1
|
Jabbour E, Haddad FG, Kantarjian H. Treatment of Older Patients With ALL. Am Soc Clin Oncol Educ Book 2025; 45:e473298. [PMID: 40354595 DOI: 10.1200/edbk-25-473298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Older patients with ALL often have high-risk disease characterized by adverse-risk cytogenetic and molecular abnormalities, as well as Philadelphia chromosome (Ph)-positive and Ph-like phenotypes. They often have comorbidities resulting in poor tolerance to chemotherapy and are at risk of developing therapy-related myeloid neoplasms (t-MNs). In Ph-negative ALL, the duration and intensity of chemotherapy was reduced, and outcomes improved with the addition of inotuzumab ozogamicin (InO) and blinatumomab into the frontline setting. However, t-MNs are still being observed, prompting the development of chemotherapy-free regimens with InO and blinatumomab as well as chimeric antigen receptor (CAR) T-cell therapies in high-risk disease. In Ph-positive ALL, chemotherapy and allogeneic hematopoietic stem-cell transplantation (HSCT) were historically considered a standard of care. However, the introduction of blinatumomab and newer-generation BCR::ABL1 tyrosine kinase inhibitors (TKIs) into the frontline setting significantly improved outcomes. The combination of blinatumomab and ponatinib induced high rates of complete molecular responses and excellent survival, without reliance on HSCT. A subset of patients with elevated WBC count at diagnosis are at particular risk of CNS and systemic relapse and may require additional strategies such as incorporating one to two cycles of high-dose methotrexate/cytarabine into consolidation, and potentially CAR T cells. In T-cell ALL, adding venetoclax into the frontline setting has improved outcomes. In early T-cell precursor ALL, HSCT is still needed. To further improve outcomes in older patients, novel agents such as subcutaneous blinatumomab, CAR T cells, newer-generation TKIs, and menin inhibitors should be investigated in the frontline setting.
Collapse
Affiliation(s)
- Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Fadi G Haddad
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
2
|
Struys I, Velázquez C, Ubels J, LeJeune CL, van Roosmalen MJ, Rosendahl Huber AK, van Leeuwen AJ, Bossuyt W, Thienpont B, Voet T, Van Calsteren K, Lenaerts L, van Boxtel R, Amant F. Prenatal Exposure to Chemotherapy Increases the Mutation Burden in Human Neonatal Hematopoietic Stem Cells. Cancer Discov 2025; 15:903-912. [PMID: 39852764 PMCID: PMC12046327 DOI: 10.1158/2159-8290.cd-24-1368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/17/2024] [Accepted: 01/22/2025] [Indexed: 01/26/2025]
Abstract
SIGNIFICANCE This study demonstrates that environmental mutagenic exposure during pregnancy can increase somatic mutation accumulation in the fetus. Given that detrimental early life exposures can adversely affect health outcomes later in life, our study highlights the need for further research into the impact of environmentally induced genomic insults during the perinatal period. See related commentary by Furudate and Takahashi, p. 870.
Collapse
Affiliation(s)
- Ilana Struys
- Department of Oncology, University of Leuven, KU Leuven, Leuven, Belgium
| | - Carolina Velázquez
- Department of Oncology, University of Leuven, KU Leuven, Leuven, Belgium
| | - Joske Ubels
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | | | - Markus J. van Roosmalen
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Axel K.M. Rosendahl Huber
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Anais J.C.N. van Leeuwen
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Wouter Bossuyt
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
| | - Bernard Thienpont
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
| | - Thierry Voet
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), University of Leuven, KU Leuven, Leuven, Belgium
| | - Kristel Van Calsteren
- Department of Obstetrics and Gynaecology, University Hospitals Leuven, UZ Leuven, Leuven, Belgium
| | - Liesbeth Lenaerts
- Department of Oncology, University of Leuven, KU Leuven, Leuven, Belgium
| | - Ruben van Boxtel
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Frédéric Amant
- Department of Oncology, University of Leuven, KU Leuven, Leuven, Belgium
- Department of Obstetrics and Gynaecology, University Hospitals Leuven, UZ Leuven, Leuven, Belgium
- Gynecologic Oncology, Netherlands Cancer Institute, Antoni Van Leeuwenhoek, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Li C, Zhang C, Li X. Clonal hematopoiesis of indeterminate potential: contribution to disease and promising interventions. Mol Cell Biochem 2025:10.1007/s11010-025-05261-8. [PMID: 40140229 DOI: 10.1007/s11010-025-05261-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/16/2025] [Indexed: 03/28/2025]
Abstract
In clonal hematopoiesis of indeterminate potential (CHIP), subpopulations of blood cells carrying somatic mutations expand as the individual ages, and this expansion may elevate risk of blood cancers as well as cardiovascular disease. Individuals at higher risk of CHIP and therefore of CHIP-associated disease can be identified through mutational profiling, and the apparently central role of inflammation in CHIP-associated disease has emerged as a potential therapeutic target. While CHIP is often associated with negative health outcomes, emerging evidence suggests that some CHIP-related mutations may also exert beneficial effects, indicating a more complex role in human health. This review examines current understanding of the epidemiology and clinical significance of CHIP and the role of inflammation in driving its association with disease risk. It explores the mechanisms linking CHIP to inflammation and risk of cardiovascular and other diseases, as well as the potential of personalizing therapies against those diseases for individuals with CHIP.
Collapse
Affiliation(s)
- Chongjie Li
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- School of Pharmacy, Southwest Medical University, LuZhou, 646000, Sichuan, People's Republic of China
| | - Chunxiang Zhang
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
- School of Pharmacy, Southwest Medical University, LuZhou, 646000, Sichuan, People's Republic of China.
| | - Xiuying Li
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
- School of Pharmacy, Southwest Medical University, LuZhou, 646000, Sichuan, People's Republic of China.
| |
Collapse
|
4
|
Ziglari T, Calistri NL, Finan JM, Derrick DS, Nakayasu ES, Burnet MC, Kyle JE, Hoare M, Heiser LM, Pucci F. Senescent Cell-Derived Extracellular Vesicles Inhibit Cancer Recurrence by Coordinating Immune Surveillance. Cancer Res 2025; 85:859-874. [PMID: 39804967 PMCID: PMC11878441 DOI: 10.1158/0008-5472.can-24-0875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/28/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Senescence is a nonproliferative survival state that cancer cells can enter to escape therapy. In addition to soluble factors, senescence cells secrete extracellular vesicles (EV), which are important mediators of intercellular communication. To explore the role of senescent cell (SC)-derived EVs (senEV) in inflammatory responses to senescence, we developed an engraftment-based senescence model in wild-type mice and genetically blocked senEV release in vivo, without significantly affecting soluble mediators. SenEVs were both necessary and sufficient to trigger immune-mediated clearance of SCs, thereby suppressing tumor growth. In the absence of senEVs, the recruitment of MHC-II+ antigen-presenting cells (APC) to the senescence microenvironment was markedly impaired. Blocking senEV release redirected the primary target of SC signaling from APCs to neutrophils. Comprehensive transcriptional and proteomic analyses identified six ligands specific to senEVs, highlighting their role in promoting APC-T cell adhesion and synapse formation. APCs activated CCR2+CD4+ TH17 cells, which seemed to inhibit B-cell activation, and CD4+ T cells were essential for preventing tumor recurrence. These findings suggest that senEVs complement the activity of secreted inflammatory mediators by recruiting and activating distinct immune cell subsets, thereby enhancing the efficient clearance of SCs. These conclusions may have implications not only for tumor recurrence but also for understanding senescence during de novo carcinogenesis. Consequently, this work could inform the development of early detection strategies for cancer based on the biology of cellular senescence. Significance: Chemotherapy-treated senescent tumor cells release extracellular vesicles that trigger an immune response and suppress tumor recurrence. See related commentary by Almeida and Melo, p. 833.
Collapse
Affiliation(s)
- Tahereh Ziglari
- Department of Otolaryngology – Head and Neck Surgery, Oregon Health & Science University, Portland, Oregon, US
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, Oregon, US
- Current address: Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, US
| | - Nicholas L. Calistri
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon, US
| | - Jennifer M. Finan
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, Oregon, US
| | - Daniel S. Derrick
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon, US
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, US
| | - Meagan C. Burnet
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, US
| | - Jennifer E. Kyle
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, US
| | - Matthew Hoare
- Early Cancer Institute, University of Cambridge, Cambridge, UK
| | - Laura M. Heiser
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon, US
| | - Ferdinando Pucci
- Department of Otolaryngology – Head and Neck Surgery, Oregon Health & Science University, Portland, Oregon, US
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, Oregon, US
| |
Collapse
|
5
|
Senapati J, Kantarjian H, Habib D, Haddad FG, Jain N, Short NJ, Jabbour E. Frontline immunotherapeutic combination strategies in adult B-cell acute lymphoblastic leukemia: reducing chemotherapy intensity and toxicity and harnessing efficacy. Leuk Lymphoma 2025:1-12. [PMID: 39791458 DOI: 10.1080/10428194.2025.2449582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
Using immunotherapeutic agents like inotuzumab ozogamicin (InO), blinatumomab, or chimeric antigen receptor T (CAR T)-cell therapy in frontline adult B-cell acute lymphoblastic leukemia (B-ALL) therapy is promising. These agents are mostly well tolerated and have different toxicity profiles than conventional chemotherapy, enabling their combination with chemotherapy. Additionally, they have often been shown to overcome the traditional adverse ALL risk features. Recently blinatumomab was approved as part of consolidation therapy in MRD negative B-ALL; however, a significant proportion of patients had progressed or relapsed before reaching the timepoint of blinatumomab administration. Including InO/blinatumomab from induction onwards could induce earlier and deeper remissions. Modifications of dosing and administration schedules, as with the fractionated InO schedule with low-intensity chemotherapy, and subcutaneous blinatumomab, appear to reduce the toxicity and improve the anti-ALL efficacy. CAR T-cell therapies like brexucabtagene autoleucel as a consolidation approach have shown positive outcomes. The feasibility of using CAR T-cells to reduce the need for long-drawn maintenance and the need for allogeneic hematopoietic stem cell transplantation (HSCT) are questions of ongoing clinical trials. Newer generation CAR T-cell products like obecabtagene autoleucel appear as effective and safer. Better disease monitoring through next generation sequencing based measurable residual disease analysis could identify patients where treatment intensification including HSCT, or deintensification, is suitable.
Collapse
Affiliation(s)
- Jayastu Senapati
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Diane Habib
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fadi G Haddad
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
6
|
Diamond B, Chahar D, Jain MD, Poos AM, Durante M, Ziccheddu B, Kaddoura M, Papadimitriou M, Maclachlan K, Jelinek T, Davies F, Figura NB, Morgan G, Mai E, Weisel KC, Fenk R, Raab MS, Usmani S, Landgren O, Locke FL, Goldschmidt H, Schatz JH, Weinhold N, Maura F. Mutagenic impact and evolutionary influence of radiotherapy in hematologic malignancies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.15.623836. [PMID: 39605649 PMCID: PMC11601314 DOI: 10.1101/2024.11.15.623836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Ionizing radiotherapy (RT) is a widely used palliative and curative treatment strategy for malignancies. In solid tumors, RT-induced double strand breaks lead to the accumulation of indels, and their repair by non-homologous end-joining has been linked to the ID8 mutational signature in resistant cells. However, the extent of RT-induced DNA damage in hematologic malignancies and its impact on their evolution and interplay with commonly used chemotherapies has not yet been explored. Here, we interrogated 580 whole genome sequencing (WGS) from patients with large B-cell lymphoma, multiple myeloma, and myeloid neoplasms and identified ID8 only in relapsed disease. Yet, it was detected after exposure to both RT and mutagenic chemotherapy (i.e., platinum). Using WGS of single-cell colonies derived from treated lymphoma cells, we revealed a dose-response relationship between RT and platinum and ID8. Finally, using ID8 as a genomic barcode we demonstrate that a single RT-resistant cell may seed systemic relapse.
Collapse
|
7
|
Spencer Chapman M, Wilk CM, Boettcher S, Mitchell E, Dawson K, Williams N, Müller J, Kovtonyuk L, Jung H, Caiado F, Roberts K, O'Neill L, Kent DG, Green AR, Nangalia J, Manz MG, Campbell PJ. Clonal dynamics after allogeneic haematopoietic cell transplantation. Nature 2024; 635:926-934. [PMID: 39478227 PMCID: PMC11602715 DOI: 10.1038/s41586-024-08128-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/27/2024] [Indexed: 11/29/2024]
Abstract
Allogeneic haematopoietic cell transplantation (HCT) replaces the stem cells responsible for blood production with those from a donor1,2. Here, to quantify dynamics of long-term stem cell engraftment, we sequenced genomes from 2,824 single-cell-derived haematopoietic colonies of ten donor-recipient pairs taken 9-31 years after HLA-matched sibling HCT3. With younger donors (18-47 years at transplant), 5,000-30,000 stem cells had engrafted and were still contributing to haematopoiesis at the time of sampling; estimates were tenfold lower with older donors (50-66 years). Engrafted cells made multilineage contributions to myeloid, B lymphoid and T lymphoid populations, although individual clones often showed biases towards one or other mature cell type. Recipients had lower clonal diversity than matched donors, equivalent to around 10-15 years of additional ageing, arising from up to 25-fold greater expansion of stem cell clones. A transplant-related population bottleneck could not explain these differences; instead, phylogenetic trees evinced two distinct modes of HCT-specific selection. In pruning selection, cell divisions underpinning recipient-enriched clonal expansions had occurred in the donor, preceding transplant-their selective advantage derived from preferential mobilization, collection, survival ex vivo or initial homing. In growth selection, cell divisions underpinning clonal expansion occurred in the recipient's marrow after engraftment, most pronounced in clones with multiple driver mutations. Uprooting stem cells from their native environment and transplanting them to foreign soil exaggerates selective pressures, distorting and accelerating the loss of clonal diversity compared to the unperturbed haematopoiesis of donors.
Collapse
Affiliation(s)
- Michael Spencer Chapman
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - C Matthias Wilk
- Department of Medical Oncology and Hematology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Steffen Boettcher
- Department of Medical Oncology and Hematology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Emily Mitchell
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Kevin Dawson
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Nicholas Williams
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Jan Müller
- Department of Medical Oncology and Hematology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Larisa Kovtonyuk
- Department of Medical Oncology and Hematology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Hyunchul Jung
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Francisco Caiado
- Department of Medical Oncology and Hematology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Kirsty Roberts
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Laura O'Neill
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, UK
| | - David G Kent
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- York Biomedical Research Institute, University of York, Wentworth Way, York, UK
| | - Anthony R Green
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Jyoti Nangalia
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University of Zurich and University Hospital Zurich, Zurich, Switzerland.
| | - Peter J Campbell
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, UK.
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
8
|
Bailey C, Pich O, Thol K, Watkins TBK, Luebeck J, Rowan A, Stavrou G, Weiser NE, Dameracharla B, Bentham R, Lu WT, Kittel J, Yang SYC, Howitt BE, Sharma N, Litovchenko M, Salgado R, Hung KL, Cornish AJ, Moore DA, Houlston RS, Bafna V, Chang HY, Nik-Zainal S, Kanu N, McGranahan N, Flanagan AM, Mischel PS, Jamal-Hanjani M, Swanton C. Origins and impact of extrachromosomal DNA. Nature 2024; 635:193-200. [PMID: 39506150 PMCID: PMC11540846 DOI: 10.1038/s41586-024-08107-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/24/2024] [Indexed: 11/08/2024]
Abstract
Extrachromosomal DNA (ecDNA) is a major contributor to treatment resistance and poor outcome for patients with cancer1,2. Here we examine the diversity of ecDNA elements across cancer, revealing the associated tissue, genetic and mutational contexts. By analysing data from 14,778 patients with 39 tumour types from the 100,000 Genomes Project, we demonstrate that 17.1% of tumour samples contain ecDNA. We reveal a pattern highly indicative of tissue-context-based selection for ecDNAs, linking their genomic content to their tissue of origin. We show that not only is ecDNA a mechanism for amplification of driver oncogenes, but it also a mechanism that frequently amplifies immunomodulatory and inflammatory genes, such as those that modulate lymphocyte-mediated immunity and immune effector processes. Moreover, ecDNAs carrying immunomodulatory genes are associated with reduced tumour T cell infiltration. We identify ecDNAs bearing only enhancers, promoters and lncRNA elements, suggesting the combinatorial power of interactions between ecDNAs in trans. We also identify intrinsic and environmental mutational processes linked to ecDNA, including those linked to its formation, such as tobacco exposure, and progression, such as homologous recombination repair deficiency. Clinically, ecDNA detection was associated with tumour stage, more prevalent after targeted therapy and cytotoxic treatments, and associated with metastases and shorter overall survival. These results shed light on why ecDNA is a substantial clinical problem that can cooperatively drive tumour growth signals, alter transcriptional landscapes and suppress the immune system.
Collapse
Affiliation(s)
- Chris Bailey
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Oriol Pich
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Kerstin Thol
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Thomas B K Watkins
- Department of Pathology, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Jens Luebeck
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, USA
| | - Andrew Rowan
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Georgia Stavrou
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
| | - Natasha E Weiser
- Department of Pathology, Stanford University, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | | | - Robert Bentham
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Wei-Ting Lu
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Jeanette Kittel
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
| | - S Y Cindy Yang
- Department of Pediatrics, Stanford University, Palo Alto, CA, USA
| | - Brooke E Howitt
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Natasha Sharma
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Maria Litovchenko
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Roberto Salgado
- Department of Pathology, ZAS Hospitals, Antwerp, Belgium
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - King L Hung
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Alex J Cornish
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - David A Moore
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Department of Cellular Pathology, University College London Hospitals, London, UK
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Serena Nik-Zainal
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Nnennaya Kanu
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Adrienne M Flanagan
- Research Department of Pathology, University College London, UCL Cancer Institute, London, UK
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Paul S Mischel
- Department of Pathology, Stanford University, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK.
- Department of Medical Oncology, University College London Hospitals, London, UK.
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Department of Medical Oncology, University College London Hospitals, London, UK.
| |
Collapse
|
9
|
Kartal-Kaess M, Karow A, Bacher U, Pabst T, Joncourt R, Zweier C, Kuehni CE, Porret NA, Roessler J. Clonal hematopoiesis of indeterminate potential is rare in pediatric patients undergoing autologous stem cell transplantation. Pediatr Hematol Oncol 2024; 41:530-539. [PMID: 38840569 DOI: 10.1080/08880018.2024.2362885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) describes recurrent somatic gene mutations in the blood of healthy individuals, associated with higher risk for hematological malignancies and higher all-cause mortality by cardiovascular disease. CHIP increases with age and is more common in adult patients after chemotherapy or radiation for cancer. Furthermore, in some adult patients undergoing autologous stem cell transplantation (ASCT) or thereafter, CHIP has been identified. In children and adolescents, it remains unclear how cellular stressors such as cytotoxic therapy influence the incidence and expansion of CHIP. We conducted a retrospective study on 33 pediatric patients mostly with solid tumors undergoing ASCT for presence of CHIP. We analyzed CD34+ selected peripheral blood stem cell grafts after several cycles of chemotherapy, prior to cell infusion, by next-generation sequencing including 18 "CHIP-genes". Apart from a somatic variant in TP53 in one patient no other variants indicative of CHIP were identified. As a CHIP-unrelated finding, germline variants in CHEK2 and in ATM were identified in two and four patients, respectively. In conclusion, we could not detect "typical" CHIP variants in our cohort of pediatric cancer patients undergoing ASCT. However, more studies with larger patient numbers are necessary to assess if chemotherapy in the pediatric setting contributes to an increased CHIP incidence and at what time point.
Collapse
Affiliation(s)
- Mutlu Kartal-Kaess
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Inselspital, University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Axel Karow
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Inselspital, University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ulrike Bacher
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thomas Pabst
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, Bern, University of Bern, Bern, Switzerland
| | - Raphael Joncourt
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christiane Zweier
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Claudia E Kuehni
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Inselspital, University Hospital, University of Bern, Bern, Switzerland
- Childhood Cancer Research Group, Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Naomi Azur Porret
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jochen Roessler
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Inselspital, University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Bertrums EJM, de Kanter JK, Derks LLM, Verheul M, Trabut L, van Roosmalen MJ, Hasle H, Antoniou E, Reinhardt D, Dworzak MN, Mühlegger N, van den Heuvel-Eibrink MM, Zwaan CM, Goemans BF, van Boxtel R. Selective pressures of platinum compounds shape the evolution of therapy-related myeloid neoplasms. Nat Commun 2024; 15:6025. [PMID: 39019934 PMCID: PMC11255340 DOI: 10.1038/s41467-024-50384-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/08/2024] [Indexed: 07/19/2024] Open
Abstract
Therapy-related myeloid neoplasms (t-MN) arise as a complication of chemo- and/or radiotherapy. Although t-MN can occur both in adult and childhood cancer survivors, the mechanisms driving therapy-related leukemogenesis likely vary across different ages. Chemotherapy is thought to induce driver mutations in children, whereas in adults pre-existing mutant clones are selected by the exposure. However, selective pressures induced by chemotherapy early in life are less well studied. Here, we use single-cell whole genome sequencing and phylogenetic inference to show that the founding cell of t-MN in children starts expanding after cessation of platinum exposure. In patients with Li-Fraumeni syndrome, characterized by a germline TP53 mutation, we find that the t-MN already expands during treatment, suggesting that platinum-induced growth inhibition is TP53-dependent. Our results demonstrate that germline aberrations can interact with treatment exposures in inducing t-MN, which is important for the development of more targeted, patient-specific treatment regimens and follow-up.
Collapse
Affiliation(s)
- Eline J M Bertrums
- Princess Máxima Centrum for pediatric oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Jurrian K de Kanter
- Princess Máxima Centrum for pediatric oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Lucca L M Derks
- Princess Máxima Centrum for pediatric oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Mark Verheul
- Princess Máxima Centrum for pediatric oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Laurianne Trabut
- Princess Máxima Centrum for pediatric oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Markus J van Roosmalen
- Princess Máxima Centrum for pediatric oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Henrik Hasle
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
| | - Evangelia Antoniou
- Clinic of Pediatrics III, University Hospital of Essen, Essen, Germany
- AML-BFM Study Group, Essen, Germany
| | - Dirk Reinhardt
- Clinic of Pediatrics III, University Hospital of Essen, Essen, Germany
- AML-BFM Study Group, Essen, Germany
| | - Michael N Dworzak
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Nora Mühlegger
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | | | - C Michel Zwaan
- Princess Máxima Centrum for pediatric oncology, Utrecht, the Netherlands
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Bianca F Goemans
- Princess Máxima Centrum for pediatric oncology, Utrecht, the Netherlands
| | - Ruben van Boxtel
- Princess Máxima Centrum for pediatric oncology, Utrecht, the Netherlands.
- Oncode Institute, Utrecht, the Netherlands.
| |
Collapse
|
11
|
Sánchez-Guixé M, Muiños F, Pinheiro-Santin M, González-Huici V, Rodriguez-Hernandez CJ, Avgustinova A, Lavarino C, González-Pérez A, Mora J, López-Bigas N. Origins of Second Malignancies in Children and Mutational Footprint of Chemotherapy in Normal Tissues. Cancer Discov 2024; 14:953-964. [PMID: 38501975 PMCID: PMC11145171 DOI: 10.1158/2159-8290.cd-23-1186] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/20/2023] [Accepted: 02/15/2024] [Indexed: 03/20/2024]
Abstract
Pediatric cancers are rare diseases, and children without known germline predisposing conditions who develop a second malignancy during developmental ages are extremely rare. We present four such clinical cases and, through whole-genome and error-correcting ultra-deep duplex sequencing of tumor and normal samples, we explored the origin of the second malignancy in four children, uncovering different routes of development. The exposure to cytotoxic therapies was linked to the emergence of a secondary acute myeloid leukemia. A common somatic mutation acquired early during embryonic development was the driver of two solid malignancies in another child. In two cases, the two tumors developed from completely independent clones diverging during embryogenesis. Importantly, we demonstrate that platinum-based therapies contributed at least one order of magnitude more mutations per day of exposure than aging to normal tissues in these children. SIGNIFICANCE Using whole-genome and error-correcting ultra-deep duplex sequencing, we uncover different origins for second neoplasms in four children. We also uncover the presence of platinum-related mutations across 10 normal tissues of exposed individuals, highlighting the impact that the use of cytotoxic therapies may have on cancer survivors. See related commentary by Pacyna and Nangalia, p. 900. This article is featured in Selected Articles from This Issue, p. 897.
Collapse
Affiliation(s)
- Mònica Sánchez-Guixé
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Ferran Muiños
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Morena Pinheiro-Santin
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Víctor González-Huici
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Alexandra Avgustinova
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Cinzia Lavarino
- Pediatric Cancer Center Barcelona (PCCB), Hospital Sant Joan de Déu, Barcelona, Spain
| | - Abel González-Pérez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Jaume Mora
- Pediatric Cancer Center Barcelona (PCCB), Hospital Sant Joan de Déu, Barcelona, Spain
| | - Núria López-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
12
|
Wang L, Mei Z, Jin G, Liu H, Lv S, Fu R, Li M, Yao C. In situ sustained release hydrogel system delivering GLUT1 inhibitor and chemo-drug for cancer post-surgical treatment. Bioact Mater 2024; 36:541-550. [PMID: 39072288 PMCID: PMC11276927 DOI: 10.1016/j.bioactmat.2024.06.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Systematic administration of small molecular drugs often suffered from the low efficacy and systemic toxicity in cancer therapy. In addition, application of single mode drug usually leads to unsatisfactory therapeutic outcomes. Currently, developing multimodal-drug combination strategy that acts on different pathways without increasing side effects remains great challenge. Here, we developed a hydrogel system that co-delivered glycolysis inhibitor apigenin and chemo-drug gemcitabine to realize combination strategy for combating cancer with minimal systemic toxicity. We demonstrated that this system can not only eliminate tumor cells in situ, but also induce abscopal effect on various tumor models. These results showed that our study provided a safe and effective strategy for clinical cancer treatment.
Collapse
Affiliation(s)
- Lanqing Wang
- Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zi Mei
- School of Stomatology, School of Materials Science and Engineering, Department of General Surgery, Third Hospital, Peking University, Beijing, 100871, China
| | - Guanyu Jin
- School of Stomatology, School of Materials Science and Engineering, Department of General Surgery, Third Hospital, Peking University, Beijing, 100871, China
| | - Hao Liu
- School of Stomatology, School of Materials Science and Engineering, Department of General Surgery, Third Hospital, Peking University, Beijing, 100871, China
| | - Shixian Lv
- School of Stomatology, School of Materials Science and Engineering, Department of General Surgery, Third Hospital, Peking University, Beijing, 100871, China
| | - Runjia Fu
- Department of Oncology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Muxing Li
- School of Stomatology, School of Materials Science and Engineering, Department of General Surgery, Third Hospital, Peking University, Beijing, 100871, China
| | - Cuiping Yao
- Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
13
|
Struys I, Velázquez C, Devriendt K, Godderis L, Segers H, Thienpont B, van Boxtel R, Van Calsteren K, Voet T, Wolters V, Lenaerts L, Amant F. Evaluating offspring Genomic and Epigenomic alterations after prenatal exposure to Cancer treatment In Pregnancy (GE-CIP): a multicentric observational study. BMJ Open 2024; 14:e081833. [PMID: 38548357 PMCID: PMC10982724 DOI: 10.1136/bmjopen-2023-081833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/05/2024] [Indexed: 04/02/2024] Open
Abstract
INTRODUCTION Around 1 in 1000-2000 pregnancies are affected by a cancer diagnosis. Previous studies have shown that chemotherapy during pregnancy has reassuring cognitive and cardiac neonatal outcomes, and hence has been proposed as standard of care. However, although these children perform within normal ranges for their age, subtle differences have been identified. Given that chemotherapeutic compounds can cross the placenta, the possibility that prenatal chemotherapy exposure mutates the offspring's genome and/or epigenome, with potential deleterious effects later in life, urges to be investigated. METHODS AND ANALYSES This multicentric observational study aims to collect cord blood, meconium and neonatal buccal cells at birth, as well as peripheral blood, buccal cells and urine from infants when 6, 18 and/or 36 months of age. Using bulk and single-cell approaches, we will compare samples from chemotherapy-treated pregnant patients with cancer, pregnant patients with cancer not treated with chemotherapy and healthy pregnant women. Potential chemotherapy-related newborn genomic and/or epigenomic alterations, such as single nucleotide variants, copy number variants and DNA-methylation alterations, will be identified in mononuclear and epithelial cells, isolated from blood, buccal swabs and urine. DNA from maternal peripheral blood and paternal buccal cells will be used to determine de novo somatic mutations in the neonatal blood and epithelial cells. Additionally, the accumulated exposure of the fetus, and biological effective dose of alkylating agents, will be assessed in meconium and cord blood via mass spectrometry approaches. ETHICS AND DISSEMINATION The Ethics Committee Research of UZ/KU Leuven (EC Research) and the Medical Ethical Review Committee of University Medical Center Amsterdam have approved the study. Results of this study will be disseminated via presentations at (inter)national conferences, through peer-reviewed, open-access publications, via social media platforms aimed to inform patients and healthcare workers, and through the website of the International Network on Cancer, Infertility and Pregnancy (www.cancerinpregnancy.org).
Collapse
Affiliation(s)
- Ilana Struys
- Department of Oncology, KU Leuven, Leuven, Flanders, Belgium
| | | | - Koenraad Devriendt
- Department of Human Genetics, University Hospital Leuven, Leuven, Belgium
| | - Lode Godderis
- Department of Public Health and Primary Care, KU Leuven, Leuven, Flanders, Belgium
- External Service for Prevention and Protection at Work, Heverlee, Belgium
| | - Heidi Segers
- Department of Paediatric Oncology, University Hospital Leuven, Leuven, Belgium
| | | | - Ruben van Boxtel
- Princess Maxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Kristel Van Calsteren
- Department of Obstetrics and Gynecology, University Hospital Leuven, Leuven, Belgium
| | - Thierry Voet
- Department of Human Genetics, KU Leuven, Leuven, Flanders, Belgium
- Institute for Single Cell Omics (LISCO), KU Leuven, Leuven, Flanders, Belgium
| | - Vera Wolters
- Gynecologic Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Frederic Amant
- Department of Oncology, KU Leuven, Leuven, Flanders, Belgium
- Department of Obstetrics and Gynecology, University Hospital Leuven, Leuven, Belgium
- Gynecologic Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
14
|
Vlasschaert C, Lanktree MB, Rauh MJ, Kelly TN, Natarajan P. Clonal haematopoiesis, ageing and kidney disease. Nat Rev Nephrol 2024; 20:161-174. [PMID: 37884787 PMCID: PMC10922936 DOI: 10.1038/s41581-023-00778-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 10/28/2023]
Abstract
Clonal haematopoiesis of indeterminate potential (CHIP) is a preclinical condition wherein a sizeable proportion of an individual's circulating blood cells are derived from a single mutated haematopoietic stem cell. CHIP occurs frequently with ageing - more than 10% of individuals over 65 years of age are affected - and is associated with an increased risk of disease across several organ systems and premature death. Emerging evidence suggests that CHIP has a role in kidney health, including associations with predisposition to acute kidney injury, impaired recovery from acute kidney injury and kidney function decline, both in the general population and among those with chronic kidney disease. Beyond its direct effect on the kidney, CHIP elevates the susceptibility of individuals to various conditions that can detrimentally affect the kidneys, including cardiovascular disease, obesity and insulin resistance, liver disease, gout, osteoporosis and certain autoimmune diseases. Aberrant pro-inflammatory signalling, telomere attrition and epigenetic ageing are potential causal pathophysiological pathways and mediators that underlie CHIP-related disease risk. Experimental animal models have shown that inhibition of inflammatory cytokine signalling can ameliorate many of the pathological effects of CHIP, and assessment of the efficacy and safety of this class of medications for human CHIP-associated pathology is ongoing.
Collapse
Affiliation(s)
| | - Matthew B Lanktree
- Department of Medicine and Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Michael J Rauh
- Department of Pathology and Molecular Medicine, Kingston, Ontario, Canada
| | - Tanika N Kelly
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Pradeep Natarajan
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Yun JK, Kim S, An H, Lee GD, Kim HR, Kim YH, Kim DK, Park SI, Choi S, Koh Y. Pre-operative clonal hematopoiesis is related to adverse outcome in lung cancer after adjuvant therapy. Genome Med 2023; 15:111. [PMID: 38087308 PMCID: PMC10714617 DOI: 10.1186/s13073-023-01266-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Clonal hematopoiesis (CH) frequently progresses after chemotherapy or radiotherapy. We evaluated the clinical impact of preoperative CH on the survival outcomes of patients with non-small cell lung cancer (NSCLC) who underwent surgical resection followed by adjuvant therapy. METHODS A total of 415 consecutive patients with NSCLC who underwent surgery followed by adjuvant therapy from 2011 to 2017 were analyzed. CH status was evaluated using targeted deep sequencing of blood samples collected before surgery. To minimize the possible selection bias between the two groups according to CH status, a propensity score matching (PSM) was adopted. Early-stage patients were further analyzed with additional matched cohort of patients who did not receive adjuvant therapy. RESULTS CH was detected in 21% (86/415) of patients with NSCLC before adjuvant therapy. Patients with CH mutations had worse overall survival (OS) than those without (hazard ratio [95% confidence interval] = 1.56 [1.07-2.28], p = 0.020), which remained significant after the multivariable analysis (1.58 [1.08-2.32], p = 0.019). Of note, the presence of CH was associated with non-cancer mortality (p = 0.042) and mortality of unknown origin (p = 0.018). In patients with stage IIB NSCLC, there was a significant interaction on OS between CH and adjuvant therapy after the adjustment with several cofactors through the multivariable analysis (HR 1.19, 95% CI 1.00-1.1.41, p = 0.041). CONCLUSIONS In resected NSCLC, existence of preoperative CH might amplify CH-related adverse outcomes through adjuvant treatments, resulting in poor survival results.
Collapse
Affiliation(s)
- Jae Kwang Yun
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, Ulsan University College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, Republic of Korea
| | - Sugyeong Kim
- Genome Opinion Inc., Sungsu SKV1 Center, 1-721, 48, Achasan-Ro 17-Gil, Seongdong-Gu, Seoul, Republic of Korea
| | - Hongyul An
- Genome Opinion Inc., Sungsu SKV1 Center, 1-721, 48, Achasan-Ro 17-Gil, Seongdong-Gu, Seoul, Republic of Korea
| | - Geun Dong Lee
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, Ulsan University College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, Republic of Korea
| | - Hyeong Ryul Kim
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, Ulsan University College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, Republic of Korea
| | - Yong-Hee Kim
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, Ulsan University College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, Republic of Korea
| | - Dong Kwan Kim
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, Ulsan University College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, Republic of Korea
| | - Seung-Il Park
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, Ulsan University College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, Republic of Korea
| | - Sehoon Choi
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, Ulsan University College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, Republic of Korea.
| | - Youngil Koh
- Genome Opinion Inc., Sungsu SKV1 Center, 1-721, 48, Achasan-Ro 17-Gil, Seongdong-Gu, Seoul, Republic of Korea.
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, 101, Daehak-Ro, Jongno-Gu, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Amancherla K, Schlendorf KH, Vlasschaert C, Lowery BD, Wells QS, See SB, Zorn E, Colombo PC, Reilly MP, Lindenfeld J, Uriel N, Freedman JE, Shah RV, Moslehi J, Bick AG, Clerkin K. Clonal hematopoiesis of indeterminate potential and outcomes after heart transplantation: A multicenter study. Am J Transplant 2023; 23:1256-1263. [PMID: 37156299 PMCID: PMC10524751 DOI: 10.1016/j.ajt.2023.04.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/11/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
Cardiac allograft vasculopathy (CAV) is a leading cause of late graft failure and mortality after heart transplantation (HT). Sharing some features with atherosclerosis, CAV results in diffuse narrowing of the epicardial coronaries and microvasculature, with consequent graft ischemia. Recently, clonal hematopoiesis of indeterminate potential (CHIP) has emerged as a risk factor for cardiovascular disease and mortality. We aimed to investigate the relationship between CHIP and posttransplant outcomes, including CAV. We analyzed 479 HT recipients with stored DNA samples at 2 high-volume transplant centers, Vanderbilt University Medical Center and Columbia University Irving Medical Center. We explored the association between the presence of CHIP mutations with CAV and mortality after HT. In this case-control analysis, carriers of CHIP mutations were not at increased risk of CAV or mortality after HT. In a large multicenter genomics study of the heart transplant population, the presence of CHIP mutations was not associated with an increased risk of CAV or posttransplant mortality.
Collapse
Affiliation(s)
- Kaushik Amancherla
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| | - Kelly H Schlendorf
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Brandon D Lowery
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Quinn S Wells
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sarah B See
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York City, New York City, USA
| | - Emmanuel Zorn
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York City, New York City, USA
| | - Paolo C Colombo
- Division of Cardiology, Columbia University Medical Center, New York City, New York City, USA
| | - Muredach P Reilly
- Division of Cardiology, Columbia University Medical Center, New York City, New York City, USA
| | - JoAnn Lindenfeld
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nir Uriel
- Division of Cardiology, Columbia University Medical Center, New York City, New York City, USA
| | - Jane E Freedman
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ravi V Shah
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Javid Moslehi
- Section of Cardio-Oncology and Immunology, University of California San Francisco, San Francisco, California, USA
| | - Alexander G Bick
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kevin Clerkin
- Division of Cardiology, Columbia University Medical Center, New York City, New York City, USA
| |
Collapse
|
17
|
Franch-Expósito S, Mehine M, Ptashkin RN, Bolton KL, Bandlamudi C, Srinivasan P, Zhang L, Goodell MA, Gedvilaite E, Menghrajani K, Sánchez-Vela P, Mandelker D, Comen E, Norton L, Benayed R, Gao T, Papaemmanuil E, Taylor B, Levine R, Offit K, Stadler Z, Berger MF, Zehir A. Associations Between Cancer Predisposition Mutations and Clonal Hematopoiesis in Patients With Solid Tumors. JCO Precis Oncol 2023; 7:e2300070. [PMID: 37561983 PMCID: PMC10581611 DOI: 10.1200/po.23.00070] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/31/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023] Open
Abstract
PURPOSE Clonal hematopoiesis (CH), the expansion of clones in the hematopoietic system, has been linked to different internal and external features such as aging, genetic ancestry, smoking, and oncologic treatment. However, the interplay between mutations in known cancer predisposition genes and CH has not been thoroughly examined in patients with solid tumors. METHODS We used prospective tumor-blood paired sequencing data from 46,906 patients who underwent Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT) testing to interrogate the associations between CH and rare pathogenic or likely pathogenic (P/LP) germline variants. RESULTS We observed an enrichment of CH-positive patients among those carrying P/LP germline mutations and identified a significant association between P/LP germline variants in ATM and CH. Germline and CH comutation patterns in ATM, TP53, and CHEK2 suggested biallelic inactivation as a potential mediator of clonal expansion. Moreover, we observed that CH-PPM1D mutations, similar to somatic tumor-associated PPM1D mutations, were depleted in patients with P/LP germline mutations in the DNA damage response (DDR) genes ATM, CHEK2, and TP53. Patients with solid tumors and harboring P/LP germline mutations, CH mutations, and mosaicism chromosomal alterations might be at an increased risk of developing secondary leukemia while germline variants in TP53 were identified as an independent risk factor (hazard ratio, 36; P < .001) for secondary leukemias. CONCLUSION Our results suggest a close relationship between inherited variants and CH mutations within the DDR genes in patients with solid tumors. Associations identified in this study might translate into enhanced clinical surveillance for CH and associated comorbidities in patients with cancer harboring these germline mutations.
Collapse
Affiliation(s)
- Sebastià Franch-Expósito
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Miika Mehine
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ryan N. Ptashkin
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- C2i Genomics, New York, NY
| | - Kelly L. Bolton
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Chaitanya Bandlamudi
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Preethi Srinivasan
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Natera Inc, San Carlos, CA
| | - Linda Zhang
- Department of Molecular and Cellular Biology, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX
| | - Margaret A. Goodell
- Department of Molecular and Cellular Biology, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX
| | - Erika Gedvilaite
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kamal Menghrajani
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Pablo Sánchez-Vela
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Diana Mandelker
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Elizabeth Comen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Larry Norton
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ryma Benayed
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Precision Medicine and Biosamples, AstraZeneca, New York, NY
| | - Teng Gao
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA
| | - Elli Papaemmanuil
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Barry Taylor
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ross Levine
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kenneth Offit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Zsofia Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael F. Berger
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ahmet Zehir
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Precision Medicine and Biosamples, AstraZeneca, New York, NY
| |
Collapse
|
18
|
Testa U, Castelli G, Pelosi E. TP53-Mutated Myelodysplasia and Acute Myeloid Leukemia. Mediterr J Hematol Infect Dis 2023; 15:e2023038. [PMID: 37435040 PMCID: PMC10332352 DOI: 10.4084/mjhid.2023.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/01/2023] [Indexed: 07/13/2023] Open
Abstract
TP53-mutated myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) form a distinct and heterogeneous group of myeloid malignancies associated with poor outcomes. Studies carried out in the last years have in part elucidated the complex role played by TP53 mutations in the pathogenesis of these myeloid disorders and in the mechanisms of drug resistance. A consistent number of studies has shown that some molecular parameters, such as the presence of a single or multiple TP53 mutations, the presence of concomitant TP53 deletions, the association with co-occurring mutations, the clonal size of TP53 mutations, the involvement of a single (monoallelic) or of both TP53 alleles (biallelic) and the cytogenetic architecture of concomitant chromosome abnormalities are major determinants of outcomes of patients. The limited response of these patients to standard treatments, including induction chemotherapy, hypomethylating agents and venetoclax-based therapies and the discovery of an immune dysregulation have induced a shift to new emerging therapies, some of which being associated with promising efficacy. The main aim of these novel immune and nonimmune strategies consists in improving survival and in increasing the number of TP53-mutated MDS/AML patients in remission amenable to allogeneic stem cell transplantation.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Rome Italy
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Rome Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Rome Italy
| |
Collapse
|
19
|
Sherwood K, Ward JC, Soriano I, Martin L, Campbell A, Rahbari R, Kafetzopoulos I, Sproul D, Green A, Sampson JR, Donaldson A, Ong KR, Heinimann K, Nielsen M, Thomas H, Latchford A, Palles C, Tomlinson I. Germline de novo mutations in families with Mendelian cancer syndromes caused by defects in DNA repair. Nat Commun 2023; 14:3636. [PMID: 37336879 PMCID: PMC10279637 DOI: 10.1038/s41467-023-39248-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 05/31/2023] [Indexed: 06/21/2023] Open
Abstract
DNA repair defects underlie many cancer syndromes. We tested whether de novo germline mutations (DNMs) are increased in families with germline defects in polymerase proofreading or base excision repair. A parent with a single germline POLE or POLD1 mutation, or biallelic MUTYH mutations, had 3-4 fold increased DNMs over sex-matched controls. POLE had the largest effect. The DNMs carried mutational signatures of the appropriate DNA repair deficiency. No DNM increase occurred in offspring of MUTYH heterozygous parents. Parental DNA repair defects caused about 20-150 DNMs per child, additional to the ~60 found in controls, but almost all extra DNMs occurred in non-coding regions. No increase in post-zygotic mutations was detected, excepting a child with bi-allelic MUTYH mutations who was excluded from the main analysis; she had received chemotherapy and may have undergone oligoclonal haematopoiesis. Inherited DNA repair defects associated with base pair-level mutations increase DNMs, but phenotypic consequences appear unlikely.
Collapse
Affiliation(s)
- Kitty Sherwood
- Cancer Research UK Edinburgh Centre and MRC Human Genetics Unit, Institute of Genomics and Cancer, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Joseph C Ward
- Dept of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Ignacio Soriano
- Dept of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Lynn Martin
- Institute of Cancer and Genomic Sciences, University of Birmingham Medical School, Vincent Drive, Edgbaston, Birmingham, B15 2JJ, UK
| | - Archie Campbell
- Centre for Genetics and Experimental Medicine, Institute of Genetics and Cancer, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Raheleh Rahbari
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Ioannis Kafetzopoulos
- Cancer Research UK Edinburgh Centre and MRC Human Genetics Unit, Institute of Genomics and Cancer, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Duncan Sproul
- Cancer Research UK Edinburgh Centre and MRC Human Genetics Unit, Institute of Genomics and Cancer, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Andrew Green
- Department of Clinical Genetics, Children's Health Ireland and School of Medicine University College, Dublin, Ireland
| | - Julian R Sampson
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Alan Donaldson
- Bristol Regional Clinical Genetics Service, St Michael's Hospital, Southwell Street, Bristol, BS2 8EG, UK
| | - Kai-Ren Ong
- West Midlands Regional Genetics Service, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Karl Heinimann
- Institute for Medical Genetics and Pathology, University Hospital Basel, Basel, BS, Switzerland
| | - Maartje Nielsen
- Department of Clinical Genetics, Leiden University Medical Centre, 2333 ZA, Leiden, the Netherlands
| | - Huw Thomas
- St Mark's Hospital, Watford Road, Harrow, HA1 3UJ, UK
| | | | - Claire Palles
- Institute of Cancer and Genomic Sciences, University of Birmingham Medical School, Vincent Drive, Edgbaston, Birmingham, B15 2JJ, UK.
| | - Ian Tomlinson
- Dept of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.
| |
Collapse
|
20
|
Diamond B, Ziccheddu B, Maclachlan K, Taylor J, Boyle E, Ossa JA, Jahn J, Affer M, Totiger TM, Coffey D, Chandhok N, Watts J, Cimmino L, Lu SX, Bolli N, Bolton K, Landau H, Park JH, Ganesh K, McPherson A, Sekeres MA, Lesokhin A, Chung DJ, Zhang Y, Ho C, Roshal M, Tyner J, Nimer S, Papaemmanuil E, Usmani S, Morgan G, Landgren O, Maura F. Tracking the evolution of therapy-related myeloid neoplasms using chemotherapy signatures. Blood 2023; 141:2359-2371. [PMID: 36626250 PMCID: PMC10273163 DOI: 10.1182/blood.2022018244] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/22/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Patients treated with cytotoxic therapies, including autologous stem cell transplantation, are at risk for developing therapy-related myeloid neoplasms (tMN). Preleukemic clones (ie, clonal hematopoiesis [CH]) are detectable years before the development of these aggressive malignancies, although the genomic events leading to transformation and expansion are not well defined. Here, by leveraging distinctive chemotherapy-associated mutational signatures from whole-genome sequencing data and targeted sequencing of prechemotherapy samples, we reconstructed the evolutionary life-history of 39 therapy-related myeloid malignancies. A dichotomy was revealed, in which neoplasms with evidence of chemotherapy-induced mutagenesis from platinum and melphalan were hypermutated and enriched for complex structural variants (ie, chromothripsis), whereas neoplasms with nonmutagenic chemotherapy exposures were genomically similar to de novo acute myeloid leukemia. Using chemotherapy-associated mutational signatures as temporal barcodes linked to discrete clinical exposure in each patient's life, we estimated that several complex events and genomic drivers were acquired after chemotherapy was administered. For patients with prior multiple myeloma who were treated with high-dose melphalan and autologous stem cell transplantation, we demonstrate that tMN can develop from either a reinfused CH clone that escapes melphalan exposure and is selected after reinfusion, or from TP53-mutant CH that survives direct myeloablative conditioning and acquires melphalan-induced DNA damage. Overall, we revealed a novel mode of tMN progression that is not reliant on direct mutagenesis or even exposure to chemotherapy. Conversely, for tMN that evolve under the influence of chemotherapy-induced mutagenesis, distinct chemotherapies not only select preexisting CH but also promote the acquisition of recurrent genomic drivers.
Collapse
Affiliation(s)
- Benjamin Diamond
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | | | - Kylee Maclachlan
- Division of Myeloma, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Justin Taylor
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Eileen Boyle
- Myeloma Research Program, New York University Langone, Perlmutter Cancer Center, New York, NY
| | - Juan Arango Ossa
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jacob Jahn
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Maurizio Affer
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | | | - David Coffey
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Namrata Chandhok
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Justin Watts
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Luisa Cimmino
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Sydney X. Lu
- Division of Hematology, Stanford Hospital and Clinics, Stanford University, Stanford, CA
| | - Niccolò Bolli
- Department of Oncology and Onco-Hematology, Università degli Studi di Milano, Milan, Italy
- Hematology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Kelly Bolton
- Division of Oncology, Washington University School of Medicine, St. Louis, MO
| | - Heather Landau
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jae H. Park
- Department of Medicine, Memorial Hospital, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Karuna Ganesh
- Department of Medicine, Memorial Hospital, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Andrew McPherson
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Alexander Lesokhin
- Division of Myeloma, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - David J. Chung
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yanming Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Caleb Ho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mikhail Roshal
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jeffrey Tyner
- Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR
| | - Stephen Nimer
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Elli Papaemmanuil
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Saad Usmani
- Division of Myeloma, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Gareth Morgan
- Myeloma Research Program, New York University Langone, Perlmutter Cancer Center, New York, NY
| | - Ola Landgren
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Francesco Maura
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| |
Collapse
|
21
|
Maura F, Ziccheddu B, Xiang JZ, Bhinder B, Rosiene J, Abascal F, Maclachlan KH, Eng KW, Uppal M, He F, Zhang W, Gao Q, Yellapantula VD, Trujillo-Alonso V, Park SI, Oberley MJ, Ruckdeschel E, Lim MS, Wertheim GB, Barth MJ, Horton TM, Derkach A, Kovach AE, Forlenza CJ, Zhang Y, Landgren O, Moskowitz CH, Cesarman E, Imielinski M, Elemento O, Roshal M, Giulino-Roth L. Molecular Evolution of Classic Hodgkin Lymphoma Revealed Through Whole-Genome Sequencing of Hodgkin and Reed Sternberg Cells. Blood Cancer Discov 2023; 4:208-227. [PMID: 36723991 PMCID: PMC10150291 DOI: 10.1158/2643-3230.bcd-22-0128] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/21/2022] [Accepted: 01/26/2023] [Indexed: 02/02/2023] Open
Abstract
The rarity of malignant Hodgkin and Reed Sternberg (HRS) cells in classic Hodgkin lymphoma (cHL) limits the ability to study the genomics of cHL. To circumvent this, our group has previously optimized fluorescence-activated cell sorting to purify HRS cells. Using this approach, we now report the whole-genome sequencing landscape of HRS cells and reconstruct the chronology and likely etiology of pathogenic events leading to cHL. We identified alterations in driver genes not previously described in cHL, APOBEC mutational activity, and the presence of complex structural variants including chromothripsis. We found that high ploidy in cHL is often acquired through multiple, independent chromosomal gains events including whole-genome duplication. Evolutionary timing analyses revealed that structural variants enriched for RAG motifs, driver mutations in B2M, BCL7A, GNA13, and PTPN1, and the onset of AID-driven mutagenesis usually preceded large chromosomal gains. This study provides a temporal reconstruction of cHL pathogenesis. SIGNIFICANCE Previous studies in cHL were limited to coding sequences and therefore not able to comprehensively decipher the tumor complexity. Here, leveraging cHL whole-genome characterization, we identify driver events and reconstruct the tumor evolution, finding that structural variants, driver mutations, and AID mutagenesis precede chromosomal gains. This article is highlighted in the In This Issue feature, p. 171.
Collapse
Affiliation(s)
- Francesco Maura
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Bachisio Ziccheddu
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Jenny Z. Xiang
- Weill Cornell Medical College, New York, New York
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, and Meyer Cancer Center, Weill Cornell Medical College, New York, New York
| | - Bhavneet Bhinder
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, and Meyer Cancer Center, Weill Cornell Medical College, New York, New York
| | - Joel Rosiene
- Weill Cornell Medical College, New York, New York
| | - Federico Abascal
- The Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Kylee H. Maclachlan
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kenneth Wha Eng
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, and Meyer Cancer Center, Weill Cornell Medical College, New York, New York
| | - Manik Uppal
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, and Meyer Cancer Center, Weill Cornell Medical College, New York, New York
| | - Feng He
- Weill Cornell Medical College, New York, New York
| | - Wei Zhang
- Weill Cornell Medical College, New York, New York
| | - Qi Gao
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Venkata D. Yellapantula
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology and Laboratory Medicine at Children's Hospital Los Angeles, Los Angeles, California
| | | | - Sunita I. Park
- Department of Pathology, Children's Hospital of Atlanta, Atlanta, Georgia
| | | | | | - Megan S. Lim
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, Philadelphia
| | - Gerald B. Wertheim
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, Philadelphia
| | - Matthew J. Barth
- Department of Pediatrics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Terzah M. Horton
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Andriy Derkach
- Department of Epidemiology and Statistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | | | - Yanming Zhang
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ola Landgren
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Craig H. Moskowitz
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | | | - Marcin Imielinski
- Weill Cornell Medical College, New York, New York
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, and Meyer Cancer Center, Weill Cornell Medical College, New York, New York
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Olivier Elemento
- Weill Cornell Medical College, New York, New York
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, and Meyer Cancer Center, Weill Cornell Medical College, New York, New York
| | - Mikhail Roshal
- Memorial Sloan Kettering Cancer Center, New York, New York
| | | |
Collapse
|
22
|
Reed SC, Croessmann S, Park BH. CHIP Happens: Clonal Hematopoiesis of Indeterminate Potential and Its Relationship to Solid Tumors. Clin Cancer Res 2023; 29:1403-1411. [PMID: 36454121 PMCID: PMC10106364 DOI: 10.1158/1078-0432.ccr-22-2598] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/21/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is characterized by the expansion of hematopoietic cells harboring leukemia-associated somatic mutations in otherwise healthy people and occurs in at least 10% of adults over 70. It is well established that people with CHIP have increased rates of hematologic malignancy, increased risk of cardiovascular disease, and worse all-cause mortality compared with those without CHIP. Despite recent advancements in understanding CHIP as it relates to these known outcomes, much remains to be learned about the development and role of CHIP in other disease states. Emerging research has identified high rates of CHIP in patients with solid tumors, driven in part by oncologic therapy, and revealed associations between CHIP and differential outcomes in both solid tumors and other diseases. Recent studies have demonstrated that CHIP can contribute to dysregulated inflammatory signaling in multiple contexts, underscoring the importance of interrogating how CHIP might alter tumor immunology. Here, we review the role of CHIP mutations in clonal expansion of hematopoietic cells, explore the relationship between CHIP and solid tumors, and discuss the potential roles of CHIP in inflammation and solid tumor biology.
Collapse
Affiliation(s)
- Sarah C. Reed
- The Vanderbilt-Ingram Cancer Center, Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sarah Croessmann
- The Vanderbilt-Ingram Cancer Center, Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ben Ho Park
- The Vanderbilt-Ingram Cancer Center, Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
23
|
Al Bakir M, Huebner A, Martínez-Ruiz C, Grigoriadis K, Watkins TBK, Pich O, Moore DA, Veeriah S, Ward S, Laycock J, Johnson D, Rowan A, Razaq M, Akther M, Naceur-Lombardelli C, Prymas P, Toncheva A, Hessey S, Dietzen M, Colliver E, Frankell AM, Bunkum A, Lim EL, Karasaki T, Abbosh C, Hiley CT, Hill MS, Cook DE, Wilson GA, Salgado R, Nye E, Stone RK, Fennell DA, Price G, Kerr KM, Naidu B, Middleton G, Summers Y, Lindsay CR, Blackhall FH, Cave J, Blyth KG, Nair A, Ahmed A, Taylor MN, Procter AJ, Falzon M, Lawrence D, Navani N, Thakrar RM, Janes SM, Papadatos-Pastos D, Forster MD, Lee SM, Ahmad T, Quezada SA, Peggs KS, Van Loo P, Dive C, Hackshaw A, Birkbak NJ, Zaccaria S, Jamal-Hanjani M, McGranahan N, Swanton C. The evolution of non-small cell lung cancer metastases in TRACERx. Nature 2023; 616:534-542. [PMID: 37046095 PMCID: PMC10115651 DOI: 10.1038/s41586-023-05729-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/12/2023] [Indexed: 04/14/2023]
Abstract
Metastatic disease is responsible for the majority of cancer-related deaths1. We report the longitudinal evolutionary analysis of 126 non-small cell lung cancer (NSCLC) tumours from 421 prospectively recruited patients in TRACERx who developed metastatic disease, compared with a control cohort of 144 non-metastatic tumours. In 25% of cases, metastases diverged early, before the last clonal sweep in the primary tumour, and early divergence was enriched for patients who were smokers at the time of initial diagnosis. Simulations suggested that early metastatic divergence more frequently occurred at smaller tumour diameters (less than 8 mm). Single-region primary tumour sampling resulted in 83% of late divergence cases being misclassified as early, highlighting the importance of extensive primary tumour sampling. Polyclonal dissemination, which was associated with extrathoracic disease recurrence, was found in 32% of cases. Primary lymph node disease contributed to metastatic relapse in less than 20% of cases, representing a hallmark of metastatic potential rather than a route to subsequent recurrences/disease progression. Metastasis-seeding subclones exhibited subclonal expansions within primary tumours, probably reflecting positive selection. Our findings highlight the importance of selection in metastatic clone evolution within untreated primary tumours, the distinction between monoclonal versus polyclonal seeding in dictating site of recurrence, the limitations of current radiological screening approaches for early diverging tumours and the need to develop strategies to target metastasis-seeding subclones before relapse.
Collapse
Affiliation(s)
- Maise Al Bakir
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Ariana Huebner
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Carlos Martínez-Ruiz
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Kristiana Grigoriadis
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Thomas B K Watkins
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Oriol Pich
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - David A Moore
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Department of Cellular Pathology, University College London Hospitals, London, UK
| | - Selvaraju Veeriah
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Sophia Ward
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Advanced Sequencing Facility, The Francis Crick Institute, London, UK
| | - Joanne Laycock
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Diana Johnson
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Andrew Rowan
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Maryam Razaq
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Mita Akther
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | | | - Paulina Prymas
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Antonia Toncheva
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Sonya Hessey
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
- Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK
| | - Michelle Dietzen
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Emma Colliver
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Alexander M Frankell
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Abigail Bunkum
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
- Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK
| | - Emilia L Lim
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Takahiro Karasaki
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
| | - Christopher Abbosh
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Crispin T Hiley
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Mark S Hill
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Daniel E Cook
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Gareth A Wilson
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Roberto Salgado
- Department of Pathology, ZAS Hospitals, Antwerp, Belgium
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Emma Nye
- Experimental Histopathology, The Francis Crick Institute, London, UK
| | | | - Dean A Fennell
- University of Leicester, Leicester, UK
- University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Gillian Price
- Department of Medical Oncology, Aberdeen Royal Infirmary NHS Grampian, Aberdeen, UK
- University of Aberdeen, Aberdeen, UK
| | - Keith M Kerr
- University of Aberdeen, Aberdeen, UK
- Department of Pathology, Aberdeen Royal Infirmary NHS Grampian, Aberdeen, UK
| | - Babu Naidu
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Gary Middleton
- University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Yvonne Summers
- Division of Cancer Sciences, The University of Manchester and The Christie NHS Foundation Trust, Manchester, UK
| | - Colin R Lindsay
- Division of Cancer Sciences, The University of Manchester and The Christie NHS Foundation Trust, Manchester, UK
| | - Fiona H Blackhall
- Division of Cancer Sciences, The University of Manchester and The Christie NHS Foundation Trust, Manchester, UK
| | - Judith Cave
- Department of Oncology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Kevin G Blyth
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
- Queen Elizabeth University Hospital, Glasgow, UK
| | - Arjun Nair
- Department of Radiology, University College London Hospitals, London, UK
- UCL Respiratory, Department of Medicine, University College London, London, UK
| | - Asia Ahmed
- Department of Radiology, University College London Hospitals, London, UK
| | - Magali N Taylor
- Department of Radiology, University College London Hospitals, London, UK
| | | | - Mary Falzon
- Department of Cellular Pathology, University College London Hospitals, London, UK
| | - David Lawrence
- Department of Thoracic Surgery, University College London Hospital NHS Trust, London, UK
| | - Neal Navani
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
- Department of Thoracic Medicine, University College London Hospitals, London, UK
| | - Ricky M Thakrar
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
- Department of Thoracic Medicine, University College London Hospitals, London, UK
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | | | - Martin D Forster
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Department of Oncology, University College London Hospitals, London, UK
| | - Siow Ming Lee
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Department of Oncology, University College London Hospitals, London, UK
| | - Tanya Ahmad
- Department of Oncology, University College London Hospitals, London, UK
| | - Sergio A Quezada
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Immune Regulation and Tumour Immunotherapy Group, Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Karl S Peggs
- Department of Haematology, University College London Hospitals, London, UK
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Peter Van Loo
- Cancer Genomics Laboratory, The Francis Crick Institute, London, UK
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Caroline Dive
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University of Manchester, Manchester, UK
| | - Allan Hackshaw
- Cancer Research UK & UCL Cancer Trials Centre, London, UK
| | - Nicolai J Birkbak
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Simone Zaccaria
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK.
- Department of Oncology, University College London Hospitals, London, UK.
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
- Department of Oncology, University College London Hospitals, London, UK.
| |
Collapse
|
24
|
Xie Z, Zeidan AM. CHIPing away the progression potential of CHIP: A new reality in the making. Blood Rev 2023; 58:101001. [PMID: 35989137 DOI: 10.1016/j.blre.2022.101001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/15/2022]
Abstract
Over the past few years, we have gained a deeper understanding of clonal hematopoiesis of indeterminate potential (CHIP), especially with regard to the epidemiology, clinical sequelae, and mechanical aspects. However, interventional strategies to prevent or delay the potential negative consequences of CHIP remain underdeveloped. In this review, we highlight the latest updates on clonal hematopoiesis research, including molecular mechanisms and clinical implications, with a particular focus on the evolving strategies for the interventions that are being evaluated in ongoing observational and interventional trials. There remains an urgent need to formulate standardized and evidence-based recommendations and guidelines for evaluating and managing individuals with clonal hematopoiesis. In addition, patient-centric endpoints must be defined for clinical trials, which will enable us to continue the robust development of effective preventive strategies and improve clinical outcomes.
Collapse
Affiliation(s)
- Zhuoer Xie
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center and Smilow Cancer Hospital, Yale University School of Medicine, CT, United States.
| |
Collapse
|
25
|
Jahn J, Diamond B, Hsu J, Montoya S, Totiger TM, Landgren O, Maura F, Taylor J. Therapy-selected clonal hematopoiesis and its role in myeloid neoplasms. Leuk Res 2023; 126:107020. [PMID: 36696829 PMCID: PMC11305114 DOI: 10.1016/j.leukres.2023.107020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/06/2023] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
Therapy-related myeloid neoplasms (t-MN) account for approximately 10-15% of all myeloid neoplasms and are associated with poor prognosis. Genomic characterization of t-MN to date has been limited in comparison to the considerable sequencing efforts performed for de novo myeloid neoplasms. Until recently, targeted deep sequencing (TDS) or whole exome sequencing (WES) have been the primary technologies utilized and thus limited the ability to explore the landscape of structural variants and mutational signatures. In the past decade, population-level studies have identified clonal hematopoiesis as a risk factor for the development of myeloid neoplasms. However, emerging research on clonal hematopoiesis as a risk factor for developing t-MN is evolving, and much is unknown about the progression of CH to t-MN. In this work, we will review the current knowledge of the genomic landscape of t-MN, discuss background knowledge of clonal hematopoiesis gained from studies of de novo myeloid neoplasms, and examine the recent literature studying the role of therapeutic selection of CH and its evolution under the effects of antineoplastic therapy. Finally, we will discuss the potential implications on current clinical practice and the areas of focus needed for future research into therapy-selected clonal hematopoiesis in myeloid neoplasms.
Collapse
Affiliation(s)
- Jacob Jahn
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, United States
| | - Benjamin Diamond
- Myeloma Division, Department of Medicine, University of Miami Miller School of Medicine, United States
| | - Jeffrey Hsu
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, United States
| | - Skye Montoya
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, United States
| | - Tulasigeri M Totiger
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, United States
| | - Ola Landgren
- Myeloma Division, Department of Medicine, University of Miami Miller School of Medicine, United States
| | - Francesco Maura
- Myeloma Division, Department of Medicine, University of Miami Miller School of Medicine, United States
| | - Justin Taylor
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, United States; Leukemia Program, Department of Medicine, University of Miami Miller School of Medicine, United States.
| |
Collapse
|
26
|
Gonzalez S, Lopez-Bigas N, Gonzalez-Perez A. Copy number footprints of platinum-based anticancer therapies. PLoS Genet 2023; 19:e1010634. [PMID: 36780550 PMCID: PMC9956877 DOI: 10.1371/journal.pgen.1010634] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/24/2023] [Accepted: 01/24/2023] [Indexed: 02/15/2023] Open
Abstract
Recently, distinct mutational footprints observed in metastatic tumors, secondary malignancies and normal human tissues have been demonstrated to be caused by the exposure to several chemotherapeutic drugs. These characteristic mutations originate from specific lesions caused by these chemicals to the DNA of exposed cells. However, it is unknown whether the exposure to these chemotherapies leads to a specific footprint of larger chromosomal aberrations. Here, we address this question exploiting whole genome sequencing data of metastatic tumors obtained from patients exposed to different chemotherapeutic drugs. As a result, we discovered a specific copy number footprint across tumors from patients previously exposed to platinum-based therapies. This footprint is characterized by a significant increase in the number of chromosomal fragments of copy number 1-4 and size smaller than 10 Mb in exposed tumors with respect to their unexposed counterparts (median 14-387% greater across tumor types). The number of chromosomal fragments characteristic of the platinum-associated CN footprint increases significantly with the activity of the well known platinum-related footprint of single nucleotide variants across exposed tumors.
Collapse
Affiliation(s)
- Santiago Gonzalez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Nuria Lopez-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Abel Gonzalez-Perez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
27
|
Tommy Gambles M, Li J, Christopher Radford D, Sborov D, Shami P, Yang J, Kopeček J. Simultaneous crosslinking of CD20 and CD38 receptors by drug-free macromolecular therapeutics enhances B cell apoptosis in vitro and in vivo. J Control Release 2022; 350:584-599. [PMID: 36037975 PMCID: PMC9561060 DOI: 10.1016/j.jconrel.2022.08.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022]
Abstract
Drug-Free Macromolecular Therapeutics (DFMT) is a new paradigm in macromolecular therapeutics that induces apoptosis in target cells by crosslinking receptors without the need of low molecular weight drugs. Programmed cell death is initiated via a biomimetic receptor crosslinking strategy using a two-step approach: i) recognition of cell surface antigen by a morpholino oligonucleotide-modified antibody Fab' fragment (Fab'-MORF1), ii) followed by crosslinking with a multivalent effector motif - human serum albumin (HSA) grafted with multiple complementary morpholino oligonucleotides (HSA-(MORF2)x). This approach is effective in vitro, in vivo, and ex vivo on cells from patients diagnosed with various B cell malignancies. We have previously demonstrated DFMT can be applied to crosslink CD20 and CD38 receptors to successfully initiate apoptosis. Herein, we show simultaneous engagement, and subsequent crosslinking of both targets ("heteroreceptor crosslinking"), can further enhance the apoptosis induction capacity of this system. To accomplish this, we incubated Raji (CD20+; CD38+) cells simultaneously with anti-CD20 and anti-CD38 Fab'-MORF1 conjugates, followed by addition of the macromolecular crosslinker, HSA-(MORF2)x to co-cluster the bound receptors. Fab' fragments from Rituximab and Obinutuzumab were employed in the synthesis of anti-CD20 bispecific engagers (Fab'RTX-MORF1 and Fab'OBN-MORF1), whereas Fab' fragments from Daratumumab and Isatuximab (Fab'DARA-MORF1 and Fab'ISA-MORF1) targeted CD38. All heteroreceptor crosslinking DFMT combinations demonstrated potent apoptosis induction and exhibited synergistic effects as determined by Chou-Talalay combination index studies (CI < 1). In vitro fluorescence resonance energy transfer (FRET) experiments confirmed the co-clustering of the two receptors on the cell surface in response to the combination treatment. The source of this synergistic therapeutic effect was further explored by evaluating the effect of combination DFMT on key apoptosis signaling events such as mitochondrial depolarization, caspase activation, lysosomal enlargement, and homotypic cell adhesion. Finally, a xenograft mouse model of CD20+/CD38+ Non Hodgkin lymphoma was employed to demonstrate in vivo the enhanced efficacy of the heteroreceptor-crosslinking DFMT design versus single-target systems.
Collapse
Affiliation(s)
- M Tommy Gambles
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiahui Li
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - D Christopher Radford
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Douglas Sborov
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Paul Shami
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiyuan Yang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jindřich Kopeček
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
28
|
Testa U, Castelli G, Pelosi E. Clonal Hematopoiesis: Role in Hematologic and Non-Hematologic Malignancies. Mediterr J Hematol Infect Dis 2022; 14:e2022069. [PMID: 36119457 PMCID: PMC9448266 DOI: 10.4084/mjhid.2022.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/18/2022] [Indexed: 02/08/2023] Open
Abstract
Hematopoietic stem cells (HSCs) ensure the coordinated and balanced production of all hematopoietic cell types throughout life. Aging is associated with a gradual decline of the self-renewal and regenerative potential of HSCs and with the development of clonal hematopoiesis. Clonal hematopoiesis of indeterminate potential (CHIP) defines the clonal expansion of genetically variant hematopoietic cells bearing one or more gene mutations and/or structural variants (such as copy number alterations). CHIP increases exponentially with age and is associated with cancers, including hematologic neoplasia, cardiovascular and other diseases. The presence of CHIP consistently increases the risk of hematologic malignancy, particularly in individuals who have CHIP in association with peripheral blood cytopenia.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
29
|
Bertrums EJ, Rosendahl Huber AK, de Kanter JK, Brandsma AM, van Leeuwen AJ, Verheul M, van den Heuvel-Eibrink MM, Oka R, van Roosmalen MJ, de Groot-Kruseman HA, Zwaan CM, Goemans BF, van Boxtel R. Elevated Mutational Age in Blood of Children Treated for Cancer Contributes to Therapy-Related Myeloid Neoplasms. Cancer Discov 2022; 12:1860-1872. [PMID: 35678530 PMCID: PMC7613255 DOI: 10.1158/2159-8290.cd-22-0120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/06/2022] [Accepted: 06/07/2022] [Indexed: 01/07/2023]
Abstract
Childhood cancer survivors are confronted with various chronic health conditions like therapy-related malignancies. However, it is unclear how exposure to chemotherapy contributes to the mutation burden and clonal composition of healthy tissues early in life. Here, we studied mutation accumulation in hematopoietic stem and progenitor cells (HSPC) before and after cancer treatment of 24 children. Of these children, 19 developed therapy-related myeloid neoplasms (t-MN). Posttreatment HSPCs had an average mutation burden increase comparable to what treatment-naïve cells accumulate during 16 years of life, with excesses up to 80 years. In most children, these additional mutations were induced by clock-like processes, which are also active during healthy aging. Other patients harbored mutations that could be directly attributed to treatments like platinum-based drugs and thiopurines. Using phylogenetic inference, we demonstrate that most t-MN in children originate after the start of treatment and that leukemic clones become dominant during or directly after chemotherapy exposure. SIGNIFICANCE Our study shows that chemotherapy increases the mutation burden of normal blood cells in cancer survivors. Only few drugs damage the DNA directly, whereas in most patients, chemotherapy-induced mutations are caused by processes similar to those present during normal aging. This article is highlighted in the In This Issue feature, p. 1825.
Collapse
Affiliation(s)
- Eline J.M. Bertrums
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.,Oncode Institute, Utrecht, the Netherlands.,Department of Pediatric Oncology, Erasmus Medical Center – Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Axel K.M. Rosendahl Huber
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.,Oncode Institute, Utrecht, the Netherlands
| | - Jurrian K. de Kanter
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.,Oncode Institute, Utrecht, the Netherlands
| | - Arianne M. Brandsma
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.,Oncode Institute, Utrecht, the Netherlands
| | - Anaïs J.C.N. van Leeuwen
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.,Oncode Institute, Utrecht, the Netherlands
| | - Mark Verheul
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.,Oncode Institute, Utrecht, the Netherlands
| | | | - Rurika Oka
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.,Oncode Institute, Utrecht, the Netherlands
| | - Markus J. van Roosmalen
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.,Oncode Institute, Utrecht, the Netherlands
| | | | - C. Michel Zwaan
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.,Department of Pediatric Oncology, Erasmus Medical Center – Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Bianca F. Goemans
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Ruben van Boxtel
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.,Oncode Institute, Utrecht, the Netherlands.,Corresponding Author: Ruben van Boxtel, Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands. Phone: 0031 (0)889727272; E-mail:
| |
Collapse
|
30
|
A quantification method of somatic mutations in normal tissues and their accumulation in pediatric patients with chemotherapy. Proc Natl Acad Sci U S A 2022; 119:e2123241119. [PMID: 35895679 PMCID: PMC9351471 DOI: 10.1073/pnas.2123241119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Somatic mutations are accumulated in normal human tissues with aging and exposure to carcinogens. If we can accurately count any passenger mutations in any single DNA molecule, since their quantity is much larger than driver mutations, we can sensitively detect mutation accumulation in polyclonal normal tissues. Duplex sequencing, which tags both DNA strands in one DNA molecule, enables accurate count of such mutations, but requires a very large number of sequencing reads for each single sample of human-genome size. Here, we reduced the genome size to 1/90 using the BamHI restriction enzyme and established a cost-effective pipeline. The enzymatically cleaved and optimal sequencing (EcoSeq) method was able to count somatic mutations in a single DNA molecule with a sensitivity of as low as 3 × 10-8 per base pair (bp), as assessed by measuring artificially prepared mutations. Taking advantages of EcoSeq, we analyzed normal peripheral blood cells of pediatric sarcoma patients who received chemotherapy (n = 10) and those who did not (n = 10). The former had a mutation frequency of 31.2 ± 13.4 × 10-8 per base pair while the latter had 9.0 ± 4.5 × 10-8 per base pair (P < 0.001). The increase in mutation frequency was confirmed by analysis of the same patients before and after chemotherapy, and increased mutation frequencies persisted 46 to 64 mo after chemotherapy, indicating that the mutation accumulation constitutes a risk of secondary leukemia. EcoSeq has the potential to reveal accumulation of somatic mutations and exposure to environmental factors in any DNA samples and will contribute to cancer risk estimation.
Collapse
|
31
|
Schiantarelli J, Pappa T, Conway J, Crowdis J, Reardon B, Dietlein F, Huang J, Stanizzi D, Carey E, Bosma-Moody A, Imamovic A, Han S, Camp S, Kofman E, Shannon E, Barletta JA, He MX, Liu D, Park J, Lorch JH, Van Allen EM. Mutational Footprint of Platinum Chemotherapy in a Secondary Thyroid Cancer. JCO Precis Oncol 2022; 6:e2200183. [PMID: 36075011 PMCID: PMC9489159 DOI: 10.1200/po.22.00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/27/2022] [Accepted: 07/19/2022] [Indexed: 11/20/2022] Open
Affiliation(s)
- Julia Schiantarelli
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
| | - Theodora Pappa
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA
| | - Jake Conway
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA
| | - Jett Crowdis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
| | - Brendan Reardon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
| | - Felix Dietlein
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
| | | | - Darren Stanizzi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Evan Carey
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Alice Bosma-Moody
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
| | - Alma Imamovic
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
| | - Seunghun Han
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
- Department of Biological and Biomedical Sciences, Harvard Medical School, Boston, MA
| | - Sabrina Camp
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
| | - Eric Kofman
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA
| | - Erin Shannon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
| | - Justine A. Barletta
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Meng Xiao He
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
- Harvard Graduate Program in Biophysics, Boston, MA
| | - David Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
| | - Jihye Park
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
| | - Jochen H. Lorch
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL
| | - Eliezer M. Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
| |
Collapse
|
32
|
Association Between Granulocyte Colony-Stimulating Factor (G-CSF) Use and Myelodysplastic Syndrome (MDS) or Acute Myeloid Leukemia (AML) Among Elderly Patients with Breast, Lung, or Prostate Cancer. Adv Ther 2022; 39:2778-2795. [PMID: 35430673 DOI: 10.1007/s12325-022-02141-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/17/2022] [Indexed: 11/01/2022]
Abstract
INTRODUCTION Patients diagnosed with cancer have an increased risk both for myelodysplastic syndromes (MDS) and for acute myeloid leukemia (AML) following treatment. METHODS Using SEER-Medicare data, we selected patients aged 66 years and older who completed systemic therapy between 2002 and 2014 for breast (stage I-III), lung (stage I-III), or prostate (stage I-IV) cancer. For each cancer, we estimated the risk of a composite endpoint of MDS or AML in patients receiving granulocyte colony-stimulating factor (G-CSF) vs. not. RESULTS The 10-year cumulative risk difference (granulocyte colony-stimulating factor [G-CSF] - no G-CSF) for MDS-AML was 0.45% (95% CI 0.13-0.77%) in breast cancer and 0.39% (95% CI 0.15-0.62%) in lung cancer. G-CSF use was associated with a hazard ratio of 1.60 (95% CI 1.07-2.40) in breast cancer and 1.50 (95% CI 0.99-2.29) in lung cancer. Filgrastim use was associated with a hazard ratio of 1.01 (95% CI 1.00-1.03) per administration in breast cancer and 1.02 (95% CI 0.99-1.05) per administration in lung cancer. Pegfilgrastim was associated with a hazard ratio of 1.08 (95% CI 1.01-1.15) per administration in breast cancer and 1.12 (95% CI 1.00-1.25) per administration in lung cancer. Analyses in prostate cancer were limited because of the low number of events. CONCLUSIONS The use of G-CSF in patients diagnosed with breast and lung cancer is associated with an increased risk of MDS-AML. However, the MDS-AML absolute risk difference is very low.
Collapse
|
33
|
Pich O, Bailey C, Watkins TBK, Zaccaria S, Jamal-Hanjani M, Swanton C. The translational challenges of precision oncology. Cancer Cell 2022; 40:458-478. [PMID: 35487215 DOI: 10.1016/j.ccell.2022.04.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/16/2022] [Accepted: 04/05/2022] [Indexed: 12/11/2022]
Abstract
The translational challenges in the field of precision oncology are in part related to the biological complexity and diversity of this disease. Technological advances in genomics have facilitated large sequencing efforts and discoveries that have further supported this notion. In this review, we reflect on the impact of these discoveries on our understanding of several concepts: cancer initiation, cancer prevention, early detection, adjuvant therapy and minimal residual disease monitoring, cancer drug resistance, and cancer evolution in metastasis. We discuss key areas of focus for improving cancer outcomes, from biological insights to clinical application, and suggest where the development of these technologies will lead us. Finally, we discuss practical challenges to the wider adoption of molecular profiling in the clinic and the need for robust translational infrastructure.
Collapse
Affiliation(s)
- Oriol Pich
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Chris Bailey
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Thomas B K Watkins
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Simone Zaccaria
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK; Department of Medical Oncology, University College London Hospitals, London, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
34
|
Clonal hematopoiesis and cardiovascular disease in cancer patients and survivors. Thromb Res 2022; 213 Suppl 1:S107-S112. [DOI: 10.1016/j.thromres.2021.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 11/22/2022]
|
35
|
Bystrykh LV, Belderbos ME. Measures of Clonal Hematopoiesis: Are We Missing Something? Front Med (Lausanne) 2022; 9:836141. [PMID: 35433751 PMCID: PMC9008402 DOI: 10.3389/fmed.2022.836141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
Clonal Hematopoiesis (CH) is a common, age-related phenomenon of growing scientific interest, due to its association with hematologic malignancy, cardiovascular disease and decreased overall survival. CH is commonly attributed to the preferential outgrowth of a mutant hematopoietic stem cell (HSC) with enhanced fitness, resulting in clonal imbalance. In-depth understanding of the relation between HSC clonal dynamics, CH and hematologic malignancy requires integration of fundamental lineage tracing studies with clinical data. However, this is hampered by lack of a uniform definition of CH and by inconsistency in the analytical methods used for its quantification. Here, we propose a conceptual and analytical framework for the definition and measurement of CH. First, we transformed the conceptual definition of CH into the CH index, which provides a quantitative measure of clone numbers and sizes. Next, we generated a set of synthetic data, based on the beta-distribution, to simulate clonal populations with different degrees of imbalance. Using these clonal distributions and the CH index as a reference, we tested several established indices of clonal diversity and (in-)equality for their ability to detect and quantify CH. We found that the CH index was distinct from any of the other tested indices. Nonetheless, the diversity indices (Shannon, Simpson) more closely resembled the CH index than the inequality indices (Gini, Pielou). Notably, whereas the inequality indices mainly responded to changes in clone sizes, the CH index and the tested diversity indices also responded to changes in the number of clones in a sample. Accordingly, these simulations indicate that CH can result not only by skewing clonal abundancies, but also by variation in their overall numbers. Altogether, our model-based approach illustrates how a formalized definition and quantification of CH can provide insights into its pathogenesis. In the future, use of the CH index or Shannon index to quantify clonal diversity in fundamental as well as clinical clone-tracing studies will promote cross-disciplinary discussion and progress in the field.
Collapse
Affiliation(s)
- Leonid V. Bystrykh
- Department for Stem Cell Biology and Ageing, European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands
- *Correspondence: Leonid V. Bystrykh,
| | | |
Collapse
|
36
|
Alagpulinsa DA, Toribio MP, Alhallak I, Shmookler Reis RJ. Advances in understanding the molecular basis of clonal hematopoiesis. Trends Mol Med 2022; 28:360-377. [PMID: 35341686 DOI: 10.1016/j.molmed.2022.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 12/28/2022]
Abstract
Hematopoietic stem cells (HSCs) are polyfunctional, regenerating all blood cells via hematopoiesis throughout life. Clonal hematopoiesis (CH) is said to occur when a substantial proportion of mature blood cells is derived from a single dominant HSC lineage, usually because these HSCs have somatic mutations that confer a fitness and expansion advantage. CH strongly associates with aging and enrichment in some diseases irrespective of age, emerging as an independent causal risk factor for hematologic malignancies, cardiovascular disease, adverse disease outcomes, and all-cause mortality. Defining the molecular mechanisms underlying CH will thus provide a framework to develop interventions for healthy aging and disease treatment. Here, we review the most recent advances in understanding the molecular basis of CH in health and disease.
Collapse
Affiliation(s)
- David A Alagpulinsa
- Vaccine & Immunotherapy Center, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA.
| | - Mabel P Toribio
- Metabolism Unit, Division of Endocrinology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Iad Alhallak
- Metabolism Unit, Division of Endocrinology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Robert J Shmookler Reis
- Central Arkansas Veterans Healthcare System and Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
37
|
Yin LJ, Bin Ahmad Kamar AKD, Fung GT, Liang CT, Avupati VR. Review of anticancer potentials and structure-activity relationships (SAR) of rhodanine derivatives. Biomed Pharmacother 2021; 145:112406. [PMID: 34785416 DOI: 10.1016/j.biopha.2021.112406] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/24/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022] Open
Abstract
Rhodanine has been recognized as a privileged scaffold in medicinal chemistry due to its well-known ability to demonstrate a broad range of biological activities. The possibility of structural diversification has contributed to the significance of rhodanine structure in effective drug discovery and design. Many studies have confirmed the potential of rhodanine-derived compounds in the treatment of different types of cancer through the apoptosis induction mechanism. Furthermore, most of the rhodanine derivatives exhibited remarkable anticancer activity in the micromolar range while causing negligible cytotoxicity to normal cells. This review critically describes the anticancer activity profile of reported rhodanine compounds and the structure-activity relationships (SAR) to highlight the value of rhodanine as the core structure for future cancer drug development as well as to assist the researchers in rational drug design.
Collapse
Affiliation(s)
- Lim Ju Yin
- School of Pharmacy, International Medical University (IMU), Kuala Lumpur 57000, Malaysia
| | | | - Gan Tjin Fung
- School of Pharmacy, International Medical University (IMU), Kuala Lumpur 57000, Malaysia
| | - Chin Tze Liang
- School of Pharmacy, International Medical University (IMU), Kuala Lumpur 57000, Malaysia
| | - Vasudeva Rao Avupati
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University (IMU), Kuala Lumpur 57000, Malaysia; Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation (IRDI), International Medical University (IMU), Kuala Lumpur 57000, Malaysia.
| |
Collapse
|
38
|
Rosendahl Huber A, Van Hoeck A, Van Boxtel R. The Mutagenic Impact of Environmental Exposures in Human Cells and Cancer: Imprints Through Time. Front Genet 2021; 12:760039. [PMID: 34745228 PMCID: PMC8565797 DOI: 10.3389/fgene.2021.760039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/05/2021] [Indexed: 12/25/2022] Open
Abstract
During life, the DNA of our cells is continuously exposed to external damaging processes. Despite the activity of various repair mechanisms, DNA damage eventually results in the accumulation of mutations in the genomes of our cells. Oncogenic mutations are at the root of carcinogenesis, and carcinogenic agents are often highly mutagenic. Over the past decade, whole genome sequencing data of healthy and tumor tissues have revealed how cells in our body gradually accumulate mutations because of exposure to various mutagenic processes. Dissection of mutation profiles based on the type and context specificities of the altered bases has revealed a variety of signatures that reflect past exposure to environmental mutagens, ranging from chemotherapeutic drugs to genotoxic gut bacteria. In this review, we discuss the latest knowledge on somatic mutation accumulation in human cells, and how environmental mutagenic factors further shape the mutation landscapes of tissues. In addition, not all carcinogenic agents induce mutations, which may point to alternative tumor-promoting mechanisms, such as altered clonal selection dynamics. In short, we provide an overview of how environmental factors induce mutations in the DNA of our healthy cells and how this contributes to carcinogenesis. A better understanding of how environmental mutagens shape the genomes of our cells can help to identify potential preventable causes of cancer.
Collapse
Affiliation(s)
- Axel Rosendahl Huber
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Arne Van Hoeck
- Oncode Institute, Utrecht, Netherlands
- Center for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Ruben Van Boxtel
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| |
Collapse
|