University of California Irvine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Naomi Lomeli
- Department of Neurology, University of California Irvine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Javier Lepe
- Department of Experimental Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Kaijun Di
- Department of Neurology, University of California Irvine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | | | | | - Thao Vu
- Department of Neurology, University of California Irvine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - James Pham
- Department of Neurology, University of California Irvine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Maria Cristina Kenney
- Department of Ophthalmology Research, University of California Irvine, Irvine, CA, USA
| | - Bhaskar Das
- University at Buffalo, The State University of New York (SUNY), USA; School of Pharmacy and Pharmaceutical Sciences, SUNY, NY, USA.
| | - Daniela A Bota
- Department of Experimental Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, USA; Department of Neurology, University of California Irvine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
4
|
Zanini G, Micheloni G, Sinigaglia G, Selleri V, Mattioli AV, Nasi M, Pierri CL, Pinti M. Modulation of Lonp1 Activity by Small Compounds. Biomolecules 2025; 15:553. [PMID: 40305312 PMCID: PMC12024584 DOI: 10.3390/biom15040553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025] Open
Abstract
The Lon protease homolog 1 (LONP1) is an ATP-dependent mitochondrial protease essential for maintaining proteostasis, bioenergetics, and cellular homeostasis. LONP1 plays a pivotal role in protein quality control, mitochondrial DNA maintenance, and oxidative phosphorylation system (OXPHOS) regulation, particularly under stress conditions. Dysregulation of LONP1 has been implicated in various pathologies, including cancer, metabolic disorders, and reproductive diseases, positioning it as a promising pharmacological target. This review examines compounds that modulate LONP1 activity, categorizing them into inhibitors and activators. Inhibitors such as CDDO and its derivatives selectively target LONP1, impairing mitochondrial proteolysis, inducing protein aggregation, and promoting apoptosis, particularly in cancer cells. Compounds like Obtusilactone A and proteasome inhibitors (e.g., MG262) demonstrate potent cytotoxicity, further expanding the therapeutic landscape. Conversely, LONP1 activators, including Artemisinin derivatives and 84-B10, restore mitochondrial function and protect against conditions such as polycystic ovary syndrome (PCOS) and acute kidney injury (AKI). Future research should focus on improving the specificity, bioavailability, and pharmacokinetics of these modulators. Advances in structural biology and drug discovery will enable the development of novel LONP1-targeted therapies, addressing diseases driven by mitochondrial dysfunction and proteostasis imbalance.
Collapse
Affiliation(s)
- Giada Zanini
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.Z.); (G.M.); (G.S.); (V.S.)
| | - Giulia Micheloni
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.Z.); (G.M.); (G.S.); (V.S.)
| | - Giorgia Sinigaglia
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.Z.); (G.M.); (G.S.); (V.S.)
| | - Valentina Selleri
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.Z.); (G.M.); (G.S.); (V.S.)
- National Institute for Cardiovascular Research—INRC, 40126 Bologna, Italy;
| | - Anna Vittoria Mattioli
- National Institute for Cardiovascular Research—INRC, 40126 Bologna, Italy;
- Department of Quality-of-Life Sciences, University of Bologna, 40126 Bologna, Italy
| | - Milena Nasi
- Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Ciro Leonardo Pierri
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.Z.); (G.M.); (G.S.); (V.S.)
- National Institute for Cardiovascular Research—INRC, 40126 Bologna, Italy;
| |
Collapse
|
5
|
Wang HJ, Kuan YE, Ho MR, Chang CI. Structural basis for the allosteric activation of Lon by the heat shock protein LarA. Nat Commun 2025; 16:2212. [PMID: 40044692 PMCID: PMC11882793 DOI: 10.1038/s41467-025-57482-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/25/2025] [Indexed: 03/09/2025] Open
Abstract
Lon is a conserved AAA+ (ATPases associated with diverse cellular activities) proteolytic machine that plays a key regulatory role in cells under proteotoxic stress. Lon-mediated proteolysis can be stimulated by either the unfolded or specific protein substrates accumulated under stress conditions. However, the molecular basis for this substrate-controlled proteolysis remains unclear. Here, we have found that the heat shock protein LarA, a recently discovered Lon substrate and allosteric activator, binds to the N-terminal domain (NTD) of Lon. The crystal structure of the LarA-NTD complex shows that LarA binds to a highly conserved groove in the NTD through the terminal aromatic residue of its C-terminal degron. Crystallographic and biochemical evidence further reveals that this binding exposes the hydrophobic core of LarA, which can bind a leucine residue and promote local protein unfolding. These results define the mechanistic role of the NTD in regulating Lon-mediated proteolysis in response to varying cellular conditions.
Collapse
Affiliation(s)
- Hsiu-Jung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Yun-Erh Kuan
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Meng-Ru Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan.
| | - Chung-I Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan.
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
6
|
Yao M, Zhang X, Wu T, Feng T, Bian X, Abudurexiti M, Wang W, Shi G, Wei GH, Zhang Q, Li X, Feng G, Du L, Wang J. Lon protease 1-mediated metabolic reprogramming promotes the progression of prostate cancer. Cell Death Dis 2025; 16:116. [PMID: 39971909 PMCID: PMC11840119 DOI: 10.1038/s41419-025-07449-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 01/30/2025] [Accepted: 02/12/2025] [Indexed: 02/21/2025]
Abstract
Lon protease 1 (LONP1) is an ATP-dependent protease located in the mitochondrial matrix and plays a crucial role in regulating mitochondrial proteostasis, metabolism, and cellular stress responses et al. Aberrant LONP1 expression has been found in the progression of various tumors; however, the role and molecular mechanisms of LONP1 in prostate cancer (PCa) remain poorly understood. Here we show that overexpression of LONP1 is closely related to adverse clinic pathological features and poor prognosis in PCa patients. Mechanistically, the findings reveal that LONP1 is implicated in modulating the metabolic switch from oxidative phosphorylation (OXPHOS) to aerobic glycolysis, thereby promoting tumor proliferation, invasion, and metastasis both in vitro and in vivo. Meanwhile, we prove that LONP1 as a protease directly targets mitochondrial pyruvate carrier 1 (MPC1), a key metabolic protein in the process of glycolysis, and enhances its degradation, which in turn suppresses tricarboxylic acid (TCA) cycle and ultimately promotes the progression of PCa. Furthermore, using PCa in cancer-prone mice homozygous for a prostate-targeted conditional Pten knockout and Lonp1 knockin, we integrate transcriptomic and proteomic analyses of prostate tumors, upon which reveals that Lonp1 overexpression results in a significant downregulation of NADH: ubiquinone oxidoreductase activity, consequently impeding the electron transfer process and mitochondrial ATP synthesis, associated with metastasis of PCa. Collectively, our results highlight that metabolic reprogramming induced by LONP1 in PCa is closely coupled with disease progression, suggesting that targeting the LONP1-mediated cascade in the mitochondrial may provide therapeutic potential for PCa disease.
Collapse
Affiliation(s)
- Mengfei Yao
- Cancer Institute, Shanghai Urological Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Nuclear Medicine, Zhongshan Hospital affiliated Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Xingming Zhang
- Cancer Institute, Shanghai Urological Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Tianqi Wu
- Radiation Oncology Center, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Tao Feng
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaojie Bian
- Cancer Institute, Shanghai Urological Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Mierxiati Abudurexiti
- Cancer Institute, Shanghai Urological Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Urology, Shanghai Pudong New Area Gongli Hospital, Shanghai, 200135, China
| | - Wenfeng Wang
- Cancer Institute, Shanghai Urological Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Guohai Shi
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Gong-Hong Wei
- Cancer Institute, Shanghai Urological Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200025, China
| | - Qin Zhang
- Disease Networks Research Unit, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014, Oulu, Finland
| | - Xiangyun Li
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Gang Feng
- Department of Laboratory Medicine, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China.
| | - Leilei Du
- Cancer Institute, Shanghai Urological Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Jianhua Wang
- Cancer Institute, Shanghai Urological Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Department of Laboratory Medicine, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China.
| |
Collapse
|
7
|
Chen Y, Mao W, Shen Y, Huang H, Chang HM, Dong X, Jiang J, Mu L. Unveiling the biological functions and therapeutic potentials of LONP1 in the ovary. Trends Mol Med 2024:S1471-4914(24)00311-3. [PMID: 39648053 DOI: 10.1016/j.molmed.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/29/2024] [Accepted: 11/15/2024] [Indexed: 12/10/2024]
Abstract
Recent research highlights that Lon protease 1 (LONP1) regulates steroidogenesis in the ovary and plays a role in oocyte development and quality control. Dysregulation of LONP1 has been observed in polycystic ovary syndrome and ovarian aging. This forum article explores the role of LONP1 in the ovary and its therapeutic potential.
Collapse
Affiliation(s)
- Yi Chen
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China; The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Weian Mao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yanting Shen
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Honing Huang
- Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan.
| | - Xi Dong
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Jingjing Jiang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Liangshan Mu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Chen W, Yang J, Lander GC. Cryo-EM structures of human ClpXP reveal mechanisms of assembly and proteolytic activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623337. [PMID: 39605471 PMCID: PMC11601447 DOI: 10.1101/2024.11.12.623337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The human ClpXP complex (hClpXP) plays a central role in mitochondrial protein quality control by degrading misfolded or unneeded proteins. While bacterial ClpXP complexes have been extensively characterized, the molecular determinants underlying hClpXP assembly and regulation are not as well understood. We determined cryo-electron microscopy (cryo-EM) structures of hClpP in isolation and in complex with hClpX, revealing how hClpX binding promotes rearrangement of an asymmetric hClpP heptamer to assemble as a symmetric tetradecamer. Our hClpXP structure also highlights the stabilizing role of a previously uncharacterized eukaryotic ClpX sequence, referred to as the E-loop, and its importance in ATPase activity and hexamer assembly. We further show that peptide interaction with the hClpP proteolytic active site promotes the complex to adopt a proteolytically competent conformation. Together, these findings advance our understanding of the molecular mechanisms defining hClpXP activation and function.
Collapse
Affiliation(s)
- Wenqian Chen
- Department of Integrative Structural and Computational Biology, Scripps Research; La Jolla, CA, USA
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA 92037
| | - Jie Yang
- Department of Integrative Structural and Computational Biology, Scripps Research; La Jolla, CA, USA
| | - Gabriel C. Lander
- Department of Integrative Structural and Computational Biology, Scripps Research; La Jolla, CA, USA
| |
Collapse
|
9
|
Song C, Li Y, Yang M, Li T, Hou Y, Liu Y, Xu C, Liu J, Millar AH, Wang N, Li L. Protein aggregation in plant mitochondria lacking Lon1 inhibits translation and induces unfolded protein responses. PLANT, CELL & ENVIRONMENT 2024; 47:4383-4397. [PMID: 38988259 DOI: 10.1111/pce.15035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
Loss of Lon1 led to stunted plant growth and accumulation of nuclear-encoded mitochondrial proteins including Lon1 substrates. However, an in-depth label-free proteomics quantification of mitochondrial proteins in lon1 revealed that the majority of mitochondrial-encoded proteins decreased in abundance. Additionally, we found that lon1 mutants contained protein aggregates in the mitochondrial that were enriched in metabolic enzymes, ribosomal subunits and PPR-containing proteins of the translation apparatus. These mutants exhibited reduced general mitochondrial translation as well as deficiencies in RNA splicing and editing. These findings support the role of Lon1 in maintaining a functional translational apparatus for mitochondrial-encoded gene translation. Transcriptome analysis of lon1 revealed a mitochondrial unfolded protein response reminiscent of the mitochondrial retrograde signalling dependent on the transcription factor ANAC017. Notably, lon1 mutants exhibited transiently elevated ethylene production, and the shortened hypocotyl observed in lon1 mutants during skotomorphogenesis was partially alleviated by ethylene inhibitors. Furthermore, the short root phenotype was partially ameliorated by introducing a mutation in the ethylene receptor ETR1. Interestingly, the upregulation of only a select few target genes was linked to ETR1-mediated ethylene signalling. Together this provides multiple steps in the link between loss of Lon1 and signalling responses to restore mitochondrial protein homoeostasis in plants.
Collapse
Affiliation(s)
- Ce Song
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yuanyuan Li
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Mengmeng Yang
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Tiantian Li
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yuqi Hou
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yinyin Liu
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Chang Xu
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jinjian Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Science, The University of Western Australia, Crawley, Western Australia, Australia
| | - Ningning Wang
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Lei Li
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
10
|
Li SX, He N, Liao JX, Lu XG, Hu WG, Liu XR, Liao WP, Song XW, Li B. Association of LONP1 gene with epilepsy and the sub-regional effect. Sci Rep 2024; 14:25575. [PMID: 39462050 PMCID: PMC11513111 DOI: 10.1038/s41598-024-77039-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
The LONP1 gene encodes Lon protease, which is responsible for degrading damaged or misfolded proteins and binding mitochondrial DNA. Previously, LONP1 variants have been identified in patients with cerebral, ocular, dental, auricular, and skeletal anomalies (CODAS syndrome) and mitochondrial diseases. Seizures were occasionally observed. However, the association between LONP1 and epilepsy remains elusive. In this study, we performed trio-based whole-exome sequencing in a cohort of 450 patients with unexplained epilepsy and identified four pairs of compound heterozygous LONP1 variants in four unrelated cases. All patients exhibited good responses to anti-seizure medications and demonstrated no developmental delay or intellectual disabilities. The variant allele frequencies observed in this study were absent or low in the general population and were significantly lower than those of benign variants. At least one variant in each biallelic pair affected hydrogen bonding and/or altered protein stability. The CODAS syndrome-associated variants were concentrated in the AAA+ module, especially the α domain. Four of the five mitochondrial disease-associated variants were located in the AAA + domain and the NTD5H and NTD3H subdomains. In contrast, each of the biallelic variants from the patients with pure epilepsy had one variant located in the linker domain, and the other variant located in the mitochondrial targeting sequence or P domain. This study suggested that LONP1 gene is potentially a novel candidate gene for pure epilepsy. The phenotypic variation is associated with the sub-regional effects of variants.
Collapse
Affiliation(s)
- Si-Xiu Li
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Department of Neurology of the Second Affiliated Hospital, Institute of Neuroscience, Guangzhou Medical University, Ministry of Education of China, Guangzhou, China
- Department of Pediatric Neurology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Na He
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Department of Neurology of the Second Affiliated Hospital, Institute of Neuroscience, Guangzhou Medical University, Ministry of Education of China, Guangzhou, China
| | - Jian-Xiang Liao
- Epilepsy Center, Department of Neurology, Shenzhen Children's Hospital, Shantou University Medical College, Shenzhen, China
| | - Xin-Guo Lu
- Epilepsy Center, Department of Neurology, Shenzhen Children's Hospital, Shantou University Medical College, Shenzhen, China
| | - Wen-Guang Hu
- Department of Pediatric Neurology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao-Rong Liu
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Department of Neurology of the Second Affiliated Hospital, Institute of Neuroscience, Guangzhou Medical University, Ministry of Education of China, Guangzhou, China
| | - Wei-Ping Liao
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Department of Neurology of the Second Affiliated Hospital, Institute of Neuroscience, Guangzhou Medical University, Ministry of Education of China, Guangzhou, China
| | - Xing-Wang Song
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Department of Neurology of the Second Affiliated Hospital, Institute of Neuroscience, Guangzhou Medical University, Ministry of Education of China, Guangzhou, China.
| | - Bin Li
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Department of Neurology of the Second Affiliated Hospital, Institute of Neuroscience, Guangzhou Medical University, Ministry of Education of China, Guangzhou, China.
| |
Collapse
|
11
|
Xu L, Tan C, Barr J, Talaba N, Verheyden J, Chin JS, Gaboyan S, Kasaraneni N, Elgamal RM, Gaulton KJ, Lin G, Afshar K, Golts E, Meier A, Crotty Alexander LE, Borok Z, Shen Y, Chung WK, McCulley DJ, Sun X. Context-dependent roles of mitochondrial LONP1 in orchestrating the balance between airway progenitor versus progeny cells. Cell Stem Cell 2024; 31:1465-1483.e6. [PMID: 39181129 DOI: 10.1016/j.stem.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 06/12/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024]
Abstract
While all eukaryotic cells are dependent on mitochondria for function, in a complex tissue, which cell type and which cell behavior are more sensitive to mitochondrial deficiency remain unpredictable. Here, we show that in the mouse airway, compromising mitochondrial function by inactivating mitochondrial protease gene Lonp1 led to reduced progenitor proliferation and differentiation during development, apoptosis of terminally differentiated ciliated cells and their replacement by basal progenitors and goblet cells during homeostasis, and failed airway progenitor migration into damaged alveoli following influenza infection. ATF4 and the integrated stress response (ISR) pathway are elevated and responsible for the airway phenotypes. Such context-dependent sensitivities are predicted by the selective expression of Bok, which is required for ISR activation. Reduced LONP1 expression is found in chronic obstructive pulmonary disease (COPD) airways with squamous metaplasia. These findings illustrate a cellular energy landscape whereby compromised mitochondrial function could favor the emergence of pathological cell types.
Collapse
Affiliation(s)
- Le Xu
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chunting Tan
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Justinn Barr
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicole Talaba
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jamie Verheyden
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ji Sun Chin
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Samvel Gaboyan
- Pulmonary and Critical Care Section, Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Nikita Kasaraneni
- Pulmonary and Critical Care Section, Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ruth M Elgamal
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kyle J Gaulton
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Grace Lin
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Kamyar Afshar
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Eugene Golts
- Department of Surgery, Division of Cardiovascular and Thoracic Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Angela Meier
- Department of Anesthesiology, Division of Critical Care, University of California, San Diego, La Jolla, CA, USA
| | - Laura E Crotty Alexander
- Pulmonary and Critical Care Section, Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Zea Borok
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA; JP Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - David J McCulley
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xin Sun
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
12
|
Riccio A, Brannon A, Krahn J, Bouvette J, Williams J, Borgnia M, Copeland W. Coordinated DNA polymerization by Polγ and the region of LonP1 regulated proteolysis. Nucleic Acids Res 2024; 52:7863-7875. [PMID: 38932681 PMCID: PMC11260448 DOI: 10.1093/nar/gkae539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/09/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
The replicative mitochondrial DNA polymerase, Polγ, and its protein regulation are essential for the integrity of the mitochondrial genome. The intricacies of Polγ regulation and its interactions with regulatory proteins, which are essential for fine-tuning polymerase function, remain poorly understood. Misregulation of the Polγ heterotrimer, consisting of (i) PolG, the polymerase catalytic subunit and (ii) PolG2, the accessory subunit, ultimately results in mitochondrial diseases. Here, we used single particle cryo-electron microscopy to resolve the structure of PolG in its apoprotein state and we captured Polγ at three intermediates within the catalytic cycle: DNA bound, engaged, and an active polymerization state. Chemical crosslinking mass spectrometry, and site-directed mutagenesis uncovered the region of LonP1 engagement of PolG, which promoted proteolysis and regulation of PolG protein levels. PolG2 clinical variants, which disrupted a stable Polγ complex, led to enhanced LonP1-mediated PolG degradation. Overall, this insight into Polγ aids in an understanding of mitochondrial DNA replication and characterizes how machinery of the replication fork may be targeted for proteolytic degradation when improperly functioning.
Collapse
Affiliation(s)
- Amanda A Riccio
- Mitochondrial DNA Replication group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Asia J Brannon
- Mitochondrial DNA Replication group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Juno M Krahn
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Jonathan Bouvette
- Molecular Microscopy Consortium, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Jason G Williams
- Mass Spectrometry Research and Support Group, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Mario J Borgnia
- Molecular Microscopy Consortium, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - William C Copeland
- Mitochondrial DNA Replication group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| |
Collapse
|
13
|
Mindrebo JT, Lander GC. Structural and mechanistic studies on human LONP1 redefine the hand-over-hand translocation mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600538. [PMID: 38979310 PMCID: PMC11230189 DOI: 10.1101/2024.06.24.600538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
AAA+ enzymes use energy from ATP hydrolysis to remodel diverse cellular targets. Structures of substrate-bound AAA+ complexes suggest that these enzymes employ a conserved hand-over-hand mechanism to thread substrates through their central pore. However, the fundamental aspects of the mechanisms governing motor function and substrate processing within specific AAA+ families remain unresolved. We used cryo-electron microscopy to structurally interrogate reaction intermediates from in vitro biochemical assays to inform the underlying regulatory mechanisms of the human mitochondrial AAA+ protease, LONP1. Our results demonstrate that substrate binding allosterically regulates proteolytic activity, and that LONP1 can adopt a configuration conducive to substrate translocation even when the ATPases are bound to ADP. These results challenge the conventional understanding of the hand-over-hand translocation mechanism, giving rise to an alternative model that aligns more closely with biochemical and biophysical data on related enzymes like ClpX, ClpA, the 26S proteasome, and Lon protease.
Collapse
Affiliation(s)
- Jeffrey T. Mindrebo
- Department of Integrative Structural and Computational Biology, Scripps Research; La Jolla, CA, USA
| | - Gabriel C. Lander
- Department of Integrative Structural and Computational Biology, Scripps Research; La Jolla, CA, USA
| |
Collapse
|
14
|
Li J, Zhu J, Deng Y, Reck EC, Walker EM, Sidarala V, Hubers DL, Pasmooij MB, Shin CS, Bandesh K, Motakis E, Nargund S, Kursawe R, Basrur V, Nesvizhskii AI, Stitzel ML, Chan DC, Soleimanpour SA. LONP1 regulation of mitochondrial protein folding provides insight into beta cell failure in type 2 diabetes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597215. [PMID: 38895283 PMCID: PMC11185607 DOI: 10.1101/2024.06.03.597215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Proteotoxicity is a contributor to the development of type 2 diabetes (T2D), but it is unknown whether protein misfolding in T2D is generalized or has special features. Here, we report a robust accumulation of misfolded proteins within the mitochondria of human pancreatic islets in T2D and elucidate its impact on β cell viability. Surprisingly, quantitative proteomics studies of protein aggregates reveal that human islets from donors with T2D have a signature more closely resembling mitochondrial rather than ER protein misfolding. The matrix protease LonP1 and its chaperone partner mtHSP70 were among the proteins enriched in protein aggregates. Deletion of LONP1 in mice yields mitochondrial protein misfolding and reduced respiratory function, ultimately leading to β cell apoptosis and hyperglycemia. Intriguingly, LONP1 gain of function ameliorates mitochondrial protein misfolding and restores human β cell survival following glucolipotoxicity via a protease-independent effect requiring LONP1-mtHSP70 chaperone activity. Thus, LONP1 promotes β cell survival and prevents hyperglycemia by facilitating mitochondrial protein folding. These observations may open novel insights into the nature of impaired proteostasis on β cell loss in the pathogenesis of T2D that could be considered as future therapeutic targets.
Collapse
|
15
|
Yang Q, Wang M, Wang H, Ren C, Li Y. Exogenous hydrogen sulfide prevents SOD2 degradation to safeguard renal function in diabetic kidney disease. Biochem Cell Biol 2024; 102:252-261. [PMID: 38417127 DOI: 10.1139/bcb-2023-0295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024] Open
Abstract
Diabetic kidney disease (DKD) is a major contributor to chronic kidney disease. Hydrogen sulfide (H2S) serves as an endogenous gaseous signaling molecule capable of safeguarding renal function within the context of DKD. However, the underlying mechanisms need to be elucidated. This study was undertaken to unveil the mechanisms by which H2S counteracts against DKD. Utilizing mice and human renal tubular epithelial (HK-2) cells, we demonstrated a reduction in cystathionine-γ-lyase/H2S levels within renal tissues of db/db mice and in HK-2 cells subjected to hyperglycemic and hyperlipidemic environments. Notably, we observed that sodium hydrosulfide (NaHS) supplementation could serve as an exogenous source of H2S. Exogenous H2S exhibited the capacity to mitigate the accumulation of reactive oxygen species and attenuate the degradation of superoxide dismutase 2 (SOD2) by Lon protease homolog 1 induced by hyperglycemia and hyperlipidemia, thus affording cellular protection against mitochondrial apoptosis. Consequently, NaHS treatment led to decreased serum levels of blood urea nitrogen and serum creatinine, reflecting alleviated renal damage and thereby preserving renal function in db/db mice. Based on these findings, we propose that exogenous H2S exerts a protective role against DKD by inhibiting SOD2 degradation.
Collapse
Affiliation(s)
- Qian Yang
- Department of Urology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Mengyi Wang
- Department of Pathophysiology, Harbin Medical University, Harbin 150081, China
| | - Huan Wang
- Department of Outpatient, First Retired Cadre Sanatorium of Heilongjiang Provincial Military Command, Harbin 150008, China
| | - Cheng Ren
- Department of Urology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yifu Li
- Department of Urology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| |
Collapse
|
16
|
Kunová N, Ondrovičová G, Bauer JA, Krajčovičová V, Pinkas M, Stojkovičová B, Havalová H, Lukáčová V, Kohútová L, Košťan J, Martináková L, Baráth P, Nováček J, Zoll S, Kereϊche S, Kutejová E, Pevala V. Polyphosphate and tyrosine phosphorylation in the N-terminal domain of the human mitochondrial Lon protease disrupts its functions. Sci Rep 2024; 14:9923. [PMID: 38688959 PMCID: PMC11061198 DOI: 10.1038/s41598-024-60030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/18/2024] [Indexed: 05/02/2024] Open
Abstract
Phosphorylation plays a crucial role in the regulation of many fundamental cellular processes. Phosphorylation levels are increased in many cancer cells where they may promote changes in mitochondrial homeostasis. Proteomic studies on various types of cancer identified 17 phosphorylation sites within the human ATP-dependent protease Lon, which degrades misfolded, unassembled and oxidatively damaged proteins in mitochondria. Most of these sites were found in Lon's N-terminal (NTD) and ATPase domains, though little is known about the effects on their function. By combining the biochemical and cryo-electron microscopy studies, we show the effect of Tyr186 and Tyr394 phosphorylations in Lon's NTD, which greatly reduce all Lon activities without affecting its ability to bind substrates or perturbing its tertiary structure. A substantial reduction in Lon's activities is also observed in the presence of polyphosphate, whose amount significantly increases in cancer cells. Our study thus provides an insight into the possible fine-tuning of Lon activities in human diseases, which highlights Lon's importance in maintaining proteostasis in mitochondria.
Collapse
Grants
- 894 Grant No. 1825144Y Grantová Agentura České Republiky
- 894 Grant No. 1825144Y Grantová Agentura České Republiky
- 894 Grant No. 1825144Y Grantová Agentura České Republiky
- StruBioMol, ITMS: 305011X666 Interreg
- StruBioMol, ITMS: 305011X666 Interreg
- StruBioMol, ITMS: 305011X666 Interreg
- StruBioMol, ITMS: 305011X666 Interreg
- StruBioMol, ITMS: 305011X666 Interreg
- UP CIISB (No. CZ.02.1.01/0.0/0.0/18_046/0015974) European Regional Development Fund, European Union
- UP CIISB (No. CZ.02.1.01/0.0/0.0/18_046/0015974) European Regional Development Fund, European Union
- BIOMEDIRES - II. stage, ITMS: 313011W428 European Regional Development Fund
- APVV-15-0375, APVV-19-0298 Agentúra na Podporu Výskumu a Vývoja
- APVV-15-0375, APVV-19-0298 Agentúra na Podporu Výskumu a Vývoja
- 2/0069/23 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
- 2/0069/23 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
Collapse
Affiliation(s)
- Nina Kunová
- Department of Biochemistry and Protein Structure, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51, Bratislava, Slovakia
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Gabriela Ondrovičová
- Department of Biochemistry and Protein Structure, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51, Bratislava, Slovakia
| | - Jacob A Bauer
- Department of Biochemistry and Protein Structure, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51, Bratislava, Slovakia
| | - Veronika Krajčovičová
- Department of Biochemistry and Protein Structure, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51, Bratislava, Slovakia
- Laboratory of Clinical and Molecular Genetics, National Institute of Children's Diseases, Limbová 1, 833 40, Bratislava, Slovakia
| | - Matyáš Pinkas
- CEITEC, Masaryk University in Brno, Brno, Czech Republic
| | - Barbora Stojkovičová
- Department of Biochemistry and Protein Structure, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51, Bratislava, Slovakia
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Henrieta Havalová
- Department of Biochemistry and Protein Structure, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51, Bratislava, Slovakia
| | | | - Lenka Kohútová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Július Košťan
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna, Biocenter 5, 1030, Vienna, Austria
| | - Lucia Martináková
- Department of Biochemistry and Protein Structure, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51, Bratislava, Slovakia
| | - Peter Baráth
- Medirex Group Academy, Nitra, Slovakia
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jiří Nováček
- CEITEC, Masaryk University in Brno, Brno, Czech Republic
| | - Sebastian Zoll
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Namesti 542/2, 16000, Prague, Czech Republic
| | - Sami Kereϊche
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Namesti 542/2, 16000, Prague, Czech Republic.
| | - Eva Kutejová
- Department of Biochemistry and Protein Structure, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51, Bratislava, Slovakia.
| | - Vladimír Pevala
- Department of Biochemistry and Protein Structure, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51, Bratislava, Slovakia.
| |
Collapse
|
17
|
Yamano K, Kinefuchi H, Kojima W. Mitochondrial quality control via organelle and protein degradation. J Biochem 2024; 175:487-494. [PMID: 38102729 DOI: 10.1093/jb/mvad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
Mitochondria are essential eukaryotic organelles that produce ATP as well as synthesize various macromolecules. They also participate in signalling pathways such as the innate immune response and apoptosis. These diverse functions are performed by >1,000 different mitochondrial proteins. Although mitochondria are continuously exposed to potentially damaging conditions such as reactive oxygen species, proteases/peptidases localized in different mitochondrial subcompartments, termed mitoproteases, maintain mitochondrial quality and integrity. In addition to processing incoming precursors and degrading damaged proteins, mitoproteases also regulate metabolic reactions, mitochondrial protein half-lives and gene transcription. Impaired mitoprotease function is associated with various pathologies. In this review, we highlight recent advances in our understanding of mitochondrial quality control regulated by autophagy, ubiquitin-proteasomes and mitoproteases.
Collapse
Affiliation(s)
- Koji Yamano
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Hiroki Kinefuchi
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Waka Kojima
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
18
|
Shetty R, Noland R, Nandi G, Suzuki CK. Powering down the mitochondrial LonP1 protease: a novel strategy for anticancer therapeutics. Expert Opin Ther Targets 2024; 28:9-15. [PMID: 38156441 PMCID: PMC10939840 DOI: 10.1080/14728222.2023.2298358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/15/2023] [Indexed: 12/30/2023]
Abstract
INTRODUCTION Mitochondrial LonP1 is an ATP-powered protease that also functions as an ATP-dependent chaperone. LonP1 plays a pivotal role in regulating mitochondrial proteostasis, metabolism and cell stress responses. Cancer cells exploit the functions of LonP1 to combat oncogenic stressors such as hypoxia, proteotoxicity, and oxidative stress, and to reprogram energy metabolism enabling cancer cell proliferation, chemoresistance, and metastasis. AREAS COVERED LonP1 has emerged as a potential target for anti-cancer therapeutics. We review how cytoprotective functions of LonP1 can be leveraged by cancer cells to support oncogenic growth, proliferation, and survival. We also offer insights into small molecule inhibitors that target LonP1 by two distinct mechanisms: competitive inhibition of its protease activity and allosteric inhibition of its ATPase activity, both of which are crucial for its protease and chaperone functions. EXPERT OPINION We highlight advantages of identifying specific, high-affinity allosteric inhibitors blocking the ATPase activity of LonP1. The future discovery of such inhibitors has potential application either alone or in conjunction with other anticancer agents, presenting an innovative approach and target for cancer therapeutics.
Collapse
Affiliation(s)
- Rahul Shetty
- Rutgers University- New Jersey Medical School, Department of Microbiology, Biochemistry & Molecular Genetics, Newark, NJ
| | - Roberto Noland
- Rutgers University- New Jersey Medical School, Department of Microbiology, Biochemistry & Molecular Genetics, Newark, NJ
| | - Ghata Nandi
- Rutgers University- New Jersey Medical School, Department of Microbiology, Biochemistry & Molecular Genetics, Newark, NJ
| | - Carolyn K. Suzuki
- Rutgers University- New Jersey Medical School, Department of Microbiology, Biochemistry & Molecular Genetics, Newark, NJ
| |
Collapse
|
19
|
Key J, Gispert S, Koepf G, Steinhoff-Wagner J, Reichlmeir M, Auburger G. Translation Fidelity and Respiration Deficits in CLPP-Deficient Tissues: Mechanistic Insights from Mitochondrial Complexome Profiling. Int J Mol Sci 2023; 24:17503. [PMID: 38139332 PMCID: PMC10743472 DOI: 10.3390/ijms242417503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The mitochondrial matrix peptidase CLPP is crucial during cell stress. Its loss causes Perrault syndrome type 3 (PRLTS3) with infertility, neurodegeneration, and a growth deficit. Its target proteins are disaggregated by CLPX, which also regulates heme biosynthesis via unfolding ALAS enzymes, providing access for pyridoxal-5'-phosphate (PLP). Despite efforts in diverse organisms with multiple techniques, CLPXP substrates remain controversial. Here, avoiding recombinant overexpression, we employed complexomics in mitochondria from three mouse tissues to identify endogenous targets. A CLPP absence caused the accumulation and dispersion of CLPX-VWA8 as AAA+ unfoldases, and of PLPBP. Similar changes and CLPX-VWA8 co-migration were evident for mitoribosomal central protuberance clusters, translation factors like GFM1-HARS2, the RNA granule components LRPPRC-SLIRP, and enzymes OAT-ALDH18A1. Mitochondrially translated proteins in testes showed reductions to <30% for MTCO1-3, the mis-assembly of the complex IV supercomplex, and accumulated metal-binding assembly factors COX15-SFXN4. Indeed, heavy metal levels were increased for iron, molybdenum, cobalt, and manganese. RT-qPCR showed compensatory downregulation only for Clpx mRNA; most accumulated proteins appeared transcriptionally upregulated. Immunoblots validated VWA8, MRPL38, MRPL18, GFM1, and OAT accumulation. Co-immunoprecipitation confirmed CLPX binding to MRPL38, GFM1, and OAT, so excess CLPX and PLP may affect their activity. Our data mechanistically elucidate the mitochondrial translation fidelity deficits which underlie progressive hearing impairment in PRLTS3.
Collapse
Affiliation(s)
- Jana Key
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Suzana Gispert
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Gabriele Koepf
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Julia Steinhoff-Wagner
- TUM School of Life Sciences, Animal Nutrition and Metabolism, Technical University of Munich, Liesel-Beckmann-Str. 2, 85354 Freising-Weihenstephan, Germany;
| | - Marina Reichlmeir
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Georg Auburger
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| |
Collapse
|
20
|
Omnus DJ, Fink MJ, Kallazhi A, Xandri Zaragoza M, Leppert A, Landreh M, Jonas K. The heat shock protein LarA activates the Lon protease in response to proteotoxic stress. Nat Commun 2023; 14:7636. [PMID: 37993443 PMCID: PMC10665427 DOI: 10.1038/s41467-023-43385-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023] Open
Abstract
The Lon protease is a highly conserved protein degradation machine that has critical regulatory and protein quality control functions in cells from the three domains of life. Here, we report the discovery of a α-proteobacterial heat shock protein, LarA, that functions as a dedicated Lon regulator. We show that LarA accumulates at the onset of proteotoxic stress and allosterically activates Lon-catalysed degradation of a large group of substrates through a five amino acid sequence at its C-terminus. Further, we find that high levels of LarA cause growth inhibition in a Lon-dependent manner and that Lon-mediated degradation of LarA itself ensures low LarA levels in the absence of stress. We suggest that the temporal LarA-dependent activation of Lon helps to meet an increased proteolysis demand in response to protein unfolding stress. Our study defines a regulatory interaction of a conserved protease with a heat shock protein, serving as a paradigm of how protease activity can be tuned under changing environmental conditions.
Collapse
Affiliation(s)
- Deike J Omnus
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm, 10691, Sweden
| | - Matthias J Fink
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm, 10691, Sweden
| | - Aswathy Kallazhi
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm, 10691, Sweden
| | - Maria Xandri Zaragoza
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm, 10691, Sweden
| | - Axel Leppert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, 17165, Solna, Sweden
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, 17165, Solna, Sweden
- Department of Cell and Molecular Biology, Uppsala University, Box 596, 751 24, Uppsala, Sweden
| | - Kristina Jonas
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm, 10691, Sweden.
| |
Collapse
|
21
|
Li S, Hsieh KY, Kuo CI, Lin TC, Lee SH, Chen YR, Wang CH, Ho MR, Ting SY, Zhang K, Chang CI. A 5+1 assemble-to-activate mechanism of the Lon proteolytic machine. Nat Commun 2023; 14:7340. [PMID: 37957149 PMCID: PMC10643698 DOI: 10.1038/s41467-023-43035-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Many AAA+ (ATPases associated with diverse cellular activities) proteins function as protein or DNA remodelers by threading the substrate through the central pore of their hexameric assemblies. In this ATP-dependent translocating state, the substrate is gripped by the pore loops of the ATPase domains arranged in a universal right-handed spiral staircase organization. However, the process by which a AAA+ protein is activated to adopt this substrate-pore-loop arrangement remains unknown. We show here, using cryo-electron microscopy (cryo-EM), that the activation process of the Lon AAA+ protease may involve a pentameric assembly and a substrate-dependent incorporation of the sixth protomer to form the substrate-pore-loop contacts seen in the translocating state. Based on the structural results, we design truncated monomeric mutants that inhibit Lon activity by binding to the native pentamer and demonstrated that expressing these monomeric mutants in Escherichia coli cells containing functional Lon elicits specific phenotypes associated with lon deficiency, including the inhibition of persister cell formation. These findings uncover a substrate-dependent assembly process for the activation of a AAA+ protein and demonstrate a targeted approach to selectively inhibit its function within cells.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Urology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China.
| | - Kan-Yen Hsieh
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Chiao-I Kuo
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Tzu-Chi Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Szu-Hui Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Ru Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Chun-Hsiung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Meng-Ru Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - See-Yeun Ting
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Kaiming Zhang
- Department of Urology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China.
| | - Chung-I Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan.
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
22
|
Rüttermann M, Koci M, Lill P, Geladas ED, Kaschani F, Klink BU, Erdmann R, Gatsogiannis C. Structure of the peroxisomal Pex1/Pex6 ATPase complex bound to a substrate. Nat Commun 2023; 14:5942. [PMID: 37741838 PMCID: PMC10518020 DOI: 10.1038/s41467-023-41640-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 09/12/2023] [Indexed: 09/25/2023] Open
Abstract
The double-ring AAA+ ATPase Pex1/Pex6 is required for peroxisomal receptor recycling and is essential for peroxisome formation. Pex1/Pex6 mutations cause severe peroxisome associated developmental disorders. Despite its pathophysiological importance, mechanistic details of the heterohexamer are not yet available. Here, we report cryoEM structures of Pex1/Pex6 from Saccharomyces cerevisiae, with an endogenous protein substrate trapped in the central pore of the catalytically active second ring (D2). Pairs of Pex1/Pex6(D2) subdomains engage the substrate via a staircase of pore-1 loops with distinct properties. The first ring (D1) is catalytically inactive but undergoes significant conformational changes resulting in alternate widening and narrowing of its pore. These events are fueled by ATP hydrolysis in the D2 ring and disengagement of a "twin-seam" Pex1/Pex6(D2) heterodimer from the staircase. Mechanical forces are propagated in a unique manner along Pex1/Pex6 interfaces that are not available in homo-oligomeric AAA-ATPases. Our structural analysis reveals the mechanisms of how Pex1 and Pex6 coordinate to achieve substrate translocation.
Collapse
Affiliation(s)
- Maximilian Rüttermann
- Institute for Medical Physics and Biophysics, University Münster, Münster, Germany
- Center for Soft Nanoscience (SoN), University Münster, Münster, Germany
| | - Michelle Koci
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Pascal Lill
- Institute for Medical Physics and Biophysics, University Münster, Münster, Germany
- Center for Soft Nanoscience (SoN), University Münster, Münster, Germany
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Ermis Dionysios Geladas
- Institute for Medical Physics and Biophysics, University Münster, Münster, Germany
- Center for Soft Nanoscience (SoN), University Münster, Münster, Germany
| | - Farnusch Kaschani
- Analytics Core Facility Essen, Center of Medical Biotechnology (ZMB), Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Björn Udo Klink
- Institute for Medical Physics and Biophysics, University Münster, Münster, Germany
- Center for Soft Nanoscience (SoN), University Münster, Münster, Germany
| | - Ralf Erdmann
- Institute for Biochemistry and Pathobiochemistry, Department of Systems Biochemistry, Ruhr-University Bochum, Bochum, Germany
| | - Christos Gatsogiannis
- Institute for Medical Physics and Biophysics, University Münster, Münster, Germany.
- Center for Soft Nanoscience (SoN), University Münster, Münster, Germany.
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| |
Collapse
|
23
|
Goettig P, Koch NG, Budisa N. Non-Canonical Amino Acids in Analyses of Protease Structure and Function. Int J Mol Sci 2023; 24:14035. [PMID: 37762340 PMCID: PMC10531186 DOI: 10.3390/ijms241814035] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
All known organisms encode 20 canonical amino acids by base triplets in the genetic code. The cellular translational machinery produces proteins consisting mainly of these amino acids. Several hundred natural amino acids serve important functions in metabolism, as scaffold molecules, and in signal transduction. New side chains are generated mainly by post-translational modifications, while others have altered backbones, such as the β- or γ-amino acids, or they undergo stereochemical inversion, e.g., in the case of D-amino acids. In addition, the number of non-canonical amino acids has further increased by chemical syntheses. Since many of these non-canonical amino acids confer resistance to proteolytic degradation, they are potential protease inhibitors and tools for specificity profiling studies in substrate optimization and enzyme inhibition. Other applications include in vitro and in vivo studies of enzyme kinetics, molecular interactions and bioimaging, to name a few. Amino acids with bio-orthogonal labels are particularly attractive, enabling various cross-link and click reactions for structure-functional studies. Here, we cover the latest developments in protease research with non-canonical amino acids, which opens up a great potential, e.g., for novel prodrugs activated by proteases or for other pharmaceutical compounds, some of which have already reached the clinical trial stage.
Collapse
Affiliation(s)
- Peter Goettig
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
| | - Nikolaj G. Koch
- Biocatalysis Group, Technische Universität Berlin, 10623 Berlin, Germany;
- Bioanalytics Group, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany;
| | - Nediljko Budisa
- Bioanalytics Group, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany;
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
24
|
Yao H, Zhang S, Xie H, Fan Y, Miao M, Zhu R, Yuan L, Gu M, You Y, You B. RCN2 promotes Nasopharyngeal carcinoma progression by curbing Calcium flow and Mitochondrial apoptosis. Cell Oncol (Dordr) 2023; 46:1031-1048. [PMID: 36952101 PMCID: PMC10356900 DOI: 10.1007/s13402-023-00796-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2023] [Indexed: 03/24/2023] Open
Abstract
OBJECTIVE Evidence suggests that calcium release from the endoplasmic reticulum (ER) can be induced to cause calcium overload, which in turn can trigger mitochondrial-dependent apoptosis. Dysregulation of systemic calcium homeostasis and changing levels of calcium-binding proteins have been shown to be associated with the malignant behavior of tumors. However, the precise molecular mechanism underlying Nasopharyngeal carcinoma (NPC) remains uncertain. METHODS Reticulocalbin (RCN2) expression in NPC was assessed using GEO database, western blot analysis and qRT-PCR. Apoptosis was assessed using flow cytometric analysis and the expression levels of apoptosis-related proteins were determined using western blot analysis. Intracellular calcium ion concentrations were measured using fluorescence imaging. The findings from these analyses were validated in vitro using nude mice models. Luciferase and ChIP assays were used to measure transcriptional regulation. Clinical significance was evaluated using tissue microarray analysis (n=150). RESULTS Our results showed that RCN2 promotes malignancy by causing Ca2+ flow imbalance, which leads to the initiation of the stress-mediated mitochondrial apoptosis pathway. We demonstrate that calreticulin (CALR) resides primarily in the endoplasmic reticulum and interacts with RCN2. Moreover, the transcription factors YY1 and homeobox protein goosecoid (GSC) both contribute to the initiation of RCN2 transcription by directly binding to the predicted promoter region of RCN2. Finally, high expression of RCN2 combined with high expression of GSC and YY1 may serve as an important clinical biomarker of poor prognosis in patients with NPC. CONCLUSION YY1 and GSC are upstream regulators of RCN2, involved in mitochondrial calcium overload and stress-induced mitochondrial apoptosis. Thus, they can play significant role in the malignant development of NPCs.
Collapse
Affiliation(s)
- Hui Yao
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Institute of Otolaryngology head and neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Medical College of Nantong University, Nantong, 226019, China
- Changhai Hospital of Shanghai, No. 168 Changhai Road, Shanghai, 200433, China
| | - Siyu Zhang
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Institute of Otolaryngology head and neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Medical College of Nantong University, Nantong, 226019, China
| | - Haijing Xie
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Institute of Otolaryngology head and neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Medical College of Nantong University, Nantong, 226019, China
| | - Yue Fan
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Institute of Otolaryngology head and neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Medical College of Nantong University, Nantong, 226019, China
| | - Mengyu Miao
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Institute of Otolaryngology head and neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Medical College of Nantong University, Nantong, 226019, China
| | - Rui Zhu
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Institute of Otolaryngology head and neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Medical College of Nantong University, Nantong, 226019, China
| | - Ling Yuan
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Institute of Otolaryngology head and neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Medical College of Nantong University, Nantong, 226019, China
| | - Miao Gu
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Institute of Otolaryngology head and neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Medical College of Nantong University, Nantong, 226019, China
| | - Yiwen You
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China.
- Institute of Otolaryngology head and neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China.
- Medical College of Nantong University, Nantong, 226019, China.
| | - Bo You
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China.
- Institute of Otolaryngology head and neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China.
- Medical College of Nantong University, Nantong, 226019, China.
| |
Collapse
|
25
|
Khalimonchuk O, Becker DF. Molecular Determinants of Mitochondrial Shape and Function and Their Role in Glaucoma. Antioxid Redox Signal 2023; 38:896-919. [PMID: 36301938 PMCID: PMC10171965 DOI: 10.1089/ars.2022.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/07/2022] [Accepted: 10/22/2022] [Indexed: 01/12/2023]
Abstract
Significance: Cells depend on well-functioning mitochondria for essential processes such as energy production, redox signaling, coordination of metabolic pathways, and cofactor biosynthesis. Mitochondrial dysfunction, metabolic decline, and protein stress have been implicated in the etiology of multiple late-onset diseases, including various ataxias, diabetes, sarcopenia, neuromuscular disorders, and neurodegenerative diseases such as parkinsonism, amyotrophic lateral sclerosis, and glaucoma. Recent Advances: New evidence supports that increased energy metabolism protects neuron function during aging. Key energy metabolic enzymes, however, are susceptible to oxidative damage making it imperative that the mitochondrial proteome is protected. More than 40 different enzymes have been identified as important factors for guarding mitochondrial health and maintaining a dynamic pool of mitochondria. Critical Issues: Understanding shared mechanisms of age-related disorders of neurodegenerative diseases such as glaucoma, Alzheimer's disease, and Parkinson's disease is important for developing new therapies. Functional mitochondrial shape and dynamics rely on complex interactions between mitochondrial proteases and membrane proteins. Identifying the sequence of molecular events that lead to mitochondrial dysfunction and metabolic stress is a major challenge. Future Directions: A critical need exists for new strategies that reduce mitochondrial protein stress and promote mitochondrial dynamics in age-related neurological disorders. Discovering how mitochondria-associated degradation is related to proteostatic mechanisms in mitochondrial compartments may reveal new opportunities for therapeutic interventions. Also, little is known about how protein and membrane contacts in the inner and outer mitochondrial membrane are regulated, even though they are pivotal for mitochondrial architecture. Future work will need to delineate the molecular details of these processes.
Collapse
Affiliation(s)
- Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska–Lincoln, Lincoln, Nebraska, USA
- Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska–Lincoln, Lincoln, Nebraska, USA
- Fred & Pamela Buffett Cancer Center, Omaha, Nebraska, USA
| | - Donald F. Becker
- Department of Biochemistry, University of Nebraska–Lincoln, Lincoln, Nebraska, USA
- Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska–Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
26
|
Zhang J, Qiao W, Luo Y. Mitochondrial quality control proteases and their modulation for cancer therapy. Med Res Rev 2023; 43:399-436. [PMID: 36208112 DOI: 10.1002/med.21929] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 09/04/2022] [Accepted: 09/26/2022] [Indexed: 02/05/2023]
Abstract
Mitochondria, the main provider of energy in eukaryotic cells, contains more than 1000 different proteins and is closely related to the development of cells. However, damaged proteins impair mitochondrial function, further contributing to several human diseases. Evidence shows mitochondrial proteases are critically important for protein maintenance. Most importantly, quality control enzymes exert a crucial role in the modulation of mitochondrial functions by degrading misfolded, aged, or superfluous proteins. Interestingly, cancer cells thrive under stress conditions that damage proteins, so targeting mitochondrial quality control proteases serves as a novel regulator for cancer cells. Not only that, mitochondrial quality control proteases have been shown to affect mitochondrial dynamics by regulating the morphology of optic atrophy 1 (OPA1), which is closely related to the occurrence and progression of cancer. In this review, we introduce mitochondrial quality control proteases as promising targets and related modulators in cancer therapy with a focus on caseinolytic protease P (ClpP), Lon protease (LonP1), high-temperature requirement protein A2 (HrtA2), and OMA-1. Further, we summarize our current knowledge of the advances in clinical trials for modulators of mitochondrial quality control proteases. Overall, the content proposed above serves to suggest directions for the development of novel antitumor drugs.
Collapse
Affiliation(s)
- Jiangnan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Wenliang Qiao
- Lung Cancer Center, Laboratory of Lung Cancer, Western China Hospital of Sichuan University, Chengdu, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
27
|
Terashi G, Wang X, Kihara D. Protein model refinement for cryo-EM maps using AlphaFold2 and the DAQ score. Acta Crystallogr D Struct Biol 2023; 79:10-21. [PMID: 36601803 PMCID: PMC9815095 DOI: 10.1107/s2059798322011676] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
As more protein structure models have been determined from cryogenic electron microscopy (cryo-EM) density maps, establishing how to evaluate the model accuracy and how to correct models in cases where they contain errors is becoming crucial to ensure the quality of the structural models deposited in the public database, the PDB. Here, a new protocol is presented for evaluating a protein model built from a cryo-EM map and applying local structure refinement in the case where the model has potential errors. Firstly, model evaluation is performed using a deep-learning-based model-local map assessment score, DAQ, that has recently been developed. The subsequent local refinement is performed by a modified AlphaFold2 procedure, in which a trimmed template model and a trimmed multiple sequence alignment are provided as input to control which structure regions to refine while leaving other more confident regions of the model intact. A benchmark study showed that this protocol, DAQ-refine, consistently improves low-quality regions of the initial models. Among 18 refined models generated for an initial structure, DAQ shows a high correlation with model quality and can identify the best accurate model for most of the tested cases. The improvements obtained by DAQ-refine were on average larger than other existing methods.
Collapse
Affiliation(s)
- Genki Terashi
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Xiao Wang
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
| | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
28
|
Lee G, Kim RS, Lee SB, Lee S, Tsai FT. Deciphering the mechanism and function of Hsp100 unfoldases from protein structure. Biochem Soc Trans 2022; 50:1725-1736. [PMID: 36454589 PMCID: PMC9784670 DOI: 10.1042/bst20220590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022]
Abstract
Hsp100 chaperones, also known as Clp proteins, constitute a family of ring-forming ATPases that differ in 3D structure and cellular function from other stress-inducible molecular chaperones. While the vast majority of ATP-dependent molecular chaperones promote the folding of either the nascent chain or a newly imported polypeptide to reach its native conformation, Hsp100 chaperones harness metabolic energy to perform the reverse and facilitate the unfolding of a misfolded polypeptide or protein aggregate. It is now known that inside cells and organelles, different Hsp100 members are involved in rescuing stress-damaged proteins from a previously aggregated state or in recycling polypeptides marked for degradation. Protein degradation is mediated by a barrel-shaped peptidase that physically associates with the Hsp100 hexamer to form a two-component system. Notable examples include the ClpA:ClpP (ClpAP) and ClpX:ClpP (ClpXP) proteases that resemble the ring-forming FtsH and Lon proteases, which unlike ClpAP and ClpXP, feature the ATP-binding and proteolytic domains in a single polypeptide chain. Recent advances in electron cryomicroscopy (cryoEM) together with single-molecule biophysical studies have now provided new mechanistic insight into the structure and function of this remarkable group of macromolecular machines.
Collapse
Affiliation(s)
- Grace Lee
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Rice University, Houston, Texas 77005, USA
| | - Rebecca S. Kim
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sang Bum Lee
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sukyeong Lee
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Advanced Technology Core for Macromolecular X-ray Crystallography, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Francis T.F. Tsai
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Advanced Technology Core for Macromolecular X-ray Crystallography, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
29
|
Pareek G. AAA+ proteases: the first line of defense against mitochondrial damage. PeerJ 2022; 10:e14350. [PMID: 36389399 PMCID: PMC9648348 DOI: 10.7717/peerj.14350] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/16/2022] [Indexed: 11/09/2022] Open
Abstract
Mitochondria play essential cellular roles in Adenosine triphosphate (ATP) synthesis, calcium homeostasis, and metabolism, but these vital processes have potentially deadly side effects. The production of the reactive oxygen species (ROS) and the aggregation of misfolded mitochondrial proteins can lead to severe mitochondrial damage and even cell death. The accumulation of mitochondrial damage is strongly implicated in aging and several incurable diseases, including neurodegenerative disorders and cancer. To oppose this, metazoans utilize a variety of quality control strategies, including the degradation of the damaged mitochondrial proteins by the mitochondrial-resident proteases of the ATPase Associated with the diverse cellular Activities (AAA+) family. This mini-review focuses on the quality control mediated by the mitochondrial-resident proteases of the AAA+ family used to combat the accumulation of damaged mitochondria and on how the failure of this mitochondrial quality control contributes to diseases.
Collapse
|
30
|
Roles of LonP1 in Oral-Maxillofacial Developmental Defects and Tumors: A Novel Insight. Int J Mol Sci 2022; 23:ijms232113370. [PMID: 36362158 PMCID: PMC9657610 DOI: 10.3390/ijms232113370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/22/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Recent studies have indicated a central role for LonP1 in mitochondrial function. Its physiological functions include proteolysis, acting as a molecular chaperone, binding mitochondrial DNA, and being involved in cellular respiration, cellular metabolism, and oxidative stress. Given its vital role in energy metabolism, LonP1 has been suggested to be associated with multi-system neoplasms and developmental disorders. In this study, we investigated the roles, possible mechanisms of action, and therapeutic roles of LonP1 in oral and maxillofacial tumor development. LonP1 was highly expressed in oral-maxillofacial cancers and regulated their development through a sig-naling network. LonP1 may therefore be a promising anticancer therapy target. Mutations in LONP1 have been found to be involved in the etiology of cerebral, ocular, dental, auricular, and skeletal syndrome (CODAS). Only patients carrying specific LONP1 mutations have certain dental abnormalities (delayed eruption and abnormal morphology). LonP1 is therefore a novel factor in the development of oral and maxillofacial tumors. Greater research should therefore be conducted on the diagnosis and therapy of LonP1-related diseases to further define LonP1-associated oral phenotypes and their underlying molecular mechanisms.
Collapse
|
31
|
Nitika, Zheng B, Ruan L, Kline JT, Omkar S, Sikora J, Texeira Torres M, Wang Y, Takakuwa JE, Huguet R, Klemm C, Segarra VA, Winters MJ, Pryciak PM, Thorpe PH, Tatebayashi K, Li R, Fornelli L, Truman AW. Comprehensive characterization of the Hsp70 interactome reveals novel client proteins and interactions mediated by posttranslational modifications. PLoS Biol 2022; 20:e3001839. [PMID: 36269765 PMCID: PMC9629621 DOI: 10.1371/journal.pbio.3001839] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 11/02/2022] [Accepted: 09/21/2022] [Indexed: 01/06/2023] Open
Abstract
Hsp70 interactions are critical for cellular viability and the response to stress. Previous attempts to characterize Hsp70 interactions have been limited by their transient nature and the inability of current technologies to distinguish direct versus bridged interactions. We report the novel use of cross-linking mass spectrometry (XL-MS) to comprehensively characterize the Saccharomyces cerevisiae (budding yeast) Hsp70 protein interactome. Using this approach, we have gained fundamental new insights into Hsp70 function, including definitive evidence of Hsp70 self-association as well as multipoint interaction with its client proteins. In addition to identifying a novel set of direct Hsp70 interactors that can be used to probe chaperone function in cells, we have also identified a suite of posttranslational modification (PTM)-associated Hsp70 interactions. The majority of these PTMs have not been previously reported and appear to be critical in the regulation of client protein function. These data indicate that one of the mechanisms by which PTMs contribute to protein function is by facilitating interaction with chaperones. Taken together, we propose that XL-MS analysis of chaperone complexes may be used as a unique way to identify biologically important PTMs on client proteins.
Collapse
Affiliation(s)
- Nitika
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, North Carolina, United States America
| | - Bo Zheng
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, North Carolina, United States America
| | - Linhao Ruan
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States America
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States America
| | - Jake T. Kline
- Department of Biology, University of Oklahoma, Norman, Oklahoma, United States America
| | - Siddhi Omkar
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, North Carolina, United States America
| | - Jacek Sikora
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois, United States America
| | - Mara Texeira Torres
- School of Biological and Chemical Sciences, Queen Mary University, London, United Kingdom
| | - Yuhao Wang
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States America
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States America
| | - Jade E. Takakuwa
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, North Carolina, United States America
| | - Romain Huguet
- Thermo Scientific, San Jose, California, United States America
| | - Cinzia Klemm
- School of Biological and Chemical Sciences, Queen Mary University, London, United Kingdom
| | - Verónica A. Segarra
- Departments of Biological Sciences and Chemistry, Goucher College, Baltimore, Maryland, United States America
| | - Matthew J. Winters
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States America
| | - Peter M. Pryciak
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States America
| | - Peter H. Thorpe
- School of Biological and Chemical Sciences, Queen Mary University, London, United Kingdom
| | - Kazuo Tatebayashi
- Laboratory of Molecular Genetics, Frontier Research Unit, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Rong Li
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States America
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States America
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, Singapore
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, United States America
| | - Luca Fornelli
- Department of Biology, University of Oklahoma, Norman, Oklahoma, United States America
| | - Andrew W. Truman
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, North Carolina, United States America
| |
Collapse
|
32
|
Kudzhaev AM, Andrianova AG, Gustchina AE, Smirnov IV, Rotanova TV. ATP-Dependent Lon Proteases in the Cellular Protein Quality Control System. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022040136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Catalytic cycling of human mitochondrial Lon protease. Structure 2022; 30:1254-1268.e7. [PMID: 35870450 DOI: 10.1016/j.str.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/21/2022] [Accepted: 06/28/2022] [Indexed: 11/20/2022]
Abstract
The mitochondrial Lon protease (LonP1) regulates mitochondrial health by removing redundant proteins from the mitochondrial matrix. We determined LonP1 in eight nucleotide-dependent conformational states by cryoelectron microscopy (cryo-EM). The flexible assembly of N-terminal domains had 3-fold symmetry, and its orientation depended on the conformational state. We show that a conserved structural motif around T803 with a high similarity to the trypsin catalytic triad is essential for proteolysis. We show that LonP1 is not regulated by redox potential, despite the presence of two conserved cysteines at disulfide-bonding distance in its unfoldase core. Our data indicate how sequential ATP hydrolysis controls substrate protein translocation in a 6-fold binding change mechanism. Substrate protein translocation, rather than ATP hydrolysis, is a rate-limiting step, suggesting that LonP1 is a Brownian ratchet with ATP hydrolysis preventing translocation reversal. 3-fold rocking motions of the flexible N-domain assembly may assist thermal unfolding of the substrate protein.
Collapse
|
34
|
Wlodawer A, Sekula B, Gustchina A, Rotanova TV. Structure and the Mode of Activity of Lon Proteases from Diverse Organisms. J Mol Biol 2022; 434:167504. [PMID: 35183556 PMCID: PMC9013511 DOI: 10.1016/j.jmb.2022.167504] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 11/19/2022]
Abstract
Lon proteases, members of the AAA+ superfamily of enzymes, are key components of the protein quality control system in bacterial cells, as well as in the mitochondria and other specialized organelles of higher organisms. These enzymes have been subject of extensive biochemical and structural investigations, resulting in 72 crystal and solution structures, including structures of the individual domains, multi-domain constructs, and full-length proteins. However, interpretation of the latter structures still leaves some questions unanswered. Based on their amino acid sequence and details of their structure, Lon proteases can be divided into at least three subfamilies, designated as LonA, LonB, and LonC. Protomers of all Lons are single-chain polypeptides and contain two functional domains, ATPase and protease. The LonA enzymes additionally include a large N-terminal region, and different Lons may also include non-conserved inserts in the principal domains. These ATP-dependent proteases function as homohexamers, in which unfolded substrates are translocated to a large central chamber where they undergo proteolysis by a processive mechanism. X-ray crystal structures provided high-resolution models which verified that Lons are hydrolases with the rare Ser-Lys catalytic dyad. Full-length LonA enzymes have been investigated by cryo-electron microscopy (cryo-EM), providing description of the functional enzyme at different stages of the catalytic cycle, indicating extensive flexibility of their N-terminal domains, and revealing insights into the substrate translocation mechanism. Structural studies of Lon proteases provide an interesting case for symbiosis of X-ray crystallography and cryo-EM, currently the two principal techniques for determination of macromolecular structures.
Collapse
Affiliation(s)
- Alexander Wlodawer
- Protein Structure Section, Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA.
| | - Bartosz Sekula
- Protein Structure Section, Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA
| | - Alla Gustchina
- Protein Structure Section, Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA
| | - Tatyana V Rotanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
35
|
Mabanglo MF, Houry WA. Recent structural insights into the mechanism of ClpP protease regulation by AAA+ chaperones and small molecules. J Biol Chem 2022; 298:101781. [PMID: 35245501 PMCID: PMC9035409 DOI: 10.1016/j.jbc.2022.101781] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/19/2022] Open
Abstract
ClpP is a highly conserved serine protease that is a critical enzyme in maintaining protein homeostasis and is an important drug target in pathogenic bacteria and various cancers. In its functional form, ClpP is a self-compartmentalizing protease composed of two stacked heptameric rings that allow protein degradation to occur within the catalytic chamber. ATPase chaperones such as ClpX and ClpA are hexameric ATPases that form larger complexes with ClpP and are responsible for the selection and unfolding of protein substrates prior to their degradation by ClpP. Although individual structures of ClpP and ATPase chaperones have offered mechanistic insights into their function and regulation, their structures together as a complex have only been recently determined to high resolution. Here, we discuss the cryoelectron microscopy structures of ClpP-ATPase complexes and describe findings previously inaccessible from individual Clp structures, including how a hexameric ATPase and a tetradecameric ClpP protease work together in a functional complex. We then discuss the consensus mechanism for substrate unfolding and translocation derived from these structures, consider alternative mechanisms, and present their strengths and limitations. Finally, new insights into the allosteric control of ClpP gained from studies using small molecules and gain or loss-of-function mutations are explored. Overall, this review aims to underscore the multilayered regulation of ClpP that may present novel ideas for structure-based drug design.
Collapse
Affiliation(s)
- Mark F Mabanglo
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Walid A Houry
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
36
|
Yang J, Song AS, Wiseman RL, Lander GC. Cryo-EM structure of hexameric yeast Lon protease (PIM1) highlights the importance of conserved structural elements. J Biol Chem 2022; 298:101694. [PMID: 35143841 PMCID: PMC8913295 DOI: 10.1016/j.jbc.2022.101694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/26/2022] Open
Abstract
Lon protease is a conserved ATP-dependent serine protease composed of an AAA+ domain that mechanically unfolds substrates and a serine protease domain that degrades these unfolded substrates. In yeast, dysregulation of Lon protease (PIM1) attenuates lifespan and leads to gross mitochondrial morphological perturbations. Although structures of the bacterial and human Lon protease reveal a hexameric assembly, yeast PIM1 was speculated to form a heptameric assembly and is uniquely characterized by a ∼50-residue insertion between the ATPase and protease domains. To further understand the yeast-specific properties of PIM1, we determined a high-resolution cryo-electron microscopy structure of PIM1 in a substrate-translocating state. Here, we reveal that PIM1 forms a hexamer, conserved with that of bacterial and human Lon proteases, wherein the ATPase domains form a canonical closed spiral that enables pore loop residues to translocate substrates to the protease chamber. In the substrate-translocating state, PIM1 protease domains form a planar protease chamber in an active conformation and are uniquely characterized by a ∼15-residue C-terminal extension. These additional C-terminal residues form an α-helix located along the base of the protease domain. Finally, we did not observe density for the yeast-specific insertion between the ATPase and protease domains, likely due to high conformational flexibility. Biochemical studies to investigate the insertion using constructs that truncated or replaced the insertion with a glycine-serine linker suggest that the yeast-specific insertion is dispensable for PIM1's enzymatic function. Altogether, our structural and biochemical studies highlight unique components of PIM1 machinery and demonstrate evolutionary conservation of Lon protease function.
Collapse
Affiliation(s)
- Jie Yang
- Department of Integrative, Structural and Computational Biology, Scripps Research, La Jolla, California, USA
| | - Albert S Song
- Department of Integrative, Structural and Computational Biology, Scripps Research, La Jolla, California, USA; Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - R Luke Wiseman
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA.
| | - Gabriel C Lander
- Department of Integrative, Structural and Computational Biology, Scripps Research, La Jolla, California, USA.
| |
Collapse
|
37
|
Lee J, Pandey AK, Venkatesh S, Thilagavathi J, Honda T, Singh K, Suzuki CK. Inhibition of mitochondrial LonP1 protease by allosteric blockade of ATP binding and hydrolysis via CDDO and its derivatives. J Biol Chem 2022; 298:101719. [PMID: 35151690 PMCID: PMC8921294 DOI: 10.1016/j.jbc.2022.101719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 12/01/2022] Open
Abstract
The mitochondrial protein LonP1 is an ATP-dependent protease that mitigates cell stress and calibrates mitochondrial metabolism and energetics. Biallelic mutations in the LONP1 gene are known to cause a broad spectrum of diseases, and LonP1 dysregulation is also implicated in cancer and age-related disorders. Despite the importance of LonP1 in health and disease, specific inhibitors of this protease are unknown. Here, we demonstrate that 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO) and its -methyl and -imidazole derivatives reversibly inhibit LonP1 by a noncompetitive mechanism, blocking ATP-hydrolysis and thus proteolysis. By contrast, we found that CDDO-anhydride inhibits the LonP1 ATPase competitively. Docking of CDDO derivatives in the cryo-EM structure of LonP1 shows these compounds bind a hydrophobic pocket adjacent to the ATP-binding site. The binding site of CDDO derivatives was validated by amino acid substitutions that increased LonP1 inhibition and also by a pathogenic mutation that causes cerebral, ocular, dental, auricular and skeletal (CODAS) syndrome, which ablated inhibition. CDDO failed to inhibit the ATPase activity of the purified 26S proteasome, which like LonP1 belongs to the AAA+ superfamily of ATPases Associated with diverse cellular Activities, suggesting that CDDO shows selectivity within this family of ATPases. Furthermore, we show that noncytotoxic concentrations of CDDO derivatives in cultured cells inhibited LonP1, but not the 26S proteasome. Taken together, these findings provide insights for future development of LonP1-specific inhibitors with chemotherapeutic potential.
Collapse
Affiliation(s)
- Jae Lee
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers - New Jersey Medical School, Newark, New Jersey, USA
| | - Ashutosh K Pandey
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers - New Jersey Medical School, Newark, New Jersey, USA
| | - Sundararajan Venkatesh
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers - New Jersey Medical School, Newark, New Jersey, USA
| | - Jayapalraja Thilagavathi
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers - New Jersey Medical School, Newark, New Jersey, USA
| | - Tadashi Honda
- Department of Chemistry and Institution of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York, USA
| | - Kamal Singh
- Christopher Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA; Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA; Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Carolyn K Suzuki
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers - New Jersey Medical School, Newark, New Jersey, USA.
| |
Collapse
|
38
|
AAA+ protease-adaptor structures reveal altered conformations and ring specialization. Nat Struct Mol Biol 2022; 29:1068-1079. [PMID: 36329286 PMCID: PMC9663308 DOI: 10.1038/s41594-022-00850-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022]
Abstract
ClpAP, a two-ring AAA+ protease, degrades N-end-rule proteins bound by the ClpS adaptor. Here we present high-resolution cryo-EM structures of Escherichia coli ClpAPS complexes, showing how ClpA pore loops interact with the ClpS N-terminal extension (NTE), which is normally intrinsically disordered. In two classes, the NTE is bound by a spiral of pore-1 and pore-2 loops in a manner similar to substrate-polypeptide binding by many AAA+ unfoldases. Kinetic studies reveal that pore-2 loops of the ClpA D1 ring catalyze the protein remodeling required for substrate delivery by ClpS. In a third class, D2 pore-1 loops are rotated, tucked away from the channel and do not bind the NTE, demonstrating asymmetry in engagement by the D1 and D2 rings. These studies show additional structures and functions for key AAA+ elements. Pore-loop tucking may be used broadly by AAA+ unfoldases, for example, during enzyme pausing/unloading.
Collapse
|
39
|
Li S, Hsieh KY, Kuo CI, Su SC, Huang KF, Zhang K, Chang CI. Processive cleavage of substrate at individual proteolytic active sites of the Lon protease complex. SCIENCE ADVANCES 2021; 7:eabj9537. [PMID: 34757797 PMCID: PMC8580320 DOI: 10.1126/sciadv.abj9537] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
The Lon protease is the prototype of a family of proteolytic machines with adenosine triphosphatase modules built into a substrate degradation chamber. Lon is known to degrade protein substrates in a processive fashion, cutting a protein chain processively into small peptides before commencing cleavages of another protein chain. Here, we present structural and biochemical evidence demonstrating that processive substrate degradation occurs at each of the six proteolytic active sites of Lon, which forms a deep groove that partially encloses the substrate polypeptide chain by accommodating only the unprimed residues and permits processive cleavage in the C-to-N direction. We identify a universally conserved acidic residue at the exit side of the binding groove indispensable for the proteolytic activity. This noncatalytic residue likely promotes processive proteolysis by carboxyl-carboxylate interactions with cleaved intermediates. Together, these results uncover a previously unrecognized mechanism for processive substrate degradation by the Lon protease.
Collapse
Affiliation(s)
- Shanshan Li
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Kan-Yen Hsieh
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Chiao-I Kuo
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Shih-Chieh Su
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Kai-Fa Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Kaiming Zhang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Chung-I Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
40
|
Coscia F, Löwe J. Cryo-EM structure of the full-length Lon protease from Thermus thermophilus. FEBS Lett 2021; 595:2691-2700. [PMID: 34591981 PMCID: PMC8835725 DOI: 10.1002/1873-3468.14199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 11/30/2022]
Abstract
In bacteria, Lon is a large hexameric ATP-dependent protease that targets misfolded and also folded substrates, some of which are involved in cell division and survival of cellular stress. The N-terminal domain of Lon facilitates substrate recognition, but how the domains confer such activity has remained unclear. Here, we report the full-length structure of Lon protease from Thermus thermophilus at 3.9 Å resolution in a substrate-engaged state. The six N-terminal domains are arranged in three pairs, stabilized by coiled-coil segments and forming an additional channel for substrate sensing and entry into the AAA+ ring. Sequence conservation analysis and proteolysis assays confirm that this architecture is required for the degradation of both folded and unfolded substrates in bacteria.
Collapse
Affiliation(s)
- Francesca Coscia
- MRC Laboratory of Molecular BiologyCambridge Biomedical CampusCambridgeUK
| | - Jan Löwe
- MRC Laboratory of Molecular BiologyCambridge Biomedical CampusCambridgeUK
| |
Collapse
|
41
|
Li S, Hsieh KY, Kuo CI, Lee SH, Pintilie GD, Zhang K, Chang CI. Complete three-dimensional structures of the Lon protease translocating a protein substrate. SCIENCE ADVANCES 2021; 7:eabj7835. [PMID: 34652947 PMCID: PMC8519571 DOI: 10.1126/sciadv.abj7835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Lon is an evolutionarily conserved proteolytic machine carrying out a wide spectrum of biological activities by degrading misfolded damaged proteins and specific cellular substrates. Lon contains a large N-terminal domain and forms a hexameric core of fused adenosine triphosphatase and protease domains. Here, we report two complete structures of Lon engaging a substrate, determined by cryo–electron microscopy to 2.4-angstrom resolution. These structures show a multilayered architecture featuring a tensegrity triangle complex, uniquely constructed by six long N-terminal helices. The interlocked helix triangle is assembled on the top of the hexameric core to spread a web of six globular substrate-binding domains. It serves as a multipurpose platform that controls the access of substrates to the AAA+ ring, provides a ruler-based mechanism for substrate selection, and acts as a pulley device to facilitate unfolding of the translocated substrate. This work provides a complete framework for understanding the structural mechanisms of Lon.
Collapse
Affiliation(s)
- Shanshan Li
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, CA 94305, USA
| | - Kan-Yen Hsieh
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Chiao-I Kuo
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Szu-Hui Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Grigore D. Pintilie
- Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, CA 94305, USA
| | - Kaiming Zhang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- Corresponding author. (K.Z.); (C.-I.C.)
| | - Chung-I Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Corresponding author. (K.Z.); (C.-I.C.)
| |
Collapse
|
42
|
Li S, Hsieh KY, Su SC, Pintilie GD, Zhang K, Chang CI. Molecular basis for ATPase-powered substrate translocation by the Lon AAA+ protease. J Biol Chem 2021; 297:101239. [PMID: 34563541 PMCID: PMC8503904 DOI: 10.1016/j.jbc.2021.101239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 11/23/2022] Open
Abstract
The Lon AAA+ (adenosine triphosphatases associated with diverse cellular activities) protease (LonA) converts ATP-fuelled conformational changes into sufficient mechanical force to drive translocation of a substrate into a hexameric proteolytic chamber. To understand the structural basis for the substrate translocation process, we determined the cryo-electron microscopy (cryo-EM) structure of Meiothermus taiwanensis LonA (MtaLonA) in a substrate-engaged state at 3.6 Å resolution. Our data indicate that substrate interactions are mediated by the dual pore loops of the ATPase domains, organized in spiral staircase arrangement from four consecutive protomers in different ATP-binding and hydrolysis states. However, a closed AAA+ ring is maintained by two disengaged ADP-bound protomers transiting between the lowest and highest position. This structure reveals a processive rotary translocation mechanism mediated by LonA-specific nucleotide-dependent allosteric coordination among the ATPase domains, which is induced by substrate binding.
Collapse
Affiliation(s)
- Shanshan Li
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Kan-Yen Hsieh
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Shih-Chieh Su
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Grigore D Pintilie
- Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, California, USA
| | - Kaiming Zhang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Chung-I Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|