1
|
Ou Y, Zhao YL, Su H. Pancreatic β-Cells, Diabetes and Autophagy. Endocr Res 2025; 50:12-27. [PMID: 39429147 DOI: 10.1080/07435800.2024.2413064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/23/2024] [Accepted: 08/18/2024] [Indexed: 10/22/2024]
Abstract
PURPOSE Pancreatic β-cells play a critical role in regulating plasma insulin levels and glucose metabolism balance, with their dysfunction being a key factor in the progression of diabetes. This review aims to explore the role of autophagy, a vital cellular self-maintenance process, in preserving pancreatic β-cell functionality and its implications in diabetes pathogenesis. METHODS We examine the current literature on the role of autophagy in β-cells, highlighting its function in maintaining cell structure, quantity, and function. The review also discusses the effects of both excessive and insufficient autophagy on β-cell dysfunction and glucose metabolism imbalance. Furthermore, we discuss potential therapeutic agents that modulate the autophagy pathway to influence β-cell function, providing insights into therapeutic strategies for diabetes management. RESULTS Autophagy acts as a self-protective mechanism within pancreatic β-cells, clearing damaged organelles and proteins to maintain cellular stability. Abnormal autophagy activity, either overactive or deficient, can disrupt β-cell function and glucose regulation, contributing to diabetes progression. CONCLUSION Autophagy plays a pivotal role in maintaining pancreatic β-cell function, and its dysregulation is implicated in the development of diabetes. Targeting the autophagy pathway offers potential therapeutic strategies for diabetes management, with agents that modulate autophagy showing promise in preserving β-cell function.
Collapse
Affiliation(s)
- Yang Ou
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, P.R. China
- Department of Endocrinology and Metabolism, First People's Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming, P.R. China
| | - Yan-Li Zhao
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Heng Su
- Department of Endocrinology and Metabolism, First People's Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming, P.R. China
| |
Collapse
|
2
|
Zhao Z, Wu W, Zhang Q, Xing T, Bai Y, Li S, Zhang D, Che H, Guo X. Mechanism and therapeutic potential of hippo signaling pathway in type 2 diabetes and its complications. Biomed Pharmacother 2025; 183:117817. [PMID: 39842269 DOI: 10.1016/j.biopha.2025.117817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/22/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025] Open
Abstract
Loss of pancreatic islet cell mass and function is one of the most important factors in the development of type 2 diabetes mellitus, and hyperglycemia-induced lesions in other organs are also associated with apoptosis or hyperproliferation of the corresponding tissue cells. The Hippo signaling pathway is a key signal in the regulation of cell growth, proliferation and apoptosis, which has been shown to play an important role in the regulation of diabetes mellitus and its complications. Excessive activation of the Hippo signaling pathway under high glucose conditions triggered apoptosis and decreased insulin secretion in pancreatic islet cells, while dysregulation of the Hippo signaling pathway in the cells of other organ tissues led to proliferation or apoptosis and promoted tissue fibrosis, which aggravated the progression of diabetes mellitus and its complications. This article reviews the mechanisms of Hippo signaling, its individual and reciprocal regulation in diabetic pancreatic pathology, and its emerging role in the pathophysiology of diabetic complications. Potential therapeutics for diabetes mellitus that have been shown to target the Hippo signaling pathway are also summarized to provide information for the clinical management of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Ziqi Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Weijie Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qianyi Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Tiancheng Xing
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yiling Bai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Shuoqi Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Dandan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Huilian Che
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Xiaohui Guo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
3
|
Bao Y, Ma Y, Huang W, Bai Y, Gao S, Xiu L, Xie Y, Wan X, Shan S, Chen C, Qu L. Regulation of autophagy and cellular signaling through non-histone protein methylation. Int J Biol Macromol 2025; 291:139057. [PMID: 39710032 DOI: 10.1016/j.ijbiomac.2024.139057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/06/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Autophagy is a highly conserved catabolic pathway that is precisely regulated and plays a significant role in maintaining cellular metabolic balance and intracellular homeostasis. Abnormal autophagy is directly linked to the development of various diseases, particularly immune disorders, neurodegenerative conditions, and tumors. The precise regulation of proteins is crucial for proper cellular function, and post-translational modifications (PTMs) are key epigenetic mechanisms in the regulation of numerous biological processes. Multiple proteins undergo PTMs that influence autophagy regulation. Methylation modifications on non-histone lysine and arginine residues have been identified as common PTMs critical to various life processes. This paper focused on the regulatory effects of non-histone methylation modifications on autophagy, summarizing related research on signaling pathways involved in autophagy-related non-histone methylation, and discussing current challenges and clinical significance. Our review concludes that non-histone methylation plays a pivotal role in the regulation of autophagy and its associated signaling pathways. Targeting non-histone methylation offers a promising strategy for therapeutic interventions in diseases related to autophagy dysfunction, such as cancer and neurodegenerative disorders. These findings provide a theoretical basis for the development of non-histone-methylation-targeted drugs for clinical use.
Collapse
Affiliation(s)
- Yongfen Bao
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning 437000, China; School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, China
| | - Yaoyao Ma
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning 437000, China; School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, China
| | - Wentao Huang
- Department of Physiology, Hunan Normal University School of Medicine, Changsha 410013, China
| | - Yujie Bai
- Department of Scientific Research and Education, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330000, China
| | - Siying Gao
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Luyao Xiu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuyang Xie
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xinrong Wan
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Shigang Shan
- School of Public Health and Nursing, Hubei University of Science and Technology, Hubei 437000, China
| | - Chao Chen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lihua Qu
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning 437000, China; School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, China.
| |
Collapse
|
4
|
Miyajima C, Nagasaka M, Aoki H, Toriuchi K, Yamanaka S, Hashiguchi S, Morishita D, Aoyama M, Hayashi H, Inoue Y. The Hippo Signaling Pathway Manipulates Cellular Senescence. Cells 2024; 14:13. [PMID: 39791714 PMCID: PMC11719916 DOI: 10.3390/cells14010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
The Hippo pathway, a kinase cascade, coordinates with many intracellular signals and mediates the regulation of the activities of various downstream transcription factors and their coactivators to maintain homeostasis. Therefore, the aberrant activation of the Hippo pathway and its associated molecules imposes significant stress on tissues and cells, leading to cancer, immune disorders, and a number of diseases. Cellular senescence, the mechanism by which cells counteract stress, prevents cells from unnecessary damage and leads to sustained cell cycle arrest. It acts as a powerful defense mechanism against normal organ development and aging-related diseases. On the other hand, the accumulation of senescent cells without their proper removal contributes to the development or worsening of cancer and age-related diseases. A correlation was recently reported between the Hippo pathway and cellular senescence, which preserves tissue homeostasis. This review is the first to describe the close relationship between aging and the Hippo pathway, and provides insights into the mechanisms of aging and the development of age-related diseases. In addition, it describes advanced findings that may lead to the development of tissue regeneration therapies and drugs targeting rejuvenation.
Collapse
Affiliation(s)
- Chiharu Miyajima
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
| | - Mai Nagasaka
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
- Department of Experimental Chemotherapy, Cancer Chemotherapy Center of JFCR, Tokyo 135-8550, Japan
| | - Hiromasa Aoki
- Department of Pathobiology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (H.A.); (K.T.); (M.A.)
| | - Kohki Toriuchi
- Department of Pathobiology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (H.A.); (K.T.); (M.A.)
| | - Shogo Yamanaka
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
| | - Sakura Hashiguchi
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
| | - Daisuke Morishita
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
| | - Mineyoshi Aoyama
- Department of Pathobiology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (H.A.); (K.T.); (M.A.)
| | - Hidetoshi Hayashi
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
| | - Yasumichi Inoue
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
| |
Collapse
|
5
|
Fang Y, Sun S, Wu J, Liu G, Wu Q, Ran X. Alterations in the Levels of Urinary Exosomal MicroRNA-183-5p and MicroRNA-125a-5p in Individuals with Type 2 Diabetes Mellitus. Biomedicines 2024; 12:2608. [PMID: 39595174 PMCID: PMC11591879 DOI: 10.3390/biomedicines12112608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Type 2 diabetes mellitus (T2DM) is a metabolic disorder, and urinary exosomal microRNAs (miRNAs) were utilized as potential disease prediction or diagnostic biomarkers in numerous studies. This study investigated the differential expression of urinary exosomal miRNAs between non-diabetes mellitus (NDM) individuals and those with T2DM. Aim: To elucidate the association between urinary exosomal miRNAs and T2DM. Methods: We recruited patients diagnosed with T2DM and NDM individuals in West China Hospital, Sichuan University, from November 2023 to February 2024. Subsequently, we performed sequencing of urinary exosomal microRNAs in both groups. The obtained sequencing results were further validated using RT-qPCR in both the training set and the validation set. Additionally, we conducted logistic regression analysis and Spearman correlation analysis on miRNAs with significant differential expression, as well as analysis of their biological functions. Results: A total of 118 urine samples were collected, 59 from individuals diagnosed with T2DM and 59 from NDM. There were differentially expressed miR-183-5p (p = 0.034) and miR-125a-5p (p = 0.008) between the two groups. Furthermore, multivariate regression analysis demonstrated that higher miR-125a-5p levels were negatively associated with the risk of T2DM (p = 0.044; OR: 0.046; 95% CI: 0.002, 0.922). Bioinformatics analysis indicated that the target genes of miR-183-5p were predominantly involved in insulin signaling and glucose transport processes, while those target genes of miR-125a-5p primarily mediated autophagy. Conclusions: miR-183-5p and miR-125a-5p might be involved in the pathogenesis of T2DM, while higher urinary exosomal miR-125a-5p was negatively associated with the risk of T2DM.
Collapse
Affiliation(s)
- Yixuan Fang
- Innovation Research Center for Diabetic Foot, Diabetic Foot Care Center, Department of Endocrinology & Metabolism, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.F.); (S.S.); (J.W.)
| | - Shiyi Sun
- Innovation Research Center for Diabetic Foot, Diabetic Foot Care Center, Department of Endocrinology & Metabolism, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.F.); (S.S.); (J.W.)
| | - Jing Wu
- Innovation Research Center for Diabetic Foot, Diabetic Foot Care Center, Department of Endocrinology & Metabolism, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.F.); (S.S.); (J.W.)
| | - Guanjian Liu
- Chinese Cochrane Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qinqin Wu
- Health Management Center, General Practice Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xingwu Ran
- Innovation Research Center for Diabetic Foot, Diabetic Foot Care Center, Department of Endocrinology & Metabolism, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.F.); (S.S.); (J.W.)
| |
Collapse
|
6
|
Ren P, Wu K, Chen M, Huang Q, Luo Z, Wang Y. MiR-302c-3p regulates autophagy and apoptosis in ovarian granulosa cells via the LATS2/YAP axis in chickens. Theriogenology 2024; 229:100-107. [PMID: 39167834 DOI: 10.1016/j.theriogenology.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
The degenerative process of follicular atresia in hens naturally commences in granulosa cells, significantly impacting laying hens' reproductive performance. Past studies suggested that granulosa cell autophagy and apoptosis work together to cause follicular atresia. Recent research indicates that miRNA regulates granulosa autophagy and apoptosis, which contributes to the development of follicular atresia. However, the role of miR-302c-3p in follicular atresia and development remains unclear. In this study with the RNA-seq approach, we found that miR-302c-3p expression was significantly decreased in atrophic follicles, suggesting its involvement in the follicular atresia process. Following this, we performed in vitro studies to confirm that miR-302c-3p inhibits autophagy and apoptosis in chicken granulosa cells. Mechanistically, LATS2 is considered as the putative target gene of miR-302c-3p, and it has been demonstrated that LATS2 exerts a positive regulatory role in the modulation of autophagy and apoptosis in chicken granulosa cells. Furthermore, we verified the regulatory function of miR-302c-3p in chicken granulosa cells via the LATS2-YAP signaling pathway. Our results collectively demonstrates that miR-302c-3p targets LATS2 to modulate the YAP signaling pathway, impacting autophagy and apoptosis in granulosa cells leading to follicular atresia.
Collapse
Affiliation(s)
- Peng Ren
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Kejun Wu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Meiying Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Qinke Huang
- Guangyuan City Animal Husbandry Seed Management Station, Guangyuan, 628107, Sichuan, China
| | - Zhengwei Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Ye Wang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081, Sichuan, China.
| |
Collapse
|
7
|
Zanfrini E, Bandral M, Jarc L, Ramirez-Torres MA, Pezzolla D, Kufrin V, Rodriguez-Aznar E, Avila AKM, Cohrs C, Speier S, Neumann K, Gavalas A. Generation and application of novel hES cell reporter lines for the differentiation and maturation of hPS cell-derived islet-like clusters. Sci Rep 2024; 14:19863. [PMID: 39191834 DOI: 10.1038/s41598-024-69645-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
The significant advances in the differentiation of human pluripotent stem (hPS) cells into pancreatic endocrine cells, including functional β-cells, have been based on a detailed understanding of the underlying developmental mechanisms. However, the final differentiation steps, leading from endocrine progenitors to mono-hormonal and mature pancreatic endocrine cells, remain to be fully understood and this is reflected in the remaining shortcomings of the hPS cell-derived islet cells (SC-islet cells), which include a lack of β-cell maturation and variability among different cell lines. Additional signals and modifications of the final differentiation steps will have to be assessed in a combinatorial manner to address the remaining issues and appropriate reporter lines would be useful in this undertaking. Here we report the generation and functional validation of hPS cell reporter lines that can monitor the generation of INS+ and GCG+ cells and their resolution into mono-hormonal cells (INSeGFP, INSeGFP/GCGmCHERRY) as well as β-cell maturation (INSeGFP/MAFAmCHERRY) and function (INSGCaMP6). The reporter hPS cell lines maintained strong and widespread expression of pluripotency markers and differentiated efficiently into definitive endoderm and pancreatic progenitor (PP) cells. PP cells from all lines differentiated efficiently into islet cell clusters that robustly expressed the corresponding reporters and contained glucose-responsive, insulin-producing cells. To demonstrate the applicability of these hPS cell reporter lines in a high-content live imaging approach for the identification of optimal differentiation conditions, we adapted our differentiation procedure to generate SC-islet clusters in microwells. This allowed the live confocal imaging of multiple SC-islets for a single condition and, using this approach, we found that the use of the N21 supplement in the last stage of the differentiation increased the number of monohormonal β-cells without affecting the number of α-cells in the SC-islets. The hPS cell reporter lines and the high-content live imaging approach described here will enable the efficient assessment of multiple conditions for the optimal differentiation and maturation of SC-islets.
Collapse
Affiliation(s)
- Elisa Zanfrini
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Centre for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Manuj Bandral
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Centre for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Luka Jarc
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Centre for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Maria Alejandra Ramirez-Torres
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Centre for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Daniela Pezzolla
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Center for Regenerative Therapies Dresden (CRTD), Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Vida Kufrin
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Centre for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Eva Rodriguez-Aznar
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Centre for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Ana Karen Mojica Avila
- Institute of Physiology, Faculty of Medicine, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Centre for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Christian Cohrs
- Institute of Physiology, Faculty of Medicine, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Centre for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Stephan Speier
- Institute of Physiology, Faculty of Medicine, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Centre for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Katrin Neumann
- Stem Cell Engineering Facility (SCEF), CRTD, TU Dresden, Dresden, Germany
| | - Anthony Gavalas
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
- German Centre for Diabetes Research (DZD), Munich-Neuherberg, Germany.
| |
Collapse
|
8
|
Chen Q, Zhao X, Xu Z, Liu Y. Endoplasmic reticulum stress mechanisms and exercise intervention in type 2 diabetes mellitus. Biomed Pharmacother 2024; 177:117122. [PMID: 38991302 DOI: 10.1016/j.biopha.2024.117122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease primarily characterized by insulin resistance (IR) and insufficient insulin secretion. The unfolded protein response (UPR) overactivation induced by endoplasmic reticulum stress (ERS) appears to play a key role in this process, although the exact pathogenesis of T2DM is not fully understood. Studies have demonstrated that appropriate exercise can regulate ERS in the heart, liver, pancreas, skeletal muscle, and other body tissues leading to an improvement in diabetes and its complications. However, the exact mechanism remains unclear. By analyzing the relationship between ERS, T2DM pathology, and exercise intervention, this review concludes that exercise can increase insulin sensitivity, inhibit IR, promote insulin secretion and alleviate T2DM by regulating ERS. This paper specifically reviews the signaling pathways by which ERS induces diabetes, the mechanisms of exercise regulation of ERS in diabetes, and the varying effects of different types of exercise on diabetes improvement through ERS mechanisms. Physical exercise is an effective non-pharmacological intervention for T2DM. Thus, further exploration of how exercise regulates ERS in diabetes could refine "precision exercise medicine" for diabetes and identify new drug targets.
Collapse
Affiliation(s)
- Qianyu Chen
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| | - Xiaoqin Zhao
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| | - Zujie Xu
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| | - Yiyao Liu
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| |
Collapse
|
9
|
Zhu C, Yuan T, Krishnan J. Targeting cardiomyocyte cell cycle regulation in heart failure. Basic Res Cardiol 2024; 119:349-369. [PMID: 38683371 PMCID: PMC11142990 DOI: 10.1007/s00395-024-01049-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/11/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024]
Abstract
Heart failure continues to be a significant global health concern, causing substantial morbidity and mortality. The limited ability of the adult heart to regenerate has posed challenges in finding effective treatments for cardiac pathologies. While various medications and surgical interventions have been used to improve cardiac function, they are not able to address the extensive loss of functioning cardiomyocytes that occurs during cardiac injury. As a result, there is growing interest in understanding how the cell cycle is regulated and exploring the potential for stimulating cardiomyocyte proliferation as a means of promoting heart regeneration. This review aims to provide an overview of current knowledge on cell cycle regulation and mechanisms underlying cardiomyocyte proliferation in cases of heart failure, while also highlighting established and novel therapeutic strategies targeting this area for treatment purposes.
Collapse
Affiliation(s)
- Chaonan Zhu
- Department of Medicine III, Cardiology/Angiology/Nephrology, Goethe University Hospital, 60590, Frankfurt am Main, Germany
- Institute for Cardiovascular Regeneration, Goethe University, 60590, Frankfurt am Main, Germany
| | - Ting Yuan
- Department of Medicine III, Cardiology/Angiology/Nephrology, Goethe University Hospital, 60590, Frankfurt am Main, Germany.
- Institute for Cardiovascular Regeneration, Goethe University, 60590, Frankfurt am Main, Germany.
- German Center for Cardiovascular Research, Partner Site Rhein-Main, 60590, Frankfurt am Main, Germany.
- Cardio-Pulmonary Institute, Goethe University Hospital, 60590, Frankfurt am Main, Germany.
| | - Jaya Krishnan
- Department of Medicine III, Cardiology/Angiology/Nephrology, Goethe University Hospital, 60590, Frankfurt am Main, Germany.
- Institute for Cardiovascular Regeneration, Goethe University, 60590, Frankfurt am Main, Germany.
- German Center for Cardiovascular Research, Partner Site Rhein-Main, 60590, Frankfurt am Main, Germany.
- Cardio-Pulmonary Institute, Goethe University Hospital, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
10
|
Jonischkies K, del Angel M, Demiray YE, Loaiza Zambrano A, Stork O. The NDR family of kinases: essential regulators of aging. Front Mol Neurosci 2024; 17:1371086. [PMID: 38803357 PMCID: PMC11129689 DOI: 10.3389/fnmol.2024.1371086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Aging is defined as a progressive decline of cognitive and physiological functions over lifetime. Since the definition of the nine hallmarks of aging in 2013 by López-Otin, numerous studies have attempted to identify the main regulators and contributors in the aging process. One interesting group of proteins whose participation has been implicated in several aging hallmarks are the nuclear DBF2-related (NDR) family of serine-threonine AGC kinases. They are one of the core components of the Hippo signaling pathway and include NDR1, NDR2, LATS1 and LATS2 in mammals, along with its highly conserved metazoan orthologs; Trc in Drosophila melanogaster, SAX-1 in Caenorhabditis elegans, CBK1, DBF20 in Saccharomyces cerevisiae and orb6 in Saccharomyces pombe. These kinases have been independently linked to the regulation of widely diverse cellular processes disrupted during aging such as the cell cycle progression, transcription, intercellular communication, nutrient homeostasis, autophagy, apoptosis, and stem cell differentiation. However, a comprehensive overview of the state-of-the-art knowledge regarding the post-translational modifications of and by NDR kinases in aging has not been conducted. In this review, we summarize the current understanding of the NDR family of kinases, focusing on their relevance to various aging hallmarks, and emphasize the growing body of evidence that suggests NDR kinases are essential regulators of aging across species.
Collapse
Affiliation(s)
- Kevin Jonischkies
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Miguel del Angel
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Yunus Emre Demiray
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Allison Loaiza Zambrano
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Oliver Stork
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Science, Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
- German Center for Mental Health (DZPG), Jena-Magdeburg-Halle, Germany
| |
Collapse
|
11
|
Hao Y, Feng D, Ye H, Liao W. Nobiletin Alleviated Epithelial-Mesenchymal Transition of Hepatocytes in Liver Fibrosis Based on Autophagy-Hippo/YAP Pathway. Mol Nutr Food Res 2024; 68:e2300529. [PMID: 38044268 DOI: 10.1002/mnfr.202300529] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/06/2023] [Indexed: 12/05/2023]
Abstract
SCOPE The current researches indicated that the epithelial-mesenchymal transition (EMT) of hepatocytes plays a crucial role in the development of liver fibrosis. To date, there is a paucity of literature regarding the impact of nobiletin (NOB) on liver fibrosis. This study investigates the inhibitory effect of NOB on EMT in hepatocytes during the progression of liver fibrosis and its underlying mechanism. METHODS AND RESULTS The findings demonstrated that NOB significantly suppresses liver fibrosis in carbon tetrachloride (CCl4 )-induced mice by reducing inflammation and fiber deposition in the liver. Moreover, NOB mitigates EMT in hepatocytes, concurrently alleviating inflammatory status and reducing the production of reactive oxygen species (ROS) generation. The comprehensive investigation reveals that the hepatoprotective effect of NOB in liver fibrosis is attributed to autophagy activation, as evidenced by a significant increase in LC3 II expression and p62 degradation upon NOB treatment. Additionally, NOB activates the Hippo/YAP pathway by downregulating YAP and its downstream targets in liver fibrosis, which is regulated by autophagy based on experiments with chloroquine (CQ), 3-methyladenine (3-MA), and siYAP intervention. CONCLUSION Therefore, this study provides evidences that NOB can protect hepatocytes from undergoing EMT during liver fibrosis by inducing autophagy and subsequently modulating the Hippo/YAP pathway.
Collapse
Affiliation(s)
- Yuting Hao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Dongliang Feng
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Huarui Ye
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
12
|
Zhu J, Wang H, Jiang X. mTORC1 beyond anabolic metabolism: Regulation of cell death. J Biophys Biochem Cytol 2022; 221:213609. [PMID: 36282248 PMCID: PMC9606688 DOI: 10.1083/jcb.202208103] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 12/13/2022] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1), a multi-subunit protein kinase complex, interrogates growth factor signaling with cellular nutrient and energy status to control metabolic homeostasis. Activation of mTORC1 promotes biosynthesis of macromolecules, including proteins, lipids, and nucleic acids, and simultaneously suppresses catabolic processes such as lysosomal degradation of self-constituents and extracellular components. Metabolic regulation has emerged as a critical determinant of various cellular death programs, including apoptosis, pyroptosis, and ferroptosis. In this article, we review the expanding knowledge on how mTORC1 coordinates metabolic pathways to impinge on cell death regulation. We focus on the current understanding on how nutrient status and cellular signaling pathways connect mTORC1 activity with ferroptosis, an iron-dependent cell death program that has been implicated in a plethora of human diseases. In-depth understanding of the principles governing the interaction between mTORC1 and cell death pathways can ultimately guide the development of novel therapies for the treatment of relevant pathological conditions.
Collapse
Affiliation(s)
- Jiajun Zhu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China,Tsinghua-Peking Center for Life Sciences, Beijing, China,Correspondence to Jiajun Zhu:
| | - Hua Wang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY,Xuejun Jiang:
| |
Collapse
|
13
|
Seo S, Kim YA, Lee J, Lee S, Kim J, Lee S. Fat3 regulates neural progenitor cells by promoting Yap activity during spinal cord development. Sci Rep 2022; 12:14726. [PMID: 36042367 PMCID: PMC9427758 DOI: 10.1038/s41598-022-19029-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/23/2022] [Indexed: 11/19/2022] Open
Abstract
Early embryonic development of the spinal cord requires tight coordination between proliferation of neural progenitors and their differentiation into distinct neuronal cell types to establish intricate neuronal circuits. The Hippo pathway is one of the well-known regulators to control cell proliferation and govern neural progenitor cell number, in which the downstream effector Yes-associated protein (Yap) promotes cell cycle progression. Here we show that an atypical cadherin Fat3, expressed highly in the neural tube, plays a critical role in maintaining proper number of proliferating progenitors. Knockdown of Fat3 in chick neural tube down-regulates expression of the proliferation markers but rather induces the expression of neural markers in the ventricular zone. We further show that deletion of Fat3 gene in mouse neural tube depletes neural progenitors, accompanied by neuronal gene expression in the ventral ventricular zone of the spinal cord. Finally, we found that Fat3 regulates the phosphorylation level of Lats1/2, the upstream kinase of Yap, resulting in dephosphorylation and stabilization of Yap, suggesting Yap as a key downstream effector of Fat3. Our study uncovers another layer of regulatory mechanisms in controlling the activity of Hippo signaling pathway to regulate the size of neural progenitor pools in the developing spinal cord.
Collapse
Affiliation(s)
- Soyeon Seo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Young A Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Junekyoung Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Seunghwan Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jumee Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Seunghee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
14
|
Hu B, Gao J, Shi J, Zhang F, Shi C, Wen P, Wang Z, Guo W, Zhang S. Necroptosis throws novel insights on patient classification and treatment strategies for hepatocellular carcinoma. Front Immunol 2022; 13:970117. [PMID: 35967375 PMCID: PMC9363630 DOI: 10.3389/fimmu.2022.970117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionNecroptosis is a novel pattern of immunogenic cell death and has triggered an emerging wave in antitumor therapy. More evidence has suggested the potential associations between necroptosis and intra-tumoral heterogeneity. Currently, the underlying role of necroptosis remains elusive in hepatocellular carcinoma (HCC) at antitumor immunity and inter-tumoral heterogeneity.MethodsThis study enrolled a total of 728 HCC patients and 139 immunotherapy patients from eight public datasets. The consensus clustering approach was employed to depict tumor heterogeneity of cancer necroptosis. Subsequently, our study further decoded the heterogeneous clinical outcomes, genomic landscape, biological behaviors, and immune characteristics in necroptosis subtypes. For each patient, providing curative clinical recommendations and developing potential therapeutic drugs were used to promote precise medicine.ResultsWith the use of the weighted gene coexpression network analysis (WGCNA) algorithm, necroptosis-associated long non-coding RNAs (lncRNAs) (NALRs) were identified in HCC. Based on the NALR expression, two heterogeneous subtypes were decoded with distinct clinical outcomes. Compared to patients in C1, patients in C2 harbored superior pathological stage and presented more unfavorable overall survival and recurrence-free survival. Then, the robustness and reproducibility of necroptosis subtypes were further validated via the nearest template prediction (NTP) approach and classical immune phenotypes. Through comprehensive explorations, C1 was characterized by enriched immune-inflammatory and abundant immune infiltration, while C2 possessed elevated proliferative and metabolic activities and highly genomic instability. Moreover, our results indicated that C1 was more prone to obtain desirable benefits from immunotherapy. For patients in C2, numerous underlying therapeutic agents were developed, which might produce significant efficacy.ConclusionThis study identified two necroptosis subtypes with distinct characteristics, decoding the tumor heterogeneity. For an individualized patient, our work tailored corresponding treatment strategies to improve clinical management.
Collapse
Affiliation(s)
- Bowen Hu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The First Affiliated Hospital of Zhengzhou University, Henan Research Centre for Organ Transplantation, Zhengzhou, China
- The First Affiliated Hospital of Zhengzhou University, Henan Diagnosis & Treatment League for Hepatopathy, Zhengzhou, China
- The First Affiliated Hospital of Zhengzhou University, Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China
| | - Jie Gao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The First Affiliated Hospital of Zhengzhou University, Henan Research Centre for Organ Transplantation, Zhengzhou, China
- The First Affiliated Hospital of Zhengzhou University, Henan Diagnosis & Treatment League for Hepatopathy, Zhengzhou, China
- The First Affiliated Hospital of Zhengzhou University, Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China
| | - Jihua Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The First Affiliated Hospital of Zhengzhou University, Henan Research Centre for Organ Transplantation, Zhengzhou, China
- The First Affiliated Hospital of Zhengzhou University, Henan Diagnosis & Treatment League for Hepatopathy, Zhengzhou, China
- The First Affiliated Hospital of Zhengzhou University, Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China
| | - Feng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The First Affiliated Hospital of Zhengzhou University, Henan Research Centre for Organ Transplantation, Zhengzhou, China
- The First Affiliated Hospital of Zhengzhou University, Henan Diagnosis & Treatment League for Hepatopathy, Zhengzhou, China
- The First Affiliated Hospital of Zhengzhou University, Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China
| | - Chengcheng Shi
- The First Affiliated Hospital of Zhengzhou University, Henan Research Centre for Organ Transplantation, Zhengzhou, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peihao Wen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The First Affiliated Hospital of Zhengzhou University, Henan Research Centre for Organ Transplantation, Zhengzhou, China
- The First Affiliated Hospital of Zhengzhou University, Henan Diagnosis & Treatment League for Hepatopathy, Zhengzhou, China
- The First Affiliated Hospital of Zhengzhou University, Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China
| | - Zhihui Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The First Affiliated Hospital of Zhengzhou University, Henan Research Centre for Organ Transplantation, Zhengzhou, China
- The First Affiliated Hospital of Zhengzhou University, Henan Diagnosis & Treatment League for Hepatopathy, Zhengzhou, China
- The First Affiliated Hospital of Zhengzhou University, Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The First Affiliated Hospital of Zhengzhou University, Henan Research Centre for Organ Transplantation, Zhengzhou, China
- The First Affiliated Hospital of Zhengzhou University, Henan Diagnosis & Treatment League for Hepatopathy, Zhengzhou, China
- The First Affiliated Hospital of Zhengzhou University, Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The First Affiliated Hospital of Zhengzhou University, Henan Research Centre for Organ Transplantation, Zhengzhou, China
- The First Affiliated Hospital of Zhengzhou University, Henan Diagnosis & Treatment League for Hepatopathy, Zhengzhou, China
- The First Affiliated Hospital of Zhengzhou University, Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China
- *Correspondence: Shuijun Zhang,
| |
Collapse
|
15
|
Roles of mTOR in the Regulation of Pancreatic β-Cell Mass and Insulin Secretion. Biomolecules 2022; 12:biom12050614. [PMID: 35625542 PMCID: PMC9138643 DOI: 10.3390/biom12050614] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/07/2022] Open
Abstract
Pancreatic β-cells are the only type of cells that can control glycemic levels via insulin secretion. Thus, to explore the mechanisms underlying pancreatic β-cell failure, many reports have clarified the roles of important molecules, such as the mechanistic target of rapamycin (mTOR), which is a central regulator of metabolic and nutrient cues. Studies have uncovered the roles of mTOR in the function of β-cells and the progression of diabetes, and they suggest that mTOR has both positive and negative effects on pancreatic β-cells in the development of diabetes.
Collapse
|
16
|
Jeong MG, Kim HK, Lee G, Won HY, Yoon DH, Hwang ES. TAZ promotes PDX1-mediated insulinogenesis. Cell Mol Life Sci 2022; 79:186. [PMID: 35279781 PMCID: PMC11071806 DOI: 10.1007/s00018-022-04216-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 11/30/2022]
Abstract
Transcriptional co-activator with PDZ-binding motif (TAZ) is a key mediator of the Hippo signaling pathway and regulates structural and functional homeostasis in various tissues. TAZ activation is associated with the development of pancreatic cancer in humans, but it is unclear whether TAZ directly affects the structure and function of the pancreas. So we sought to identify the TAZ function in the normal pancreas. TAZ defect caused structural changes in the pancreas, particularly islet cell shrinkage and decreased insulin production and β-cell markers expression, leading to hyperglycemia. Interestingly, TAZ physically interacted with the pancreatic and duodenal homeobox 1 (PDX1), a key insulin transcription factor, through the N-terminal domain of TAZ and the homeodomain of PDX1. TAZ deficiency decreased the DNA-binding and transcriptional activity of PDX1, whereas TAZ overexpression promoted PDX1 activity and increased insulin production even in a low glucose environment. Indeed, high glucose increased insulin production by turning off the Hippo pathway and inducing TAZ activation in pancreatic β-cells. Ectopic TAZ overexpression along with PDX1 activation was sufficient to produce insulin in non-β-cells. TAZ deficiency impaired the mesenchymal stem cell differentiation into insulin-producing cells (IPCs), whereas TAZ recovery restored normal IPCs differentiation. Compared to WT control, body weight increased in TAZ-deficient mice with age and even more with a high-fat diet (HFD). TAZ deficiency significantly exacerbated HFD-induced glucose intolerance and insulin resistance. Therefore, TAZ deficiency impaired pancreatic insulin production, causing hyperglycemia and exacerbating HFD-induced insulin resistance, indicating that TAZ may have a beneficial effect in treating insulin deficiency in diabetes.
Collapse
Affiliation(s)
- Mi Gyeong Jeong
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, C206 Science Building, 52 Ewhayeodae-Gil, Seodaemun-Gu, Seoul, 03760, South Korea
| | - Hyo Kyeong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, C206 Science Building, 52 Ewhayeodae-Gil, Seodaemun-Gu, Seoul, 03760, South Korea
| | - Gibbeum Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, C206 Science Building, 52 Ewhayeodae-Gil, Seodaemun-Gu, Seoul, 03760, South Korea
| | - Hee Yeon Won
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, C206 Science Building, 52 Ewhayeodae-Gil, Seodaemun-Gu, Seoul, 03760, South Korea
| | - Da Hye Yoon
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, C206 Science Building, 52 Ewhayeodae-Gil, Seodaemun-Gu, Seoul, 03760, South Korea
| | - Eun Sook Hwang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, C206 Science Building, 52 Ewhayeodae-Gil, Seodaemun-Gu, Seoul, 03760, South Korea.
| |
Collapse
|
17
|
Pan HY, Valapala M. Regulation of Autophagy by the Glycogen Synthase Kinase-3 (GSK-3) Signaling Pathway. Int J Mol Sci 2022; 23:1709. [PMID: 35163631 PMCID: PMC8836041 DOI: 10.3390/ijms23031709] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/14/2022] Open
Abstract
Autophagy is a vital cellular mechanism that benefits cellular maintenance and survival during cell stress. It can eliminate damaged or long-lived organelles and improperly folded proteins to maintain cellular homeostasis, development, and differentiation. Impaired autophagy is associated with several diseases such as cancer, neurodegenerative diseases, and age-related macular degeneration (AMD). Several signaling pathways are associated with the regulation of the autophagy pathway. The glycogen synthase kinase-3 signaling pathway was reported to regulate the autophagy pathway. In this review, we will discuss the mechanisms by which the GSK-3 signaling pathway regulates autophagy. Autophagy and lysosomal function are regulated by transcription factor EB (TFEB). GSK-3 was shown to be involved in the regulation of TFEB nuclear expression in an mTORC1-dependent manner. In addition to mTORC1, GSK-3β also regulates TFEB via the protein kinase C (PKC) and the eukaryotic translation initiation factor 4A-3 (eIF4A3) signaling pathways. In addition to TFEB, we will also discuss the mechanisms by which the GSK-3 signaling pathway regulates autophagy by modulating other signaling molecules and autophagy inducers including, mTORC1, AKT and ULK1. In summary, this review provides a comprehensive understanding of the role of the GSK-3 signaling pathway in the regulation of autophagy.
Collapse
Affiliation(s)
| | - Mallika Valapala
- School of Optometry, Indiana University, Bloomington, IN 47405, USA;
| |
Collapse
|
18
|
Kilanowska A, Ziółkowska A. Apoptosis in Type 2 Diabetes: Can It Be Prevented? Hippo Pathway Prospects. Int J Mol Sci 2022; 23:636. [PMID: 35054822 PMCID: PMC8775644 DOI: 10.3390/ijms23020636] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/20/2021] [Accepted: 01/05/2022] [Indexed: 02/04/2023] Open
Abstract
Diabetes mellitus is a heterogeneous disease of complex etiology and pathogenesis. Hyperglycemia leads to many serious complications, but also directly initiates the process of β cell apoptosis. A potential strategy for the preservation of pancreatic β cells in diabetes may be to inhibit the implementation of pro-apoptotic pathways or to enhance the action of pancreatic protective factors. The Hippo signaling pathway is proposed and selected as a target to manipulate the activity of its core proteins in therapy-basic research. MST1 and LATS2, as major upstream signaling kinases of the Hippo pathway, are considered as target candidates for pharmacologically induced tissue regeneration and inhibition of apoptosis. Manipulating the activity of components of the Hippo pathway offers a wide range of possibilities, and thus is a potential tool in the treatment of diabetes and the regeneration of β cells. Therefore, it is important to fully understand the processes involved in apoptosis in diabetic states and completely characterize the role of this pathway in diabetes. Therapy consisting of slowing down or stopping the mechanisms of apoptosis may be an important direction of diabetes treatment in the future.
Collapse
Affiliation(s)
- Agnieszka Kilanowska
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, Zyty 28, 65-001 Zielona Gora, Poland;
| | | |
Collapse
|
19
|
Abstract
A progressive decline in the macroautophagic/autophagic flux is a hallmark of pancreatic β-cell failure in type 2 diabetes (T2D) but the responsible intrinsic factors and underlying molecular mechanisms are incompletely understood. A stress-sensitive multicomponent cellular loop of the Hippo pathway kinase LATS2 (large tumor suppressor 2), MTOR (mechanistic target of rapamycin kinase) complex 1 (MTORC1) and autophagy regulates β-cell survival and metabolic adaptation. Chronic metabolic stress leads to LATS2 hyperactivation which then induces MTORC1, subsequently impairing the cellular autophagic flux and consequently triggering β-cell death. Reciprocally, under physiological conditions, autophagy controls β-cell survival by lysosomal degradation of LATS2. These signaling cross-talks and the interaction between autophagy and LATS2 are important for the regulation of β-cell turnover and functional compensation under metabolic stress.
Collapse
Affiliation(s)
- Amin Ardestani
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany.,Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kathrin Maedler
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| |
Collapse
|