1
|
Mamand DM, Hussen SA, Aziz SB. Drude-Lorentz classical oscillator model and Tauc's approach to study the localized density of states and energy band gap of polymer composites based on chitosan integrated with green synthesized Pb-metal complexes: Improvement of linear and non-linear optical parameters. Int J Biol Macromol 2025; 312:143978. [PMID: 40348224 DOI: 10.1016/j.ijbiomac.2025.143978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/16/2025] [Accepted: 05/04/2025] [Indexed: 05/14/2025]
Abstract
In the current work, green-synthesized metal complexes were combined with chitosan to fabricate polymer composites with controlled optical properties. The dye extracted from green tea was enriched with ligands to capture heavy metal ions and producing metal complexes. The FTIR bands associated with chitosan reduced in intensity and shifted in position when the Pb-metal complex (Pb-MC) was inserted. The XRD pattern illustrates that chitosan transformed into an amorphous material after the insertion of Pb-MC. FESEM revealed enhanced surface roughness in CS films containing high concentration of Pb-MC particles. The optical properties indicate that the bandgap energy was reduced from 5.1 eV to 1.68 eV. Urbach energy values were correlated with the amorphous nature of the films. The Eo and Ed values estimated from W-D models were used to compute the M-1 and M-3 optical moments. The optical parameters of CS:Pb-MC, including N/m, εL, NC, μopt, ρopt, and ωp, were determined based on the Lorentz oscillator model. The Sellmeier parameters (λo and So) were successfully calculated. The determined phase (vp) and group (vg) velocities establish that the composite media are dispersive. Kirchhoff's thermal emission and surface resistance were studied for all the films. Volume and surface energy losses were determined from the data on optical dielectric properties. The susceptibilities (χ(1)), (χ(2)), and (χ(3)) correspondingly represent the linear, second-order, and third-order nonlinear optical susceptibilities.
Collapse
Affiliation(s)
- Dyari M Mamand
- Department of physics, College of Science, University of Raparin, Ranya 46012, Kurdistan Region, Iraq; Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaymaniyah 46001, Iraq
| | - Sarkawt A Hussen
- Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaymaniyah 46001, Iraq
| | - Shujahadeen B Aziz
- Research and Development Center, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaymaniyah 46001, Iraq; Research center, University of Halabja, Halabja, 46018, Kurdistan Regional Government, Iraq.
| |
Collapse
|
2
|
Wang J, Deng M, Chen H, Qiu W, Duan Y, Liao C, Li R, Yu L, Peng Q. Minimizing Energy Loss by Designing Multifunctional Solid Additives to Independent Regulation of Donor and Acceptor Layers for Efficient LBL Polymer Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414712. [PMID: 40112197 PMCID: PMC12079416 DOI: 10.1002/advs.202414712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/08/2025] [Indexed: 03/22/2025]
Abstract
Solid additives are crucial in layer-by-layer (LBL) polymer solar cells (PSCs). Despite its importance, the simultaneous application of solid additives into both donor and acceptor layers has been largely overlooked. In this work, two multifunctional solid additives are actively designed, and investigated the synergistic effect on both donor and acceptor layers. Incorporating the multifunctional solid additives into the donor layer could effectively enhance the aggregation and molecular stacking of the donor polymer, leading to reduced energy disorder and minimizing ΔE2. When the multifunctional solid additives are introduced into the acceptor layer, they just play a role in optimizing the morphology, thereby reducing the ΔE3. Excitedly, the simultaneous addition of the multifunctional solid additives into both donor and acceptor layers produced a synergistic effect for decreasing ΔE2 and ΔE3 simultaneously, especially adding SA2, thus enabling an excellent power conversion efficiency (PCE) of 19.95% (certified as 19.68%) with an open-circuit voltage (Voc) of 0.921 V, a short circuit current density (Jsc) of 27.08 mA cm-2 and a fill factor (FF) of 79.98%. The work highlights the potential of multifunctional solid additives in independently regulating the properties of donor and acceptor layers, which is expected as a promising approach for further developing higher performance PSCs.
Collapse
Affiliation(s)
- Junying Wang
- College of Materials and Chemistry & Chemical EngineeringChengdu University of TechnologyChengdu610059P. R. China
| | - Min Deng
- College of Materials and Chemistry & Chemical EngineeringChengdu University of TechnologyChengdu610059P. R. China
| | - Haonan Chen
- College of Materials and Chemistry & Chemical EngineeringChengdu University of TechnologyChengdu610059P. R. China
| | - Wuke Qiu
- School of Chemical Engineering and State Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Yuwei Duan
- College of Materials and Chemistry & Chemical EngineeringChengdu University of TechnologyChengdu610059P. R. China
| | - Chentong Liao
- College of Materials and Chemistry & Chemical EngineeringChengdu University of TechnologyChengdu610059P. R. China
| | - Ruipeng Li
- National Synchrotron Light Source IIBrookhaven National LabSuffolkUptonNY11973USA
| | - Liyang Yu
- School of Chemical Engineering and State Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Qiang Peng
- College of Materials and Chemistry & Chemical EngineeringChengdu University of TechnologyChengdu610059P. R. China
- School of Chemical Engineering and State Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| |
Collapse
|
3
|
Shi Y, Roy PP, Higashitarumizu N, Lee TY, Li Q, Javey A, Landfester K, McCulloch I, Fleming GR. Annihilation-limited long-range exciton transport in high-mobility conjugated copolymer films. Proc Natl Acad Sci U S A 2025; 122:e2413850122. [PMID: 40261928 PMCID: PMC12054736 DOI: 10.1073/pnas.2413850122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 03/20/2025] [Indexed: 04/24/2025] Open
Abstract
A combination of ultrafast, long-range, and low-loss excitation energy transfer from the photoreceptor location to a functionally active site is essential for cost-effective polymeric semiconductors. Delocalized electronic wavefunctions along π-conjugated polymer (CP) backbone can enable efficient intrachain transport, while interchain transport is generally thought slow and lossy due to weak chain-chain interactions. In contrast to the conventional strategy of mitigating structural disorder, amorphous layers of rigid CPs, exemplified by highly planar poly(indacenodithiophene-co-benzothiadiazole) (IDT-BT) donor-accepter copolymer, exhibit trap-free transistor performance and charge-carrier mobilities similar to amorphous silicon. Here, we report long-range exciton transport in HJ-aggregated IDTBT thin-film, in which the competing exciton transport and exciton-exciton annihilation (EEA) dynamics are spectroscopically separated using a phase-cycling-based scheme and shown to depart from the classical diffusion-limited and strong-coupling regime. In the thin film, we find an annihilation-limited mechanism with ≪100% per-encounter annihilation probability, facilitating the minimization of EEA-induced excitation losses. In contrast, excitons on isolated IDTBT chains diffuse over 350 nm with 0.56 cm2 s-1 diffusivity, before eventually annihilating with unit probability on first contact. We complement the pump-probe studies with temperature-dependent photocurrent and EEA measurements from 295 K to 77 K and find a remarkable correspondence of annihilation rate and photocurrent activation energies in the 140 K to 295 K temperature range.
Collapse
Affiliation(s)
- Yuping Shi
- Department of Chemistry, University of California, Berkeley, CA94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Max Planck Institute for Polymer Research, Mainz55128, Germany
| | - Partha P. Roy
- Department of Chemistry, University of California, Berkeley, CA94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Naoki Higashitarumizu
- Electrical Engineering and Computer Sciences, University of California, Berkeley, CA94720
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama332- 0012, Japan
| | - Tsung-Yen Lee
- Department of Chemistry, University of California, Berkeley, CA94720
| | - Quanwei Li
- Department of Chemistry, University of California, Berkeley, CA94720
| | - Ali Javey
- Electrical Engineering and Computer Sciences, University of California, Berkeley, CA94720
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Kavli Energy Nanoscience Institute at the University of California, Berkeley, CA94720
| | | | - Iain McCulloch
- Department of Chemistry, University of Oxford, OxfordOX1 3TA, United Kingdom
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ08544
| | - Graham R. Fleming
- Department of Chemistry, University of California, Berkeley, CA94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Kavli Energy Nanoscience Institute at the University of California, Berkeley, CA94720
| |
Collapse
|
4
|
Yu X, Guo D, Ma J, Lin S, Xiao Y, Kong D, Zhou C. Increase the Long-Wavelength Absorption for Carbon-Electrode Based Hole-Conductor-Free Perovskite Solar Cells by Thicker Perovskite Films. SMALL METHODS 2025:e2401645. [PMID: 40166830 DOI: 10.1002/smtd.202401645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 03/03/2025] [Indexed: 04/02/2025]
Abstract
Weak reflectivity of carbon-electrode (CE) limits light harvesting of perovskite solar cells that are based on CEs (CPSCs), especially for long-wavelength region. To solve this problem, herein the crystallization of perovskite (PVSK) is regulated by tuning the concentration of PbI2 precursor during the two-step growth method. As concentration increases from 1.0 to 1.7 mol L-1, film thickness of PVSK rises from ≈360 to ≈850 nm, and the average grain/crystallite size of PVSK enlarges from 0.70 to 1.14 µm, and from 54.2 to 67.5 nm, respectively. Due to the upgraded crystallization, Urbach energy drops from 98 to 41 meV, lifetime of charge carriers increases obviously, meanwhile the light harvesting of PVSK is improved during the long-wavelength regions (600-810 nm). External quantum efficiency test on the CPSCs shows that the integrated short circuit current density (JSC) increases by 15.6% during the long-wavelength region. Accordingly, JSC improves from 20.27 (±0.36) to 22.58 (±0.27) mA cm-2. Besides, leakage is retarded, and open-circuit voltage is improved. These merits help elevate the power conversion efficiency from 15.37 (±0.42) to 16.37 (±0.68) % (optimized at 17.69%). Prolonging spin-time of PbI2 further improves PVSK crystallization and light harvest, which optimizes device efficiency to 19.17%.
Collapse
Affiliation(s)
- Xiaohan Yu
- Hunan Key Laboratory of Super-microstructure and Ultrafast Process, Hunan Key Laboratory of Nanophotonics and Devices, Institute of Super-microstructure and Ultrafast Process in Advanced Materials (ISUPAM), School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China
| | - De'en Guo
- Hunan Key Laboratory of Super-microstructure and Ultrafast Process, Hunan Key Laboratory of Nanophotonics and Devices, Institute of Super-microstructure and Ultrafast Process in Advanced Materials (ISUPAM), School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Jiao Ma
- Hunan Key Laboratory of Super-microstructure and Ultrafast Process, Hunan Key Laboratory of Nanophotonics and Devices, Institute of Super-microstructure and Ultrafast Process in Advanced Materials (ISUPAM), School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Siyuan Lin
- Hunan Key Laboratory of Super-microstructure and Ultrafast Process, Hunan Key Laboratory of Nanophotonics and Devices, Institute of Super-microstructure and Ultrafast Process in Advanced Materials (ISUPAM), School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Yuhuan Xiao
- Hunan Key Laboratory of Super-microstructure and Ultrafast Process, Hunan Key Laboratory of Nanophotonics and Devices, Institute of Super-microstructure and Ultrafast Process in Advanced Materials (ISUPAM), School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Deming Kong
- Hunan Key Laboratory of Super-microstructure and Ultrafast Process, Hunan Key Laboratory of Nanophotonics and Devices, Institute of Super-microstructure and Ultrafast Process in Advanced Materials (ISUPAM), School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Conghua Zhou
- Hunan Key Laboratory of Super-microstructure and Ultrafast Process, Hunan Key Laboratory of Nanophotonics and Devices, Institute of Super-microstructure and Ultrafast Process in Advanced Materials (ISUPAM), School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China
| |
Collapse
|
5
|
Zhuzhang H, Liang X, Li J, Xue S, Lin Y, Sa B, Wang S, Zhang G, Yu Z, Wang X. Precise Manipulation on the Structural Defects of Poly (Triazine Imide) Single Crystals for Efficient Photocatalytic Overall Water Splitting. Angew Chem Int Ed Engl 2025; 64:e202421861. [PMID: 39781595 DOI: 10.1002/anie.202421861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/19/2024] [Accepted: 01/08/2025] [Indexed: 01/12/2025]
Abstract
Conjugated polymers, represented by polymeric carbon nitrides (PCNs), have risen to prominence as new-generation photocatalysts for overall water splitting (OWS). Despite considerable efforts, achieving highly crystalline PCNs with minimal structural defects remains a great challenge, and it is also difficult to examine the exact impact of complex defect states on OWS process, which largely limits their quantum efficiency. Herein, we devise a 'in-situ salt flux' assisted copolymerization protocol by using nitrogen-rich and nitrogen-deficient monomers to precisely manipulate the structural defects of poly (triazine imide) (PTI) single crystals. Stoichiometric control between two comonomers enables continuous tunning of carbon- and nitrogen-vacancies within PTI, allowing the construction of a series of PTI crystals with different defect states. Theoretical and experimental results unveil the carbon vacancies are related with the radiative decay of excitons, while the nonradiative decay is mainly derived from the nitrogen vacancies. Owing to the effective suppression of both radiative and nonradiative losses, the as-synthesized PTI achieves a record apparent quantum efficiency of 37.8 % by one-step-excitation OWS. This work highlights the significance of rational control of the structural defects and describes clear structure-property-activity relationships in PTI photocatalyst, offering guidance for the development of polymer photocatalysts for solar fuel production.
Collapse
Affiliation(s)
- Hangyu Zhuzhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Xiaocong Liang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Jiaxiang Li
- Multiscale Computational Materials Facility & Materials Genome Institute, School of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Sikang Xue
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Yifan Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Baisheng Sa
- Multiscale Computational Materials Facility & Materials Genome Institute, School of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Sibo Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Guigang Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Zhiyang Yu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| |
Collapse
|
6
|
Miao X, Zhang Y, Han G, Zhu L, Yi Y. Toward Low Energetic Disorder in Organic Solar Cells: The Critical Role of Polymer Donors. J Phys Chem Lett 2025; 16:1987-1993. [PMID: 39964059 DOI: 10.1021/acs.jpclett.5c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Compared with those of inorganic and perovskite solar cells, the power conversion efficiencies of organic solar cells (OSCs) are severely limited by a large energetic disorder. However, the origin of energetic disorder for OSCs remains poorly understood. Herein, we systematically investigate the energetic disorder in representative OSCs and the effect of both the acceptors and polymer donors by combining atomistic molecular dynamics simulations with density functional theory calculations. The results indicate that regardless of whether the OSCs are based on fullerene or acceptor-donor-acceptor (A-D-A) acceptors, the energetic disorder in the ionization potentials of the polymer donors is significantly larger than that in the electron affinities of the acceptors. Moreover, the energetic disorder of the donors matched with the fullerene acceptors is noticeably greater than that of the donors matched with the A-D-A acceptors. This implies that, different from our intuition, the reduction in the energetic disorder from the fullerene-based to A-D-A acceptor-based OSCs is primarily attributed to the change in the polymer donors rather than the acceptors. This work underscores the vital importance of optimizing polymer donors toward low energetic disorder for high-efficiency OSCs.
Collapse
Affiliation(s)
- Xiaodan Miao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy Sciences, Beijing 100049, China
| | - Yaogang Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy Sciences, Beijing 100049, China
| | - Guangchao Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lingyun Zhu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy Sciences, Beijing 100049, China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Weston K, Taylor RA, Kisslinger K, Mantripragada S. Effect of growth dynamics on the structural, photophysical and pseudocapacitance properties of famatinite copper antimony sulphide colloidal nanostructures (including nanosheets). Dalton Trans 2025; 54:3174-3187. [PMID: 39821196 DOI: 10.1039/d4dt02826k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Facile phase selective synthesis of copper antimony sulphide (CAS) nanostructures is important because of their tunable photoconductive and electrochemical properties. In this study, off-stoichiometric famatinite phase CAS (fCAS) quasi-spherical and quasi-hexagonal colloidal nanostructures (including nanosheets) of sizes, 2.4-18.0 nm were grown under variable conditions of temperature (60-200 °C), time and oleylamine capping ligand concentration using copper(II) acetylacetonate and antimony(III) diethyldithiocarbamate precursors. Data from powder X-ray diffraction, Raman spectroscopy and high-resolution scanning/transmission electron microscopy confirm the tetragonal structure of the famatinite phase. X-ray photoelectron spectroscopy, transmission electron microscopy and scanning electron microscopy-energy dispersive X-ray spectroscopy data suggest a correlation of particle size, morphology and composition of the off-stoichiometric fCAS nanostructures with growth temperature and time, and oleylamine concentration. The off-stoichiometric Cu3-aSb1+bS4±c (a, b, c - mole fractions) nanostructures being severely copper-deficient and antimony-rich, exhibit shallow-lying acceptor copper vacancy states, deep-lying donor states of antimony interstitials, sulphur vacancies and antimony-copper antisites and shallow-lying acceptor surface trapping states. These electronic states are likely implicated in tunable UV-visible absorption and bandgaps between 2.3 and 2.8 eV, and broad visible-NIR photoluminescence with fast recombination of radiative lifetimes between 0.2 and 6.2 ns, confirmed from absorption, steady-state and time-resolved photoluminescence spectroscopies. Additionally, cyclic voltammetry and electrochemical impedance spectroscopy confirm that electrodes of the fCAS nanostructures display slightly variable pseudocapacitance of charge-storage primarily via possible sodium ion intercalation with a high specific capacitance of ∼84 F g-1 obtained at a scan rate of 5 mV s-1. Overall, these results show the influence of composition, in particular point defects, phase quality and morphology on the optical and pseudocapacitance properties of fCAS nanostructures, suitable as solar absorbers or electrodes for energy storage devices.
Collapse
Affiliation(s)
- Kimberly Weston
- Department of Chemistry, The University of the West Indies, St Augustine, Trinidad and Tobago.
| | - Richard A Taylor
- Department of Chemistry, The University of the West Indies, St Augustine, Trinidad and Tobago.
| | - Kim Kisslinger
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, USA
| | - Shobha Mantripragada
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, NC 27401, USA
| |
Collapse
|
8
|
Zhao C, Lai X, Liu D, Guo X, Tian J, Dong Z, Luo S, Zhou D, Jiang L, Huang R, He M. Molecular-dipole oriented universal growth of conjugated polymers into semiconducting single-crystal thin films. Nat Commun 2025; 16:1509. [PMID: 39929842 PMCID: PMC11811299 DOI: 10.1038/s41467-025-56757-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 01/28/2025] [Indexed: 02/13/2025] Open
Abstract
Precise control over crystallinity and morphology of conjugated polymers (CPs) is essential for progressing organic electronics. However, manufacturing single-crystal thin films of CPs presents substantial challenges due to their complex molecular structures, distorted chain conformations, and unbalanced crystallization kinetics. In this work, we demonstrate a universal nanoconfined molecular-dipole orientating strategy to craft high-quality single-crystal thin films for a variety of CPs, spanning from traditional thiophene- and theinothiophene-based homopolymers to diketopyrrolopyrrole- (i.e., p-type) and naphthalene-based (i.e., n-type) donor-acceptor copolymers. Central to this strategy is the synergetic manipulations of molecular dipoles, π-π stackings, and alkyl-alkyl interactions of CPs within our rationally-designed spatial-electrostatic confinement capacitor, which facilitates the rotation of conjugated backbones and the alignment of π-π stackings into microscale-sized single-crystal thin films. A minimal energetic disorder of 25 meV that below the thermal fluctuation energy kBT at room temperature, as well as an excellent transistor mobility of 15.5 cm2V-1s-1 are achieved, marking a significant step towards controllable growths of conjugated-polymer single-crystal thin films that hold a cornerstone for high-performance organic electronic devices.
Collapse
Affiliation(s)
- Chunyan Zhao
- Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, China
| | - Xilin Lai
- Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, China
| | - Dawei Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Xinrui Guo
- Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, China
| | | | - Zuoyuan Dong
- Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, China
| | - Shaochuan Luo
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Dongshan Zhou
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Lang Jiang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
| | - Ru Huang
- Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, China
| | - Ming He
- Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, China.
- Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing, China.
| |
Collapse
|
9
|
Dai T, Meng Y, Wang Z, Lu J, Zheng Z, Du M, Guo Q, Zhou E. Modulation of Molecular Quadrupole Moments by Phenyl Side-Chain Fluorination for High-Voltage and High-Performance Organic Solar Cells. J Am Chem Soc 2025; 147:4631-4642. [PMID: 39841005 DOI: 10.1021/jacs.4c17140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The ground-state charge generation (GSCG) in photoactive layers determines whether the photogenerated carriers occupy the deep trap energy levels, which, in turn, affects the device performance of organic solar cells (OSCs). In this work, charge-quadrupole electrostatic interactions are modulated to achieve GSCG through a molecular strategy of introducing different numbers of F atom substitutions on the BTA3 side chain. The results show that 8F substitution (BTA3-8F) and 16F substitution (BTA3-16F) lead to different patterns of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy level changes. The perfluorination of the phenyl side chain endows BTA3-16F with a LUMO energy level similar to that of BTA3, ensuring a high VOC. Besides, BTA3-16F features a large charge-quadrupole moment, promoting strong electrostatic interactions between neighboring molecules along the π-π stacking direction, which then induces the GSCG in photoactive components. This efficient GSCG directly makes a significant impact on the subsequent kinetics of photogenerated exciton dissociation, recombination, and transport over longer time periods, as well as on nonradiative recombination over larger spatial scales. Benefiting from the favorable GSCG and suitable energy level arrangement, PTQ10/BTA3-16F achieves a VOC of 1.302 V and a PCE of 11.14%, setting the world record for OSCs performance with a VOC greater than 1.3 V. In addition, BTA3-16F is an effective guest molecule to improve the performance of ternary OSCs, and PM6/L8-BO/BTA3-16F-based ternary device achieves the highest PCE of 19.82%. This result emphasizes the important role of GSCG between photoactive components in OSC performance and demonstrates that modulation of molecular quadrupole moments is an effective means of designing efficient acceptors.
Collapse
Affiliation(s)
- Tingting Dai
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
- National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhan Meng
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zongtao Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jiahao Lu
- College of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Zhi Zheng
- College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan 461000, China
| | - Mengzhen Du
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Qing Guo
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Erjun Zhou
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
- National Center for Nanoscience and Technology, Beijing 100190, China
| |
Collapse
|
10
|
Luo X, Yin S, Xiong Z, Qian G, Lin Y, Li N, Ying L. Improving Performance of Perovskite Solar Cells by Reducing Energetic Disorder of Hole Transport Polymer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409284. [PMID: 39711272 DOI: 10.1002/smll.202409284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/26/2024] [Indexed: 12/24/2024]
Abstract
Polymer hole transport materials offer significant efficiency and stability advantages for p-i-n perovskite solar cells. However, the energetic disorder of amorphous polymer hole transport materials not only limits carrier transport but also impedes contact between the polymer and perovskite, hindering the formation of high crystalline quality perovskites. Herein, a novel low energetic disordered polymer hole transport material, PF8ICz, featuring an indeno[3,2-b]carbazole unit with extended π-conjugation is designed and synthesized. Analyses based on both theoretical calculations and experimental validation highlight the advantages of PF8ICz as a low energetic disorder polymer hole transport material for perovskite solar cells, including improved carrier transport, enhanced perovskite affinity/passivation, and optimized energy levels. Perovskite films formed atop PF8ICz exhibit superior crystalline quality and improved exciton dynamics. PF8ICz-based perovskite solar cells achieve remarkable power efficiency (PCE > 25.4%) and outstanding stability (retaining 96.2% and 95.0% of their PCE under the ISOS-D-3 and ISOS-L-3 protocols over 1000 h, respectively). These findings underscore the importance of rational design of hole transport materials, contributing to the development of high-performance, stable perovskite solar cells for sustainable energy solutions.
Collapse
Affiliation(s)
- Xuanang Luo
- Institute of Polymer Optoelectronic Materials & Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou, 510640, China
| | - Sen Yin
- Institute of Polymer Optoelectronic Materials & Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou, 510640, China
| | - Zhihui Xiong
- Institute of Polymer Optoelectronic Materials & Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou, 510640, China
| | - Guimeng Qian
- Institute of Polymer Optoelectronic Materials & Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou, 510640, China
| | - Youran Lin
- Institute of Polymer Optoelectronic Materials & Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou, 510640, China
| | - Ning Li
- Institute of Polymer Optoelectronic Materials & Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou, 510640, China
| | - Lei Ying
- Institute of Polymer Optoelectronic Materials & Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
11
|
Wu X, Gong Y, Li X, Qin S, He H, Chen Z, Liang T, Wang C, Deng D, Bi Z, Ma W, Meng L, Li Y. Inner Side Chain Modification of Small Molecule Acceptors Enables Lower Energy Loss and High Efficiency of Organic Solar Cells Processed with Non-halogenated Solvents. Angew Chem Int Ed Engl 2025; 64:e202416016. [PMID: 39320167 DOI: 10.1002/anie.202416016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
Organic solar cells (OSCs) processed with non-halogenated solvents usually suffer from excessive self-aggregation of small molecule acceptors (SMAs), severe phase separation and higher energy loss (Eloss), leading to reduced open-circuit voltage (Voc) and power conversion efficiency (PCE). Regulating the intermolecular interaction to disperse the aggregation and further improve the molecular packing order of SMAs would be an effective strategy to solve this problem. Here, we designed and synthesized two SMAs L8-PhF and L8-PhMe by introducing different substituents (fluorine for L8-PhF and methyl for L8-PhMe) on the phenyl end group of the inner side chains of L8-Ph, and investigated the effect of the substituents on the intermolecular interaction of SMAs, Eloss and performance of OSCs processed with non-halogenated solvents. Through single crystal analysis and theoretical calculations, it is found that compared with L8-PhF, which possesses strong and abundant intermolecular interactions but downgraded molecular packing order, L8-PhMe with the methyl substituent possesses more effective non-covalent interactions, which improves the tightness and order of molecular packing. When blending the SMAs with polymer donor PM6, the differences in intermolecular interactions of the SMAs influenced the film formation process and phase separation of the blend films. The L8-PhMe based blend film exhibits shorten film formation and more homogeneous phase separation than those of the L8-PhF and L8-Ph based ones. Especially, the OSCs based on L8-PhMe show reduced non-radiative energy loss and enhanced Voc than the devices based on the other two SMAs. Consequently, the L8-PhMe based device processed with o-xylene (o-XY) and using 2PACz as the hole transport layer (HTL) shows an outstanding PCE of 19.27 %. This study highlights that the Eloss of OSCs processed with non-halogenated solvents could be decreased through regulating the intermolecular interactions of SMAs by inner side chain modification, and also emphasize the importance of effectivity rather than intensity of non-covalent interactions introduced in SMAs on the molecular packing, morphology and PCE of OSCs.
Collapse
Affiliation(s)
- Xiangxi Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yufei Gong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojun Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shucheng Qin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Haozhe He
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zekun Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tongling Liang
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
- Center for Physicochemical Analysis and Measurement, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Caixuan Wang
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Nanosystem and Hierarchical Fabrication of Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Dan Deng
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Nanosystem and Hierarchical Fabrication of Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhaozhao Bi
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongfang Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
12
|
Sun J, Ma R, Yang X, Xie X, Jiang D, Meng Y, Li Y, Cui F, Xiao M, Zhang K, Chen Y, Xia X, Zhang M, Du X, Ye L, Ma H, Gao K, Chen F, Li G, Hao X, Yin H. Insulator-donor electron wavefunction coupling in pseudo-bilayer organic solar cells achieving a certificated efficiency of 19.18. Natl Sci Rev 2025; 12:nwae385. [PMID: 39764511 PMCID: PMC11702652 DOI: 10.1093/nsr/nwae385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/11/2024] [Accepted: 10/28/2024] [Indexed: 01/18/2025] Open
Abstract
The incorporation of polymeric insulators has led to notable achievements in the field of organic semiconductors. By altering the blending concentration, polymeric insulators exhibit extensive capabilities in regulating molecular configuration, film crystallinity, and mitigation of defect states. However, current research suggests that the improvement in such physical properties is primarily attributed to the enhancement of thin film morphology, an outcome that seems to be an inevitable consequence of incorporating insulators. Herein, we report a general and completely new effect of polymeric insulators in organic semiconductors: the insulator-donor electron wavefunction coupling effect. Such insulators can couple with donor polymers to reduce the energy barrier level and facilitate intramolecular electron transport. Besides the morphological effects, we observed that this coupling effect is another mechanism that can significantly enhance electron mobility (up to 100 times) through the incorporation of polymeric insulators in a series of donor systems. With this effect, we proposed a polymeric insulator blending approach to fabricate state-of-the-art pseudo-bilayer organic solar cells, and the PM6/L8-BO device exhibits a high efficiency of 19.50% (certificated 19.18%) with an improved interfacial electron transport property. This work not only offers a novel perspective on the quantum effect of polymeric insulators in organic semiconductors, but also presents a simple yet effective method for enhancing the performance of organic solar cells.
Collapse
Affiliation(s)
- Jiangkai Sun
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Ruijie Ma
- Department of Electric and Electronic Engineering, Research Institute for Smart Energy (RISE), Photonic Research Institute (PRI), The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Xue Yang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Xiaoyu Xie
- Qingdao Institute for Theoretical and Computational Sciences, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China
| | - Dongcheng Jiang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yuan Meng
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yiyun Li
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Fengzhe Cui
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Mengfei Xiao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Kangning Zhang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yu Chen
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xinxin Xia
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Maojie Zhang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xiaoyan Du
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Long Ye
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300350, China
| | - Haibo Ma
- Qingdao Institute for Theoretical and Computational Sciences, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China
| | - Kun Gao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Feng Chen
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Gang Li
- Department of Electric and Electronic Engineering, Research Institute for Smart Energy (RISE), Photonic Research Institute (PRI), The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Xiaotao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Hang Yin
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
13
|
Shi W, Han Q, Zhu Y, Xia Y, He T, Wang S, Li L, Ma W, Long G, Li G, Yao Z, Li C, Wan X, Chen Y. A butterfly-shaped acceptor with rigid skeleton and unique assembly enables both efficient organic photovoltaics and high-speed organic photodetectors. Natl Sci Rev 2025; 12:nwae409. [PMID: 39764497 PMCID: PMC11702656 DOI: 10.1093/nsr/nwae409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/20/2024] [Accepted: 11/12/2024] [Indexed: 01/18/2025] Open
Abstract
It remains challenging to design efficient bifunctional semiconductor materials in organic photovoltaic and photodetector devices. Here, we report a butterfly-shaped molecule, named WD-6, which exhibits low energy disorder and small reorganization energy due to its enhanced molecular rigidity and unique assembly with strong intermolecular interaction. The binary photovoltaic device based on PM6:WD-6 achieved an efficiency of 18.41%. Notably, an efficiency of 19.42% was achieved for the ternary device based on PM6:BTP-eC9:WD-6. Moreover, the photodetection device based on WD-6 demonstrated an ultrafast response speed (205 ns response time at λ of 820 nm) and a high cutoff frequency of -3 dB (2.45 MHz), surpassing the values of most commercial Si photodiodes. Based on these findings, we showcased an application of the WD-6-based photodetection device in high-speed optical communication. These results offer valuable insights into the design of organic semiconductor materials capable of simultaneously exhibiting high photovoltaic and photodetective performance.
Collapse
Affiliation(s)
- Wendi Shi
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of Functional Polymer Materials, Nankai University, Tianjin 300071, China
| | - Qiansai Han
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of Functional Polymer Materials, Nankai University, Tianjin 300071, China
| | - Yu Zhu
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of Functional Polymer Materials, Nankai University, Tianjin 300071, China
| | - Yingjun Xia
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of Functional Polymer Materials, Nankai University, Tianjin 300071, China
| | - Tengfei He
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of Functional Polymer Materials, Nankai University, Tianjin 300071, China
| | - Shijie Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Longyu Li
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of Functional Polymer Materials, Nankai University, Tianjin 300071, China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guankui Long
- School of Materials Science and Engineering, National Institute for Advanced Materials, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300350, China
| | - Guanghui Li
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of Functional Polymer Materials, Nankai University, Tianjin 300071, China
| | - Zhaoyang Yao
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of Functional Polymer Materials, Nankai University, Tianjin 300071, China
| | - Chenxi Li
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of Functional Polymer Materials, Nankai University, Tianjin 300071, China
| | - Xiangjian Wan
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of Functional Polymer Materials, Nankai University, Tianjin 300071, China
| | - Yongsheng Chen
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of Functional Polymer Materials, Nankai University, Tianjin 300071, China
| |
Collapse
|
14
|
Xu Z, Du B, Zhang P, Wu S, Bin H, Li Y. Designing a Highly Crystalline Polymer Donor with Alkylsilyl and Fluorine Substitution to Achieve Efficient Ternary Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407147. [PMID: 39444083 DOI: 10.1002/smll.202407147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/30/2024] [Indexed: 10/25/2024]
Abstract
Adopting a ternary strategy is an effective approach to enhance the power conversion efficiency (PCE) in organic solar cells (OSCs). Previous research on highly efficient ternary systems has predominantly focused on those based on highly crystalline dual small molecule acceptors. However, limited attention has been given to ternary systems utilizing dual polymer donors. Herein, by incorporating the fluorine and alkylsilyl substitution, a new polymer donor named PX1 is developed, which demonstrates strong crystallinity and excellent miscibility with polymer PM6. Moreover, PX1 broadens and enhances the absorption properties of the PM6:L8-BO blends, and its molecular orbital energy level is situated between those of PM6 and L8-BO, highlighting its suitability as a third component. Introducing 20% PX1 into the PM6:L8-BO system resulted in a high PCE of 18.82%. PX1 effectively suppresses charge recombination and reduces energy losses, while also serving as a morphology modulator that enhances the crystallization and improves the molecular packing order of the active layer by shortening the π-π stacking distance and extending crystalline coherence length. These factors collectively contribute to the performance improvements in ternary devices. This study demonstrates that employing a dual polymer donor strategy is a promising approach for achieving high-performance ternary OSCs.
Collapse
Affiliation(s)
- Zhigang Xu
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Bo Du
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Panpan Zhang
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Shangrong Wu
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Haijun Bin
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Yongfang Li
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
15
|
Ben Messaoud E, Abid D, Elleuch S, Oueslati A, Guionneau P, Pechev S, Daro N, Elaoud Z. A 0D Ge(II)-Halide-Based Perovskite with Enhanced Semiconducting Behavior for Electronic Capacitors. ACS OMEGA 2024; 9:42868-42882. [PMID: 39464455 PMCID: PMC11500373 DOI: 10.1021/acsomega.4c05255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/29/2024] [Accepted: 09/27/2024] [Indexed: 10/29/2024]
Abstract
Perovskite materials have surged to the forefront of materials science, captivating researchers worldwide with their distinctive crystal lattice arrangement and remarkable optical, electric and dielectric attributes. The current study focuses on the development of a novel zero-dimensional (0D) Ge(II)-based hybrid perovskite, formulated as NH3(CH2)2NH3GeF6, and synthesized through a gradual evaporation process conducted at room temperature. The crystal structure is characterized by an arrangement of organic cations and isolated octahedral [GeF6]2- groups. This configuration is stabilized by relatively weak intermolecular bonds. A comprehensive analysis of the material's thermal properties using differential scanning calorimetry (DSC) revealed a distinct phase transition occurring at approximately 323 K, which was further confirmed through electrical measurements. The studied compound provided a broad absorption range across the visible spectrum and an optical band gap of 3.30 eV, indicating its potential for semiconducting applications in optoelectronic devices. Photoluminescence PL analysis displays a blueish broad-band emission with a high color rendering index CRI value of 91, when excited at 325 nm. This emission primarily originates from the self-trapped excitons (STEs) recombination in the inorganic [GeF6]2-. Herein, the temperature-dependent behavior of grain conductivity exhibited an Arrhenius-type pattern, with an activation energy (E a) of 0.46 eV, confirming the semiconductor nature of the investigated compound. In addition, a deep investigation of the alternating current conductivity, analyzed using Jonscher's law, demonstrates that the conduction mechanism is effectively described by the correlated barrier hopping (CBH) model. The dielectric performances show a significant dielectric constant (ε' ∼ 103). Thus, all these interesting physical properties of this hybrid perovskite have paved the way for advancements in various technological applications, particularly in the field of electronic capacitors.
Collapse
Affiliation(s)
- Emna Ben Messaoud
- Laboratory
Physical-Chemistry of Solid-State, Faculty of Sciences, University of Sfax, BP 1171, route soukra, 3000 Sfax, Tunisia
| | - Dhouha Abid
- Laboratory
Physical-Chemistry of Solid-State, Faculty of Sciences, University of Sfax, BP 1171, route soukra, 3000 Sfax, Tunisia
| | - Slim Elleuch
- Laboratory
of Applied Physics, Faculty of Sciences, University of Sfax, B.P. 1171, 3000 Sfax, Tunisia
| | - Abderrazek Oueslati
- Laboratory
of Spectroscopic Characterization and Optical Materials, Faculty of
Sciences, University of Sfax, B.P. 1171, 3000 Sfax, Tunisia
| | - Philippe Guionneau
- Univ.
Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - Stanislav Pechev
- Univ.
Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - Nathalie Daro
- Univ.
Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - Zakaria Elaoud
- Laboratory
Physical-Chemistry of Solid-State, Faculty of Sciences, University of Sfax, BP 1171, route soukra, 3000 Sfax, Tunisia
| |
Collapse
|
16
|
LeCroy G, Ghosh R, Sommerville P, Burke C, Makki H, Rozylowicz K, Cheng C, Weber M, Khelifi W, Stingelin N, Troisi A, Luscombe C, Spano FC, Salleo A. Using Molecular Structure to Tune Intrachain and Interchain Charge Transport in Indacenodithiophene-Based Copolymers. J Am Chem Soc 2024; 146:21778-21790. [PMID: 39058936 DOI: 10.1021/jacs.4c06006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
In this work, we compare two structurally near-amorphous rigid-rod polymers─poly(indacenodithiophene-co-benzothiadiazole), p(IDT-BT), and poly(indacenodithiophene-co-benzopyrollodione), p(IDT-BPD)─with orders of magnitude different mobilities to understand the effect charge carrier intrachain delocalization has on electronic transport. Quantum chemical calculations show that p(IDT-BPD) has a barrier to torsion that is significantly lower than that of p(IDT-BT) and is thus more likely to have reduced conjugation lengths. We utilize absorption and photoluminescence spectroscopy to characterize energetic disorder and show that p(IDT-BPD) has higher energetic disorder. Charge modulation spectroscopy (CMS) and model calculations are used to show that charge carriers are substantially delocalized in p(IDT-BT) and occupy near-uniform energetic environments. We find that mobility activated hopping barriers are similar in these two materials. Electronic structure calculations show that both intrachain and interchain couplings of monomer units are poor enough in p(IDT-BPD) that charge carriers collapse to single IDT units and transport via a through-space tunneling mechanism. This work highlights the remarkable charge transport properties of p(IDT-BT) by showing that high mobilities are achievable on device-relevant length scales with only 1D carrier delocalization.
Collapse
Affiliation(s)
- Garrett LeCroy
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Raja Ghosh
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Parker Sommerville
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Colm Burke
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Hesam Makki
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Kalee Rozylowicz
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Christina Cheng
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Mark Weber
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Wissem Khelifi
- pi-Conjugated Polymers Unit, Okinawa Institute of Science and Technology, Onna, Okinawa 904-0495, Japan
| | - Natalie Stingelin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Alessandro Troisi
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Christine Luscombe
- pi-Conjugated Polymers Unit, Okinawa Institute of Science and Technology, Onna, Okinawa 904-0495, Japan
| | - Frank C Spano
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
17
|
Peeters WHJ, van Lange VT, Belabbes A, van Hemert MC, Jansen MM, Farina R, van Tilburg MAJ, Verheijen MA, Botti S, Bechstedt F, Haverkort JEM, Bakkers EPAM. Direct bandgap quantum wells in hexagonal Silicon Germanium. Nat Commun 2024; 15:5252. [PMID: 38898007 PMCID: PMC11187182 DOI: 10.1038/s41467-024-49399-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Silicon is indisputably the most advanced material for scalable electronics, but it is a poor choice as a light source for photonic applications, due to its indirect band gap. The recently developed hexagonal Si1-xGex semiconductor features a direct bandgap at least for x > 0.65, and the realization of quantum heterostructures would unlock new opportunities for advanced optoelectronic devices based on the SiGe system. Here, we demonstrate the synthesis and characterization of direct bandgap quantum wells realized in the hexagonal Si1-xGex system. Photoluminescence experiments on hex-Ge/Si0.2Ge0.8 quantum wells demonstrate quantum confinement in the hex-Ge segment with type-I band alignment, showing light emission up to room temperature. Moreover, the tuning range of the quantum well emission energy can be extended using hexagonal Si1-xGex/Si1-yGey quantum wells with additional Si in the well. These experimental findings are supported with ab initio bandstructure calculations. A direct bandgap with type-I band alignment is pivotal for the development of novel low-dimensional light emitting devices based on hexagonal Si1-xGex alloys, which have been out of reach for this material system until now.
Collapse
Affiliation(s)
- Wouter H J Peeters
- Department of Applied Physics, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Victor T van Lange
- Department of Applied Physics, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Abderrezak Belabbes
- Department of Physics, Sultan Qaboos University, P.O. Box 123, Muscat, Oman
- Institut für Festkörpertheorie und -optik, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Max C van Hemert
- Department of Applied Physics, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Marvin Marco Jansen
- Department of Applied Physics, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Riccardo Farina
- Department of Applied Physics, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Marvin A J van Tilburg
- Department of Applied Physics, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Marcel A Verheijen
- Department of Applied Physics, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
- Eurofins Materials Science Netherlands BV, Eindhoven, The Netherlands
| | - Silvana Botti
- Institut für Festkörpertheorie und -optik, Friedrich-Schiller-Universität Jena, Jena, Germany
- Research Center Future Energy Materials and Systems of the University Alliance Ruhr and Interdisciplinary Centre for Advanced Materials Simulation, Ruhr University Bochum, Universitätsstraße 150, Bochum, Germany
| | - Friedhelm Bechstedt
- Institut für Festkörpertheorie und -optik, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Jos E M Haverkort
- Department of Applied Physics, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Erik P A M Bakkers
- Department of Applied Physics, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands.
| |
Collapse
|
18
|
Othman M, Jeangros Q, Jacobs DA, Futscher MH, Zeiske S, Armin A, Jaffrès A, Kuba AG, Chernyshov D, Jenatsch S, Züfle S, Ruhstaller B, Tabean S, Wirtz T, Eswara S, Zhao J, Savenije TJ, Ballif C, Wolff CM, Hessler-Wyser A. Alleviating nanostructural phase impurities enhances the optoelectronic properties, device performance and stability of cesium-formamidinium metal-halide perovskites. ENERGY & ENVIRONMENTAL SCIENCE 2024; 17:3832-3847. [PMID: 38841317 PMCID: PMC11149396 DOI: 10.1039/d4ee00901k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/26/2024] [Indexed: 06/07/2024]
Abstract
The technique of alloying FA+ with Cs+ is often used to promote structural stabilization of the desirable α-FAPbI3 phase in halide perovskite devices. However, the precise mechanisms by which these alloying approaches improve the optoelectronic quality and enhance the stability have remained elusive. In this study, we advance that understanding by investigating the effect of cationic alloying in CsxFA1-xPbI3 perovskite thin-films and solar-cell devices. Selected-area electron diffraction patterns combined with microwave conductivity measurements reveal that fine Cs+ tuning (Cs0.15FA0.85PbI3) leads to a minimization of stacking faults and an increase in the photoconductivity of the perovskite films. Ultra-sensitive external quantum efficiency, kelvin-probe force microscopy and photoluminescence quantum yield measurements demonstrate similar Urbach energy values, comparable surface potential fluctuations and marginal impact on radiative emission yields, respectively, irrespective of Cs content. Despite this, these nanoscopic defects appear to have a detrimental impact on inter-grains'/domains' carrier transport, as evidenced by conductive-atomic force microscopy and corroborated by drastically reduced solar cell performance. Importantly, encapsulated Cs0.15FA0.85PbI3 devices show robust operational stability retaining 85% of the initial steady-state power conversion efficiency for 1400 hours under continuous 1 sun illumination at 35 °C, in open-circuit conditions. Our findings provide nuance to the famous defect tolerance of halide perovskites while providing solid evidence about the detrimental impact of these subtle structural imperfections on the long-term operational stability.
Collapse
Affiliation(s)
- Mostafa Othman
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Electrical and Micro Engineering (IEM) Photovoltaics and Thin-Film Electronics Laboratory (PV-Lab) Neuchâtel Switzerland
| | - Quentin Jeangros
- Centre d'Electronique et de Microtechnique (CSEM) Rue Jaquet-Droz 1 2000 Neuchâtel Switzerland
| | - Daniel A Jacobs
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Electrical and Micro Engineering (IEM) Photovoltaics and Thin-Film Electronics Laboratory (PV-Lab) Neuchâtel Switzerland
| | - Moritz H Futscher
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129 8600 Dübendorf Switzerland
| | - Stefan Zeiske
- Sustainable Advanced Materials (Ser-SAM), Department of Physics, Swansea University Swansea SA2 8PP UK
| | - Ardalan Armin
- Sustainable Advanced Materials (Ser-SAM), Department of Physics, Swansea University Swansea SA2 8PP UK
| | - Anaël Jaffrès
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Electrical and Micro Engineering (IEM) Photovoltaics and Thin-Film Electronics Laboratory (PV-Lab) Neuchâtel Switzerland
| | - Austin G Kuba
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Electrical and Micro Engineering (IEM) Photovoltaics and Thin-Film Electronics Laboratory (PV-Lab) Neuchâtel Switzerland
| | - Dmitry Chernyshov
- Swiss-Norwegian Beamlines at the European Synchrotron Radiation Facility 71 Avenue des Martyrs F-38000 Grenoble France
| | - Sandra Jenatsch
- Fluxim AG Katharina-Sulzer-Platz 2 Winterthur 8400 Switzerland
| | - Simon Züfle
- Fluxim AG Katharina-Sulzer-Platz 2 Winterthur 8400 Switzerland
| | - Beat Ruhstaller
- Fluxim AG Katharina-Sulzer-Platz 2 Winterthur 8400 Switzerland
| | - Saba Tabean
- Advanced Instrumentation for Nano-Analytics (AINA), Luxembourg Institute of Science and Technology (LIST), Materials Research and Technology Department 41 Rue du Brill Belvaux L-4422 Luxembourg
- University of Luxembourg 2 Avenue de l'Université Esch-sur-Alzette L-4365 Luxembourg
| | - Tom Wirtz
- Advanced Instrumentation for Nano-Analytics (AINA), Luxembourg Institute of Science and Technology (LIST), Materials Research and Technology Department 41 Rue du Brill Belvaux L-4422 Luxembourg
- University of Luxembourg 2 Avenue de l'Université Esch-sur-Alzette L-4365 Luxembourg
| | - Santhana Eswara
- Advanced Instrumentation for Nano-Analytics (AINA), Luxembourg Institute of Science and Technology (LIST), Materials Research and Technology Department 41 Rue du Brill Belvaux L-4422 Luxembourg
- University of Luxembourg 2 Avenue de l'Université Esch-sur-Alzette L-4365 Luxembourg
| | - Jiashang Zhao
- Department of Chemical Engineering, Delft University of Technology Delft The Netherlands
| | - Tom J Savenije
- Department of Chemical Engineering, Delft University of Technology Delft The Netherlands
| | - Christophe Ballif
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Electrical and Micro Engineering (IEM) Photovoltaics and Thin-Film Electronics Laboratory (PV-Lab) Neuchâtel Switzerland
- Centre d'Electronique et de Microtechnique (CSEM) Rue Jaquet-Droz 1 2000 Neuchâtel Switzerland
| | - Christian M Wolff
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Electrical and Micro Engineering (IEM) Photovoltaics and Thin-Film Electronics Laboratory (PV-Lab) Neuchâtel Switzerland
| | - Aïcha Hessler-Wyser
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Electrical and Micro Engineering (IEM) Photovoltaics and Thin-Film Electronics Laboratory (PV-Lab) Neuchâtel Switzerland
| |
Collapse
|
19
|
Shi Z, Wang Y, Wang Y, Li X, Yue X, Wang H, Zhang X, Deng L, Li C, Wang J, Xie Z, Yang Y, Cong C, Yu A, Zhan Y. Room Temperature Crystallized Phase-Pure α-FAPbI 3 Perovskite with In-Situ Grain-Boundary Passivation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400275. [PMID: 38504472 PMCID: PMC11165534 DOI: 10.1002/advs.202400275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/04/2024] [Indexed: 03/21/2024]
Abstract
Energy loss in perovskite grain boundaries (GBs) is a primary limitation toward high-efficiency perovskite solar cells (PSCs). Two critical strategies to address this issue are high-quality crystallization and passivation of GBs. However, the established methods are generally carried out discretely due to the complicated mechanisms of grain growth and defect formation. In this study, a combined method is proposed by introducing 3,4,5-Trifluoroaniline iodide (TFAI) into the perovskite precursor. The TFAI triggers the union of nano-sized colloids into microclusters and facilitates the complete phase transition of α-FAPbI3 at room temperature. The controlled chemical reactivity and strong steric hindrance effect enable the fixed location of TFAI and suppress defects at GBs. This combination of well-crystallized perovskite grains and effectively passivated GBs leads to an improvement in the open circuit voltage (Voc) of PSCs from 1.08 V to 1.17 V, which is one of the highest recorded Voc without interface modification. The TFAI-incorporated device achieved a champion PCE of 24.81%. The device maintained a steady power output near its maximum power output point, showing almost no decay over 280 h testing without pre-processing.
Collapse
Affiliation(s)
- Zejiao Shi
- Center for Micro Nano SystemsSchool of Information Science and Technology (SIST)Fudan UniversityShanghai200433P. R. China
| | - Yaxin Wang
- Center for Micro Nano SystemsSchool of Information Science and Technology (SIST)Fudan UniversityShanghai200433P. R. China
| | - Yanyan Wang
- Center for Micro Nano SystemsSchool of Information Science and Technology (SIST)Fudan UniversityShanghai200433P. R. China
| | - Xiaoguo Li
- Center for Micro Nano SystemsSchool of Information Science and Technology (SIST)Fudan UniversityShanghai200433P. R. China
| | - Xiaofei Yue
- Center for Micro Nano SystemsSchool of Information Science and Technology (SIST)Fudan UniversityShanghai200433P. R. China
| | - Haoliang Wang
- Center for Micro Nano SystemsSchool of Information Science and Technology (SIST)Fudan UniversityShanghai200433P. R. China
| | - Xin Zhang
- Center for Micro Nano SystemsSchool of Information Science and Technology (SIST)Fudan UniversityShanghai200433P. R. China
| | - Liangliang Deng
- Center for Micro Nano SystemsSchool of Information Science and Technology (SIST)Fudan UniversityShanghai200433P. R. China
| | - Chongyuan Li
- Center for Micro Nano SystemsSchool of Information Science and Technology (SIST)Fudan UniversityShanghai200433P. R. China
| | - Jiao Wang
- Center for Micro Nano SystemsSchool of Information Science and Technology (SIST)Fudan UniversityShanghai200433P. R. China
| | - Zuoti Xie
- Department of Materials Science and EngineeringMATEC Guangdong Technion – Israel Institute of TechnologyShantouGuangdong515063P. R. China
| | - Yinguo Yang
- School of MicroelectronicsFudan UniversityShanghai200433P. R. China
| | - Chunxiao Cong
- Center for Micro Nano SystemsSchool of Information Science and Technology (SIST)Fudan UniversityShanghai200433P. R. China
| | - Anran Yu
- Center for Micro Nano SystemsSchool of Information Science and Technology (SIST)Fudan UniversityShanghai200433P. R. China
| | - Yiqiang Zhan
- Center for Micro Nano SystemsSchool of Information Science and Technology (SIST)Fudan UniversityShanghai200433P. R. China
| |
Collapse
|
20
|
de Jong LMA, Berghuis AM, Abdelkhalik MS, van der Pol TPA, Wienk MM, Janssen RAJ, Gómez Rivas J. Enhancement of the internal quantum efficiency in strongly coupled P3HT-C 60 organic photovoltaic cells using Fabry-Perot cavities with varied cavity confinement. NANOPHOTONICS 2024; 13:2531-2540. [PMID: 38836103 PMCID: PMC11147493 DOI: 10.1515/nanoph-2023-0613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/05/2023] [Indexed: 06/06/2024]
Abstract
The short exciton diffusion length in organic semiconductors results in a strong dependence of the conversion efficiency of organic photovoltaic (OPV) cells on the morphology of the donor-acceptor bulk-heterojunction blend. Strong light-matter coupling provides a way to circumvent this dependence by combining the favorable properties of light and matter via the formation of hybrid exciton-polaritons. By strongly coupling excitons in P3HT-C60 OPV cells to Fabry-Perot optical cavity modes, exciton-polaritons are formed with increased propagation lengths. We exploit these exciton-polaritons to enhance the internal quantum efficiency of the cells, determined from the external quantum efficiency and the absorptance. Additionally, we find a consistent decrease in the Urbach energy for the strongly coupled cells, which indicates the reduction of energetic disorder due to the delocalization of exciton-polaritons in the optical cavity.
Collapse
Affiliation(s)
- Lianne M. A. de Jong
- Department of Applied Physics and Science Education, Eindhoven Hendrik Casimir Institute, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MBEindhoven, The Netherlands
| | - Anton Matthijs Berghuis
- Department of Applied Physics and Science Education, Eindhoven Hendrik Casimir Institute, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MBEindhoven, The Netherlands
| | - Mohamed S. Abdelkhalik
- Department of Applied Physics and Science Education, Eindhoven Hendrik Casimir Institute, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MBEindhoven, The Netherlands
| | - Tom P. A. van der Pol
- Department of Chemical Engineering and Chemistry, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MBEindhoven, The Netherlands
| | - Martijn M. Wienk
- Department of Chemical Engineering and Chemistry, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MBEindhoven, The Netherlands
| | - Rene A. J. Janssen
- Department of Chemical Engineering and Chemistry, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MBEindhoven, The Netherlands
| | - Jaime Gómez Rivas
- Department of Applied Physics and Science Education, Eindhoven Hendrik Casimir Institute, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MBEindhoven, The Netherlands
| |
Collapse
|
21
|
Shoaee S, Luong HM, Song J, Zou Y, Nguyen TQ, Neher D. What We have Learnt from PM6:Y6. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302005. [PMID: 37623325 DOI: 10.1002/adma.202302005] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/10/2023] [Indexed: 08/26/2023]
Abstract
Over the past three years, remarkable advancements in organic solar cells (OSCs) have emerged, propelled by the introduction of Y6-an innovative A-DA'D-A type small molecule non-fullerene acceptor (NFA). This review provides a critical discussion of the current knowledge about the structural and physical properties of the PM6:Y6 material combination in relation to its photovoltaic performance. The design principles of PM6 and Y6 are discussed, covering charge transfer, transport, and recombination mechanisms. Then, the authors delve into blend morphology and degradation mechanisms before considering commercialization. The current state of the art is presented, while also discussing unresolved contentious issues, such as the blend energetics, the pathways of free charge generation, and the role of triplet states in recombination. As such, this review aims to provide a comprehensive understanding of the PM6:Y6 material combination and its potential for further development in the field of organic solar cells. By addressing both the successes and challenges associated with this system, this review contributes to the ongoing research efforts toward achieving more efficient and stable organic solar cells.
Collapse
Affiliation(s)
- Safa Shoaee
- Optoelectronics of Disordered Semiconductors, Institute of Physics and Astronomy, University of Potsdam, D-14476, Potsdam-Golm, Germany
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V., 10117, Berlin, Germany
| | - Hoang M Luong
- Centre for Polymers and Organic Solids, University of California, Santa Barbara, CA, 93106, USA
| | - Jiage Song
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Yingping Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Thuc-Quyen Nguyen
- Centre for Polymers and Organic Solids, University of California, Santa Barbara, CA, 93106, USA
| | - Dieter Neher
- Soft Matter Physics and Optoelectronics, Institute of Physics and Astronomy, University of Potsdam, D-14476, Potsdam-Golm, Germany
| |
Collapse
|
22
|
Elmahdy MM, Yassin MA. Linear and nonlinear optical parameters of biodegradable chitosan/polyvinyl alcohol/sodium montmorillonite nanocomposite films for potential optoelectronic applications. Int J Biol Macromol 2024; 258:128914. [PMID: 38143059 DOI: 10.1016/j.ijbiomac.2023.128914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Innovations in sophisticated optoelectronic devices have increased interest in high-refractive index polymers. Herein, we report innovative nanocomposite films with high linear and nonlinear refractive indices prepared by casting chitosan (Cs) with polyvinyl alcohol (PVA) (50:50 wt%) along with different concentrations (10-50 wt%) of sodium montmorillonite (NaMMT) nanoclay. The refractive indices in addition to other optical parameters of homopolymers and hybrid materials were investigated by UV-Vis. spectroscopy and optical modeling to assess their potential applications in optics. Besides, the structure, morphology, and thermal stability of the prepared films were investigated by a multitude of experimental techniques including X-ray diffraction (XRD), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), atomic force microscopy (AFM), and thermogravimetric analysis (TGA/DTG). The ATR-FTIR, XRD, SEM, and AFM measurements confirmed the complete exfoliation of NaMMT nanolayers in the Cs/PVA matrix. The TGA/DTG revealed an increase in the thermal stability of Cs/PVA film with increasing clay content. The UV-Vis. measurements revealed a decrease in the optical energy gap (Eg) and a substantial increase in the linear (nD) and nonlinear (n2) refractive indices as clay content increased. Additionally, the nanohybrids displayed low UV transmission and reflected about 80 % of UV rays, making them excellent candidates for UV protection. For the first time, the dissipation factor (tanδ) in the UV/Vis. region has been calculated and fitted with the Drude-Lorentz model to predict the plasma frequency (ωp), resonance frequency (ω0), and electron lifetime (τ) of pristine polymers and nanocomposites.
Collapse
Affiliation(s)
- Mahdy M Elmahdy
- Department of Physics, College of Science and Humanities, Prince Sattam bin Abdulaziz University, 11942 Al-Kharj, Saudi Arabia; Department of Physics, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt.
| | - Mohamed A Yassin
- Advanced Materials and Nanotechnology Lab., Center of Excellence, National Research Centre, Cairo 12622, Egypt; Packaging Materials Department, National Research Centre, Cairo 12622, Egypt
| |
Collapse
|
23
|
Zhu J, Qin Z, Lan A, Jiang S, Mou J, Ren Y, Do H, Chen ZK, Chen F. A-D-A Type Nonfullerene Acceptors Synthesized by Core Segmentation and Isomerization for Realizing Organic Solar Cells with Low Nonradiative Energy Loss. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305529. [PMID: 37688316 DOI: 10.1002/smll.202305529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Reducing non-radiative recombination energy loss (ΔEnonrad ) in organic solar cells (OSCs) has been considered an effective method to improve device efficiency. In this study, the backbone of PTBTT-4F/4Cl is divided into D1-D2-D3 segments and reconstructed. The isomerized TPBTT-4F/4Cl obtains stronger intramolecular charge transfer (ICT), thus leading to elevated highest occupied molecular orbital (HOMO) energy level and reduced bandgap (Eg ). According to ELoss = Eg- qVOC , the reduced Eg and enhanced open circuit voltage (VOC ) result in lower ELoss , indicating that ELoss has been effectively suppressed in the TPBTT-4F/4Cl based devices. Furthermore, compared to PTBTT derivatives, the isomeric TPBTT derivatives exhibit more planar molecular structure and closer intermolecular stacking, thus affording higher crystallinity of the neat films. Therefore, the reduced energy disorder and corresponding lower Urbach energy (Eu ) of the TPBTT-4F/4Cl blend films lead to low ELoss and high charge-carrier mobility of the devices. As a result, benefitting from synergetic control of molecular stacking and energetic offsets, a maximum power conversion efficiency (PCE) of 15.72% is realized from TPBTT-4F based devices, along with a reduced ΔEnonrad of 0.276 eV. This work demonstrates a rational method of suppressing VOC loss and improving the device performance through molecular design engineering by core segmentation and isomerization.
Collapse
Affiliation(s)
- Jintao Zhu
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Zixuan Qin
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Ai Lan
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Shanshan Jiang
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Jiayou Mou
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Yong Ren
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Hainam Do
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Zhi-Kuan Chen
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo, 315100, China
- New Materials Institute, University of Nottingham Ningbo China, Ningbo, 315100, China
- Key Laboratory of Carbonaceous Waste Processing and Process Intensification Research of Zhejiang Province, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Fei Chen
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo, 315100, China
- New Materials Institute, University of Nottingham Ningbo China, Ningbo, 315100, China
- Key Laboratory of Carbonaceous Waste Processing and Process Intensification Research of Zhejiang Province, University of Nottingham Ningbo China, Ningbo, 315100, China
| |
Collapse
|
24
|
Xu Z, Li S, Huang F, He T, Jia X, Liang H, Guo Y, Long G, Kan B, Yao Z, Li C, Wan X, Chen Y. Propeller vs Quasi-Planar 6-Cantilever Small Molecular Platforms with Extremely Two-Dimensional Conjugated Extension. Angew Chem Int Ed Engl 2023; 62:e202311686. [PMID: 37858963 DOI: 10.1002/anie.202311686] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 10/21/2023]
Abstract
Two exotic 6-cantilever small molecular platforms, characteristic of quite different molecular configurations of propeller and quasi-plane, are established by extremely two-dimensional conjugated extension. When applied in small molecular acceptors, the only two cases of CH25 and CH26 that could contain six terminals and such broad conjugated backbones have been afforded thus far, rendering featured absorptions, small reorganization and exciton binding energies. Moreover, their distinctive but completely different molecular geometries result in sharply contrasting nanoscale film morphologies. Finally, CH26 contributes to the best device efficiency of 15.41 % among acceptors with six terminals, demonstrating two pioneered yet highly promising 6-cantilever molecular innovation platforms.
Collapse
Affiliation(s)
- Zheng Xu
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Shitong Li
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Fangfang Huang
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Tengfei He
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xinyuan Jia
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Huazhe Liang
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yaxiao Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin, 300387, China
| | - Guankui Long
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Bin Kan
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Zhaoyang Yao
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chenxi Li
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiangjian Wan
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yongsheng Chen
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
25
|
Lai J, Zhu R, Tan J, Yang Z, Ye S. Stacking Arrangement and Orientation of Aromatic Cations Tune Bandgap and Charge Transport of 2D Organic-Inorganic Hybrid Perovskites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303449. [PMID: 37495901 DOI: 10.1002/smll.202303449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/10/2023] [Indexed: 07/28/2023]
Abstract
Chemical modifications on aromatic spacers of 2D perovskites have been demonstrated to be an effective strategy to simultaneously improve optoelectronic properties and stability. However, its underlying mechanism is poorly understood. By using 2D phenyl-based perovskites ([C6 H5 (CH2 )m NH3 ]2 PbI4 ) as models, the authors have revealed how the chemical nature of aromatic cations tunes the bandgap and charge transport of 2D perovskites by utilizing sum-frequency generation vibrational spectroscopy to determine the stacking arrangement and orientation of aromatic cations. It is found that the antiparallel slip-stack arrangement of phenyl rings between adjacent layers induces an indirect band gap, resulting in anomalous carrier dynamics. Incorporation of the CH2 moiety causes stacking rearrangement of the phenyl ring and thus promotes an indirect to direct bandgap transition. In direct-bandgap perovskites, higher carrier mobility correlates with a larger orientation angle of the phenyl ring. Further optimizing the orientation angle by introducing a para-substituted element in a phenyl ring, higher carrier mobility is obtained. This work highlights the importance of leveraging stacking arrangement and orientation of the aromatic cations to tune the photophysical properties, which opens up an avenue for advancing high-performance 2D perovskites optoelectronics via molecular engineering.
Collapse
Affiliation(s)
- Jing Lai
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Renlong Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Junjun Tan
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui, 230088, China
| | - Zhe Yang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui, 230088, China
| |
Collapse
|
26
|
Liu Q, Vandewal K. Understanding and Suppressing Non-Radiative Recombination Losses in Non-Fullerene Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302452. [PMID: 37201949 DOI: 10.1002/adma.202302452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/26/2023] [Indexed: 05/20/2023]
Abstract
Organic solar cells benefit from non-fullerene acceptors (NFA) due to their high absorption coefficients, tunable frontier energy levels, and optical gaps, as well as their relatively high luminescence quantum efficiencies as compared to fullerenes. Those merits result in high yields of charge generation at a low or negligible energetic offset at the donor/NFA heterojunction, with efficiencies over 19% achieved for single-junction devices. Pushing this value significantly over 20% requires an increase in open-circuit voltage, which is currently still well below the thermodynamic limit. This can only be achieved by reducing non-radiative recombination, and hereby increasing the electroluminescence quantum efficiency of the photo-active layer. Here, current understanding of the origin of non-radiative decay, as well as an accurate quantification of the associated voltage losses are summarized. Promising strategies for suppressing these losses are highlighted, with focus on new material design, optimization of donor-acceptor combination, and blend morphology. This review aims at guiding researchers in their quest to find future solar harvesting donor-acceptor blends, which combine a high yield of exciton dissociation with a high yield of radiative free carrier recombination and low voltage losses, hereby closing the efficiency gap with inorganic and perovskite photovoltaics.
Collapse
Affiliation(s)
- Quan Liu
- Hasselt University, IMOMEC, Wetenschapspark 1, Diepenbeek, 3590, Belgium
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Koen Vandewal
- Hasselt University, IMOMEC, Wetenschapspark 1, Diepenbeek, 3590, Belgium
| |
Collapse
|
27
|
Qin D, Chen J, Lu N. A Novel Density of States (DOS) for Disordered Organic Semiconductors. MICROMACHINES 2023; 14:1361. [PMID: 37512673 PMCID: PMC10383803 DOI: 10.3390/mi14071361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
In this work, we proposed a novel theory of DOS for disordered organic semiconductors based on the frontier orbital theory and probability statistics. The proposed DOS has been verified by comparing with other DOS alternatives and experimental data, and the mobility calculated by the proposed DOS is closer to experimental data than traditional DOS. Moreover, we also provide a detailed method to choose the DOS parameter for better use of the proposed DOS. This paper also contains a prediction for the DOS parameters, and it has been verified by the experimental data. More importantly, the physical meaning of the proposed DOS parameter has been explained by equilibrium energy theory and transport energy theory to make this proposed model more rational. Compared with the improved DOS based on Gaussian and exponential DOS, this work is a new attempt to combine probabilistic theory with physical theory related to DOS in disordered organic semiconductors, showing great significance for the further investigation of the properties of DOS.
Collapse
Affiliation(s)
- Dong Qin
- School of Information Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jiezhi Chen
- School of Information Science and Engineering, Shandong University, Qingdao 266237, China
| | - Nianduan Lu
- State Key Lab of Fabrication Technologies for Integrated Circuits & Laboratory of Microelectronics Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
| |
Collapse
|
28
|
Zhang Y, Yu Y, Liu X, Miao J, Han Y, Liu J, Wang L. An n-Type All-Fused-Ring Molecule with Photoresponse to 1000 nm for Highly Sensitive Near-Infrared Photodetector. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211714. [PMID: 36842062 DOI: 10.1002/adma.202211714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/04/2023] [Indexed: 05/19/2023]
Abstract
Most of all-fused-ring π-conjugated molecules have wide or medium bandgap and show photo response in the visible range. In this work, an all-fused-ring n-type molecule, which exhibits an ultrasmall optical bandgap of 1.22 eV and strong near-infrared (NIR) absorption with an onset absorption wavelength of 1013 nm is reported. The molecule consists of 14 aromatic rings and has electron donor-acceptor characteristics. It exhibits excellent n-type properties with low-lying HOMO/LUMO energy levels of -5.48 eV/-3.95 eV and high electron mobility of 7.0 × 10-4 cm2 V-1 s-1 . Most importantly, its thin film exhibits a low trap density of 5.55 × 1016 cm-3 because of the fixed molecular conformation and consequently low conformation disorder. As a result, organic photodetector (OPD) based on the compound exhibits a remarkably low dark current density (Jd ) of 2.01 × 10-10 A cm-2 at 0 V. The device shows a shot-noise-limited specific detectivity (Dsh *) of exceeding 1013 Jones at 400-1000 nm wavelength region with a peak specific detectivity of 4.65 × 1013 Jones at 880 nm. This performance is among the best reported for self-powered NIR OPDs.
Collapse
Affiliation(s)
- Yingze Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yingjian Yu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xinyu Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Junhui Miao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Yanchun Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
29
|
Doroftei C, Leontie L, Danac R, Matarneh CMA, Carlescu A. Exploring Pyrrolo-Phenanthrolines as Semiconductors for Potential Implementation in Organic Electronics. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093366. [PMID: 37176248 PMCID: PMC10179610 DOI: 10.3390/ma16093366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023]
Abstract
This paper describes the synthesis and characterization of new organic semiconductors based on pyrrolo[1,2-i][1,7]phenanthrolines in the form of thin layers. The thin layers, produced via the spin coating method (with a thickness of 10-11 μm), were investigated for their electrical and optical properties. After heat treatment at temperatures ranging from 210 to 240 °C, the layers displayed consistent and reproducible properties. The layers exhibited n-type semiconductor behavior, with a thermal activation energy (Ea) in the range of 0.75-0.78 eV. Additionally, the layers showed transmittance values of 84-92% in the visible and near-infrared spectral ranges, with a direct optical band gap (Egod) ranging from 3.13 to 4.11 eV. These thin layers have potential applications in electronic devices such as thermistors, as well as in nanoelectronics and optoelectronics. Overall, these new organic semiconductors show promising properties for practical implementation in various electronic applications.
Collapse
Affiliation(s)
- Corneliu Doroftei
- Science Research Department, Institute of Interdisciplinary Research, Research Center in Environmental Sciences for the North-Eastern Romanian Region (CERNESIM), Alexandru Ioan Cuza University of Iasi, 11 Carol I, 700506 Iasi, Romania
| | - Liviu Leontie
- Science Research Department, Institute of Interdisciplinary Research, Research Center in Environmental Sciences for the North-Eastern Romanian Region (CERNESIM), Alexandru Ioan Cuza University of Iasi, 11 Carol I, 700506 Iasi, Romania
- Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I, 700506 Iasi, Romania
| | - Ramona Danac
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I, 700506 Iasi, Romania
| | - Cristina-Maria Al Matarneh
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I, 700506 Iasi, Romania
- Institute of Macromolecular Chemistry "Petru Poni", Aleea Ghica Voda, No. 41A, 700487 Iasi, Romania
| | - Aurelian Carlescu
- Science Research Department, Institute of Interdisciplinary Research, Research Center in Environmental Sciences for the North-Eastern Romanian Region (CERNESIM), Alexandru Ioan Cuza University of Iasi, 11 Carol I, 700506 Iasi, Romania
| |
Collapse
|
30
|
Zarrabi N, Sandberg OJ, Meredith P, Armin A. Subgap Absorption in Organic Semiconductors. J Phys Chem Lett 2023; 14:3174-3185. [PMID: 36961944 PMCID: PMC10084470 DOI: 10.1021/acs.jpclett.3c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Organic semiconductors have found a broad range of application in areas such as light emission, photovoltaics, and optoelectronics. The active components in such devices are based on molecular and polymeric organic semiconductors, where the density of states is generally determined by the disordered nature of the molecular solid rather than energy bands. Inevitably, there exist states within the energy gap which may include tail states, deep traps caused by unavoidable impurities and defects, as well as intermolecular states due to (radiative) charge transfer states. In this Perspective, we first summarize methods to determine the absorption features due to the subgap states. We then explain how subgap states can be parametrized based upon the subgap spectral line shapes. We finally describe the role of subgap states in the performance metrics of organic semiconductor devices from a thermodynamic viewpoint.
Collapse
Affiliation(s)
- Nasim Zarrabi
- Sustainable
Advanced Materials (Ser-SAM), Department of Physics, Swansea University, Singleton Park, Swansea SA2 8PP, United Kingdom
| | - Oskar J. Sandberg
- Sustainable
Advanced Materials (Ser-SAM), Department of Physics, Swansea University, Singleton Park, Swansea SA2 8PP, United Kingdom
| | - Paul Meredith
- Sustainable
Advanced Materials (Ser-SAM), Department of Physics, Swansea University, Singleton Park, Swansea SA2 8PP, United Kingdom
| | - Ardalan Armin
- Sustainable
Advanced Materials (Ser-SAM), Department of Physics, Swansea University, Singleton Park, Swansea SA2 8PP, United Kingdom
| |
Collapse
|
31
|
Li M, Huang P, Zhong H. Current Understanding of Band-Edge Properties of Halide Perovskites: Urbach Tail, Rashba Splitting, and Exciton Binding Energy. J Phys Chem Lett 2023; 14:1592-1603. [PMID: 36749031 DOI: 10.1021/acs.jpclett.2c03525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The band-edge structure of halide perovskites, derived from the hybridization of atomic orbitals, plays a fundamental role in determining their optical and electronic properties. Several important concepts have been frequently discussed to describe the influence of band-edge structure on their optoelectronic properties, including Urbach tail, Rashba splitting, and exciton binding energy. In this Perspective, we provide a fundamental understanding of these concepts, with the focus on their dependence on composition, structure, or dimensionality. Subsequently, the implications for material optimization and device fabrication are discussed. Furthermore, we highlight the Rashba effect on the exciton fine structure in perovskite nanocrystals (PNCs), which explains the unique emissive properties. Finally, we discuss the potential influence of band-edge properties on the light emission process. We hope that this Perspective can inspire the investigation of band-edge properties of halide perovskites for light-emitting diodes, lasers, and spin electronics.
Collapse
Affiliation(s)
- Menglin Li
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Peng Huang
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Haizheng Zhong
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
32
|
Li C, Zhu R, Yang Z, Lai J, Tan J, Luo Y, Ye S. Boosting Charge Transport in a 2D/3D Perovskite Heterostructure by Selecting an Ordered 2D Perovskite as the Passivator. Angew Chem Int Ed Engl 2023; 62:e202214208. [PMID: 36470848 DOI: 10.1002/anie.202214208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
We demonstrate that an ordered 2D perovskite can significantly boost the photoelectric performance of 2D/3D perovskite heterostructures. Using selective fluorination of phenyl-ethyl ammonium (PEA) lead iodide to passivate 3D FA0.8 Cs0.2 PbI3 , we find that the 2D/3D perovskite heterostructures passivated by a higher ordered 2D perovskite have lower Urbach energy, yielding a remarkable increase in photoluminescence (PL) intensity, PL lifetime, charge-carrier mobilities (ϕμ), and carrier diffusion length (LD ) for a certain 2D perovskite content. High performance with an ultralong PL lifetime of ≈1.3 μs, high ϕμ of ≈18.56 cm2 V-1 s-1 , and long LD of ≈7.85 μm is achieved in the 2D/3D films when passivated by 16.67 % para-fluoro-PEA2 PbI4 . This carrier diffusion length is comparable to that of some perovskite single crystals (>5 μm). These findings provide key missing information on how the organic cations of 2D perovskites influence the performance of 2D/3D perovskite heterostructures.
Collapse
Affiliation(s)
- Chuanzhao Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Renlong Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhe Yang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jing Lai
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Junjun Tan
- Hefei National Laboratory, Hefei, Anhui 230088, China
| | - Yi Luo
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China.,Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China.,Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| |
Collapse
|
33
|
Ugur E, Ledinský M, Allen TG, Holovský J, Vlk A, De Wolf S. Life on the Urbach Edge. J Phys Chem Lett 2022; 13:7702-7711. [PMID: 35960888 DOI: 10.1021/acs.jpclett.2c01812] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The Urbach energy is an expression of the static and dynamic disorder in a semiconductor and is directly accessible via optical characterization techniques. The strength of this metric is that it elegantly captures the optoelectronic performance potential of a semiconductor in a single number. For solar cells, the Urbach energy is found to be predictive of a material's minimal open-circuit-voltage deficit. Performance calculations considering the Urbach energy give more realistic power conversion efficiency limits than from classical Shockley-Queisser considerations. The Urbach energy is often also found to correlate well with the Stokes shift and (inversely) with the carrier mobility of a semiconductor. Here, we discuss key features, underlying physics, measurement techniques, and implications for device fabrication, underlining the utility of this metric.
Collapse
Affiliation(s)
- Esma Ugur
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Martin Ledinský
- Laboratory of Nanostructures and Nanomaterials, Institute of Physics, Academy of Sciences of the Czech Republic, v. v. i., Cukrovarnická 10, Prague, 162 00, Czech Republic
| | - Thomas G Allen
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Jakub Holovský
- Centre for Advanced Photovoltaics, Czech Technical University in Prague, Faculty of Electrical Engineering, Technická 2, Prague, 166 27, Czech Republic
| | - Aleš Vlk
- Laboratory of Nanostructures and Nanomaterials, Institute of Physics, Academy of Sciences of the Czech Republic, v. v. i., Cukrovarnická 10, Prague, 162 00, Czech Republic
| | - Stefaan De Wolf
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
34
|
Zeiske S, Sandberg OJ, Zarrabi N, Wolff CM, Raoufi M, Peña-Camargo F, Gutierrez-Partida E, Meredith P, Stolterfoht M, Armin A. Static Disorder in Lead Halide Perovskites. J Phys Chem Lett 2022; 13:7280-7285. [PMID: 35916775 PMCID: PMC9376950 DOI: 10.1021/acs.jpclett.2c01652] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/26/2022] [Indexed: 05/27/2023]
Abstract
In crystalline and amorphous semiconductors, the temperature-dependent Urbach energy can be determined from the inverse slope of the logarithm of the absorption spectrum and reflects the static and dynamic energetic disorder. Using recent advances in the sensitivity of photocurrent spectroscopy methods, we elucidate the temperature-dependent Urbach energy in lead halide perovskites containing different numbers of cation components. We find Urbach energies at room temperature to be 13.0 ± 1.0, 13.2 ± 1.0, and 13.5 ± 1.0 meV for single, double, and triple cation perovskite. Static, temperature-independent contributions to the Urbach energy are found to be as low as 5.1 ± 0.5, 4.7 ± 0.3, and 3.3 ± 0.9 meV for the same systems. Our results suggest that, at a low temperature, the dominant static disorder in perovskites is derived from zero-point phonon energy rather than structural disorder. This is unusual for solution-processed semiconductors but broadens the potential application of perovskites further to quantum electronics and devices.
Collapse
Affiliation(s)
- Stefan Zeiske
- Sustainable
Advanced Materials (Sêr-SAM), Department of Physics, Swansea University, Singleton Park, Swansea SA2 8PP, United Kingdom
| | - Oskar J. Sandberg
- Sustainable
Advanced Materials (Sêr-SAM), Department of Physics, Swansea University, Singleton Park, Swansea SA2 8PP, United Kingdom
| | - Nasim Zarrabi
- Sustainable
Advanced Materials (Sêr-SAM), Department of Physics, Swansea University, Singleton Park, Swansea SA2 8PP, United Kingdom
| | - Christian M. Wolff
- EPFL
STI IEM PV-LAB, Rue de la Maladière 71b, CH-2002 Neuchâtel 2, Switzerland
| | - Meysam Raoufi
- Soft
Matter Physics Institute of Physics and Astronomy, University Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam-Golm, Germany
| | - Francisco Peña-Camargo
- Soft
Matter Physics Institute of Physics and Astronomy, University Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam-Golm, Germany
| | - Emilio Gutierrez-Partida
- Soft
Matter Physics Institute of Physics and Astronomy, University Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam-Golm, Germany
| | - Paul Meredith
- Sustainable
Advanced Materials (Sêr-SAM), Department of Physics, Swansea University, Singleton Park, Swansea SA2 8PP, United Kingdom
| | - Martin Stolterfoht
- Soft
Matter Physics Institute of Physics and Astronomy, University Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam-Golm, Germany
| | - Ardalan Armin
- Sustainable
Advanced Materials (Sêr-SAM), Department of Physics, Swansea University, Singleton Park, Swansea SA2 8PP, United Kingdom
| |
Collapse
|
35
|
Hu B, Zhang J, Guo Z, Lu L, Li P, Chen M, Li C. Manipulating Ion Migration and Interfacial Carrier Dynamics via Amino Acid Treatment in Planar Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15840-15848. [PMID: 35319867 DOI: 10.1021/acsami.2c01640] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Instability caused by the migrating ions is one of the major obstacles toward the large-scale application of metal halide perovskite optoelectronics. Inactivating mobile ions/defects via chemical passivation, e.g., amino acid treatment, is a widely accepted approach to solve that problem. To investigate the detailed interplay, L-phenylalanine (PAA), a typical amino acid, is used to modify the SnO2/MAPbI3 interface. The champion device with PAA treatment maintains 80% of its initial power conversion efficiency (PCE) when stored after 528 h in an ambient condition with the relative humidity exceeding 70%. By employing a wide-field photoluminescence imaging microscope to visualize the ion movement and calculate ionic mobility quantitatively, we propose a model for enhanced stability in perspective of suppressed ion migration. Besides, we reveal that the PAA dipole layer facilitates charge transfer at the interface, enhancing the PCE of devices. Our work may provide an in-depth understanding toward high-efficiency and stable perovskite optoelectronic devices.
Collapse
Affiliation(s)
- Beier Hu
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Jing Zhang
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Zhongli Guo
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Lihua Lu
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Puyang Li
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Mengyu Chen
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P.R. China
- Future Display Institute of Xiamen, Xiamen 361005, P.R. China
| | - Cheng Li
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P.R. China
- Future Display Institute of Xiamen, Xiamen 361005, P.R. China
| |
Collapse
|
36
|
Doroftei C, Carlescu A, Leontie L, Danac R, Al-Matarneh CM. Structural, Electrical and Optical Properties of Pyrrolo[1,2- i][1,7] Phenanthroline-Based Organic Semiconductors. MATERIALS 2022; 15:ma15051684. [PMID: 35268915 PMCID: PMC8911188 DOI: 10.3390/ma15051684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 02/05/2023]
Abstract
This work reports a study on structural, electrical and optical properties of some recently synthesized pyrrolo[1,2-i][1,7] phenanthrolines derivatives in thin films. The thin films were deposited onto glass substrates by spin coating technique, using chloroform as solvent. The obtained films exhibited a polycrystalline structure with an n–type semiconductor behavior after heat treatment in the temperature range 293–543 K, specific to each sample. The thermal activation energy lies between 0.68 and 0.78 eV, while the direct optical band gap values were found in the range 4.17–4.24 eV. The electrical and optical properties of the investigated organic semiconductor films were discussed in relation to microstructural properties, determined by the molecular structure. The investigated organic compounds are promising for applications in organic optoelectronics and nanoelectronics.
Collapse
Affiliation(s)
- Corneliu Doroftei
- Research Center in Environmental Sciences for the North-Eastern Romanian Region (CERNESIM), Science Research Department, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iasi, Bulevardul Carol I, Nr. 11, 700506 Iasi, Romania; (C.D.); (L.L.)
| | - Aurelian Carlescu
- Research Center in Environmental Sciences for the North-Eastern Romanian Region (CERNESIM), Science Research Department, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iasi, Bulevardul Carol I, Nr. 11, 700506 Iasi, Romania; (C.D.); (L.L.)
- Correspondence:
| | - Liviu Leontie
- Research Center in Environmental Sciences for the North-Eastern Romanian Region (CERNESIM), Science Research Department, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iasi, Bulevardul Carol I, Nr. 11, 700506 Iasi, Romania; (C.D.); (L.L.)
- Faculty of Physics, Alexandru Ioan Cuza University of Iasi, Bulevardul Carol I, Nr. 11, 700506 Iasi, Romania
| | - Ramona Danac
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, Bulevardul Carol I, Nr. 11, 700506 Iasi, Romania; (R.D.); (C.M.A.-M.)
| | - Cristina Maria Al-Matarneh
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, Bulevardul Carol I, Nr. 11, 700506 Iasi, Romania; (R.D.); (C.M.A.-M.)
- Institute of Macromolecular Chemistry “Petru Poni”, Aleea Ghica Voda, No. 41A, 700487 Iasi, Romania
| |
Collapse
|
37
|
Deng W, Liu W, Qian R, Wu H. Toward High-Efficiency Organic Photovoltaics: Perspectives on the Origin and Role of Energetic Disorder. J Phys Chem Lett 2022; 13:544-551. [PMID: 35007067 DOI: 10.1021/acs.jpclett.1c03901] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The power conversion efficiency of organic photovoltaics is strongly limited by relatively large energy loss, which is partially due to the disordered nature of organic semiconductors. This disordered nature not only hinders the rational design of molecules with excellent photophysical properties but also prevents a more thorough understanding of the inherent link between microscopic parameters and physical phenomena. In this Perspective, we demonstrate that the injection-dependent emission line-shape in organic semiconductors is primarily associated with a state-filling effect, where the extent of spectral blue-shift can be a strong indicator for energetic disorder. Molecular geometry with rigidity and coplanarity not only promotes preferential face-on stacking that narrows the energetic distribution of subgap states but also impedes torsional deformations of the conjugated backbone away from planarity, thereby facilitating larger π-electron delocalization. These structural characteristics explain the seemingly contradictory high radiative efficiency of low-bandgap nonfullerene molecules, providing promising molecular design strategies to realize high-efficiency organic photovoltaics.
Collapse
Affiliation(s)
- Wanyuan Deng
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P.R. China
| | - Wansheng Liu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P.R. China
| | - Rui Qian
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P.R. China
| | - Hongbin Wu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P.R. China
| |
Collapse
|
38
|
Elucidating Charge Generation in Green-Solvent Processed Organic Solar Cells. Molecules 2021; 26:molecules26247439. [PMID: 34946520 PMCID: PMC8706774 DOI: 10.3390/molecules26247439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/03/2022] Open
Abstract
Organic solar cells have the potential to become the cheapest form of electricity. Rapid increase in the power conversion efficiency of organic solar cells (OSCs) has been achieved with the development of non-fullerene small-molecule acceptors. Next generation photovoltaics based upon environmentally benign “green solvent” processing of organic semiconductors promise a step-change in the adaptability and versatility of solar technologies and promote sustainable development. However, high-performing OSCs are still processed by halogenated (non-environmentally friendly) solvents, so hindering their large-scale manufacture. In this perspective, we discuss the recent progress in developing highly efficient OSCs processed from eco-compatible solvents, and highlight research challenges that should be addressed for the future development of high power conversion efficiencies devices.
Collapse
|