1
|
Murphy SK, Pike MR, Lipner E, Maxwell SD, Cohn BA, Cirillo P, Krigbaum NY, Breen EC, Ellman LM. Contributions of maternal prenatal infection and antibiotic exposure to offspring infection and risk for allergic respiratory conditions through age 5. Brain Behav Immun Health 2024; 42:100892. [PMID: 39512604 PMCID: PMC11541876 DOI: 10.1016/j.bbih.2024.100892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 11/15/2024] Open
Abstract
Objectives To determine if maternal prenatal infection increases risk of offspring postnatal infections through age 5 or diagnosis of respiratory allergy at age 5, independent of prenatal/postnatal antibiotic exposure. To evaluate if frequency of offspring infections mediates an association between prenatal infection and respiratory allergy at age 5. Study design Secondary data analyses were performed from the Child Health and Development Studies (CHDS), a prospective, longitudinal birth cohort that enrolled pregnant women from 1959 to 1966 (N = 19,044 live births). The sample included a subset of mother-offspring dyads (n = 2062) with abstracted medical record data from the prenatal period through age 5 that included information on antibiotic use, infection, and offspring respiratory allergy. Results Second trimester maternal infection was associated with an increased risk of offspring infection (IRR = 1.23; 95% CI = 1.09-1.39; p = 0.001). No significant direct associations were detected between prenatal infection and diagnosis of offspring respiratory allergy. Offspring infection (OR = 1.17; 95% CI = 1.13-1.20; p < 0.001) and antibiotic exposure (OR = 1.28; 95% CI = 1.22-1.33; p < 0.001) were significantly associated with a diagnosis of offspring respiratory allergy. Respiratory allergy diagnosis risk was greater with increasing offspring infection exposure and antibiotics. There was a significant indirect effect of second trimester maternal infection on offspring respiratory allergy, due to infections and not antibiotic use, via offspring infection, indicating a partially mediated effect. Conclusion Prenatal maternal infection may contribute to increase risk for early childhood infections, which in turn, may increase risk for allergic conditions.
Collapse
Affiliation(s)
- Shannon K. Murphy
- Temple University, Department of Psychology & Neuroscience, Philadelphia, PA, USA
| | - Madeline R. Pike
- Temple University, Department of Psychology & Neuroscience, Philadelphia, PA, USA
| | - Emily Lipner
- Temple University, Department of Psychology & Neuroscience, Philadelphia, PA, USA
| | - Seth D. Maxwell
- Temple University, Department of Psychology & Neuroscience, Philadelphia, PA, USA
| | - Barbara A. Cohn
- Child Health and Development Studies, Public Health Institute, Oakland, CA, USA
| | - Piera Cirillo
- Child Health and Development Studies, Public Health Institute, Oakland, CA, USA
| | | | - Elizabeth C. Breen
- Cousins Center for Psychoneuroimmunology, Dept. of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, USA
| | - Lauren M. Ellman
- Temple University, Department of Psychology & Neuroscience, Philadelphia, PA, USA
| |
Collapse
|
2
|
Viola MF, Franco Taveras E, Mass E. Developmental programming of tissue-resident macrophages. Front Immunol 2024; 15:1475369. [PMID: 39575254 PMCID: PMC11578957 DOI: 10.3389/fimmu.2024.1475369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024] Open
Abstract
Macrophages are integral components of the innate immune system that colonize organs early in development and persist into adulthood through self-renewal. Their fate, whether they are replaced by monocytes or retain their embryonic origin, depends on tissue type and integrity. Macrophages are influenced by their environment, a phenomenon referred to as developmental programming. This influence extends beyond the local tissue microenvironment and includes soluble factors that can reach the macrophage niche. These factors include metabolites, antibodies, growth factors, and cytokines, which may originate from maternal diet, lifestyle, infections, or other developmental triggers and perturbations. These influences can alter macrophage transcriptional, epigenetic, and metabolic profiles, affecting cell-cell communication and tissue integrity. In addition to their crucial role in tissue immunity, macrophages play vital roles in tissue development and homeostasis. Consequently, developmental programming of these long-lived cells can modulate tissue physiology and pathology throughout life. In this review, we discuss the ontogeny of macrophages, the necessity of developmental programming by the niche for macrophage identity and function, and how developmental perturbations can affect the programming of macrophages and their subtissular niches, thereby influencing disease onset and progression in adulthood. Understanding these effects can inform targeted interventions or preventive strategies against diseases. Finally, understanding the consequences of developmental programming will shed light on how maternal health and disease may impact the well-being of future generations.
Collapse
Affiliation(s)
| | | | - Elvira Mass
- Developmental Biology of the Immune System, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
3
|
Wei Y, Liang X, Wu Y, Zhang J, Cui X, Wu Y, Zhu D, Lv P, Meng W, Li W, Shen H. Dietary Aflatoxin G 1 exposure causes an imbalance between pulmonary tissue-resident alveolar macrophages and monocyte-derived macrophages in both mother and offspring mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117082. [PMID: 39317075 DOI: 10.1016/j.ecoenv.2024.117082] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/03/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Aflatoxin G1 (AFG1) is a mycotoxin commonly found in agricultural products, including dried fruits, meat, and milk products. Oral AFG1 administration induced tumor necrosis factor (TNF)-α-dependent chronic pulmonary inflammation, promoting AFG1-induced damage in alveolar epithelial cell, which is associated with lung adenocarcinoma. Pulmonary macrophages may be divided into tissue-resident alveolar macrophages (TRAMs) and monocyte-derived macrophages (MoMs), which involve in chronic lung inflammation. However, whether these macrophages contribute to AFG1-induced chronic pulmonary inflammation remains unknown. In this study, we found oral AFG1 administration disrupted the balance between TRAMs and MoMs, increasing MoMs infiltration and decreasing the number of TRAMs. AFG1 upregulated TNF-α expression in MoMs, but downregulated sialic acid binding Ig-like lectin F (Siglec-F) expression in TRAMs. Inhibition of TNF-α-dependent inflammation rescued the imbalance between TRAMs and MoMs in AFG1-treated lung tissues. Additionally, AFG1 stimulated MoMs differentiation to the proinflammatory M1 phenotype in vitro. Using a specific in vitro TRAM model, AFG1 downregulated Siglec-F and the M2 phenotypic markers arginase 1 and YM1, and upregulated the M1 phenotypic markers IL-6, iNOS and TNF-α, altering the TRAMs phenotype to the pro-inflammatory M1 phenotype in vitro. Additionally, mouse maternal dietary exposure to AFG1 caused an imbalance in pulmonary macrophages, decreasing TRAMs and increasing MoMs population in offspring, which was associated with proliferative lesions in the alveolar septa. Thus, dietary AFG1 exposure triggered an imbalance in pulmonary macrophages in both mother and offspring mice, and induced pro-inflammatory phenotypic alterations, which contributed to AFG1-induced chronic lung inflammation. These results provide clues to how AFG1-induced immunotoxicity and genotoxicity in humans might be prevented.
Collapse
Affiliation(s)
- Yangxuan Wei
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China; Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Xiaoyan Liang
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China; Department of Pathology, Hebei Reproductive Health Hospital, Shijiazhuang, China
| | - Yulin Wu
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Jiayu Zhang
- Center of Metabolic Diseases and Cancer Research (CMCR), Hebei Medical University, Shijiazhuang, China
| | - Xiaohui Cui
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Yutong Wu
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Delin Zhu
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Ping Lv
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Wei Meng
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China; Department of Pathology, The First Hospital of Handan, Handan, China.
| | - Wenbin Li
- Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China.
| | - Haitao Shen
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research (CMCR), Hebei Medical University, Shijiazhuang, China; Hebei Collaborative Innovation Center of Tumor Microecological Metabolism Regulation, Affiliated Hospital of Hebei University, Baoding, Hebei, China.
| |
Collapse
|
4
|
Chronopoulos J, Pernet E, Tran KA, McGovern TK, Morozan A, Wang S, Tsai O, Makita K, Divangahi M, Martin JG. Pregnancy enhances antiviral immunity independent of type I IFN but dependent on IL-17-producing γδ + T cells in the nasal mucosa. SCIENCE ADVANCES 2024; 10:eado7087. [PMID: 39331716 PMCID: PMC11430450 DOI: 10.1126/sciadv.ado7087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/23/2024] [Indexed: 09/29/2024]
Abstract
Pregnancy is associated with profound changes in immunity. However, pregnancy-related respiratory immune adaptations in response to influenza infection and their impact on disease severity remain unclear. Here, we describe, in a preclinical model of mid-gestation pregnancy, a mechanism of enhanced host defense against influenza A virus (IAV) localized to the nasal cavity that limits viral replication and reduces the magnitude of intrapulmonary immune responses. Consequently, the pregnant mice show reduced pulmonary pathology and preserved airway function after IAV infection. The early restriction of viral replication is independent of type I interferon (IFN) but dependent on increased antimicrobial peptides (AMPs) driven by interleukin-17+ (IL-17+) γδ+ T cells within the nasal passages. This pathway of host defense against IAV infection in the upper airways during pregnancy restricts early viral infection and prevents virus dissemination into the lung supporting maternal fitness.
Collapse
Affiliation(s)
- Julia Chronopoulos
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Erwan Pernet
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Medical Biology, Université du Québec à Trois-Rivières, Quebec, Canada
| | - Kim A. Tran
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - Toby K. McGovern
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Arina Morozan
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Sadie Wang
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Oscar Tsai
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Kosuke Makita
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Maziar Divangahi
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Pathology, McGill University, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - James G. Martin
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Coward-Smith M, Liong S, Oseghale O, Erlich JR, Miles MA, Liong F, Brassington K, Bozinovski S, Vlahos R, Brooks RD, Brooks DA, O’Leary JJ, Selemidis S. Low dose aspirin prevents endothelial dysfunction in the aorta and foetal loss in pregnant mice infected with influenza A virus. Front Immunol 2024; 15:1378610. [PMID: 38638436 PMCID: PMC11024306 DOI: 10.3389/fimmu.2024.1378610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/15/2024] [Indexed: 04/20/2024] Open
Abstract
Influenza A virus (IAV) infection in pregnancy resembles a preeclamptic phenotype characterised by vascular dysfunction and foetal growth retardation. Given that low dose aspirin (ASA) is safe in pregnancy and is used to prevent preeclampsia, we investigated whether ASA or NO-conjugated aspirin, NCX4016, resolve vascular inflammation and function to improve offspring outcomes following IAV infection in pregnant mice. Pregnant mice were intranasally infected with a mouse adapted IAV strain (Hkx31; 104 plaque forming units) and received daily treatments with either 200µg/kg ASA or NCX4016 via oral gavage. Mice were then culled and the maternal lungs and aortas collected for qPCR analysis, and wire myography was performed on aortic rings to assess endothelial and vascular smooth muscle functionality. Pup and placentas were weighed and pup growth rates and survival assessed. IAV infected mice had an impaired endothelial dependent relaxation response to ACh in the aorta, which was prevented by ASA and NCX4016 treatment. ASA and NCX4016 treatment prevented IAV dissemination and inflammation of the aorta as well as improving the pup placental ratios in utero, survival and growth rates at post-natal day 5. Low dose ASA is safe to use during pregnancy for preeclampsia and this study demonstrates that ASA may prove a promising treatment for averting the significant vascular complications associated with influenza infection during pregnancy.
Collapse
Affiliation(s)
- Madison Coward-Smith
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, Royal Melbourne Institute of Techology (RMIT) University, Melbourne, VIC, Australia
| | - Stella Liong
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, Royal Melbourne Institute of Techology (RMIT) University, Melbourne, VIC, Australia
| | - Osezua Oseghale
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, Royal Melbourne Institute of Techology (RMIT) University, Melbourne, VIC, Australia
| | - Jonathan R. Erlich
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, Royal Melbourne Institute of Techology (RMIT) University, Melbourne, VIC, Australia
| | - Mark A. Miles
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, Royal Melbourne Institute of Techology (RMIT) University, Melbourne, VIC, Australia
| | - Felicia Liong
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, Royal Melbourne Institute of Techology (RMIT) University, Melbourne, VIC, Australia
| | - Kurt Brassington
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, Royal Melbourne Institute of Techology (RMIT) University, Melbourne, VIC, Australia
| | - Steven Bozinovski
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, Royal Melbourne Institute of Techology (RMIT) University, Melbourne, VIC, Australia
| | - Ross Vlahos
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, Royal Melbourne Institute of Techology (RMIT) University, Melbourne, VIC, Australia
| | - Robert D. Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Doug A. Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - John J. O’Leary
- Discipline of Histopathology, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Sir Patrick Dun’s Research Laboratory and the Trinity Translational Medicine Institute (TTMI), St. James’s Hospital, Dublin, Ireland
| | - Stavros Selemidis
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, Royal Melbourne Institute of Techology (RMIT) University, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Welch JL, Shrestha R, Hutchings H, Pal N, Levings R, Robbe-Austerman S, Palinski R, Shanmuganatham KK. Inactivation of highly transmissible livestock and avian viruses including influenza A and Newcastle disease virus for molecular diagnostics. Front Vet Sci 2024; 11:1304022. [PMID: 38515532 PMCID: PMC10955088 DOI: 10.3389/fvets.2024.1304022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/06/2024] [Indexed: 03/23/2024] Open
Abstract
There is a critical need for an inactivation method that completely inactivates pathogens at the time of sample collection while maintaining the nucleic acid quality required for diagnostic PCR testing. This inactivation method is required to alleviate concerns about transmission potential, minimize shipping complications and cost, and enable testing in lower containment laboratories, thereby enhancing disease diagnostics through improved turn-around time. This study evaluated a panel of 10 surrogate viruses that represent highly pathogenic animal diseases. These results showed that a commercial PrimeStore® molecular transport media (PSMTM) completely inactivated all viruses tested by >99.99%, as determined by infectivity and serial passage assays. However, the detection of viral nucleic acid by qRT-PCR was comparable in PSMTM and control-treated conditions. These results were consistent when viruses were evaluated in the presence of biological material such as sera and cloacal swabs to mimic diagnostic sample conditions for non-avian and avian viruses, respectively. The results of this study may be utilized by diagnostic testing laboratories for highly pathogenic agents affecting animal and human populations. These results may be used to revise guidance for select agent diagnostic testing and the shipment of infectious substances.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Karthik K. Shanmuganatham
- National Veterinary Services Laboratories, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA, United States
| |
Collapse
|
7
|
Creisher PS, Parish MA, Lei J, Liu J, Perry JL, Campbell AD, Sherer ML, Burd I, Klein SL. Suppression of progesterone by influenza A virus mediates adverse maternal and fetal outcomes in mice. mBio 2024; 15:e0306523. [PMID: 38190129 PMCID: PMC10865978 DOI: 10.1128/mbio.03065-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Influenza A virus infection during pregnancy can cause adverse maternal and fetal outcomes but the mechanism responsible remains elusive. Infection of outbred mice with 2009 H1N1 at embryonic day (E) 10 resulted in significant maternal morbidity, placental tissue damage and inflammation, fetal growth restriction, and developmental delays that lasted through weaning. Restriction of pulmonary virus replication was not inhibited during pregnancy, but infected dams had suppressed circulating and placental progesterone (P4) concentrations that were caused by H1N1-induced upregulation of pulmonary cyclooxygenase (COX)-1-, but not COX-2-, dependent synthesis and secretion of prostaglandin (PG) F2α. Treatment with 17-α-hydroxyprogesterone caproate (17-OHPC), a synthetic progestin that is safe to use in pregnancy, ameliorated the adverse maternal and fetal outcomes from H1N1 infection and prevented placental cell death and inflammation. These findings highlight the therapeutic potential of progestin treatments for influenza during pregnancy.IMPORTANCEPregnant individuals are at risk of severe outcomes from both seasonal and pandemic influenza A viruses. Influenza infection during pregnancy is associated with adverse fetal outcomes at birth and adverse consequences for offspring into adulthood. When outbred dams, with semi-allogenic fetuses, were infected with 2009 H1N1, in addition to pulmonary virus replication, lung damage, and inflammation, the placenta showed evidence of transient cell death and inflammation that was mediated by increased activity along the arachidonic acid pathway leading to suppression of circulating progesterone. Placental damage and suppressed progesterone were associated with detrimental effects on perinatal growth and developmental delays in offspring. Treatment of H1N1-infected pregnant mice with 17-OHPC, a synthetic progestin treatment that is safe to use in pregnancy, prevented placental damage and inflammation and adverse fetal outcomes. This novel therapeutic option for the treatment of influenza during pregnancy should be explored clinically.
Collapse
Affiliation(s)
- Patrick S. Creisher
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Maclaine A. Parish
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jun Lei
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jin Liu
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jamie L. Perry
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Ariana D. Campbell
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Morgan L. Sherer
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Irina Burd
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sabra L. Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Yin M, Zhang Y, Li X, Liu S, Huang J, Yu H, Li X. Adverse effects of gestational diabetes mellitus on fetal monocytes revealed by single-cell RNA sequencing. iScience 2024; 27:108637. [PMID: 38188508 PMCID: PMC10770529 DOI: 10.1016/j.isci.2023.108637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/18/2023] [Accepted: 12/01/2023] [Indexed: 01/09/2024] Open
Abstract
Gestational diabetes mellitus (GDM), the most prevalent metabolic disorder during pregnancy, has long-term risks of metabolic diseases in offspring. However, the underlying mechanisms remain unclear. Here, we analyzed single-cell transcriptional data of cord blood mononuclear cells (CBMCs) from fetuses of healthy and GDM mothers, peripheral blood mononuclear cells from children and adolescents, and coronary plaques myeloid cells from atherosclerosis. Our results demonstrated that monocytes in cord blood were characterized with down-regulated proinflammatory-related pathways and up-regulated proliferation-related pathways. And monocytes in cord blood from GDM mothers were featured with expanded CXCL8+IL1B+ subclusters, enhanced crosstalk with neutrophil granulocytes and augmented adhesive and phagocytic abilities. Interestingly, CXCL8+IL1B+ monocytes influenced by GDM had transcriptome similarity with those of coronary plaques myeloid cells from individuals with atherosclerotic cardiovascular disease. Collectively, our data reveal adverse impact of maternal GDM environment on fetal monocytes and propose potential mechanisms between maternal GDM and offspring atherosclerosis.
Collapse
Affiliation(s)
- Min Yin
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yan Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xinyu Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shanshan Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Juan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Haibo Yu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Engineering Research Center of Cell Therapy for Diabetes, Changsha, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
9
|
Ahmed S, Jiang X, Liu G, Yang H, Sadiq A, Yi D, Farooq U, Yiyu S, Zubair M. The protective role of maternal genetic immunization on maternal-fetal health and welfare. Int J Gynaecol Obstet 2023; 163:763-777. [PMID: 37218379 DOI: 10.1002/ijgo.14853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023]
Abstract
Pregnancy is a critical period associated with alterations in physiologic, biologic, and immunologic processes, which can affect maternal-fetal health through development of several infectious diseases. At birth, neonates have an immature immune system that makes them more susceptible to severe viral infections and diseases. For this reason, different maternal nutritional and immunization interventions have been used to improve the immune and health status of the mother and her neonate through passive immunity. Here, we reviewed the protective role of maternal immunization with different types of vaccines, especially genetic vaccines, during pregnancy in maternal-fetal health, immune response, colostrum quality, immune response, and anti-oxidative status. For this purpose, we have used different scientific databases (PubMed and Google Scholar) and other official web pages. We customized the search period range from the year 2000 to 2023 using the key words "maternal immunization" OR "gestation period/pregnancy" OR "genetic vaccination" OR "maternal-fetal health" OR "micronutrients" OR "neonatal immunity" "oxidative stress" OR "colostrum quality". The evidence demonstrated that inactivated or killed vaccines produced significant immune protection in the mother and fetus. Furthermore, most recent studies have suggested that the use of genetic vaccines (mRNA and DNA) during pregnancy is efficient at triggering the immune response in mother and neonate without the risk of undesired pregnancy outcomes. However, factors such as maternal redox balance, nutritional status, and the timing of immunization play essential roles in regulating immune response inflammatory status, antioxidant capacity, and the welfare of both the pregnant mother and her newborn.
Collapse
Affiliation(s)
- Sohail Ahmed
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xunping Jiang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Smart Farming for Agricultural Animals, Wuhan, China
| | - Guiqiong Liu
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huiguo Yang
- Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Amber Sadiq
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ding Yi
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Umar Farooq
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Sha Yiyu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Zubair
- Department of Veterinary Clinical Sciences, University of Poonch, Rawalakot, Pakistan
| |
Collapse
|
10
|
Creisher PS, Parish MA, Lei J, Liu J, Perry JL, Campbell AD, Sherer ML, Burd I, Klein SL. Suppression of progesterone by influenza A virus mediates adverse maternal and fetal outcomes in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.11.557146. [PMID: 37745453 PMCID: PMC10515826 DOI: 10.1101/2023.09.11.557146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Influenza A virus infection during pregnancy can cause adverse maternal and fetal outcomes, but the mechanism responsible remains elusive. Infection of outbred mice with 2009 H1N1 at embryonic day (E) 10 resulted in significant maternal morbidity, placental tissue damage and inflammation, fetal growth restriction, and developmental delays that lasted through weaning. Restriction of pulmonary virus replication was not inhibited during pregnancy, but infected dams had suppressed circulating and placental progesterone (P4) concentrations that were caused by H1N1-induced upregulation of pulmonary cyclooxygenase (COX)-1, but not COX-2-, dependent synthesis and secretion of prostaglandin (PG) F2α. Treatment with 17-α-hydroxyprogesterone caproate (17-OHPC), a synthetic progestin that is safe to use in pregnancy, ameliorated the adverse maternal and fetal outcomes from H1N1 infection and prevented placental cell death and inflammation. These findings highlight the therapeutic potential of progestin treatments for influenza during pregnancy.
Collapse
|
11
|
Li H, Wang A, Zhang Y, Wei F. Diverse roles of lung macrophages in the immune response to influenza A virus. Front Microbiol 2023; 14:1260543. [PMID: 37779697 PMCID: PMC10534047 DOI: 10.3389/fmicb.2023.1260543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/16/2023] [Indexed: 10/03/2023] Open
Abstract
Influenza viruses are one of the major causes of human respiratory infections and the newly emerging and re-emerging strains of influenza virus are the cause of seasonal epidemics and occasional pandemics, resulting in a huge threat to global public health systems. As one of the early immune cells can rapidly recognize and respond to influenza viruses in the respiratory, lung macrophages play an important role in controlling the severity of influenza disease by limiting viral replication, modulating the local inflammatory response, and initiating subsequent adaptive immune responses. However, influenza virus reproduction in macrophages is both strain- and macrophage type-dependent, and ineffective replication of some viral strains in mouse macrophages has been observed. This review discusses the function of lung macrophages in influenza virus infection in order to better understand the pathogenesis of the influenza virus.
Collapse
Affiliation(s)
- Haoning Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Aoxue Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Yuying Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Fanhua Wei
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| |
Collapse
|
12
|
Doratt BM, Sureshchandra S, True H, Rincon M, Marshall NE, Messaoudi I. Mild/asymptomatic COVID-19 in unvaccinated pregnant mothers impairs neonatal immune responses. JCI Insight 2023; 8:e172658. [PMID: 37698937 PMCID: PMC10629812 DOI: 10.1172/jci.insight.172658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023] Open
Abstract
Maternal SARS-CoV-2 infection triggers placental inflammation and alters cord blood immune cell composition. However, most studies focus on outcomes of severe maternal infection. Therefore, we analyzed cord blood and chorionic villi from newborns of unvaccinated mothers who experienced mild/asymptomatic SARS-CoV-2 infection during pregnancy. We investigated immune cell rewiring using flow cytometry, single-cell RNA sequencing, and functional readouts using ex vivo stimulation with TLR agonists and pathogens. Maternal infection was associated with increased frequency of memory T and B cells and nonclassical monocytes in cord blood. Ex vivo T and B cell responses to stimulation were attenuated, suggesting a tolerogenic state. Maladaptive responses were also observed in cord blood monocytes, where antiviral responses were dampened but responses to bacterial TLRs were increased. Maternal infection was also associated with expansion and activation of placental Hofbauer cells, secreting elevated levels of myeloid cell-recruiting chemokines. Moreover, we reported increased activation of maternally derived monocytes/macrophages in the fetal placenta that were transcriptionally primed for antiviral responses. Our data indicate that even in the absence of vertical transmission or symptoms in the neonate, mild/asymptomatic maternal COVID-19 altered the transcriptional and functional state in fetal immune cells in circulation and in the placenta.
Collapse
Affiliation(s)
- Brianna M. Doratt
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Suhas Sureshchandra
- Department of Physiology and Biophysics, School of Medicine, and
- Institute for Immunology, University of California, Irvine, California, USA
| | - Heather True
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Monica Rincon
- Maternal-Fetal Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Nicole E. Marshall
- Maternal-Fetal Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Ilhem Messaoudi
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
13
|
Liong S, Miles MA, Mohsenipour M, Liong F, Hill-Yardin EL, Selemidis S. Influenza A virus infection during pregnancy causes immunological changes in gut-associated lymphoid tissues of offspring mice. Am J Physiol Gastrointest Liver Physiol 2023; 325:G230-G238. [PMID: 37431584 PMCID: PMC10435073 DOI: 10.1152/ajpgi.00062.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023]
Abstract
Maternal influenza A virus (IAV) infection during pregnancy can affect offspring immune programming and development. Offspring born from influenza-infected mothers are at increased risk of neurodevelopmental disorders and have impaired respiratory mucosal immunity against pathogens. The gut-associated lymphoid tissue (GALT) represents a large proportion of the immune system in the body and plays an important role in gastrointestinal (GI) homeostasis. This includes immune modulation to antigens derived from food or microbes, gut microbiota composition, and gut-brain axis signaling. Therefore, in this study, we investigated the effect of maternal IAV infection on mucosal immunity of the GI tract in the offspring. There were no major anatomical changes to the gastrointestinal tract of offspring born to influenza-infected dams. In contrast, maternal IAV did affect the mucosal immunity of offspring, showing regional differences in immune cell profiles within distinct GALT. Neutrophils, monocytes/macrophages, CD4+ and CD8+ T cells infiltration was increased in the cecal patch offspring from IAV-infected dams. In the Peyer's patches, only activated CD4+ T cells were increased in IAV offspring. IL-6 gene expression was also elevated in the cecal patch but not in the Peyer's patches of IAV offspring. These findings suggest that maternal IAV infection perturbs homeostatic mucosal immunity in the offspring gastrointestinal tract. This could have profound ramifications on the gut-brain axis and mucosal immunity in the lungs leading to increased susceptibility to respiratory infections and neurological disorders in the offspring later in life.NEW & NOTEWORTHY Influenza A virus (IAV) infection during pregnancy is associated with changes in gut-associated lymphoid tissue (GALT) in the offspring in a region-dependent manner. Neutrophils and monocytes/macrophages were elevated in the cecal patch of offspring from infected dams. This increase in innate immune cell infiltration was not observed in the Peyer's patches. T cells were also elevated in the cecal patch but not in the Peyer's patches.
Collapse
Affiliation(s)
- Stella Liong
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia
- Centre for Respiratory Science and Health, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia
| | - Mark A Miles
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia
- Centre for Respiratory Science and Health, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia
| | - Mitra Mohsenipour
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia
| | - Felicia Liong
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia
- Centre for Respiratory Science and Health, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia
| | - Elisa L Hill-Yardin
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia
| | - Stavros Selemidis
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia
- Centre for Respiratory Science and Health, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia
| |
Collapse
|
14
|
Gundacker A, Cuenca Rico L, Stoehrmann P, Tillmann KE, Weber-Stadlbauer U, Pollak DD. Interaction of the pre- and postnatal environment in the maternal immune activation model. DISCOVER MENTAL HEALTH 2023; 3:15. [PMID: 37622027 PMCID: PMC10444676 DOI: 10.1007/s44192-023-00042-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023]
Abstract
Adverse influences during pregnancy are associated with a range of unfavorable outcomes for the developing offspring. Maternal psychosocial stress, exposure to infections and nutritional imbalances are known risk factors for neurodevelopmental derangements and according psychiatric and neurological manifestations later in offspring life. In this context, the maternal immune activation (MIA) model has been extensively used in preclinical research to study how stimulation of the maternal immune system during gestation derails the tightly coordinated sequence of fetal neurodevelopment. The ensuing consequence of MIA for offspring brain structure and function are majorly manifested in behavioral and cognitive abnormalities, phenotypically presenting during the periods of adolescence and adulthood. These observations have been interpreted within the framework of the "double-hit-hypothesis" suggesting that an elevated risk for neurodevelopmental disorders results from an individual being subjected to two adverse environmental influences at distinct periods of life, jointly leading to the emergence of pathology. The early postnatal period, during which the caregiving parent is the major determinant of the newborn´s environment, constitutes a window of vulnerability to external stimuli. Considering that MIA not only affects the developing fetus, but also impinges on the mother´s brain, which is in a state of heightened malleability during pregnancy, the impact of MIA on maternal brain function and behavior postpartum may importantly contribute to the detrimental consequences for her progeny. Here we review current information on the interaction between the prenatal and postnatal maternal environments in the modulation of offspring development and their relevance for the pathophysiology of the MIA model.
Collapse
Affiliation(s)
- Anna Gundacker
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, 1090 Vienna, Austria
| | - Laura Cuenca Rico
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, 1090 Vienna, Austria
| | - Peter Stoehrmann
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, 1090 Vienna, Austria
| | - Katharina E. Tillmann
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, 1090 Vienna, Austria
| | - Ulrike Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Daniela D. Pollak
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, 1090 Vienna, Austria
| |
Collapse
|
15
|
Wu Y, Li Y, Zhao J, Wu Y, Lu D, Jia J, Chen T, He M, Lin J, Yang Q. IBV QX affects the antigen presentation function of BMDCs through nonstructural protein16. Poult Sci 2023; 102:102620. [PMID: 36972672 PMCID: PMC9981267 DOI: 10.1016/j.psj.2023.102620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The gamma-coronavirus infectious bronchitis virus (IBV) has a high mutation rate and mainly invades the respiratory mucosa, making it difficult to prevent and causing great economic losses. Nonstructural protein 16 (NSP16) of IBV QX also not only plays an indispensable role in virus invading but also might hugely influence the antigen's recognition and presentation ability of host BMDCs. Hence, our study tries to illustrate the underline mechanism of how NSP16 influences the immune function of BMDCs. Initially, we found that NSP16 of the QX strain significantly inhibited the antigen presentation ability and immune response of mouse BMDCs, which was stimulated by Poly (I:C) or AIV RNA. Besides mouse BMDCs, we also found that NSP16 of the QX strain also significantly stimulated the chicken BMDCs to activate the interferon signaling pathway. Furthermore, we preliminarily demonstrated that IBV QX NSP16 inhibits the antiviral system by affecting the antigen-presenting function of BMDCs.
Collapse
Affiliation(s)
- Yaotang Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| | - Yuchen Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Jinhao Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yang Wu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Danqing Lu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Junpeng Jia
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Tianxin Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Mingzhe He
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Jian Lin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| | - Qian Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| |
Collapse
|
16
|
Creisher PS, Seddu K, Mueller AL, Klein SL. Biological Sex and Pregnancy Affect Influenza Pathogenesis and Vaccination. Curr Top Microbiol Immunol 2023; 441:111-137. [PMID: 37695427 DOI: 10.1007/978-3-031-35139-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Males and females differ in the outcome of influenza A virus (IAV) infections, which depends significantly on age. During seasonal influenza epidemics, young children (< 5 years of age) and aged adults (65+ years of age) are at greatest risk for severe disease, and among these age groups, males tend to suffer a worse outcome from IAV infection than females. Following infection with pandemic strains of IAVs, females of reproductive ages (i.e., 15-49 years of age) experience a worse outcome than their male counterparts. Although females of reproductive ages experience worse outcomes from IAV infection, females typically have greater immune responses to influenza vaccination as compared with males. Among females of reproductive ages, pregnancy is one factor linked to an increased risk of severe outcome of influenza. Small animal models of influenza virus infection and vaccination illustrate that immune responses and repair of damaged tissue following IAV infection also differ between the sexes and impact the outcome of infection. There is growing evidence that sex steroid hormones, including estrogens, progesterone, and testosterone, directly impact immune responses during IAV infection and vaccination. Greater consideration of the combined effects of sex and age as biological variables in epidemiological, clinical, and animal studies of influenza pathogenesis is needed.
Collapse
Affiliation(s)
- Patrick S Creisher
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD, United States
| | - Kumba Seddu
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD, United States
| | - Alice L Mueller
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD, United States
| | - Sabra L Klein
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD, United States.
| |
Collapse
|
17
|
Wu T, Zhou K, Hua Y, Zhang W, Li Y. The molecular mechanisms in prenatal drug exposure-induced fetal programmed adult cardiovascular disease. Front Pharmacol 2023; 14:1164487. [PMID: 37153765 PMCID: PMC10157035 DOI: 10.3389/fphar.2023.1164487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/03/2023] [Indexed: 05/10/2023] Open
Abstract
The "developmental origins of health and disease" (DOHaD) hypothesis posits that early-life environmental exposures have a lasting impact on individual's health and permanently shape growth, structure, and metabolism. This reprogramming, which results from fetal stress, is believed to contribute to the development of adulthood cardiovascular diseases such as hypertension, coronary artery disease, heart failure, and increased susceptibility to ischemic injuries. Recent studies have shown that prenatal exposure to drugs, such as glucocorticoids, antibiotics, antidepressants, antiepileptics, and other toxins, increases the risk of adult-onset cardiovascular diseases. In addition, observational and animal experimental studies have demonstrated the association between prenatal drug exposure and the programming of cardiovascular disease in the offspring. The molecular mechanisms underlying these effects are still being explored but are thought to involve metabolism dysregulation. This review summarizes the current evidence on the relationship between prenatal drug exposure and the risk of adult cardiovascular disorders. Additionally, we present the latest insights into the molecular mechanisms that lead to programmed cardiovascular phenotypes after prenatal drug exposure.
Collapse
Affiliation(s)
- Ting Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Ultrasonic Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Ultrasonic Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Ultrasonic Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wen Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Ultrasonic Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- *Correspondence: Wen Zhang, ; Yifei Li,
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- *Correspondence: Wen Zhang, ; Yifei Li,
| |
Collapse
|
18
|
McEwan F, Glazier JD, Hager R. The impact of maternal immune activation on embryonic brain development. Front Neurosci 2023; 17:1146710. [PMID: 36950133 PMCID: PMC10025352 DOI: 10.3389/fnins.2023.1146710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
The adult brain is a complex structure with distinct functional sub-regions, which are generated from an initial pool of neural epithelial cells within the embryo. This transition requires a number of highly coordinated processes, including neurogenesis, i.e., the generation of neurons, and neuronal migration. These take place during a critical period of development, during which the brain is particularly susceptible to environmental insults. Neurogenesis defects have been associated with the pathogenesis of neurodevelopmental disorders (NDDs), such as autism spectrum disorder and schizophrenia. However, these disorders have highly complex multifactorial etiologies, and hence the underlying mechanisms leading to aberrant neurogenesis continue to be the focus of a significant research effort and have yet to be established. Evidence from epidemiological studies suggests that exposure to maternal infection in utero is a critical risk factor for NDDs. To establish the biological mechanisms linking maternal immune activation (MIA) and altered neurodevelopment, animal models have been developed that allow experimental manipulation and investigation of different developmental stages of brain development following exposure to MIA. Here, we review the changes to embryonic brain development focusing on neurogenesis, neuronal migration and cortical lamination, following MIA. Across published studies, we found evidence for an acute proliferation defect in the embryonic MIA brain, which, in most cases, is linked to an acceleration in neurogenesis, demonstrated by an increased proportion of neurogenic to proliferative divisions. This is accompanied by disrupted cortical lamination, particularly in the density of deep layer neurons, which may be a consequence of the premature neurogenic shift. Although many aspects of the underlying pathways remain unclear, an altered epigenome and mitochondrial dysfunction are likely mechanisms underpinning disrupted neurogenesis in the MIA model. Further research is necessary to delineate the causative pathways responsible for the variation in neurogenesis phenotype following MIA, which are likely due to differences in timing of MIA induction as well as sex-dependent variation. This will help to better understand the underlying pathogenesis of NDDs, and establish therapeutic targets.
Collapse
|
19
|
Bucknor MC, Gururajan A, Dale RC, Hofer MJ. A comprehensive approach to modeling maternal immune activation in rodents. Front Neurosci 2022; 16:1071976. [PMID: 36590294 PMCID: PMC9800799 DOI: 10.3389/fnins.2022.1071976] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Prenatal brain development is a highly orchestrated process, making it a very vulnerable window to perturbations. Maternal stress and subsequent inflammation during pregnancy leads to a state referred to as, maternal immune activation (MIA). If persistent, MIA can pose as a significant risk factor for the manifestation of neurodevelopmental disorders (NDDs) such as autism spectrum disorder and schizophrenia. To further elucidate this association between MIA and NDD risk, rodent models have been used extensively across laboratories for many years. However, there are few uniform approaches for rodent MIA models which make not only comparisons between studies difficult, but some established approaches come with limitations that can affect experimental outcomes. Here, we provide researchers with a comprehensive review of common experimental variables and potential limitations that should be considered when designing an MIA study based in a rodent model. Experimental variables discussed include: innate immune stimulation using poly I:C and LPS, environmental gestational stress paradigms, rodent diet composition and sterilization, rodent strain, neonatal handling, and the inclusion of sex-specific MIA offspring analyses. We discuss how some aspects of these variables have potential to make a profound impact on MIA data interpretation and reproducibility.
Collapse
Affiliation(s)
- Morgan C. Bucknor
- School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Anand Gururajan
- The Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Russell C. Dale
- The Children’s Hospital at Westmead, Kids Neuroscience Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- The Children’s Hospital at Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Markus J. Hofer
- School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
20
|
Creisher PS, Campbell AD, Perry JL, Roznik K, Burd I, Klein SL. Influenza subtype-specific maternal antibodies protect offspring against infection but inhibit vaccine-induced immunity and protection in mice. Vaccine 2022; 40:6818-6829. [PMID: 36253217 PMCID: PMC10024894 DOI: 10.1016/j.vaccine.2022.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/02/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Following influenza A virus (IAV) infection or vaccination during pregnancy, maternal antibodies are transferred to offspring in utero and during lactation. The age and sex of offspring may differentially impact the transfer and effects of maternal immunity on offspring. To evaluate the effects of maternal IAV infection on immunity in offspring, we intranasally inoculated pregnant mice with sublethal doses of mouse-adapted (ma) H1N1, maH3N2, or media (mock) at embryonic day 10. In offspring of IAV-infected dams, maternal subtype-specific antibodies peaked at postnatal day (PND) 23, remained detectable through PND 50, and were undetectable by PND 105 in both sexes. When offspring were challenged with homologous IAV at PND 23, both male and female offspring had greater clearance of pulmonary virus and less morbidity and mortality than offspring from mock-inoculated dams. Inactivated influenza vaccination (IIV) against homologous IAV at PND 23 caused lower vaccine-induced antibody responses and protection following live virus challenge in offspring from IAV than mock-infected dams, with this effect being more pronounced among female than male offspring. At PND 105, there was no impact of maternal infection status, but vaccination induced greater antibody responses and protection against challenge in female than male offspring of both IAV-infected and mock-inoculated dams. To determine if maternal antibody or infection interfered with vaccine-induced immunity and protection in early life, offspring were vaccinated and challenged against a heterosubtypic IAV (i.e., different IAV group than dam) at PND 23 or 105. Heterosubtypic IAV maternal immunity did not affect antibody responses after IIV or protection after live IAV challenge of vaccinated offspring at either age. Subtype-specific maternal IAV antibodies, therefore, provide protection independent of offspring sex but interfere with vaccine-induced immunity and protection in offspring with more pronounced effects among females than males.
Collapse
Affiliation(s)
- Patrick S Creisher
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ariana D Campbell
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jamie L Perry
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Katerina Roznik
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Irina Burd
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
21
|
Cervantes O, Talavera IC, Every E, Coler B, Li M, Li A, Li H, Adams Waldorf K. Role of hormones in the pregnancy and sex-specific outcomes to infections with respiratory viruses. Immunol Rev 2022; 308:123-148. [PMID: 35373371 PMCID: PMC9189035 DOI: 10.1111/imr.13078] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 01/13/2023]
Abstract
Pregnant women infected with pathogenic respiratory viruses, such as influenza A viruses (IAV) and coronaviruses, are at higher risk for mortality, hospitalization, preterm birth, and stillbirth. Several factors are likely to contribute to the susceptibility of pregnant individuals to severe lung disease including changes in pulmonary physiology, immune defenses, and effector functions of some immune cells. Pregnancy is also a physiologic state characterized by higher levels of multiple hormones that may impact the effector functions of immune cells, such as progesterone, estrogen, human chorionic gonadotropin, prolactin, and relaxin. Each of these hormones acts to support a tolerogenic immune state of pregnancy, which helps prevent fetal rejection, but may also contribute to an impaired antiviral response. In this review, we address the unique role of adaptive and innate immune cells in the control of pathogenic respiratory viruses and how pregnancy and specific hormones can impact their effector actions. We highlight viruses with sex-specific differences in infection outcomes and why pregnancy hormones may contribute to fetal protection but aid the virus at the expense of the mother's health.
Collapse
Affiliation(s)
- Orlando Cervantes
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Irene Cruz Talavera
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Emma Every
- University of Washington School of Medicine, Spokane, Washington, United States of America
| | - Brahm Coler
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
- Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, United States of America
| | - Miranda Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
- Department of Biological Sciences, Columbia University, New York City, New York, United States of America
| | - Amanda Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
- Case Western Reserve, Cleveland, Ohio, United States of America
| | - Hanning Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Kristina Adams Waldorf
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
22
|
Yu W, Hu X, Cao B. Viral Infections During Pregnancy: The Big Challenge Threatening Maternal and Fetal Health. MATERNAL-FETAL MEDICINE 2022; 4:72-86. [PMID: 35187500 PMCID: PMC8843053 DOI: 10.1097/fm9.0000000000000133] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/11/2021] [Indexed: 12/18/2022] Open
Abstract
Viral infections during pregnancy are associated with adverse pregnancy outcomes, including maternal and fetal mortality, pregnancy loss, premature labor, and congenital anomalies. Mammalian gestation encounters an immunological paradox wherein the placenta balances the tolerance of an allogeneic fetus with protection against pathogens. Viruses cannot easily transmit from mother to fetus due to physical and immunological barriers at the maternal-fetal interface posing a restricted threat to the fetus and newborns. Despite this, the unknown strategies utilized by certain viruses could weaken the placental barrier to trigger severe maternal and fetal health issues especially through vertical transmission, which was not fully understood until now. In this review, we summarize diverse aspects of the major viral infections relevant to pregnancy, including the characteristics of pathogenesis, related maternal-fetal complications, and the underlying molecular and cellular mechanisms of vertical transmission. We highlight the fundamental signatures of complex placental defense mechanisms, which will prepare us to fight the next emerging and re-emerging infectious disease in the pregnancy population.
Collapse
Affiliation(s)
- Wenzhe Yu
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaoqian Hu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Bin Cao
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
23
|
Dauby N, Flamand V. From maternal breath to infant's cells: Impact of maternal respiratory infections on infants 'immune responses. Front Pediatr 2022; 10:1046100. [PMID: 36419921 PMCID: PMC9676445 DOI: 10.3389/fped.2022.1046100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
In utero exposure to maternally-derived antigens following chronic infection is associated with modulation of infants 'immune response, differential susceptibility to post-natal infections and immune response toward vaccines. The maternal environment, both internal (microbiota) and external (exposure to environmental microbes) also modulates infant's immune response but also the clinical phenotype after birth. Vertical transmission of ubiquitous respiratory pathogens such as influenza and COVID-19 is uncommon. Evidence suggest that in utero exposure to maternal influenza and SARS-CoV-2 infections may have a significant impact on the developing immune system with activation of both innate and adaptive responses, possibly related to placental inflammation. Here in, we review how maternal respiratory infections, associated with airway, systemic and placental inflammation but also changes in maternal microbiota might impact infant's immune responses after birth. The clinical impact of immune modifications observed following maternal respiratory infections remains unexplored. Given the high frequencies of respiratory infections during pregnancy (COVID-19, influenza but also RSV and HMPV), the impact on global child health could be important.
Collapse
Affiliation(s)
- Nicolas Dauby
- Institute for Medical Immunology, ULB Center for Research in Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Department of Infectious Diseases, CHU Saint-Pierre, Brussels, Belgium.,School of Public Health, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Véronique Flamand
- Institute for Medical Immunology, ULB Center for Research in Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
24
|
Andrade CA, Kalergis AM, Bohmwald K. Potential Neurocognitive Symptoms Due to Respiratory Syncytial Virus Infection. Pathogens 2021; 11:47. [PMID: 35055995 PMCID: PMC8780657 DOI: 10.3390/pathogens11010047] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023] Open
Abstract
Respiratory infections are among the major public health burdens, especially during winter. Along these lines, the human respiratory syncytial virus (hRSV) is the principal viral agent causing acute lower respiratory tract infections leading to hospitalization. The pulmonary manifestations due to hRSV infection are bronchiolitis and pneumonia, where the population most affected are infants and the elderly. However, recent evidence suggests that hRSV infection can impact the mother and fetus during pregnancy. Studies have indicated that hRSV can infect different cell types from the placenta and even cross the placenta barrier and infect the fetus. In addition, it is known that infections during the gestational period can lead to severe consequences for the development of the fetus due not only to a direct viral infection but also because of maternal immune activation (MIA). Furthermore, it has been described that the development of the central nervous system (CNS) of the fetus can be affected by the inflammatory environment of the uterus caused by viral infections. Increasing evidence supports the notion that hRSV could invade the CNS and infect nervous cells, such as microglia, neurons, and astrocytes, promoting neuroinflammation. Moreover, it has been described that the hRSV infection can provoke neurological manifestations, including cognitive impairment and behavioral alterations. Here, we will review the potential effect of hRSV in brain development and the potential long-term neurological sequelae.
Collapse
Affiliation(s)
- Catalina A. Andrade
- Department of Molecular and Microbiology, Faculty of Biological Science, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile;
| | - Alexis M. Kalergis
- Department of Molecular and Microbiology, Faculty of Biological Science, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile;
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Karen Bohmwald
- Department of Molecular and Microbiology, Faculty of Biological Science, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile;
| |
Collapse
|
25
|
McKimm-Breschkin JL, Hay AJ, Cao B, Cox RJ, Dunning J, Moen AC, Olson D, Pizzorno A, Hayden FG. COVID-19, Influenza and RSV: Surveillance-informed prevention and treatment - Meeting report from an isirv-WHO virtual conference. Antiviral Res 2021; 197:105227. [PMID: 34933044 PMCID: PMC8684224 DOI: 10.1016/j.antiviral.2021.105227] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/19/2022]
Abstract
The International Society for Influenza and other Respiratory Virus Diseases (isirv) and the WHO held a joint virtual conference from 19th-21st October 2021. While there was a major focus on the global response to the SARS-CoV-2 pandemic, including antivirals, vaccines and surveillance strategies, papers were also presented on treatment and prevention of influenza and respiratory syncytial virus (RSV). Potential therapeutics for SARS-CoV-2 included host-targeted therapies baricitinib, a JAK inhibitor, tocilizumab, an IL-6R inhibitor, verdinexor and direct acting antivirals ensovibep, S-217622, AT-527, and monoclonal antibodies casirivimab and imdevimab, directed against the spike protein. Data from trials of nirsevimab, a monoclonal antibody with a prolonged half-life which binds to the RSV F-protein, and an Ad26.RSV pre-F vaccine were also presented. The expanded role of the WHO Global Influenza Surveillance and Response System to address the SARS-CoV-2 pandemic was also discussed. This report summarizes the oral presentations given at this meeting for the benefit of the broader medical and scientific community involved in surveillance, treatment and prevention of respiratory virus diseases.
Collapse
Affiliation(s)
- Jennifer L McKimm-Breschkin
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia.
| | - Alan J Hay
- The Francis Crick Institute, London, UK.
| | - Bin Cao
- China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China.
| | - Rebecca J Cox
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway.
| | - Jake Dunning
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK.
| | - Ann C Moen
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Daniel Olson
- University of Colorado School of Medicine and Colorado School of Public Health, Anschutz Medical Campus, Aurora, CO, USA.
| | - Andrés Pizzorno
- International Center for Research in Infectious Diseases, University of Lyon, Lyon, France.
| | - Frederick G Hayden
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
26
|
López-Cervantes JP, Lønnebotn M, Jogi NO, Calciano L, Kuiper IN, Darby MG, Dharmage SC, Gómez-Real F, Hammer B, Bertelsen RJ, Johannessen A, Würtz AML, Mørkve Knudsen T, Koplin J, Pape K, Skulstad SM, Timm S, Tjalvin G, Krauss-Etschmann S, Accordini S, Schlünssen V, Kirkeleit J, Svanes C. The Exposome Approach in Allergies and Lung Diseases: Is It Time to Define a Preconception Exposome? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:12684. [PMID: 34886409 PMCID: PMC8657011 DOI: 10.3390/ijerph182312684] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/30/2022]
Abstract
Emerging research suggests environmental exposures before conception may adversely affect allergies and lung diseases in future generations. Most studies are limited as they have focused on single exposures, not considering that these diseases have a multifactorial origin in which environmental and lifestyle factors are likely to interact. Traditional exposure assessment methods fail to capture the interactions among environmental exposures and their impact on fundamental biological processes, as well as individual and temporal factors. A valid estimation of exposure preconception is difficult since the human reproductive cycle spans decades and the access to germ cells is limited. The exposome is defined as the cumulative measure of external exposures on an organism (external exposome), and the associated biological responses (endogenous exposome) throughout the lifespan, from conception and onwards. An exposome approach implies a targeted or agnostic analysis of the concurrent and temporal multiple exposures, and may, together with recent technological advances, improve the assessment of the environmental contributors to health and disease. This review describes the current knowledge on preconception environmental exposures as related to respiratory health outcomes in offspring. We discuss the usefulness and feasibility of using an exposome approach in this research, advocating for the preconception exposure window to become included in the exposome concept.
Collapse
Affiliation(s)
- Juan Pablo López-Cervantes
- Center for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway; (M.L.); (A.J.); (G.T.); (J.K.); (C.S.)
- Department of Occupational Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (N.O.J.); (T.M.K.); (S.M.S.)
| | - Marianne Lønnebotn
- Center for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway; (M.L.); (A.J.); (G.T.); (J.K.); (C.S.)
- Department of Occupational Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (N.O.J.); (T.M.K.); (S.M.S.)
| | - Nils Oskar Jogi
- Department of Occupational Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (N.O.J.); (T.M.K.); (S.M.S.)
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (F.G.-R.); (R.J.B.)
| | - Lucia Calciano
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy; (L.C.); (S.A.)
| | | | - Matthew G. Darby
- Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town 7925, South Africa;
| | - Shyamali C. Dharmage
- School of Population and Global Health, University of Melbourne, Melbourne, VIC 3010, Australia; (S.C.D.); (J.K.)
| | - Francisco Gómez-Real
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (F.G.-R.); (R.J.B.)
- Department of Obstetrics and Gynecology, Haukeland University Hospital, 5053 Bergen, Norway
| | - Barbara Hammer
- Department of Pulmonology, Medical University of Vienna, 1090 Vienna, Austria;
| | | | - Ane Johannessen
- Center for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway; (M.L.); (A.J.); (G.T.); (J.K.); (C.S.)
| | - Anne Mette Lund Würtz
- Danish Ramazzini Centre, Department of Public Health—Work, Environment and Health, Aarhus University, 8000 Aarhus, Denmark; (A.M.L.W.); (K.P.); (V.S.)
| | - Toril Mørkve Knudsen
- Department of Occupational Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (N.O.J.); (T.M.K.); (S.M.S.)
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (F.G.-R.); (R.J.B.)
| | - Jennifer Koplin
- School of Population and Global Health, University of Melbourne, Melbourne, VIC 3010, Australia; (S.C.D.); (J.K.)
- Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
| | - Kathrine Pape
- Danish Ramazzini Centre, Department of Public Health—Work, Environment and Health, Aarhus University, 8000 Aarhus, Denmark; (A.M.L.W.); (K.P.); (V.S.)
| | - Svein Magne Skulstad
- Department of Occupational Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (N.O.J.); (T.M.K.); (S.M.S.)
| | - Signe Timm
- Department of Regional Health Research, University of Southern Denmark, 5230 Odense, Denmark;
- Research Unit, Kolding Hospital, University Hospital of Southern Denmark, 6000 Kolding, Denmark
| | - Gro Tjalvin
- Center for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway; (M.L.); (A.J.); (G.T.); (J.K.); (C.S.)
- Department of Occupational Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (N.O.J.); (T.M.K.); (S.M.S.)
| | | | - Simone Accordini
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy; (L.C.); (S.A.)
| | - Vivi Schlünssen
- Danish Ramazzini Centre, Department of Public Health—Work, Environment and Health, Aarhus University, 8000 Aarhus, Denmark; (A.M.L.W.); (K.P.); (V.S.)
- National Research Centre for the Working Environment, 2100 Copenhagen, Denmark
| | - Jorunn Kirkeleit
- Center for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway; (M.L.); (A.J.); (G.T.); (J.K.); (C.S.)
- Department of Occupational Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (N.O.J.); (T.M.K.); (S.M.S.)
| | - Cecilie Svanes
- Center for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway; (M.L.); (A.J.); (G.T.); (J.K.); (C.S.)
- Department of Occupational Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (N.O.J.); (T.M.K.); (S.M.S.)
| |
Collapse
|