1
|
Fornasiero A, Feng T, Al-Bader N, Alsantely A, Mussurova S, Hoang NV, Misra G, Zhou Y, Fabbian L, Mohammed N, Rivera Serna L, Thimma M, Llaca V, Parakkal P, Kudrna D, Copetti D, Rajasekar S, Lee S, Talag J, Sobel-Sorenson C, Carpentier MC, Panaud O, McNally KL, Zhang J, Zuccolo A, Schranz ME, Wing RA. Oryza genome evolution through a tetraploid lens. Nat Genet 2025; 57:1287-1297. [PMID: 40295881 PMCID: PMC12081313 DOI: 10.1038/s41588-025-02183-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 03/26/2025] [Indexed: 04/30/2025]
Abstract
Oryza is a remarkable genus comprising 27 species and 11 genome types, with ~3.4-fold genome size variation, that possesses a virtually untapped reservoir of genes that can be used for crop improvement and neodomestication. Here we present 11 chromosome-level assemblies (nine tetraploid, two diploid) in the context of ~15 million years of evolution and show that the core Oryza (sub)genome is only ~200 Mb and largely syntenic, whereas the remaining nuclear fractions (~80-600 Mb) are intermingled, plastic and rapidly evolving. For the halophyte Oryza coarctata, we found that despite detection of gene fractionation in the subgenomes, homoeologous genes were expressed at higher levels in one subgenome over the other in a mosaic form, demonstrating subgenome equivalence. The integration of these 11 new reference genomes with previously published genome datasets provides a nearly complete view of the consequences of evolution for genome diversification across the genus.
Collapse
Affiliation(s)
- Alice Fornasiero
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Tao Feng
- Biosystematics Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Noor Al-Bader
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Aseel Alsantely
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- National Center for Vegetation Development and Combating Desertification (NCVC), Riyadh, Saudi Arabia
| | - Saule Mussurova
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Nam V Hoang
- Biosystematics Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Gopal Misra
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Yong Zhou
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Leonardo Fabbian
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Nahed Mohammed
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Luis Rivera Serna
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Manjula Thimma
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Victor Llaca
- Research and Development, Corteva Agriscience, Johnston, IA, USA
| | | | - David Kudrna
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Dario Copetti
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Shanmugam Rajasekar
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Seunghee Lee
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Jayson Talag
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Chandler Sobel-Sorenson
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Marie-Christine Carpentier
- Laboratoire Génome et Développement des Plantes, UMR 5096 CNRS/IRD 52, Université de Perpignan, Perpignan, France
- EMR MANGO Université de Perpignan/CNRS/IRD, Perpignan, France
| | - Olivier Panaud
- Laboratoire Génome et Développement des Plantes, UMR 5096 CNRS/IRD 52, Université de Perpignan, Perpignan, France
- EMR MANGO Université de Perpignan/CNRS/IRD, Perpignan, France
| | - Kenneth L McNally
- Rice Breeding Innovations Department, International Rice Research Institute (IRRI), Los Baños, Philippines
| | - Jianwei Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Andrea Zuccolo
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
- Institute of Crop Science, Scuola Superiore Sant'Anna, Pisa, Italy.
| | - M Eric Schranz
- Biosystematics Group, Wageningen University and Research, Wageningen, the Netherlands.
| | - Rod A Wing
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
2
|
Enav H, Paz I, Ley RE. Strain tracking in complex microbiomes using synteny analysis reveals per-species modes of evolution. Nat Biotechnol 2025; 43:773-783. [PMID: 38898177 DOI: 10.1038/s41587-024-02276-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/10/2024] [Indexed: 06/21/2024]
Abstract
Microbial species diversify into strains through single-nucleotide mutations and structural changes, such as recombination, insertions and deletions. Most strain-comparison methods quantify differences in single-nucleotide polymorphisms (SNPs) and are insensitive to structural changes. However, recombination is an important driver of phenotypic diversification in many species, including human pathogens. We introduce SynTracker, a tool that compares microbial strains using genome synteny-the order of sequence blocks in homologous genomic regions-in pairs of metagenomic assemblies or genomes. Genome synteny is a rich source of genomic information untapped by current strain-comparison tools. SynTracker has low sensitivity to SNPs, has no database requirement and is robust to sequencing errors. It outperforms existing tools when tracking strains in metagenomic data and is particularly suited for phages, plasmids and other low-data contexts. Applied to single-species datasets and human gut metagenomes, SynTracker, combined with an SNP-based tool, detects strains enriched in either point mutations or structural changes, providing insights into microbial evolution in situ.
Collapse
Affiliation(s)
- Hagay Enav
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Inbal Paz
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Ruth E Ley
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany.
- Cluster of Excellence EXC 2124: Controlling Microbes to Fight Infections (CMFI), University of Tübingen, Tübingen, Germany.
| |
Collapse
|
3
|
Guan C, Liu Y, Li Z, Zhang Y, Liu Z, Zhu Q, Zhang P, Shen X, Fang J, Li J, Zhang Q, Guan Q, Luo Z, Yang Y, Zhao T. Haplotype-resolved and chromosome-level reference genome assembly of Diospyros deyangensis provides insights into the evolution and juvenile growth of persimmon. HORTICULTURE RESEARCH 2025; 12:uhaf001. [PMID: 40078717 PMCID: PMC11896977 DOI: 10.1093/hr/uhaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/29/2024] [Indexed: 03/14/2025]
Abstract
The Diospyros genus , which includes both wild and cultivated species such as Diospyros lotus and Diospyros kaki, represents a diverse genetic pool with significant agricultural value. In this study, we present a high-quality, haplotype-resolved, chromosome-level genome assembly for Diospyros deyangensis (hereinafter referred to as 'Deyangshi'), an autotetraploid wild species notable for its short juvenile phase, by integrating high-fidelity single-molecule, nanopore sequencing, and high-throughput chromosome conformation capture techniques. The assembled genome size is ~3.01 Gb, anchored onto 60 pseudochromosomes. Comparative genomic analysis revealed that the D. deyangensis genome underwent an additional whole-genome duplication (WGD) event following the eudicots shared ancient hexaploidy event. Resequencing and clustering on 63 samples representing 11 geographically diverse Diospyros accessions revealed significant genetic differentiation between D. deyangensis and D. kaki, as well as between D. kaki and other Diospyros species using population genomic analyses, suggesting that D. kaki followed an independent evolutionary pathway. Additionally, we identified DdELF4 (EARLY FLOWERING 4) from the 'Deyangshi' backcross population using bulked segregant RNA sequencing (BSR-seq) with 50 early-flowering and 50 non-early-flowering individuals. Overexpression of DdELF4 in Arabidopsis resulted in delayed flowering and downregulation of FT gene expression, indicating its role as a flowering repressor. This high-quality genome assembly of 'Deyangshi' provides an essential genomic resource for the Diospyros genus, particularly for breeding programs focused on developing early-flowering persimmon varieties.
Collapse
Affiliation(s)
- Changfei Guan
- Department of Horticulture, Hainan Institute of Northwest A&F University, Sanya 572024, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yunxiao Liu
- Department of Horticulture, Hainan Institute of Northwest A&F University, Sanya 572024, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhongxing Li
- Department of Horticulture, Hainan Institute of Northwest A&F University, Sanya 572024, China
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yangxin Zhang
- Department of Horticulture, Hainan Institute of Northwest A&F University, Sanya 572024, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhiguang Liu
- Department of Horticulture, Hainan Institute of Northwest A&F University, Sanya 572024, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qinggang Zhu
- Department of Horticulture, Hainan Institute of Northwest A&F University, Sanya 572024, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Pingxian Zhang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518000, China
| | - Xiaoxia Shen
- Department of Horticulture, Hainan Institute of Northwest A&F University, Sanya 572024, China
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jing Fang
- Department of Horticulture, Hainan Institute of Northwest A&F University, Sanya 572024, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiayan Li
- Department of Horticulture, Hainan Institute of Northwest A&F University, Sanya 572024, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qingling Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Qingmei Guan
- Department of Horticulture, Hainan Institute of Northwest A&F University, Sanya 572024, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhengrong Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Yong Yang
- Department of Horticulture, Hainan Institute of Northwest A&F University, Sanya 572024, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tao Zhao
- Department of Horticulture, Hainan Institute of Northwest A&F University, Sanya 572024, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
4
|
Li H, Li J, Li X, Li J, Chen D, Zhang Y, Yu Q, Yang F, Liu Y, Dai W, Sun Y, Li P, Schranz ME, Ma F, Zhao T. Genomic investigation of plant secondary metabolism: insights from synteny network analysis of oxidosqualene cyclase flanking genes. THE NEW PHYTOLOGIST 2025; 245:2150-2169. [PMID: 39731256 DOI: 10.1111/nph.20357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/28/2024] [Indexed: 12/29/2024]
Abstract
The clustered distribution of genes involved in metabolic pathways within the plant genome has garnered significant attention from researchers. By comparing and analyzing changes in the flanking regions of metabolic genes across a diverse array of species, we can enhance our understanding of the formation and distribution of biosynthetic gene clusters (BGCs). In this study, we have designed a workflow that uncovers and assesses conserved positional relationships between genes in various species by using synteny neighborhood networks (SNN). This workflow is then applied to the analysis of flanking genes associated with oxidosqualene cyclases (OSCs). The method allows for the recognition and comparison of homologous blocks with unique flanking genes accompanying different subfamilies of OSCs. The examination of the flanking genes of OSCs in 122 plant species revealed multiple genes with conserved positional relationships with OSCs in angiosperms. Specifically, the earliest adjacency of OSC genes and CYP716 genes first appeared in basal eudicots, and the nonrandom occurrence of CYP716 genes in the flanking region of OSC persists across different lineages of eudicots. Our study showed the substitution of genes in the flanking region of the OSC varies across different plant lineages, and our approach facilitates the investigation of flanking gene rearrangements in the formation of OSC-related BGCs.
Collapse
Affiliation(s)
- Haochen Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Jiale Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Xinchu Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Jialin Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Dan Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Yangxin Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Qiaoming Yu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Fan Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Yunxiao Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Weidong Dai
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310008, China
| | - Yaqiang Sun
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Pengmin Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - M Eric Schranz
- Biosystematics Group, Wageningen University and Research, 6708 PB, Wageningen, the Netherlands
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Tao Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
5
|
Machado RAR, Muller A, Hiltmann A, Bhat AH, Půža V, Malan AP, Castaneda-Alvarez C, San-Blas E, Duncan LW, Shapiro-Ilan D, Karimi J, Lalramliana, Lalramnghaki HC, Baimey H. Genome-wide analyses provide insights into genetic variation, phylo- and co-phylogenetic relationships, and biogeography of the entomopathogenic nematode genus Heterorhabditis. Mol Phylogenet Evol 2025; 204:108284. [PMID: 39778636 DOI: 10.1016/j.ympev.2025.108284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/19/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Multigene, genus-wide phylogenetic studies have uncovered the limited taxonomic resolution power of commonly used gene markers, particularly of rRNA genes, to discriminate closely related species of the nematode genus Heterorhabditis. In addition, conflicting tree topologies are often obtained using the different gene markers, which limits our understanding of the phylo- and co-phylogenetic relationships and biogeography of the entomopathogenic nematode genus Heterorhabditis. Here we carried out phylogenomic reconstructions using whole nuclear and mitochondrial genomes, and whole ribosomal operon sequences, as well as multiple phylogenetic reconstructions using various single nuclear and mitochondrial genes. Using the inferred phylogenies, we then investigated co-phylogenetic relationships between Heterorhabditis and their Photorhabdus bacterial symbionts and biogeographical patterns. Robust, well-resolved, and highly congruent phylogenetic relationships were reconstructed using both whole nuclear and mitochondrial genomes. Similarly, whole ribosomal operon sequences proved valuable for phylogenomic reconstructions, though they have limited value to discriminate closely related species. In addition, two mitochondrial genes, the cytochrome c oxidase subunit I (cox-1) and the NADH dehydrogenase subunit 4 (nad-4), and two housekeeping genes, the fanconi-associated nuclease 1 (fan-1) and the serine/threonine-protein phosphatase 4 regulatory subunit 1 (ppfr-1), provided the most robust phylogenetic reconstructions compared to other individual genes. According to our findings, whole nuclear and/or mitochondrial genomes are strongly recommended for reconstructing phylogenetic relationships of the genus Heterorhabditis. If whole nuclear and/or mitochondrial genomes are unavailable, a combination of nuclear and mitochondrial genes can be used as an alternative. Under these circumstances, sequences of multiple conspecific isolates in a genus-wide phylogenetic context should be analyzed to avoid artefactual species over-splitting driven by the high intraspecific sequence divergence of mitochondrial genes and to avoid artefactual species lumping driven by the low interspecific sequence divergence of some nuclear genes. On the other hand, we observed that the genera Heterorhabditis and Photorhabdus exhibit diverse biogeographic patterns, ranging from cosmopolitan species to potentially endemic species, and show high phylogenetic congruence, although host switches have also occurred. Our study contributes to a better understanding of the biodiversity and phylo- and co-phylogenetic relationships of an important group of biological control agents and advances our efforts to develop more tools that are compatible with sustainable and eco-friendly agricultural practices.
Collapse
Affiliation(s)
- Ricardo A R Machado
- Experimental Biology Research Group, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland.
| | - Arthur Muller
- Experimental Biology Research Group, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Alexandre Hiltmann
- Experimental Biology Research Group, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Aashaq Hussain Bhat
- Experimental Biology Research Group, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland; Department of Biosciences, University Center for Research and Development, Chandigarh University, 140413 Gharuan, India
| | - Vladimír Půža
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, CAS, 37005 České Budějovice, Czech Republic; Faculty of Agriculture and Technology, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Antoinette P Malan
- Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, 7602 Matieland, South Africa
| | - Carlos Castaneda-Alvarez
- Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, 8820808 Santiago, Chile
| | - Ernesto San-Blas
- Laboratory of Nematology, Institute of Agrifood, Animal and Environmental, Sciences (ICA3), Universidad de O'Higgins, 2820000 O'Higgins, Chile; Centre of System Biology for Crop Protection (BIOSAV-UOH), Universidad de O Higgins, Chile
| | - Larry W Duncan
- University of Florida, IFAS, Citrus Research and Education Center, 33850 Lake Alfred, Florida, USA
| | - David Shapiro-Ilan
- USDA-ARS, SE Fruit and Tree Nut Research Laboratory, 31008 Byron, GA, USA
| | - Javad Karimi
- Department of Plant Protection, School of Agriculture, Ferdowsi University of Mashhad, 9177948978 Mashhad, Iran
| | - Lalramliana
- Department of Zoology, Pachhunga University College, 796001 Aizawl, Mizoram, India
| | - Hrang C Lalramnghaki
- Department of Zoology, Pachhunga University College, 796001 Aizawl, Mizoram, India
| | - Hugues Baimey
- Laboratory of Diagnosis and Integrated Management of Plant Bio-Aggressors. University of Parakou, BP123 Parakou, Borgou, Benin
| |
Collapse
|
6
|
Guo BC, Zhang YR, Liu ZG, Li XC, Yu Z, Ping BY, Sun YQ, van den Burg H, Ma FW, Zhao T. Deciphering Plant NLR Genomic Evolution: Synteny-Informed Classification Unveils Insights into TNL Gene Loss. Mol Biol Evol 2025; 42:msaf015. [PMID: 39835721 PMCID: PMC11789945 DOI: 10.1093/molbev/msaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 12/24/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
Nucleotide-binding leucine-rich repeat receptor (NLR) genes encode a pivotal class of plant immune receptors. However, their rampant duplication and loss have made inferring their genomic evolutionary trajectory difficult, exemplified by the loss of TNL family genes in monocots. In this study, we introduce a novel classification system for angiosperm NLR genes, grounded in network analysis of microsynteny information. This refined classification categorizes these genes into five classes: CNL_A, CNL_B, CNL_C, TNL, and RNL. Compared to the previous classification, we further subdivided CNLs into three subclasses. The credibility of this classification is supported by phylogenetic analysis and examination of protein domain structures. Importantly, this classification enabled a model to explain the extinction of TNL genes in monocots. Compelling microsynteny evidence underscores this revelation, indicating a clear synteny correspondence between the non-TNLs in monocots and the extinct TNL subclass. Our study provides crucial insights into the genomic origin and divergence of plant NLR subfamilies, unveiling the malleability-driven journey that has shaped the functionality and diversity of plant NLR genes.
Collapse
Affiliation(s)
- Bo-Cheng Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Yi-Rong Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Zhi-Guang Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Xin-Chu Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Ze Yu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Bo-Ya Ping
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
- Agricultural Characteristic Industry Development Center, Qujiang District Agriculture and Rural Bureau, Quzhou, China
| | - Ya-Qiang Sun
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Harrold van den Burg
- Innovation for Crops, KeyGene, Wageningen, The Netherlands
- Molecular Plant Pathology, Swammerdam institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, The Netherlands
| | - Feng-Wang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Tao Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
7
|
Naake T, D'Auria JC, Fernie AR, Scossa F. Phylogenomic and synteny analysis of BAHD and SCP/SCPL gene families reveal their evolutionary histories in plant specialized metabolism. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230349. [PMID: 39343028 PMCID: PMC11449225 DOI: 10.1098/rstb.2023.0349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/12/2024] [Accepted: 07/22/2024] [Indexed: 10/01/2024] Open
Abstract
Plant chemical diversity is largely owing to a number of enzymes which catalyse reactions involved in the assembly, and in the subsequent chemical modifications, of the core structures of major classes of plant specialized metabolites. One such reaction is acylation. With this in mind, to study the deep evolutionary history of BAHD and the serine-carboxypeptidase-like (SCPL) acyltransferase genes, we assembled phylogenomic synteny networks based on a large-scale inference analysis of orthologues across whole-genome sequences of 126 species spanning Stramenopiles and Archaeplastida, including Arabidopsis thaliana, tomato (Solanum lycopersicum) and maize (Zea mays). As such, this study combined the study of genomic location with changes in gene sequences. Our analyses revealed that serine-carboxypeptidase (SCP)/serine-carboxypeptidase-like (SCPL) genes had a deeper evolutionary origin than BAHD genes, which expanded massively on the transition to land and with the development of the vascular system. The two gene families additionally display quite distinct patterns of copy number variation across phylogenies as well as differences in cross-phylogenetic syntenic network components. In unlocking the above observations, our analyses demonstrate the possibilities afforded by modern phylogenomic (syntenic) networks, but also highlight their current limitations, as demonstrated by the inability of phylogenetic methods to separate authentic SCPL acyltransferases from standard SCP peptide hydrolases.This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Thomas Naake
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Hamburg, Germany
| | - John C D'Auria
- Leibniz Institute of Crop Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Seeland, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Federico Scossa
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Council for Agricultural Research and Economics, Research Center for Genomics and Bioinformatics, Rome, Italy
| |
Collapse
|
8
|
Yang F, Luo J, Han S, Zhang Y, Liu Z, Lan J, Sun Y, Zhao T. Evolutionary dynamics and functional characterization of proximal duplicated sorbitol-6-phosphate dehydrogenase genes in Rosaceae. FRONTIERS IN PLANT SCIENCE 2024; 15:1480519. [PMID: 39582629 PMCID: PMC11581945 DOI: 10.3389/fpls.2024.1480519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/22/2024] [Indexed: 11/26/2024]
Abstract
Sorbitol is a critical photosynthate and storage substance in the Rosaceae family. Sorbitol 6-phosphate dehydrogenase (S6PDH) functions as the pivotal rate-limiting enzyme in sorbitol synthesis. The origin and functional diversification of S6PDH in Rosaceae remain unclear, largely due to the complicated interplay of gene duplications. Here, we investigated the synteny relationships among all identified S6PDH genes in representative genomes within the Rosaceae family. By integrating phylogenetic analyses, we elucidated the lineage-specific expansion and syntenic conservation of S6PDH across diverse Rosaceae plant lineages. We found that S6PDH can be traced back to a pair of proximal duplicated genes of the common ancestor of the Rosaceae, and the further amplification of S6PDH in the Maleae primarily relies on WGD events in their lineages. In Rosaceae species, multiple copies of the S6PDH gene are preliminarily divided into two main clades (Clade 1 and Clade 2) based on sequence similarity. These clades have evolved to acquire different functional directions. In Clade 1, lineage-specific transposition events in the Amygdaloideae have led to changes in gene expression patterns and promoted lineage evolution. This is mainly characterized by a decrease in enzymatic activity and transcriptional expression in the leaves, but also includes specific functional diversification, such as sustained post-harvest fruit expression and enhanced expression under biotic stress in certain tissues. In contrast, S6PDH in the Rosoideae and Dryadoideae has not undergone additional duplications beyond early proximal duplication. The loss of exons and variations in exon length might the key factor leading to reduced enzymatic activity in the Clade 2 proximal gene pairs. Collectively, our findings illuminate the dynamic nature of S6PDH evolution and reveal the intricate interplay between duplication, transposition, and functional diversification. This work not only contributes valuable insights into the genetic mechanisms underlying sorbitol metabolism but also establish a crucial foundation for future investigations aimed at comprehensively characterizing the variations of sorbitol metabolism across different subfamilies within the Rosaceae family.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yaqiang Sun
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Tao Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
9
|
Tolman ER, Beatty CD, Kohli MK, Abbott J, Bybee SM, Frandsen PB, Stephen Gosnell J, Guralnick R, Kalkman VJ, Newton LG, Suvorov A, Ware JL. A molecular phylogeny of the Petaluridae (Odonata: Anisoptera): A 160-Million-Year-Old story of drift and extinction. Mol Phylogenet Evol 2024; 200:108185. [PMID: 39209047 DOI: 10.1016/j.ympev.2024.108185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Petaluridae (Odonata: Anisoptera) is a relict dragonfly family, having diverged from its sister family in the Jurassic, of eleven species that are notable among odonates (dragonflies and damselflies) for their exclusive use of fen and bog habitats, their burrowing behavior as nymphs, large body size as adults, and extended lifespans. To date, several nodes within this family remain unresolved, limiting the study of the evolution of this peculiar family. Using an anchored hybrid enrichment dataset of over 900 loci we reconstructed the species tree of Petaluridae. To estimate the temporal origin of the genera within this family, we used a set of well-vetted fossils and a relaxed molecular clock model in a divergence time estimation analysis. We estimate that Petaluridae originated in the early Cretaceous and confirm the existence of monophyletic Gondwanan and Laurasian clades within the family. Our relaxed molecular clock analysis estimated that these clades diverged from their MRCA approximately 160 mya. Extant lineages within this family were identified to have persisted from 6 (Uropetala) to 120 million years (Phenes). Our biogeographical analyses focusing on a set of key regions suggest that divergence within Petaluridae is largely correlated with continental drift, the exposure of land bridges, and the development of mountain ranges. Our results support the hypothesis that species within Petaluridae have persisted for tens of millions of years, with little fossil evidence to suggest widespread extinction in the family, despite optimal conditions for the fossilization of nymphs. Petaluridae appear to be a rare example of habitat specialists that have persisted for tens of millions of years.
Collapse
Affiliation(s)
- Ethan R Tolman
- American Museum of Natural History, Department of Invertebrate Zoology, New York, 10024; Department of Biological Sciences, Virginia Tech, Blacksburg, VA; Conservation Connection Foundation, Boise, ID.
| | - Christopher D Beatty
- American Museum of Natural History, Department of Invertebrate Zoology, New York, 10024; Program for Conservation Genomics, Department of Biology, Stanford University
| | - Manpreet K Kohli
- American Museum of Natural History, Department of Invertebrate Zoology, New York, 10024; Conservation Connection Foundation, Boise, ID; Department of Natural Sciences, Baruch College, New York
| | - John Abbott
- Alabama Museum of Natural History and Department of Research and Collections, The University of Alabama
| | - Seth M Bybee
- Department of Biology and Monte L. Bean Museum, Brigham Young University, Provo, UT
| | - Paul B Frandsen
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT
| | - J Stephen Gosnell
- Department of Natural Sciences, Baruch College, New York; PhD Program in Biology, The Graduate Center of the City University of New York, 365 Fifth Avenue, Room 4315, New York, 10016
| | - Robert Guralnick
- Florida Museum of Natural History, University of Florida, Gainesville, FL
| | - V J Kalkman
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden
| | - Lacie G Newton
- American Museum of Natural History, Department of Invertebrate Zoology, New York, 10024
| | - Anton Suvorov
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA
| | - Jessica L Ware
- American Museum of Natural History, Department of Invertebrate Zoology, New York, 10024
| |
Collapse
|
10
|
Pale M, Pérez-Torres CA, Arenas-Huertero C, Villafán E, Sánchez-Rangel D, Ibarra-Laclette E. Genome-Wide Transcriptional Response of Avocado to Fusarium sp. Infection. PLANTS (BASEL, SWITZERLAND) 2024; 13:2886. [PMID: 39458832 PMCID: PMC11511450 DOI: 10.3390/plants13202886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/20/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
The avocado crop is relevant for its economic importance and because of its unique evolutionary history. However, there is a lack of information regarding the molecular processes during the defense response against fungal pathogens. Therefore, using a genome-wide approach in this work, we investigated the transcriptional response of the Mexican horticultural race of avocado (Persea americana var. drymifolia), including miRNAs profile and their possible targets. For that, we established an avocado-Fusarium hydroponic pathosystem and studied the response for 21 days. To guarantee robustness in the analysis, first, we improved the avocado genome assembly available for this variety, resulting in 822.49 Mbp in length with 36,200 gene models. Then, using an RNA-seq approach, we identified 13,778 genes differentially expressed in response to the Fusarium infection. According to their expression profile across time, these genes can be clustered into six groups, each associated with specific biological processes. Regarding non-coding RNAs, 8 of the 57 mature miRNAs identified in the avocado genome are responsive to infection caused by Fusarium, and the analysis revealed a total of 569 target genes whose transcript could be post-transcriptionally regulated. This study represents the first research in avocados to comprehensively explore the role of miRNAs in orchestrating defense responses against Fusarium spp. Also, this work provides valuable data about the genes involved in the intricate response of the avocado during fungal infection.
Collapse
Affiliation(s)
- Michel Pale
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (M.P.); (C.-A.P.-T.); (E.V.)
| | - Claudia-Anahí Pérez-Torres
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (M.P.); (C.-A.P.-T.); (E.V.)
- Investigador por México-CONAHCYT en el Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico
| | - Catalina Arenas-Huertero
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78295, San Luis Potosí, Mexico;
| | - Emanuel Villafán
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (M.P.); (C.-A.P.-T.); (E.V.)
| | - Diana Sánchez-Rangel
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (M.P.); (C.-A.P.-T.); (E.V.)
- Investigador por México-CONAHCYT en el Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico
| | - Enrique Ibarra-Laclette
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (M.P.); (C.-A.P.-T.); (E.V.)
| |
Collapse
|
11
|
Konkel Z, Kubatko L, Slot JC. CLOCI: unveiling cryptic fungal gene clusters with generalized detection. Nucleic Acids Res 2024; 52:e75. [PMID: 39016185 PMCID: PMC11381361 DOI: 10.1093/nar/gkae625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024] Open
Abstract
Gene clusters are genomic loci that contain multiple genes that are functionally and genetically linked. Gene clusters collectively encode diverse functions, including small molecule biosynthesis, nutrient assimilation, metabolite degradation, and production of proteins essential for growth and development. Identifying gene clusters is a powerful tool for small molecule discovery and provides insight into the ecology and evolution of organisms. Current detection algorithms focus on canonical 'core' biosynthetic functions many gene clusters encode, while overlooking uncommon or unknown cluster classes. These overlooked clusters are a potential source of novel natural products and comprise an untold portion of overall gene cluster repertoires. Unbiased, function-agnostic detection algorithms therefore provide an opportunity to reveal novel classes of gene clusters and more precisely define genome organization. We present CLOCI (Co-occurrence Locus and Orthologous Cluster Identifier), an algorithm that identifies gene clusters using multiple proxies of selection for coordinated gene evolution. Our approach generalizes gene cluster detection and gene cluster family circumscription, improves detection of multiple known functional classes, and unveils non-canonical gene clusters. CLOCI is suitable for genome-enabled small molecule mining, and presents an easily tunable approach for delineating gene cluster families and homologous loci.
Collapse
Affiliation(s)
- Zachary Konkel
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Laura Kubatko
- Department of Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
- Department of Statistics, The Ohio State University, Columbus, OH 43210, USA
| | - Jason C Slot
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
12
|
Lewin TD, Liao IJY, Luo YJ. Annelid Comparative Genomics and the Evolution of Massive Lineage-Specific Genome Rearrangement in Bilaterians. Mol Biol Evol 2024; 41:msae172. [PMID: 39141777 PMCID: PMC11371463 DOI: 10.1093/molbev/msae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024] Open
Abstract
The organization of genomes into chromosomes is critical for processes such as genetic recombination, environmental adaptation, and speciation. All animals with bilateral symmetry inherited a genome structure from their last common ancestor that has been highly conserved in some taxa but seemingly unconstrained in others. However, the evolutionary forces driving these differences and the processes by which they emerge have remained largely uncharacterized. Here, we analyze genome organization across the phylum Annelida using 23 chromosome-level annelid genomes. We find that while many annelid lineages have maintained the conserved bilaterian genome structure, the Clitellata, a group containing leeches and earthworms, possesses completely scrambled genomes. We develop a rearrangement index to quantify the extent of genome structure evolution and show that, compared to the last common ancestor of bilaterians, leeches and earthworms have among the most highly rearranged genomes of any currently sampled species. We further show that bilaterian genomes can be classified into two distinct categories-high and low rearrangement-largely influenced by the presence or absence, respectively, of chromosome fission events. Our findings demonstrate that animal genome structure can be highly variable within a phylum and reveal that genome rearrangement can occur both in a gradual, stepwise fashion, or rapid, all-encompassing changes over short evolutionary timescales.
Collapse
Affiliation(s)
- Thomas D Lewin
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Yi-Jyun Luo
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
13
|
Gong H, Wang H, Wang Y, Zhang S, Liu X, Che J, Wu S, Wu J, Sun X, Zhang S, Yau ST, Wu R. Topological change of soil microbiota networks for forest resilience under global warming. Phys Life Rev 2024; 50:228-251. [PMID: 39178631 DOI: 10.1016/j.plrev.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/26/2024]
Abstract
Forest management by thinning can mitigate the detrimental impact of increasing drought caused by global warming. Growing evidence shows that the soil microbiota can coordinate the dynamic relationship between forest functions and drought intensity, but how they function as a cohesive whole remains elusive. We outline a statistical topology model to chart the roadmap of how each microbe acts and interacts with every other microbe to shape the dynamic changes of microbial communities under forest management. To demonstrate its utility, we analyze a soil microbiota data collected from a two-way longitudinal factorial experiment involving three stand densities and three levels of rainfall over a growing season in artificial plantations of a forest tree - larix (Larix kaempferi). We reconstruct the most sophisticated soil microbiota networks that code maximally informative microbial interactions and trace their dynamic trajectories across time, space, and environmental signals. By integrating GLMY homology theory, we dissect the topological architecture of these so-called omnidirectional networks and identify key microbial interaction pathways that play a pivotal role in mediating the structure and function of soil microbial communities. The statistical topological model described provides a systems tool for studying how microbial community assembly alters its structure, function and evolution under climate change.
Collapse
Affiliation(s)
- Huiying Gong
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China; Beijing Institute of Mathematical Sciences and Applications, Beijing 101408, China
| | - Hongxing Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yu Wang
- Beijing Institute of Mathematical Sciences and Applications, Beijing 101408, China
| | - Shen Zhang
- Qiuzhen College, Tsinghua University, Beijing 100084, China
| | - Xiang Liu
- Beijing Institute of Mathematical Sciences and Applications, Beijing 101408, China
| | - Jincan Che
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China; Beijing Institute of Mathematical Sciences and Applications, Beijing 101408, China
| | - Shuang Wu
- Beijing Institute of Mathematical Sciences and Applications, Beijing 101408, China
| | - Jie Wu
- Beijing Institute of Mathematical Sciences and Applications, Beijing 101408, China
| | - Xiaomei Sun
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
| | - Shougong Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Shing-Tung Yau
- Beijing Institute of Mathematical Sciences and Applications, Beijing 101408, China; Qiuzhen College, Tsinghua University, Beijing 100084, China; Yau Mathematical Sciences Center, Tsinghua University, Beijing 100084, China
| | - Rongling Wu
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China; Beijing Institute of Mathematical Sciences and Applications, Beijing 101408, China; Qiuzhen College, Tsinghua University, Beijing 100084, China; Yau Mathematical Sciences Center, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
14
|
Kasperski A, Heng HH. The Spiral Model of Evolution: Stable Life Forms of Organisms and Unstable Life Forms of Cancers. Int J Mol Sci 2024; 25:9163. [PMID: 39273111 PMCID: PMC11395208 DOI: 10.3390/ijms25179163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
If one must prioritize among the vast array of contributing factors to cancer evolution, environmental-stress-mediated chromosome instability (CIN) should easily surpass individual gene mutations. CIN leads to the emergence of genomically unstable life forms, enabling them to grow dominantly within the stable life form of the host. In contrast, stochastic gene mutations play a role in aiding the growth of the cancer population, with their importance depending on the initial emergence of the new system. Furthermore, many specific gene mutations among the many available can perform this function, decreasing the clinical value of any specific gene mutation. Since these unstable life forms can respond to treatment differently than stable ones, cancer often escapes from drug treatment by forming new systems, which leads to problems during the treatment for patients. To understand how diverse factors impact CIN-mediated macroevolution and genome integrity-ensured microevolution, the concept of two-phased cancer evolution is used to reconcile some major characteristics of cancer, such as bioenergetic, unicellular, and multicellular evolution. Specifically, the spiral of life function model is proposed, which integrates major historical evolutionary innovations and conservation with information management. Unlike normal organismal evolution in the microevolutionary phase, where a given species occupies a specific location within the spiral, cancer populations are highly heterogenous at multiple levels, including epigenetic levels. Individual cells occupy different levels and positions within the spiral, leading to supersystems of mixed cellular populations that exhibit both macro and microevolution. This analysis, utilizing karyotype to define the genetic networks of the cellular system and CIN to determine the instability of the system, as well as considering gene mutation and epigenetics as modifiers of the system for information amplification and usage, explores the high evolutionary potential of cancer. It provides a new, unified understanding of cancer as a supersystem, encouraging efforts to leverage the dynamics of CIN to develop improved treatment options. Moreover, it offers a historically contingent model for organismal evolution that reconciles the roles of both evolutionary innovation and conservation through macroevolution and microevolution, respectively.
Collapse
Affiliation(s)
- Andrzej Kasperski
- Department of Biotechnology, Laboratory of Bioinformatics and Control of Bioprocesses, Institute of Biological Sciences, University of Zielona Góra, Szafrana 1, 65-516 Zielona Góra, Poland
| | - Henry H Heng
- Center for Molecular Medicine and Genetics, Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
15
|
Kim T, Egesa A, Qin C, Mather H, Sandoya G, Begcy K. Global identification of LIM genes in response to different heat stress regimes in Lactuca sativa. BMC PLANT BIOLOGY 2024; 24:751. [PMID: 39103763 DOI: 10.1186/s12870-024-05466-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND LIM (Lineage-11 (LIN-11), Insulin-1 (ISL-1), and Mechanotransduction-3 (MEC-3)) genes belong to a family that hold ubiquitous properties contributing to organ, seed, and pollen development as well as developmental and cellular responses to biotic and abiotic stresses. Lettuce (Lactuca sativa) is a highly consumed vegetable crop susceptible heat stress. High temperatures limit lettuce's overall yield, quality and marketability. Lettuce LIM genes have not been identified and their role in response to high temperatures is not known. Aiming to identify potential new targets for thermoresilience, we searched for LIM genes in lettuce and compared them with orthologous of several dicotyledons and monocotyledons plant species. RESULTS We identified fourteen lettuce LIM genes distributed into eight different subgroups using a genome-wide analysis strategy. Three belonging to DAR (DA means "large" in Chinese) class I, two DAR class II, one in the WLIM1, two in the WLIM2, one in the PLIM1, two in the PLIM2 class, one ßLIM and two δLIMs. No DAR-like were identified in any of the species analyzed including lettuce. Interestingly, unlike other gene families in lettuce which underwent large genome tandem duplications, LIM genes did not increase in number compared to other plant species. The response to heat stress induced a dynamic transcriptional response on LsLIM genes. All heat stress regimes, including night stress, day stress and day and night stress were largely responsible for changes in LIM transcriptional expression. CONCLUSIONS Our global analysis at the genome level provides a detailed identification of LIM genes in lettuce and other dicotyledonous and monocotyledonous plant species. Gene structure, physical and chemical properties as well as chromosomal location and Cis-regulatory element analysis together with our gene expression analysis under different temperature regimes identified LsWLIM1, LsWLIM2b, LsDAR3 and LsDAR5 as candidate genes that could be used by breeding programs aiming to produce lettuce varieties able to withstand high temperatures.
Collapse
Affiliation(s)
- Taehoon Kim
- Environmental Horticulture Department, University of Florida, Gainesville, FL, 32611, USA
| | - Andrew Egesa
- Environmental Horticulture Department, University of Florida, Gainesville, FL, 32611, USA
| | - Claire Qin
- Environmental Horticulture Department, University of Florida, Gainesville, FL, 32611, USA
- Student Science Training Program, University of Florida, Gainesville, FL, 32611, USA
| | - Hannah Mather
- Environmental Horticulture Department, University of Florida, Gainesville, FL, 32611, USA
- Horticultural Science Department, University of Florida, Gainesville, FL, 32611, USA
| | - Germán Sandoya
- Horticultural Science Department, University of Florida, Gainesville, FL, 32611, USA
- Everglades Research and Education Center, Horticultural Sciences Department, University of Florida IFAS, Belle Glade, FL, 33430, USA
| | - Kevin Begcy
- Environmental Horticulture Department, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
16
|
Lyu H, Yim WC, Yu Q. Genomic and Transcriptomic Insights into the Evolution of C4 Photosynthesis in Grasses. Genome Biol Evol 2024; 16:evae163. [PMID: 39066653 PMCID: PMC11319937 DOI: 10.1093/gbe/evae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/18/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
C4 photosynthesis has independently evolved over 62 times within 19 angiosperm families. The recurrent evolution of C4 photosynthesis appears to contradict the complex anatomical and biochemical modifications required for the transition from C3 to C4 photosynthesis. In this study, we conducted an integrated analysis of genomics and transcriptomics to elucidate the molecular underpinnings of convergent C4 evolution in the grass family. Our genome-wide exploration of C4-related gene families suggests that the expansion of these gene families may have played an important role in facilitating C4 evolution in the grass family. A phylogenomic synteny network analysis uncovered the emergence of C4 genes in various C4 grass lineages from a common ancestral gene pool. Moreover, through a comparison between non-C4 and C4 PEPCs, we pinpointed 14 amino acid sites exhibiting parallel adaptations. These adaptations, occurring post the BEP-PACMAD divergence, shed light on why all C4 origins in grasses are confined to the PACMAD clade. Furthermore, our study revealed that the ancestor of Chloridoideae grasses possessed a more favorable molecular preadaptation for C4 functions compared to the ancestor of Panicoideae grasses. This molecular preadaptation potentially explains why C4 photosynthesis evolved earlier in Chloridoideae than in Panicoideae and why the C3-to-C4 transition occurred once in Chloridoideae but multiple times in Panicoideae. Additionally, we found that C4 genes share similar cis-elements across independent C4 lineages. Notably, NAD-ME subtype grasses may have retained the ancestral regulatory machinery of the C4 NADP-ME gene, while NADP-ME subtype grasses might have undergone unique cis-element modifications.
Collapse
Affiliation(s)
- Haomin Lyu
- Tropical Plant Genetic Resources and Disease Research Unit, Daniel K Inouye U.S. Pacific Basin Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Hilo, HI 96720, USA
- Hawaii Agriculture Research Center, Kunia, HI 96759, USA
| | - Won Cheol Yim
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Qingyi Yu
- Tropical Plant Genetic Resources and Disease Research Unit, Daniel K Inouye U.S. Pacific Basin Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Hilo, HI 96720, USA
| |
Collapse
|
17
|
Barker MS, Jiao Y, Glennon KL. Doubling down on polyploid discoveries: Global advances in genomics and ecological impacts of polyploidy. AMERICAN JOURNAL OF BOTANY 2024; 111:e16395. [PMID: 39164922 DOI: 10.1002/ajb2.16395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/22/2024]
Abstract
All flowering plants are now recognized as diploidized paleopolyploids (Jiao et al., 2011; One Thousand Plant Transcriptomes Initiative, 2019), and polyploid species comprise approximately 30% of contemporary plant species (Wood et al., 2009; Barker et al., 2016a). A major implication of these discoveries is that, to appreciate the evolution of plant diversity, we need to understand the fundamental biology of polyploids and diploidization. This need is broadly recognized by our community as there is a continued, growing interest in polyploidy as a research topic. Over the past 25 years, the sequencing and analysis of plant genomes has revolutionized our understanding of the importance of polyploid speciation to the evolution of land plants.
Collapse
Affiliation(s)
- Michael S Barker
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, 85721, AZ, USA
| | - Yuannian Jiao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Kelsey L Glennon
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
18
|
McKibben MTW, Finch G, Barker MS. Species-tree topology impacts the inference of ancient whole-genome duplications across the angiosperm phylogeny. AMERICAN JOURNAL OF BOTANY 2024; 111:e16378. [PMID: 39039654 DOI: 10.1002/ajb2.16378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/24/2024]
Abstract
PREMISE The history of angiosperms is marked by repeated rounds of ancient whole-genome duplications (WGDs). Here we used state-of-the-art methods to provide an up-to-date view of the distribution of WGDs in the history of angiosperms that considers both uncertainty introduced by different WGD inference methods and different underlying species-tree hypotheses. METHODS We used the distribution synonymous divergences (Ks) of paralogs and orthologs from transcriptomic and genomic data to infer and place WGDs across two hypothesized angiosperm phylogenies. We further tested these WGD hypotheses with syntenic inferences and Bayesian models of duplicate gene gain and loss. RESULTS The predicted number of WGDs in the history of angiosperms (~170) based on the current taxon sampling is largely similar across different inference methods, but varies in the precise placement of WGDs on the phylogeny. Ks-based methods often yield alternative hypothesized WGD placements due to variation in substitution rates among lineages. Phylogenetic models of duplicate gene gain and loss are more robust to topological variation. However, errors in species-tree inference can still produce spurious WGD hypotheses, regardless of method used. CONCLUSIONS Here we showed that different WGD inference methods largely agree on an average of 3.5 WGD in the history of individual angiosperm species. However, the precise placement of WGDs on the phylogeny is subject to the WGD inference method and tree topology. As researchers continue to test hypotheses regarding the impacts ancient WGDs have on angiosperm evolution, it is important to consider the uncertainty of the phylogeny as well as WGD inference methods.
Collapse
Affiliation(s)
- Michael T W McKibben
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Geoffrey Finch
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Michael S Barker
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
19
|
Muti RM, Barrett CF, Sinn BT. Evolution of Whirly1 in the angiosperms: sequence, splicing, and expression in a clade of early transitional mycoheterotrophic orchids. FRONTIERS IN PLANT SCIENCE 2024; 15:1241515. [PMID: 39006962 PMCID: PMC11239579 DOI: 10.3389/fpls.2024.1241515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 06/07/2024] [Indexed: 07/16/2024]
Abstract
The plastid-targeted transcription factor Whirly1 (WHY1) has been implicated in chloroplast biogenesis, plastid genome stability, and fungal defense response, which together represent characteristics of interest for the study of autotrophic losses across the angiosperms. While gene loss in the plastid and nuclear genomes has been well studied in mycoheterotrophic plants, the evolution of the molecular mechanisms impacting genome stability is completely unknown. Here, we characterize the evolution of WHY1 in four early transitional mycoheterotrophic orchid species in the genus Corallorhiza by synthesizing the results of phylogenetic, transcriptomic, and comparative genomic analyses with WHY1 genomic sequences sampled from 21 orders of angiosperms. We found an increased number of non-canonical WHY1 isoforms assembled from all but the greenest Corallorhiza species, including intron retention in some isoforms. Within Corallorhiza, phylotranscriptomic analyses revealed the presence of tissue-specific differential expression of WHY1 in only the most photosynthetically capable species and a coincident increase in the number of non-canonical WHY1 isoforms assembled from fully mycoheterotrophic species. Gene- and codon-level tests of WHY1 selective regimes did not infer significant signal of either relaxed selection or episodic diversifying selection in Corallorhiza but did so for relaxed selection in the late-stage full mycoheterotrophic orchids Epipogium aphyllum and Gastrodia elata. Additionally, nucleotide substitutions that most likely impact the function of WHY1, such as nonsense mutations, were only observed in late-stage mycoheterotrophs. We propose that our findings suggest that splicing and expression changes may precede the selective shifts we inferred for late-stage mycoheterotrophic species, which therefore does not support a primary role for WHY1 in the transition to mycoheterotrophy in the Orchidaceae. Taken together, this study provides the most comprehensive view of WHY1 evolution across the angiosperms to date.
Collapse
Affiliation(s)
- Rachel M. Muti
- Department of Biology and Earth Science, Otterbein University, Westerville, OH, United States
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, United States
| | - Craig F. Barrett
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Brandon T. Sinn
- Department of Biology and Earth Science, Otterbein University, Westerville, OH, United States
- Faculty of Biology, University of Latvia, Riga, Latvia
| |
Collapse
|
20
|
Yu H, Li Y, Han W, Bao L, Liu F, Ma Y, Pu Z, Zeng Q, Zhang L, Bao Z, Wang S. Pan-evolutionary and regulatory genome architecture delineated by an integrated macro- and microsynteny approach. Nat Protoc 2024; 19:1623-1678. [PMID: 38514839 DOI: 10.1038/s41596-024-00966-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 12/20/2023] [Indexed: 03/23/2024]
Abstract
The forthcoming massive genome data generated by the Earth BioGenome Project will open up a new era of comparative genomics, for which genome synteny analysis provides an important framework. Profiling genome synteny represents an essential step in elucidating genome architecture, regulatory blocks/elements and their evolutionary history. Here we describe PanSyn, ( https://github.com/yhw320/PanSyn ), the most comprehensive and up-to-date genome synteny pipeline, providing step-by-step instructions and application examples to demonstrate its usage. PanSyn inherits both basic and advanced functions from existing popular tools, offering a user-friendly, highly customized approach for genome macrosynteny analysis and integrated pan-evolutionary and regulatory analysis of genome architecture, which are not yet available in public synteny software or tools. The advantages of PanSyn include: (i) advanced microsynteny analysis by functional profiling of microsynteny genes and associated regulatory elements; (ii) comprehensive macrosynteny analysis, including the inference of karyotype evolution from ancestors to extant species; and (iii) functional integration of microsynteny and macrosynteny for pan-evolutionary profiling of genome architecture and regulatory blocks, as well as integration with external functional genomics datasets from three- or four-dimensional genome and ENCODE projects. PanSyn requires basic knowledge of the Linux environment and Perl programming language and the ability to access a computer cluster, especially for large-scale genomic comparisons. Our protocol can be easily implemented by a competent graduate student or postdoc and takes several days to weeks to execute for dozens to hundreds of genomes. PanSyn provides yet the most comprehensive and powerful tool for integrated evolutionary and functional genomics.
Collapse
Affiliation(s)
- Hongwei Yu
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yuli Li
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China.
| | - Wentao Han
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Lisui Bao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Fuyun Liu
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yuanting Ma
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhongqi Pu
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Qifan Zeng
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Lingling Zhang
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China
| | - Zhenmin Bao
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
- Laboratory for Marine Fisheries and Aquaculture, Laoshan Laboratory, Qingdao, China
| | - Shi Wang
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China.
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China.
| |
Collapse
|
21
|
Pang XX, Zhang DY. Detection of Ghost Introgression Requires Exploiting Topological and Branch Length Information. Syst Biol 2024; 73:207-222. [PMID: 38224495 PMCID: PMC11129598 DOI: 10.1093/sysbio/syad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 01/17/2024] Open
Abstract
In recent years, the study of hybridization and introgression has made significant progress, with ghost introgression-the transfer of genetic material from extinct or unsampled lineages to extant species-emerging as a key area for research. Accurately identifying ghost introgression, however, presents a challenge. To address this issue, we focused on simple cases involving 3 species with a known phylogenetic tree. Using mathematical analyses and simulations, we evaluated the performance of popular phylogenetic methods, including HyDe and PhyloNet/MPL, and the full-likelihood method, Bayesian Phylogenetics and Phylogeography (BPP), in detecting ghost introgression. Our findings suggest that heuristic approaches relying on site-pattern counts or gene-tree topologies struggle to differentiate ghost introgression from introgression between sampled non-sister species, frequently leading to incorrect identification of donor and recipient species. The full-likelihood method BPP uses multilocus sequence alignments directly-hence taking into account both gene-tree topologies and branch lengths, by contrast, is capable of detecting ghost introgression in phylogenomic datasets. We analyzed a real-world phylogenomic dataset of 14 species of Jaltomata (Solanaceae) to showcase the potential of full-likelihood methods for accurate inference of introgression.
Collapse
Affiliation(s)
- Xiao-Xu Pang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Da-Yong Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
22
|
Zou Y, Zhang Z, Zeng Y, Hu H, Hao Y, Huang S, Li B. Common Methods for Phylogenetic Tree Construction and Their Implementation in R. Bioengineering (Basel) 2024; 11:480. [PMID: 38790347 PMCID: PMC11117635 DOI: 10.3390/bioengineering11050480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
A phylogenetic tree can reflect the evolutionary relationships between species or gene families, and they play a critical role in modern biological research. In this review, we summarize common methods for constructing phylogenetic trees, including distance methods, maximum parsimony, maximum likelihood, Bayesian inference, and tree-integration methods (supermatrix and supertree). Here we discuss the advantages, shortcomings, and applications of each method and offer relevant codes to construct phylogenetic trees from molecular data using packages and algorithms in R. This review aims to provide comprehensive guidance and reference for researchers seeking to construct phylogenetic trees while also promoting further development and innovation in this field. By offering a clear and concise overview of the different methods available, we hope to enable researchers to select the most appropriate approach for their specific research questions and datasets.
Collapse
Affiliation(s)
- Yue Zou
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China; (Y.Z.); (Z.Z.); (Y.Z.); (H.H.); (Y.H.)
| | - Zixuan Zhang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China; (Y.Z.); (Z.Z.); (Y.Z.); (H.H.); (Y.H.)
| | - Yujie Zeng
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China; (Y.Z.); (Z.Z.); (Y.Z.); (H.H.); (Y.H.)
| | - Hanyue Hu
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China; (Y.Z.); (Z.Z.); (Y.Z.); (H.H.); (Y.H.)
| | - Youjin Hao
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China; (Y.Z.); (Z.Z.); (Y.Z.); (H.H.); (Y.H.)
| | - Sheng Huang
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing 402460, China
| | - Bo Li
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China; (Y.Z.); (Z.Z.); (Y.Z.); (H.H.); (Y.H.)
| |
Collapse
|
23
|
Steenwyk JL, King N. The promise and pitfalls of synteny in phylogenomics. PLoS Biol 2024; 22:e3002632. [PMID: 38768403 PMCID: PMC11105162 DOI: 10.1371/journal.pbio.3002632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Reconstructing the tree of life remains a central goal in biology. Early methods, which relied on small numbers of morphological or genetic characters, often yielded conflicting evolutionary histories, undermining confidence in the results. Investigations based on phylogenomics, which use hundreds to thousands of loci for phylogenetic inquiry, have provided a clearer picture of life's history, but certain branches remain problematic. To resolve difficult nodes on the tree of life, 2 recent studies tested the utility of synteny, the conserved collinearity of orthologous genetic loci in 2 or more organisms, for phylogenetics. Synteny exhibits compelling phylogenomic potential while also raising new challenges. This Essay identifies and discusses specific opportunities and challenges that bear on the value of synteny data and other rare genomic changes for phylogenomic studies. Synteny-based analyses of highly contiguous genome assemblies mark a new chapter in the phylogenomic era and the quest to reconstruct the tree of life.
Collapse
Affiliation(s)
- Jacob L. Steenwyk
- Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Nicole King
- Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| |
Collapse
|
24
|
Parey E, Berthelot C, Roest Crollius H, Guiguen Y. Solving an enigma in the tree of life, at the origins of teleost fishes. C R Biol 2024; 347:1-8. [PMID: 38441104 DOI: 10.5802/crbiol.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 03/07/2024]
Abstract
Tracing the phylogenetic relationships between species is one of the fundamental objectives of evolutionary biology. Since Charles Darwin's seminal work in the 19th century, considerable progress has been made towards establishing a tree of life that summarises the evolutionary history of species. Nevertheless, substantial uncertainties still remain. Specifically, the relationships at the origins of teleost fishes have been the subject of extensive debate over the last 50 years. This question has major implications for various research fields: there are almost 30,000 species in the teleost group, which includes invaluable model organisms for biomedical, evolutionary and ecological studies. Here, we present the work in which we solved this enigma. We demonstrated that eels are more closely related to bony-tongued fishes than to the rest of teleost fishes. We achieved this by taking advantage of new genomic data and leveraging innovative phylogenetic markers. Notably, in addition to traditional molecular phylogeny methods based on the evolution of gene sequences, we also considered the evolution of gene order along the DNA molecule. We discuss the challenges and opportunities that these new markers represent for the field of molecular phylogeny, and in particular the possibilities they offer for re-examining other controversial branches in the tree of life.
Collapse
|
25
|
Xiang Y, Zhang T, Zhao Y, Dong H, Chen H, Hu Y, Huang CH, Xiang J, Ma H. Angiosperm-wide analysis of fruit and ovary evolution aided by a new nuclear phylogeny supports association of the same ovary type with both dry and fleshy fruits. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:228-251. [PMID: 38351714 DOI: 10.1111/jipb.13618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024]
Abstract
Fruit functions in seed protection and dispersal and belongs to many dry and fleshy types, yet their evolutionary pattern remains unclear in part due to uncertainties in the phylogenetic relationships among several orders and families. Thus we used nuclear genes of 502 angiosperm species representing 231 families to reconstruct a well supported phylogeny, with resolved relationships for orders and families with previously uncertain placements. Using this phylogeny as a framework, molecular dating supports a Triassic origin of the crown angiosperms, followed by the emergence of most orders in the Jurassic and Cretaceous and their rise to ecological dominance during the Cretaceous Terrestrial Revolution. The robust phylogeny allowed an examination of the evolutionary pattern of fruit and ovary types, revealing a trend of parallel carpel fusions during early diversifications in eudicots, monocots, and magnoliids. Moreover, taxa in the same order or family with the same ovary type can develop either dry or fleshy fruits with strong correlations between specific types of dry and fleshy fruits; such associations of ovary, dry and fleshy fruits define several ovary-fruit "modules" each found in multiple families. One of the frequent modules has an ovary containing multiple ovules, capsules and berries, and another with an ovary having one or two ovules, achenes (or other single-seeded dry fruits) and drupes. This new perspective of relationships among fruit types highlights the closeness of specific dry and fleshy fruit types, such as capsule and berry, that develop from the same ovary type and belong to the same module relative to dry and fleshy fruits of other modules (such as achenes and drupes). Further analyses of gene families containing known genes for ovary and fruit development identified phylogenetic nodes with multiple gene duplications, supporting a possible role of whole-genome duplications, in combination with climate changes and animal behaviors, in angiosperm fruit and ovary diversification.
Collapse
Affiliation(s)
- Yezi Xiang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Department of Biology, Howard Hughes Medical Institute, Duke University, Durham, 27708, NC, USA
| | - Taikui Zhang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Department of Biology, the Eberly College of Science, and the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, 16802, PA, USA
| | - Yiyong Zhao
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Hongjin Dong
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, China
| | - Hongyi Chen
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, China
| | - Yi Hu
- Department of Biology, the Eberly College of Science, and the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, 16802, PA, USA
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jun Xiang
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, China
| | - Hong Ma
- Department of Biology, the Eberly College of Science, and the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, 16802, PA, USA
| |
Collapse
|
26
|
Qian ZH, Li W, Wang QF, Liang SC, Wu S, Li ZZ, Chen JM. The chromosome-level genome of the submerged plant Cryptocoryne crispatula provides insights into the terrestrial-freshwater transition in Araceae. DNA Res 2024; 31:dsae003. [PMID: 38245835 PMCID: PMC10873505 DOI: 10.1093/dnares/dsae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/27/2023] [Accepted: 01/18/2024] [Indexed: 01/22/2024] Open
Abstract
Plant terrestrialization (i.e. the transition to a terrestrial environment) is a significant evolutionary event that has been intensively studied. While certain plant lineages, particularly in angiosperms, have re-adapted to freshwater habitats after colonizing terrene, however, the molecular mechanism of the terrestrial-freshwater (T-F) transition remains limited. Here, the basal monocot Araceae was selected as the study object to explore the T-F transition adaptation mechanism by comparative genomic analysis. Our findings revealed that the substitution rates significantly increased in the lineage of freshwater Araceae, which may promote their adaptation to the freshwater habitat. Additionally, 20 gene sets across all four freshwater species displayed signs of positive selection contributing to tissue development and defense responses in freshwater plants. Comparative synteny analysis showed that genes specific to submerged plants were enriched in cellular respiration and photosynthesis. In contrast, floating plants were involved in regulating gene expression, suggesting that gene and genome duplications may provide the original material for plants to adapt to the freshwater environment. Our study provides valuable insights into the genomic aspects of the transition from terrestrial to aquatic environments in Araceae, laying the groundwork for future research in the angiosperm.
Collapse
Affiliation(s)
- Zhi-Hao Qian
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Qing-Feng Wang
- Plant Diversity Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Shi-Chu Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541006, China
| | - Shuang Wu
- Guangxi Association for Science and Technology, Nanning 530023, China
| | - Zhi-Zhong Li
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Jin-Ming Chen
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
27
|
Cepeda AS, Mello B, Pacheco MA, Luo Z, Sullivan SA, Carlton JM, Escalante AA. The Genome of Plasmodium gonderi: Insights into the Evolution of Human Malaria Parasites. Genome Biol Evol 2024; 16:evae027. [PMID: 38376987 PMCID: PMC10901558 DOI: 10.1093/gbe/evae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/21/2023] [Accepted: 02/03/2024] [Indexed: 02/22/2024] Open
Abstract
Plasmodium species causing malaria in humans are not monophyletic, sharing common ancestors with nonhuman primate parasites. Plasmodium gonderi is one of the few known Plasmodium species infecting African old-world monkeys that are not found in apes. This study reports a de novo assembled P. gonderi genome with complete chromosomes. The P. gonderi genome shares codon usage, syntenic blocks, and other characteristics with the human parasites Plasmodium ovale s.l. and Plasmodium malariae, also of African origin, and the human parasite Plasmodium vivax and species found in nonhuman primates from Southeast Asia. Using phylogenetically aware methods, newly identified syntenic blocks were found enriched with conserved metabolic genes. Regions outside those blocks harbored genes encoding proteins involved in the vertebrate host-Plasmodium relationship undergoing faster evolution. Such genome architecture may have facilitated colonizing vertebrate hosts. Phylogenomic analyses estimated the common ancestor between P. vivax and an African ape parasite P. vivax-like, within the Asian nonhuman primates parasites clade. Time estimates incorporating P. gonderi placed the P. vivax and P. vivax-like common ancestor in the late Pleistocene, a time of active migration of hominids between Africa and Asia. Thus, phylogenomic and time-tree analyses are consistent with an Asian origin for P. vivax and an introduction of P. vivax-like into Africa. Unlike other studies, time estimates for the clade with Plasmodium falciparum, the most lethal human malaria parasite, coincide with their host species radiation, African hominids. Overall, the newly assembled genome presented here has the quality to support comparative genomic investigations in Plasmodium.
Collapse
Affiliation(s)
- Axl S Cepeda
- Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA 19122-1801, USA
| | - Beatriz Mello
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - M Andreína Pacheco
- Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA 19122-1801, USA
| | - Zunping Luo
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Steven A Sullivan
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Jane M Carlton
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Ananias A Escalante
- Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA 19122-1801, USA
| |
Collapse
|
28
|
Katriel G, Mahanaymi U, Brezner S, Kezel N, Koutschan C, Zeilberger D, Steel M, Snir S. Gene Transfer-Based Phylogenetics: Analytical Expressions and Additivity via Birth-Death Theory. Syst Biol 2023; 72:1403-1417. [PMID: 37862116 DOI: 10.1093/sysbio/syad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/01/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023] Open
Abstract
The genomic era has opened up vast opportunities in molecular systematics, one of which is deciphering the evolutionary history in fine detail. Under this mass of data, analyzing the point mutations of standard markers is often too crude and slow for fine-scale phylogenetics. Nevertheless, genome dynamics (GD) events provide alternative, often richer information. The synteny index (SI) between a pair of genomes combines gene order and gene content information, allowing the comparison of genomes of unequal gene content, together with order considerations of their common genes. Recently, genome dynamics has been modeled as a continuous-time Markov process, and gene distance in the genome as a birth-death-immigration process. Nevertheless, due to complexities arising in this setting, no precise and provably consistent estimators could be derived, resulting in heuristic solutions. Here, we extend this modeling approach by using techniques from birth-death theory to derive explicit expressions of the system's probabilistic dynamics in the form of rational functions of the model parameters. This, in turn, allows us to infer analytically accurate distances between organisms based on their SI. Subsequently, we establish additivity of this estimated evolutionary distance (a desirable property yielding phylogenetic consistency). Applying the new measure in simulation studies shows that it provides accurate results in realistic settings and even under model extensions such as gene gain/loss or over a tree structure. In the real-data realm, we applied the new formulation to unique data structure that we constructed-the ordered orthology DB-based on a new version of the EggNOG database, to construct a tree with more than 4.5K taxa. To the best of our knowledge, this is the largest gene-order-based tree constructed and it overcomes shortcomings found in previous approaches. Constructing a GD-based tree allows to confirm and contrast findings based on other phylogenetic approaches, as we show.
Collapse
Affiliation(s)
- Guy Katriel
- Department of Mathematics, Braude College of Engineering, Karmiel, Israel
| | - Udi Mahanaymi
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - Shelly Brezner
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - Noor Kezel
- Department of Mathematics, University of Haifa, Haifa, Israel
| | | | - Doron Zeilberger
- Department of Mathematics, Rutgers University, New Brunwick, NJ, USA
| | - Mike Steel
- School of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand
| | - Sagi Snir
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| |
Collapse
|
29
|
Liu Q, Ye L, Li M, Wang Z, Xiong G, Ye Y, Tu T, Schwarzacher T, Heslop-Harrison JSP. Genome-wide expansion and reorganization during grass evolution: from 30 Mb chromosomes in rice and Brachypodium to 550 Mb in Avena. BMC PLANT BIOLOGY 2023; 23:627. [PMID: 38062402 PMCID: PMC10704644 DOI: 10.1186/s12870-023-04644-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND The BOP (Bambusoideae, Oryzoideae, and Pooideae) clade of the Poaceae has a common ancestor, with similarities to the genomes of rice, Oryza sativa (2n = 24; genome size 389 Mb) and Brachypodium, Brachypodium distachyon (2n = 10; 271 Mb). We exploit chromosome-scale genome assemblies to show the nature of genomic expansion, structural variation, and chromosomal rearrangements from rice and Brachypodium, to diploids in the tribe Aveneae (e.g., Avena longiglumis, 2n = 2x = 14; 3,961 Mb assembled to 3,850 Mb in chromosomes). RESULTS Most of the Avena chromosome arms show relatively uniform expansion over the 10-fold to 15-fold genome-size increase. Apart from non-coding sequence diversification and accumulation around the centromeres, blocks of genes are not interspersed with blocks of repeats, even in subterminal regions. As in the tribe Triticeae, blocks of conserved synteny are seen between the analyzed species with chromosome fusion, fission, and nesting (insertion) events showing deep evolutionary conservation of chromosome structure during genomic expansion. Unexpectedly, the terminal gene-rich chromosomal segments (representing about 50 Mb) show translocations between chromosomes during speciation, with homogenization of genome-specific repetitive elements within the tribe Aveneae. Newly-formed intergenomic translocations of similar extent are found in the hexaploid A. sativa. CONCLUSIONS The study provides insight into evolutionary mechanisms and speciation in the BOP clade, which is valuable for measurement of biodiversity, development of a clade-wide pangenome, and exploitation of genomic diversity through breeding programs in Poaceae.
Collapse
Affiliation(s)
- Qing Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- South China National Botanical Garden, Guangzhou, 510650, China.
- Center for Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - Lyuhan Ye
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingzhi Li
- Bio&Data Biotechnologies Co. Ltd, Guangzhou, 510663, China
| | - Ziwei Wang
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, China
| | - Gui Xiong
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yushi Ye
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Tieyao Tu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- Center for Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Trude Schwarzacher
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester, LE1 7RH, UK
| | - John Seymour Pat Heslop-Harrison
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester, LE1 7RH, UK.
| |
Collapse
|
30
|
Liao IJY, Lu TM, Chen ME, Luo YJ. Spiralian genomics and the evolution of animal genome architecture. Brief Funct Genomics 2023; 22:498-508. [PMID: 37507111 DOI: 10.1093/bfgp/elad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/27/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Recent developments in sequencing technologies have greatly improved our knowledge of phylogenetic relationships and genomic architectures throughout the tree of life. Spiralia, a diverse clade within Protostomia, is essential for understanding the evolutionary history of parasitism, gene conversion, nervous systems and animal body plans. In this review, we focus on the current hypotheses of spiralian phylogeny and investigate the impact of long-read sequencing on the quality of genome assemblies. We examine chromosome-level assemblies to highlight key genomic features that have driven spiralian evolution, including karyotype, synteny and the Hox gene organization. In addition, we show how chromosome rearrangement has influenced spiralian genomic structures. Although spiralian genomes have undergone substantial changes, they exhibit both conserved and lineage-specific features. We recommend increasing sequencing efforts and expanding functional genomics research to deepen insights into spiralian biology.
Collapse
|
31
|
Chen Y, Guo Y, Xie X, Wang Z, Miao L, Yang Z, Jiao Y, Xie C, Liu J, Hu Z, Xin M, Yao Y, Ni Z, Sun Q, Peng H, Guo W. Pangenome-based trajectories of intracellular gene transfers in Poaceae unveil high cumulation in Triticeae. PLANT PHYSIOLOGY 2023; 193:578-594. [PMID: 37249052 PMCID: PMC10469385 DOI: 10.1093/plphys/kiad319] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023]
Abstract
Intracellular gene transfers (IGTs) between the nucleus and organelles, including plastids and mitochondria, constantly reshape the nuclear genome during evolution. Despite the substantial contribution of IGTs to genome variation, the dynamic trajectories of IGTs at the pangenomic level remain elusive. Here, we developed an approach, IGTminer, that maps the evolutionary trajectories of IGTs using collinearity and gene reannotation across multiple genome assemblies. We applied IGTminer to create a nuclear organellar gene (NOG) map across 67 genomes covering 15 Poaceae species, including important crops. The resulting NOGs were verified by experiments and sequencing data sets. Our analysis revealed that most NOGs were recently transferred and lineage specific and that Triticeae species tended to have more NOGs than other Poaceae species. Wheat (Triticum aestivum) had a higher retention rate of NOGs than maize (Zea mays) and rice (Oryza sativa), and the retained NOGs were likely involved in photosynthesis and translation pathways. Large numbers of NOG clusters were aggregated in hexaploid wheat during 2 rounds of polyploidization, contributing to the genetic diversity among modern wheat accessions. We implemented an interactive web server to facilitate the exploration of NOGs in Poaceae. In summary, this study provides resources and insights into the roles of IGTs in shaping interspecies and intraspecies genome variation and driving plant genome evolution.
Collapse
Affiliation(s)
- Yongming Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yiwen Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xiaoming Xie
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zihao Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Lingfeng Miao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhengzhao Yang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaojie Xie
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| |
Collapse
|
32
|
Adel S, Carels N. Plant Tolerance to Drought Stress with Emphasis on Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112170. [PMID: 37299149 DOI: 10.3390/plants12112170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/16/2023] [Accepted: 03/29/2023] [Indexed: 06/12/2023]
Abstract
Environmental stresses, such as drought, have negative effects on crop yield. Drought is a stress whose impact tends to increase in some critical regions. However, the worldwide population is continuously increasing and climate change may affect its food supply in the upcoming years. Therefore, there is an ongoing effort to understand the molecular processes that may contribute to improving drought tolerance of strategic crops. These investigations should contribute to delivering drought-tolerant cultivars by selective breeding. For this reason, it is worthwhile to review regularly the literature concerning the molecular mechanisms and technologies that could facilitate gene pyramiding for drought tolerance. This review summarizes achievements obtained using QTL mapping, genomics, synteny, epigenetics, and transgenics for the selective breeding of drought-tolerant wheat cultivars. Synthetic apomixis combined with the msh1 mutation opens the way to induce and stabilize epigenomes in crops, which offers the potential of accelerating selective breeding for drought tolerance in arid and semi-arid regions.
Collapse
Affiliation(s)
- Sarah Adel
- Genetic Department, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Nicolas Carels
- Laboratory of Biological System Modeling, Center of Technological Development for Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-361, Brazil
| |
Collapse
|
33
|
Chavez BG, D'Auria JC. Turning a new leaf on cannabinoids. NATURE PLANTS 2023; 9:687-688. [PMID: 37127749 DOI: 10.1038/s41477-023-01415-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Affiliation(s)
- Benjamin G Chavez
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - John C D'Auria
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany.
| |
Collapse
|
34
|
Mutwil M, Fernie AR. Ancestral genome reconstruction for studies of the green lineage. MOLECULAR PLANT 2023; 16:657-659. [PMID: 36871157 DOI: 10.1016/j.molp.2023.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
35
|
Tian XC, Guo JF, Yan XM, Shi TL, Nie S, Zhao SW, Bao YT, Li ZC, Kong L, Su GJ, Mao JF, Lin J. Unique gene duplications and conserved microsynteny potentially associated with resistance to wood decay in the Lauraceae. FRONTIERS IN PLANT SCIENCE 2023; 14:1122549. [PMID: 36968354 PMCID: PMC10030967 DOI: 10.3389/fpls.2023.1122549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Wood decay resistance (WDR) is marking the value of wood utilization. Many trees of the Lauraceae have exceptional WDR, as evidenced by their use in ancient royal palace buildings in China. However, the genetics of WDR remain elusive. Here, through comparative genomics, we revealed the unique characteristics related to the high WDR in Lauraceae trees. We present a 1.27-Gb chromosome-level assembly for Lindera megaphylla (Lauraceae). Comparative genomics integrating major groups of angiosperm revealed Lauraceae species have extensively shared gene microsynteny associated with the biosynthesis of specialized metabolites such as isoquinoline alkaloids, flavonoid, lignins and terpenoid, which play significant roles in WDR. In Lauraceae genomes, tandem and proximal duplications (TD/PD) significantly expanded the coding space of key enzymes of biosynthesis pathways related to WDR, which may enhance the decay resistance of wood by increasing the accumulation of these compounds. Among Lauraceae species, genes of WDR-related biosynthesis pathways showed remarkable expansion by TD/PD and conveyed unique and conserved motifs in their promoter and protein sequences, suggesting conserved gene collinearity, gene expansion and gene regulation supporting the high WDR. Our study thus reveals genomic profiles related to biochemical transitions among major plant groups and the genomic basis of WDR in the Lauraceae.
Collapse
Affiliation(s)
- Xue-Chan Tian
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jing-Fang Guo
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xue-Mei Yan
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Tian-Le Shi
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shuai Nie
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shi-Wei Zhao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yu-Tao Bao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zhi-Chao Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Lei Kong
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Guang-Ju Su
- National Tree Breeding Station for Nanmu in Zhuxi, Forest Farm of Zhuxi County, Hubei, China
| | - Jian-Feng Mao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Jinxing Lin
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
36
|
Walden N, Schranz ME. Synteny Identifies Reliable Orthologs for Phylogenomics and Comparative Genomics of the Brassicaceae. Genome Biol Evol 2023; 15:7059155. [PMID: 36848527 PMCID: PMC10016055 DOI: 10.1093/gbe/evad034] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/27/2023] [Accepted: 02/17/2023] [Indexed: 03/01/2023] Open
Abstract
Large genomic data sets are becoming the new normal in phylogenetic research, but the identification of true orthologous genes and the exclusion of problematic paralogs is still challenging when applying commonly used sequencing methods such as target enrichment. Here, we compared conventional ortholog detection using OrthoFinder with ortholog detection through genomic synteny in a data set of 11 representative diploid Brassicaceae whole-genome sequences spanning the entire phylogenetic space. Then, we evaluated the resulting gene sets regarding gene number, functional annotation, and gene and species tree resolution. Finally, we used the syntenic gene sets for comparative genomics and ancestral genome analysis. The use of synteny resulted in considerably more orthologs and also allowed us to reliably identify paralogs. Surprisingly, we did not detect notable differences between species trees reconstructed from syntenic orthologs when compared with other gene sets, including the Angiosperms353 set and a Brassicaceae-specific target enrichment gene set. However, the synteny data set comprised a multitude of gene functions, strongly suggesting that this method of marker selection for phylogenomics is suitable for studies that value downstream gene function analysis, gene interaction, and network studies. Finally, we present the first ancestral genome reconstruction for the Core Brassicaceae which predating the Brassicaceae lineage diversification ∼25 million years ago.
Collapse
Affiliation(s)
- Nora Walden
- Biosystematics Group, Wageningen University, Wageningen, The Netherlands.,Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | | |
Collapse
|
37
|
Reconstruction of hundreds of reference ancestral genomes across the eukaryotic kingdom. Nat Ecol Evol 2023; 7:355-366. [PMID: 36646945 PMCID: PMC9998269 DOI: 10.1038/s41559-022-01956-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 11/22/2022] [Indexed: 01/18/2023]
Abstract
Ancestral sequence reconstruction is a fundamental aspect of molecular evolution studies and can trace small-scale sequence modifications through the evolution of genomes and species. In contrast, fine-grained reconstructions of ancestral genome organizations are still in their infancy, limiting our ability to draw comprehensive views of genome and karyotype evolution. Here we reconstruct the detailed gene contents and organizations of 624 ancestral vertebrate, plant, fungi, metazoan and protist genomes, 183 of which are near-complete chromosomal gene order reconstructions. Reconstructed ancestral genomes are similar to their descendants in terms of gene content as expected and agree precisely with reference cytogenetic and in silico reconstructions when available. By comparing successive ancestral genomes along the phylogenetic tree, we estimate the intra- and interchromosomal rearrangement history of all major vertebrate clades at high resolution. This freely available resource introduces the possibility to follow evolutionary processes at genomic scales in chronological order, across multiple clades and without relying on a single extant species as reference.
Collapse
|
38
|
Xue JY, Li Z, Hu SY, Kao SM, Zhao T, Wang JY, Wang Y, Chen M, Qiu Y, Fan HY, Liu Y, Shao ZQ, Van de Peer Y. The Saururus chinensis genome provides insights into the evolution of pollination strategies and herbaceousness in magnoliids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:1021-1034. [PMID: 36602036 PMCID: PMC7614262 DOI: 10.1111/tpj.16097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Saururus chinensis, an herbaceous magnoliid without perianth, represents a clade of early-diverging angiosperms that have gone through woodiness-herbaceousness transition and pollination obstacles: the characteristic white leaves underneath inflorescence during flowering time are considered a substitute for perianth to attract insect pollinators. Here, using the newly sequenced S. chinensis genome, we revisited the phylogenetic position of magnoliids within mesangiosperms, and recovered a sister relationship for magnoliids and Chloranthales. By considering differentially expressed genes, we identified candidate genes that are involved in the morphogenesis of the white leaves in S. chinensis. Among those genes, we verified - in a transgenic experiment with Arabidopsis - that increasing the expression of the "pseudo-etiolation in light" gene (ScPEL) can inhibit the biosynthesis of chlorophyll. ScPEL is thus likely responsible for the switches between green and white leaves, suggesting that changes in gene expression may underlie the evolution of pollination strategies. Despite being an herbaceous plant, S. chinensis still has vascular cambium and maintains the potential for secondary growth as a woody plant, because the necessary machinery, i.e., the entire gene set involved in lignin biosynthesis, is well preserved. However, similar expression levels of two key genes (CCR and CAD) between the stem and other tissues in the lignin biosynthesis pathway are possibly associated with the herbaceous nature of S. chinensis. In conclusion, the S. chinensis genome provides valuable insights into the adaptive evolution of pollination in Saururaceae and reveals a possible mechanism for the evolution of herbaceousness in magnoliids.
Collapse
Affiliation(s)
- Jia-Yu Xue
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
- Center for Plant Diversity and Systematics, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, VIB-UGent Center for Plant Systems Biology, B-9052 Ghent, Belgium
| | - Shuai-Ya Hu
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Shu-Min Kao
- Department of Plant Biotechnology and Bioinformatics, Ghent University, VIB-UGent Center for Plant Systems Biology, B-9052 Ghent, Belgium
| | - Tao Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Jie-Yu Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yue Wang
- Center for Plant Diversity and Systematics, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Min Chen
- Center for Plant Diversity and Systematics, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yichun Qiu
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Hai-Yun Fan
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Liu
- Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, Guangdong, China
| | - Zhu-Qing Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yves Van de Peer
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
- Department of Plant Biotechnology and Bioinformatics, Ghent University, VIB-UGent Center for Plant Systems Biology, B-9052 Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
39
|
Shen Z, Ding X, Cheng J, Wu F, Yin H, Wang M. Phylogenetic studies of magnoliids: Advances and perspectives. FRONTIERS IN PLANT SCIENCE 2023; 13:1100302. [PMID: 36726671 PMCID: PMC9885158 DOI: 10.3389/fpls.2022.1100302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Magnoliids are the largest flowering plant clades outside of the eudicots and monocots, which are distributed worldwide and have high economic, ornamental and ecological values. Eudicots, monocots and magnoliids are the three major clades of Mesangiospermae, and their phylogenetic relationship is one of the most interesting issues. In recent years, with the continuous accumulation of genomic information, the evolutionary status of magnoliids has become a hot spot in plant phylogenetic research. Although great efforts have been made to study the evolution of magnoliids using molecular data from several representative species such as nuclear genome, plastid genome, mitochondrial genome, and transcriptome, the results of current studies on the phylogenetic status of magnoliids are inconsistent. Here, we systematically describe the current understanding of the molecular research on magnoliid phylogeny and review the differences in the evolutionary state of magnoliids. Understanding the research approaches and limitations of magnoliid phylogeny can guide research strategies to further improve the study of the phylogenetic evolution of magnoliids.
Collapse
Affiliation(s)
- Zhiguo Shen
- National Innovation Alliance of Wintersweet, Henan Academy of Forestry, Zhengzhou, China
| | - Xin Ding
- National Innovation Alliance of Wintersweet, Henan Academy of Forestry, Zhengzhou, China
| | - Jianming Cheng
- Scientific Research Department, Scientific Research Department, Henan Colorful Horticulture Co., Ltd, Zhengzhou, China
| | - Fangfang Wu
- Scientific Research Department, Scientific Research Department, Henan Colorful Horticulture Co., Ltd, Zhengzhou, China
| | - Hengfu Yin
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Minyan Wang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| |
Collapse
|
40
|
Johanndrees O, Baggs EL, Uhlmann C, Locci F, Läßle HL, Melkonian K, Käufer K, Dongus JA, Nakagami H, Krasileva KV, Parker JE, Lapin D. Variation in plant Toll/Interleukin-1 receptor domain protein dependence on ENHANCED DISEASE SUSCEPTIBILITY 1. PLANT PHYSIOLOGY 2023; 191:626-642. [PMID: 36227084 PMCID: PMC9806590 DOI: 10.1093/plphys/kiac480] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/22/2022] [Indexed: 05/07/2023]
Abstract
Toll/Interleukin-1 receptor (TIR) domains are integral to immune systems across all kingdoms. In plants, TIRs are present in nucleotide-binding leucine-rich repeat (NLR) immune receptors, NLR-like, and TIR-only proteins. Although TIR-NLR and TIR signaling in plants require the ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) protein family, TIRs persist in species that have no EDS1 members. To assess whether particular TIR groups evolved with EDS1, we searched for TIR-EDS1 co-occurrence patterns. Using a large-scale phylogenetic analysis of TIR domains from 39 algal and land plant species, we identified 4 TIR families that are shared by several plant orders. One group occurred in TIR-NLRs of eudicots and another in TIR-NLRs across eudicots and magnoliids. Two further groups were more widespread. A conserved TIR-only group co-occurred with EDS1 and members of this group elicit EDS1-dependent cell death. In contrast, a maize (Zea mays) representative of TIR proteins with tetratricopeptide repeats was also present in species without EDS1 and induced EDS1-independent cell death. Our data provide a phylogeny-based plant TIR classification and identify TIRs that appear to have evolved with and are dependent on EDS1, while others have EDS1-independent activity.
Collapse
Affiliation(s)
| | | | - Charles Uhlmann
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Federica Locci
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Henriette L Läßle
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Katharina Melkonian
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Kiara Käufer
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Joram A Dongus
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Hirofumi Nakagami
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Jane E Parker
- Authors for correspondence: (D.L.); (J.E.P.); (K.V.K.)
| | - Dmitry Lapin
- Authors for correspondence: (D.L.); (J.E.P.); (K.V.K.)
| |
Collapse
|
41
|
Li Y, Liu H, Steenwyk JL, LaBella AL, Harrison MC, Groenewald M, Zhou X, Shen XX, Zhao T, Hittinger CT, Rokas A. Contrasting modes of macro and microsynteny evolution in a eukaryotic subphylum. Curr Biol 2022; 32:5335-5343.e4. [PMID: 36334587 PMCID: PMC10615371 DOI: 10.1016/j.cub.2022.10.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/24/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
Examination of the changes in order and arrangement of homologous genes is key for understanding the mechanisms of genome evolution in eukaryotes. Previous comparisons between eukaryotic genomes have revealed considerable conservation across species that diverged hundreds of millions of years ago (e.g., vertebrates,1,2,3 bilaterian animals,4,5 and filamentous fungi6). However, understanding how genome organization evolves within and between eukaryotic major lineages remains underexplored. We analyzed high-quality genomes of 120 representative budding yeast species (subphylum Saccharomycotina) spanning ∼400 million years of eukaryotic evolution to examine how their genome organization evolved and to compare it with the evolution of animal and plant genome organization.7 We found that the decay of both macrosynteny (the conservation of homologous chromosomes) and microsynteny (the conservation of local gene content and order) was strongly associated with evolutionary divergence across budding yeast major clades. However, although macrosynteny decayed very fast, within ∼100 million years, the microsynteny of many genes-especially genes in metabolic clusters (e.g., in the GAL gene cluster8)-was much more deeply conserved both within major clades and across the subphylum. We further found that when genomes with similar evolutionary divergence times were compared, budding yeasts had lower macrosynteny conservation than animals and filamentous fungi but higher conservation than angiosperms. In contrast, budding yeasts had levels of microsynteny conservation on par with mammals, whereas angiosperms exhibited very low conservation. Our results provide new insight into the tempo and mode of the evolution of gene and genome organization across an entire eukaryotic subphylum.
Collapse
Affiliation(s)
- Yuanning Li
- Institute of Marine Science and Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China.
| | - Hongyue Liu
- Institute of Marine Science and Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University, VU Station B#35-1634, Nashville, TN 37235, USA; Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, VU Station B#35-1634, Nashville, TN 37235, USA
| | - Abigail L LaBella
- Department of Biological Sciences, Vanderbilt University, VU Station B#35-1634, Nashville, TN 37235, USA; Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, VU Station B#35-1634, Nashville, TN 37235, USA
| | - Marie-Claire Harrison
- Department of Biological Sciences, Vanderbilt University, VU Station B#35-1634, Nashville, TN 37235, USA; Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, VU Station B#35-1634, Nashville, TN 37235, USA
| | - Marizeth Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, 483 Wushan Road, Guangzhou 520643, China
| | - Xing-Xing Shen
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Tao Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Taicheng Road 3, Yangling 712100, China
| | - Chris Todd Hittinger
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J.F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, 1552 University Avenue, University of Wisconsin-Madison, Madison, WI 53726-4084, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, VU Station B#35-1634, Nashville, TN 37235, USA; Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, VU Station B#35-1634, Nashville, TN 37235, USA; Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany.
| |
Collapse
|
42
|
Timilsena PR, Wafula EK, Barrett CF, Ayyampalayam S, McNeal JR, Rentsch JD, McKain MR, Heyduk K, Harkess A, Villegente M, Conran JG, Illing N, Fogliani B, Ané C, Pires JC, Davis JI, Zomlefer WB, Stevenson DW, Graham SW, Givnish TJ, Leebens-Mack J, dePamphilis CW. Phylogenomic resolution of order- and family-level monocot relationships using 602 single-copy nuclear genes and 1375 BUSCO genes. FRONTIERS IN PLANT SCIENCE 2022; 13:876779. [PMID: 36483967 PMCID: PMC9723157 DOI: 10.3389/fpls.2022.876779] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 09/29/2022] [Indexed: 05/26/2023]
Abstract
We assess relationships among 192 species in all 12 monocot orders and 72 of 77 families, using 602 conserved single-copy (CSC) genes and 1375 benchmarking single-copy ortholog (BUSCO) genes extracted from genomic and transcriptomic datasets. Phylogenomic inferences based on these data, using both coalescent-based and supermatrix analyses, are largely congruent with the most comprehensive plastome-based analysis, and nuclear-gene phylogenomic analyses with less comprehensive taxon sampling. The strongest discordance between the plastome and nuclear gene analyses is the monophyly of a clade comprising Asparagales and Liliales in our nuclear gene analyses, versus the placement of Asparagales and Liliales as successive sister clades to the commelinids in the plastome tree. Within orders, around six of 72 families shifted positions relative to the recent plastome analysis, but four of these involve poorly supported inferred relationships in the plastome-based tree. In Poales, the nuclear data place a clade comprising Ecdeiocoleaceae+Joinvilleaceae as sister to the grasses (Poaceae); Typhaceae, (rather than Bromeliaceae) are resolved as sister to all other Poales. In Commelinales, nuclear data place Philydraceae sister to all other families rather than to a clade comprising Haemodoraceae+Pontederiaceae as seen in the plastome tree. In Liliales, nuclear data place Liliaceae sister to Smilacaceae, and Melanthiaceae are placed sister to all other Liliales except Campynemataceae. Finally, in Alismatales, nuclear data strongly place Tofieldiaceae, rather than Araceae, as sister to all the other families, providing an alternative resolution of what has been the most problematic node to resolve using plastid data, outside of those involving achlorophyllous mycoheterotrophs. As seen in numerous prior studies, the placement of orders Acorales and Alismatales as successive sister lineages to all other extant monocots. Only 21.2% of BUSCO genes were demonstrably single-copy, yet phylogenomic inferences based on BUSCO and CSC genes did not differ, and overall functional annotations of the two sets were very similar. Our analyses also reveal significant gene tree-species tree discordance despite high support values, as expected given incomplete lineage sorting (ILS) related to rapid diversification. Our study advances understanding of monocot relationships and the robustness of phylogenetic inferences based on large numbers of nuclear single-copy genes that can be obtained from transcriptomes and genomes.
Collapse
Affiliation(s)
- Prakash Raj Timilsena
- Department of Biology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Eric K. Wafula
- Department of Biology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Craig F. Barrett
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Saravanaraj Ayyampalayam
- Georgia Advanced Computing Resource Center, University of Georgia, Athens, GA, United States
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | - Joel R. McNeal
- Department of Ecology, Evolution, and Organismal Biology, Biology Kennesaw State University, Kennesaw, GA, United States
| | - Jeremy D. Rentsch
- Department of Biology, Francis Marion University, Florence, SC, United States
| | - Michael R. McKain
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Karolina Heyduk
- School of Life Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Alex Harkess
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Matthieu Villegente
- Institut des Sciences Exactes et Appliquees (ISEA), University of New Caledonia, Noumea, New Caledonia
| | - John G. Conran
- Australian Centre for Evolutionary Biology and Biodiversity & Sprigg Geobiology Centre, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Nicola Illing
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Bruno Fogliani
- Institut des Sciences Exactes et Appliquees (ISEA), University of New Caledonia, Noumea, New Caledonia
| | - Cécile Ané
- Department of Botany, University of Wisconsin-Madison, Madison, WI, United States
- Department of Statistics, University of Wisconsin–Madison, Madison, WI, United States
| | - J. Chris Pires
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Jerrold I. Davis
- School of Integrative Plant Sciences and L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
| | - Wendy B. Zomlefer
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | | | | | - Thomas J. Givnish
- Department of Botany, University of Wisconsin-Madison, Madison, WI, United States
| | - James Leebens-Mack
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | - Claude W. dePamphilis
- Department of Biology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
43
|
Nie S, Tian XC, Kong L, Zhao SW, Chen ZY, Jiao SQ, El-Kassaby YA, Porth I, Yang FS, Zhao W, Mao JF. Potential allopolyploid origin of Ericales revealed with gene-tree reconciliation. FRONTIERS IN PLANT SCIENCE 2022; 13:1006904. [PMID: 36457535 PMCID: PMC9706204 DOI: 10.3389/fpls.2022.1006904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/27/2022] [Indexed: 05/31/2023]
Abstract
Few incidents of ancient allopolyploidization (polyploidization by hybridization or merging diverged genomes) were previously revealed, although there is significant evidence for the accumulation of whole genome duplications (WGD) in plants. Here, we focused on Ericales, one of the largest and most diverse angiosperm orders with significant ornamental and economic value. Through integrating 24 high-quality whole genome data selected from ~ 200 Superasterids genomes/species and an algorithm of topology-based gene-tree reconciliation, we explored the evolutionary history of in Ericales with ancient complex. We unraveled the allopolyploid origin of Ericales and detected extensive lineage-specific gene loss following the polyploidization. Our study provided a new hypothesis regarding the origin of Ericales and revealed an instructive perspective of gene loss as a pervasive source of genetic variation and adaptive phenotypic diversity in Ericales.
Collapse
Affiliation(s)
- Shuai Nie
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xue-Chan Tian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Lei Kong
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shi-Wei Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zhao-Yang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Si-Qian Jiao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan University, Pingdingshan, China
| | - Yousry A. El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
| | - Ilga Porth
- Départment des Sciences du Bois et de la Forêt, Faculté de Foresterie, de Géographie et Géomatique, Université Laval, Québec, QC, Canada
| | - Fu-Sheng Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Zhao
- Department of Ecology and Environmental Science, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Jian-Feng Mao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
44
|
Michael TP. Core circadian clock and light signaling genes brought into genetic linkage across the green lineage. PLANT PHYSIOLOGY 2022; 190:1037-1056. [PMID: 35674369 PMCID: PMC9516744 DOI: 10.1093/plphys/kiac276] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The circadian clock is conserved at both the level of transcriptional networks as well as core genes in plants, ensuring that biological processes are phased to the correct time of day. In the model plant Arabidopsis (Arabidopsis thaliana), the core circadian SHAQKYF-type-MYB (sMYB) genes CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and REVEILLE (RVE4) show genetic linkage with PSEUDO-RESPONSE REGULATOR 9 (PRR9) and PRR7, respectively. Leveraging chromosome-resolved plant genomes and syntenic ortholog analysis enabled tracing this genetic linkage back to Amborella trichopoda, a sister lineage to the angiosperm, and identifying an additional evolutionarily conserved genetic linkage in light signaling genes. The LHY/CCA1-PRR5/9, RVE4/8-PRR3/7, and PIF3-PHYA genetic linkages emerged in the bryophyte lineage and progressively moved within several genes of each other across an array of angiosperm families representing distinct whole-genome duplication and fractionation events. Soybean (Glycine max) maintained all but two genetic linkages, and expression analysis revealed the PIF3-PHYA linkage overlapping with the E4 maturity group locus was the only pair to robustly cycle with an evening phase, in contrast to the sMYB-PRR morning and midday phase. While most monocots maintain the genetic linkages, they have been lost in the economically important grasses (Poaceae), such as maize (Zea mays), where the genes have been fractionated to separate chromosomes and presence/absence variation results in the segregation of PRR7 paralogs across heterotic groups. The environmental robustness model is put forward, suggesting that evolutionarily conserved genetic linkages ensure superior microhabitat pollinator synchrony, while wide-hybrids or unlinking the genes, as seen in the grasses, result in heterosis, adaptation, and colonization of new ecological niches.
Collapse
Affiliation(s)
- Todd P Michael
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| |
Collapse
|
45
|
Dmitriev AA, Pushkova EN, Melnikova NV. Plant Genome Sequencing: Modern Technologies and Novel Opportunities for Breeding. Mol Biol 2022. [DOI: 10.1134/s0026893322040045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
46
|
Gupta PK. Earth Biogenome Project: present status and future plans. Trends Genet 2022; 38:811-820. [DOI: 10.1016/j.tig.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/11/2022] [Accepted: 04/22/2022] [Indexed: 10/18/2022]
|
47
|
Wang Z, Rouard M, Biswas MK, Droc G, Cui D, Roux N, Baurens FC, Ge XJ, Schwarzacher T, Heslop-Harrison P(JS, Liu Q. A chromosome-level reference genome of Ensete glaucum gives insight into diversity and chromosomal and repetitive sequence evolution in the Musaceae. Gigascience 2022; 11:giac027. [PMID: 35488861 PMCID: PMC9055855 DOI: 10.1093/gigascience/giac027] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Ensete glaucum (2n = 2x = 18) is a giant herbaceous monocotyledonous plant in the small Musaceae family along with banana (Musa). A high-quality reference genome sequence assembly of E. glaucum is a resource for functional and evolutionary studies of Ensete, Musaceae, and the Zingiberales. FINDINGS Using Oxford Nanopore Technologies, chromosome conformation capture (Hi-C), Illumina and RNA survey sequence, supported by molecular cytogenetics, we report a high-quality 481.5 Mb genome assembly with 9 pseudo-chromosomes and 36,836 genes. A total of 55% of the genome is composed of repetitive sequences with predominantly LTR-retroelements (37%) and DNA transposons (7%). The single 5S ribosomal DNA locus had an exceptionally long monomer length of 1,056 bp, more than twice that of the monomers at multiple loci in Musa. A tandemly repeated satellite (1.1% of the genome, with no similar sequence in Musa) was present around all centromeres, together with a few copies of a long interspersed nuclear element (LINE) retroelement. The assembly enabled us to characterize in detail the chromosomal rearrangements occurring between E. glaucum and the x = 11 species of Musa. One E. glaucum chromosome has the same gene content as Musa acuminata, while others show multiple, complex, but clearly defined evolutionary rearrangements in the change between x= 9 and 11. CONCLUSIONS The advance towards a Musaceae pangenome including E. glaucum, tolerant of extreme environments, makes a complete set of gene alleles, copy number variation, and a reference for structural variation available for crop breeding and understanding environmental responses. The chromosome-scale genome assembly shows the nature of chromosomal fusion and translocation events during speciation, and features of rapid repetitive DNA change in terms of copy number, sequence, and genomic location, critical to understanding its role in diversity and evolution.
Collapse
Affiliation(s)
- Ziwei Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Mathieu Rouard
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier Cedex 5, France
- French Institute of Bioinformatics (IFB) - South Green Bioinformatics Platform, Alliance Bioversity and CIAT, CIRAD, INRAE, IRD, F-34398 Montpellier, France
| | - Manosh Kumar Biswas
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Gaetan Droc
- French Institute of Bioinformatics (IFB) - South Green Bioinformatics Platform, Alliance Bioversity and CIAT, CIRAD, INRAE, IRD, F-34398 Montpellier, France
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Dongli Cui
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Nicolas Roux
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier Cedex 5, France
| | - Franc-Christophe Baurens
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Xue-Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Trude Schwarzacher
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Pat (J S) Heslop-Harrison
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Qing Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
48
|
Zhou X, Liu Z. Unlocking plant metabolic diversity: A (pan)-genomic view. PLANT COMMUNICATIONS 2022; 3:100300. [PMID: 35529944 PMCID: PMC9073316 DOI: 10.1016/j.xplc.2022.100300] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/12/2021] [Accepted: 01/13/2022] [Indexed: 05/28/2023]
Abstract
Plants produce a remarkable diversity of structurally and functionally diverse natural chemicals that serve as adaptive compounds throughout their life cycles. However, unlocking this metabolic diversity is significantly impeded by the size, complexity, and abundant repetitive elements of typical plant genomes. As genome sequencing becomes routine, we anticipate that links between metabolic diversity and genetic variation will be strengthened. In addition, an ever-increasing number of plant genomes have revealed that biosynthetic gene clusters are not only a hallmark of microbes and fungi; gene clusters for various classes of compounds have also been found in plants, and many are associated with important agronomic traits. We present recent examples of plant metabolic diversification that have been discovered through the exploration and exploitation of various genomic and pan-genomic data. We also draw attention to the fundamental genomic and pan-genomic basis of plant chemodiversity and discuss challenges and future perspectives for investigating metabolic diversity in the coming pan-genomics era.
Collapse
Affiliation(s)
- Xuan Zhou
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhenhua Liu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
49
|
Robert NSM, Sarigol F, Zimmermann B, Meyer A, Voolstra CR, Simakov O. Emergence of distinct syntenic density regimes is associated with early metazoan genomic transitions. BMC Genomics 2022; 23:143. [PMID: 35177000 PMCID: PMC8851819 DOI: 10.1186/s12864-022-08304-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/10/2022] [Indexed: 12/03/2022] Open
Abstract
Background Animal genomes are strikingly conserved in terms of local gene order (microsynteny). While some of these microsyntenies have been shown to be coregulated or to form gene regulatory blocks, the diversity of their genomic and regulatory properties across the metazoan tree of life remains largely unknown. Results Our comparative analyses of 49 animal genomes reveal that the largest gains of synteny occurred in the last common ancestor of bilaterians and cnidarians and in that of bilaterians. Depending on their node of emergence, we further show that novel syntenic blocks are characterized by distinct functional compositions (Gene Ontology terms enrichment) and gene density properties, such as high, average and low gene density regimes. This is particularly pronounced among bilaterian novel microsyntenies, most of which fall into high gene density regime associated with higher gene coexpression levels. Conversely, a majority of vertebrate novel microsyntenies display a low gene density regime associated with lower gene coexpression levels. Conclusions Our study provides first evidence for evolutionary transitions between different modes of microsyntenic block regulation that coincide with key events of metazoan evolution. Moreover, the microsyntenic profiling strategy and interactive online application (Syntenic Density Browser, available at: http://synteny.csb.univie.ac.at/) we present here can be used to explore regulatory properties of microsyntenic blocks and predict their coexpression in a wide-range of animal genomes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08304-2.
Collapse
Affiliation(s)
- Nicolas S M Robert
- Department of Neurosciences and Developmental Biology, University of Vienna, Althanstrasse 14, 1090, Wien, Austria.
| | - Fatih Sarigol
- Department of Neurosciences and Developmental Biology, University of Vienna, Althanstrasse 14, 1090, Wien, Austria
| | - Bob Zimmermann
- Department of Neurosciences and Developmental Biology, University of Vienna, Althanstrasse 14, 1090, Wien, Austria
| | - Axel Meyer
- Department of Biology, University of Konstanz, 78457, Constance, Germany
| | | | - Oleg Simakov
- Department of Neurosciences and Developmental Biology, University of Vienna, Althanstrasse 14, 1090, Wien, Austria.
| |
Collapse
|
50
|
Blaxter M, Archibald JM, Childers AK, Coddington JA, Crandall KA, Di Palma F, Durbin R, Edwards SV, Graves JAM, Hackett KJ, Hall N, Jarvis ED, Johnson RN, Karlsson EK, Kress WJ, Kuraku S, Lawniczak MKN, Lindblad-Toh K, Lopez JV, Moran NA, Robinson GE, Ryder OA, Shapiro B, Soltis PS, Warnow T, Zhang G, Lewin HA. Why sequence all eukaryotes? Proc Natl Acad Sci U S A 2022; 119:e2115636118. [PMID: 35042801 PMCID: PMC8795522 DOI: 10.1073/pnas.2115636118] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Life on Earth has evolved from initial simplicity to the astounding complexity we experience today. Bacteria and archaea have largely excelled in metabolic diversification, but eukaryotes additionally display abundant morphological innovation. How have these innovations come about and what constraints are there on the origins of novelty and the continuing maintenance of biodiversity on Earth? The history of life and the code for the working parts of cells and systems are written in the genome. The Earth BioGenome Project has proposed that the genomes of all extant, named eukaryotes-about 2 million species-should be sequenced to high quality to produce a digital library of life on Earth, beginning with strategic phylogenetic, ecological, and high-impact priorities. Here we discuss why we should sequence all eukaryotic species, not just a representative few scattered across the many branches of the tree of life. We suggest that many questions of evolutionary and ecological significance will only be addressable when whole-genome data representing divergences at all of the branchings in the tree of life or all species in natural ecosystems are available. We envisage that a genomic tree of life will foster understanding of the ongoing processes of speciation, adaptation, and organismal dependencies within entire ecosystems. These explorations will resolve long-standing problems in phylogenetics, evolution, ecology, conservation, agriculture, bioindustry, and medicine.
Collapse
Affiliation(s)
- Mark Blaxter
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom;
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4H7, Canada
| | - Anna K Childers
- Bee Research Laboratory, Agricultural Research Service, US Department of Agriculture (USDA), Beltsville, MD 20705
| | - Jonathan A Coddington
- Global Genome Initiative, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560
| | - Keith A Crandall
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, George Washington University, Washington, DC 20052
- Department of Invertebrate Zoology, Smithsonian Institution, Washington, DC 20013
| | - Federica Di Palma
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Richard Durbin
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Jennifer A M Graves
- School of Life Sciences, La Trobe University, Bundoora, VIC 751 23, Australia
- University of Canberra, Bruce, ACT 2617, Australia
| | - Kevin J Hackett
- Crop Production and Protection, Office of National Programs, Agricultural Research Service, USDA, Beltsville, MD 20705
| | - Neil Hall
- Earlham Institute, Norwich, Norfolk NR4 7UZ, United Kingdom
| | - Erich D Jarvis
- Laboratory of the Neurogenetics of Language, The Rockefeller University, New York, NY 10065
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Rebecca N Johnson
- National Museum of Natural History, Smithsonian Institution, Washington, DC 20560
| | - Elinor K Karlsson
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - W John Kress
- Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012
| | - Shigehiro Kuraku
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | | | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala 751 23, Sweden
| | - Jose V Lopez
- Department of Biological Sciences, Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL 33004
- Guy Harvey Oceanographic Center, Dania Beach, FL 33004
| | - Nancy A Moran
- Integrative Biology, University of Texas at Austin, Austin, TX 78712
| | - Gene E Robinson
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Oliver A Ryder
- Conservation Genetics, Division of Biology, San Diego Zoo Wildlife Alliance, Escondido, CA 92027
- Department of Evolution, Behavior and Ecology, University of California, San Diego, La Jolla, CA 92039
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611
- Biodiversity Institute, University of Florida, Gainesville, FL 32611
| | - Tandy Warnow
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61301
| | - Guojie Zhang
- Villum Center for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
- China National Genebank, Beijing Genomics Institute-Shenzhen, Shenzhen 518083, China
| | - Harris A Lewin
- Department of Evolution and Ecology, College of Biological Sciences, University of California, Davis, CA 95616
- Department of Population Health and Reproduction, University of California, Davis, CA 95616
| |
Collapse
|