1
|
Huang Z, Shi M, Zhang C, Deng Z, Qin T, Wu J, Zhang X, Han W, Li S, Gao B, Xiao Y, Huang D, Ye W. Meteorin-like protein alleviates intervertebral disc degeneration by suppressing lipid accumulation in nucleus pulposus cells via PPARα-CPT1A activation. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167635. [PMID: 39706351 DOI: 10.1016/j.bbadis.2024.167635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/19/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Disturbances in lipid metabolism are closely related to intervertebral disc degeneration (IDD). However, the lipid metabolism characteristics of nucleus pulposus (NP) cells during IDD are unclear. Exercise protects against IDD and acts as a potent mediator of organ metabolism, in which muscle-secreted myokines actively participate. However, whether exercise-induced myokines alleviate IDD by regulating lipid metabolism in NP cells remains unknown. The present study revealed that lipid accumulation is the metabolic reprogramming phenotype in NP cells during IDD, which was attributed to an imbalance between increased fatty acid/triglyceride synthesis and diminished utilization, and was further associated with extracellular matrix (ECM) degradation and cell senescence. To explore the interaction between exercise and IDD, Sprague-Dawley rats were subjected to five weeks of treadmill running exercise, and rats in the exercise group exhibited less severe IDD than did those in the sedentary group. The expression of meteorin-like protein (Metrnl), a newly-discovered myokine that participates in lipid metabolism regulation, was observed to increase in muscle, serum and NP tissue after exercise. Moreover, Metrnl ameliorated lipid accumulation in NP cells and further alleviated ECM degradation and cell senescence. Mechanistically, Metrnl activated the fatty acid β-oxidation rate-limiting enzyme carnitine palmitoyltransferase 1A (CPT1A) via peroxisome proliferator-activated receptor α (PPARα) to increase lipid utilization in NP cells. This study provides insight into the lipid metabolic features of NP cells in IDD and reveals the intrinsic connections among exercise, metabolism and IDD, with the myokine Metrnl emerging as a pivotal mediator with therapeutic potential.
Collapse
Affiliation(s)
- Zhengqi Huang
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ming Shi
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Chao Zhang
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhihuai Deng
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tianyu Qin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Jiajun Wu
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Department of Orthopedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaohe Zhang
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weitao Han
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuangxing Li
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bo Gao
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yin Xiao
- School of Medicine and Dentistry & Institute for Biomedicine and Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Dongsheng Huang
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Wei Ye
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Xie X, Gao M, Zhao W, Li C, Zhang W, Yang J, Zhang Y, Chen E, Guo Y, Guo Z, Zhang M, Ngowi EE, Wang H, Wang X, Zhu Y, Wang Y, Li X, Yao H, Yan L, Fang F, Li M, Qiao A, Liu X. LncRNA Snhg3 aggravates hepatic steatosis via PPARγ signaling. eLife 2024; 13:RP96988. [PMID: 39436790 PMCID: PMC11495842 DOI: 10.7554/elife.96988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
LncRNAs are involved in modulating the individual risk and the severity of progression in metabolic dysfunction-associated fatty liver disease (MASLD), but their precise roles remain largely unknown. This study aimed to investigate the role of lncRNA Snhg3 in the development and progression of MASLD, along with the underlying mechanisms. The result showed that Snhg3 was significantly downregulated in the liver of high-fat diet-induced obesity (DIO) mice. Notably, palmitic acid promoted the expression of Snhg3 and overexpression of Snhg3 increased lipid accumulation in primary hepatocytes. Furthermore, hepatocyte-specific Snhg3 deficiency decreased body and liver weight, alleviated hepatic steatosis and promoted hepatic fatty acid metabolism in DIO mice, whereas overexpression induced the opposite effect. Mechanistically, Snhg3 promoted the expression, stability and nuclear localization of SND1 protein via interacting with SND1, thereby inducing K63-linked ubiquitination modification of SND1. Moreover, Snhg3 decreased the H3K27me3 level and induced SND1-mediated chromatin loose remodeling, thus reducing H3K27me3 enrichment at the Pparg promoter and enhancing PPARγ expression. The administration of PPARγ antagonist T0070907 improved Snhg3-aggravated hepatic steatosis. Our study revealed a new signaling pathway, Snhg3/SND1/H3K27me3/PPARγ, responsible for mice MASLD and indicates that lncRNA-mediated epigenetic modification has a crucial role in the pathology of MASLD.
Collapse
Affiliation(s)
- Xianghong Xie
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Mingyue Gao
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Wei Zhao
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Chunmei Li
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Weihong Zhang
- Department of Microbiology and Immunology, Shanxi Medical UniversityTaiyuanChina
| | - Jiahui Yang
- Department of Microbiology and Immunology, Shanxi Medical UniversityTaiyuanChina
| | - Yinliang Zhang
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Enhui Chen
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Yanfang Guo
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Zeyu Guo
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Minglong Zhang
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Ebenezeri Erasto Ngowi
- Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of SciencesZhongshanChina
| | - Heping Wang
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Xiaoman Wang
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Yinghan Zhu
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Yiting Wang
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Xiaolu Li
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Hong Yao
- Department of Microbiology and Immunology, Shanxi Medical UniversityTaiyuanChina
| | - Li Yan
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Fude Fang
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Meixia Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of SciencesBeijingChina
| | - Aijun Qiao
- Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of SciencesZhongshanChina
| | - Xiaojun Liu
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| |
Collapse
|
3
|
Li Z, Li X, Lin J, Wang Y, Cao H, Zhou J. Reevaluation by the CRISPR/Cas9 knockout approach revealed that multiple pluripotency-associated lncRNAs are dispensable for pluripotency maintenance while Snora73a/b is essential for pluripotency exit. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2198-2212. [PMID: 38995489 DOI: 10.1007/s11427-023-2594-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 03/15/2024] [Indexed: 07/13/2024]
Abstract
Many long noncoding RNAs (lncRNAs) have been identified through siRNA-based screening as essential regulators of embryonic stem cell (ESC) pluripotency. However, the biological and molecular functions of most lncRNAs remain unclear. Here, we employed CRISPR/Cas9-mediated knockout technology to explore the functions of 8 lncRNAs previously reported to promote pluripotency in mouse ESCs. Unexpectedly, all of these lncRNAs were dispensable for pluripotency maintenance and proliferation in mouse ESCs when disrupted individually or in combination. Single-cell transcriptomic analysis also showed that the knockout of these lncRNAs has a minimal impact on pluripotency gene expression and cell identity. We further showed that several small hairpin RNAs (shRNAs) previously used to knock down lncRNAs caused the downregulation of pluripotency genes in the corresponding lncRNA-knockout ESCs, indicating that off-target effects likely responsible for the pluripotency defects caused by these shRNAs. Interestingly, linc1343-knockout and linc1343-knockdown ESCs failed to form cystic structures and exhibited high expression of pluripotency genes during embryoid body (EB) differentiation. By reintroducing RNA products generated from the linc1343 locus, we found that two snoRNAs, Snora73a and Snora73b, but not lncRNAs, could rescue pluripotency silencing defects during EB differentiation of linc1343 knockout ESCs. Our results suggest that the 8 previously annotated pluripotency-regulating lncRNAs have no overt functions in conventional ESC culture; however, we identified snoRNA products derived from an annotated lncRNA locus as essential regulators for silencing pluripotency genes.
Collapse
Affiliation(s)
- Zhen Li
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
| | - Xuefei Li
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Jingxia Lin
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Yangming Wang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
- Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, 100871, China
| | - Huiqing Cao
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China.
| | - Jiajian Zhou
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China.
| |
Collapse
|
4
|
Xie X, Gao M, Wang H, Zhang M, Zhao W, Li C, Zhang W, Yang J, Zhang Y, Chen E, Guo Y, Guo Z, Ngowi EE, Wang X, Zhu Y, Wang Y, Li X, Yao H, Yan L, Fang F, Li M, Qiao A, Liu X. LncRNA-Snhg3 regulates mouse hepatic glycogenesis under normal chow diet. FASEB J 2024; 38:e23880. [PMID: 39132919 DOI: 10.1096/fj.202401064r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/17/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
Long noncoding RNAs (lncRNAs) are strongly associated with glucose homeostasis, but their roles remain largely unknown. In this study, the potential role of lncRNA-Snhg3 in glucose metabolism was evaluated both in vitro and in vivo. Here, we found a positive relationship between Snhg3 and hepatic glycogenesis. Glucose tolerance improved in hepatocyte-specific Snhg3 knock-in (Snhg3-HKI) mice, while it worsened in hepatocyte-specific Snhg3 knockout (Snhg3-HKO) mice. Furthermore, hepatic glycogenesis had shown remarkable increase in Snhg3-HKI mice and reduction in Snhg3-HKO mice, respectively. Mechanistically, Snhg3 increased mRNA and protein expression levels of PPP1R3B through inducing chromatin remodeling and promoting the phosphorylation of protein kinase B. Collectively, these results suggested that lncRNA-Snhg3 plays a critical role in hepatic glycogenesis.
Collapse
Affiliation(s)
- Xianghong Xie
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Mingyue Gao
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Heping Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Minglong Zhang
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Wei Zhao
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Chunmei Li
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Weihong Zhang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Jiahui Yang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Yinliang Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Enhui Chen
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yanfang Guo
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Zeyu Guo
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Ebenezeri Erasto Ngowi
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China
| | - Xiaoman Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yinghan Zhu
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yiting Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xiaolu Li
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Hong Yao
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Li Yan
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Fude Fang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Meixia Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Aijun Qiao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China
| | - Xiaojun Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Shen LP, Zhang WC, Deng JR, Qi ZH, Lin ZW, Wang ZD. Advances in the mechanism of small nucleolar RNA and its role in DNA damage response. Mil Med Res 2024; 11:53. [PMID: 39118131 PMCID: PMC11308251 DOI: 10.1186/s40779-024-00553-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Small nucleolar RNAs (snoRNAs) were previously regarded as a class of functionally conserved housekeeping genes, primarily involved in the regulation of ribosome biogenesis by ribosomal RNA (rRNA) modification. However, some of them are involved in several biological processes via complex molecular mechanisms. DNA damage response (DDR) is a conserved mechanism for maintaining genomic stability to prevent the occurrence of various human diseases. It has recently been revealed that snoRNAs are involved in DDR at multiple levels, indicating their relevant theoretical and clinical significance in this field. The present review systematically addresses four main points, including the biosynthesis and classification of snoRNAs, the mechanisms through which snoRNAs regulate target molecules, snoRNAs in the process of DDR, and the significance of snoRNA in disease diagnosis and treatment. It focuses on the potential functions of snoRNAs in DDR to help in the discovery of the roles of snoRNAs in maintaining genome stability and pathological processes.
Collapse
Affiliation(s)
- Li-Ping Shen
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Wen-Cheng Zhang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Jia-Rong Deng
- Graduate Collaborative Training Base of Academy of Military Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhen-Hua Qi
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Zhong-Wu Lin
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Zhi-Dong Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
- Graduate Collaborative Training Base of Academy of Military Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
6
|
Thiele M, Villesen IF, Niu L, Johansen S, Sulek K, Nishijima S, Espen LV, Keller M, Israelsen M, Suvitaival T, Zawadzki AD, Juel HB, Brol MJ, Stinson SE, Huang Y, Silva MCA, Kuhn M, Anastasiadou E, Leeming DJ, Karsdal M, Matthijnssens J, Arumugam M, Dalgaard LT, Legido-Quigley C, Mann M, Trebicka J, Bork P, Jensen LJ, Hansen T, Krag A. Opportunities and barriers in omics-based biomarker discovery for steatotic liver diseases. J Hepatol 2024; 81:345-359. [PMID: 38552880 DOI: 10.1016/j.jhep.2024.03.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/16/2024] [Accepted: 03/19/2024] [Indexed: 07/26/2024]
Abstract
The rising prevalence of liver diseases related to obesity and excessive use of alcohol is fuelling an increasing demand for accurate biomarkers aimed at community screening, diagnosis of steatohepatitis and significant fibrosis, monitoring, prognostication and prediction of treatment efficacy. Breakthroughs in omics methodologies and the power of bioinformatics have created an excellent opportunity to apply technological advances to clinical needs, for instance in the development of precision biomarkers for personalised medicine. Via omics technologies, biological processes from the genes to circulating protein, as well as the microbiome - including bacteria, viruses and fungi, can be investigated on an axis. However, there are important barriers to omics-based biomarker discovery and validation, including the use of semi-quantitative measurements from untargeted platforms, which may exhibit high analytical, inter- and intra-individual variance. Standardising methods and the need to validate them across diverse populations presents a challenge, partly due to disease complexity and the dynamic nature of biomarker expression at different disease stages. Lack of validity causes lost opportunities when studies fail to provide the knowledge needed for regulatory approvals, all of which contributes to a delayed translation of these discoveries into clinical practice. While no omics-based biomarkers have matured to clinical implementation, the extent of data generated has enabled the hypothesis-free discovery of a plethora of candidate biomarkers that warrant further validation. To explore the many opportunities of omics technologies, hepatologists need detailed knowledge of commonalities and differences between the various omics layers, and both the barriers to and advantages of these approaches.
Collapse
Affiliation(s)
- Maja Thiele
- Center for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark; Department for Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Ida Falk Villesen
- Center for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark; Department for Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lili Niu
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Stine Johansen
- Center for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | | | - Suguru Nishijima
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Lore Van Espen
- KU Leuven, Department of Microbiology, Immunology, and Transplantation, Rega Institute, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Marisa Keller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mads Israelsen
- Center for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark; Department for Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | | | - Helene Bæk Juel
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Maximilian Joseph Brol
- Medizinische Klinik B (Gastroenterologie, Hepatologie, Endokrinologie, Klinische Infektiologie), Universitätsklinikum Münster Westfälische, Wilhelms-Universität Münster, Germany
| | - Sara Elizabeth Stinson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Yun Huang
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Maria Camilla Alvarez Silva
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kuhn
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Diana Julie Leeming
- Fibrosis, Hepatic and Pulmonary Research, Nordic Bioscience, Herlev, Denmark
| | - Morten Karsdal
- Fibrosis, Hepatic and Pulmonary Research, Nordic Bioscience, Herlev, Denmark
| | - Jelle Matthijnssens
- KU Leuven, Department of Microbiology, Immunology, and Transplantation, Rega Institute, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Manimozhiyan Arumugam
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Matthias Mann
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jonel Trebicka
- Medizinische Klinik B (Gastroenterologie, Hepatologie, Endokrinologie, Klinische Infektiologie), Universitätsklinikum Münster Westfälische, Wilhelms-Universität Münster, Germany
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; Max Delbrück Centre for Molecular Medicine, Berlin, Germany; Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Lars Juhl Jensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Aleksander Krag
- Center for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark; Department for Clinical Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
7
|
Ruiz M, Devkota R, Bergh PO, Nik AM, Blid Sköldheden S, Mondejar-Duran J, Tufvesson-Alm M, Bohlooly-Y M, Sanchez D, Carlsson P, Henricsson M, Jerlhag E, Borén J, Pilon M. Aging AdipoR2-deficient mice are hyperactive with enlarged brains excessively rich in saturated fatty acids. FASEB J 2024; 38:e23815. [PMID: 38989587 DOI: 10.1096/fj.202400293rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/04/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024]
Abstract
To investigate how the fatty acid composition of brain phospholipids influences brain-specific processes, we leveraged the AdipoR2 (adiponectin receptor 2) knockout mouse model in which the brain is enlarged, and cellular membranes are excessively rich in saturated fatty acids. Lipidomics analysis of brains at 2, 7, and 18 months of age showed that phosphatidylcholines, which make up about two-thirds of all cerebrum membrane lipids, contain a gross excess of saturated fatty acids in AdipoR2 knockout mice, and that this is mostly attributed to an excess palmitic acid (C16:0) at the expense of oleic acid (C18:1), consistent with a defect in fatty acid desaturation and elongation in the mutant. Specifically, there was a ~12% increase in the overall saturated fatty acid content within phosphatidylcholines and a ~30% increase in phosphatidylcholines containing two palmitic acids. Phosphatidylethanolamines, sphingomyelins, ceramides, lactosylceramides, and dihydroceramides also showed an excess of saturated fatty acids in the AdipoR2 knockout mice while nervonic acid (C24:1) was enriched at the expense of shorter saturated fatty acids in glyceroceramides. Similar defects were found in the cerebellum and myelin sheaths. Histology showed that cell density is lower in the cerebrum of AdipoR2 knockout mice, but electron microscopy did not detect reproducible defects in the ultrastructure of cerebrum neurons, though proteomics analysis showed an enrichment of electron transport chain proteins in the cerebellum. Behavioral tests showed that older (33 weeks old) AdipoR2 knockout mice are hyperactive and anxious compared to control mice of a similar age. Also, in contrast to control mice, the AdipoR2 knockout mice do not gain weight in old age but do have normal lifespans. We conclude that an excess fatty acid saturation in brain phospholipids is accompanied by hyperactivity but seems otherwise well tolerated.
Collapse
Affiliation(s)
- Mario Ruiz
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Ranjan Devkota
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Per-Olof Bergh
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Ali Moussavi Nik
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Sebastian Blid Sköldheden
- Department of Pharmacology, Institute of Neuroscience and physiology, University of Gothenburg, Gothenburg, Sweden
| | - Jorge Mondejar-Duran
- Instituto de Biomedicina y Genética Molecular, Excellence Unit, University of Valladolid-CSIC, Valladolid, Spain
| | - Maximilian Tufvesson-Alm
- Department of Pharmacology, Institute of Neuroscience and physiology, University of Gothenburg, Gothenburg, Sweden
| | | | - Diego Sanchez
- Instituto de Biomedicina y Genética Molecular, Excellence Unit, University of Valladolid-CSIC, Valladolid, Spain
| | - Peter Carlsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Marcus Henricsson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Department of Pharmacology, Institute of Neuroscience and physiology, University of Gothenburg, Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Marc Pilon
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
8
|
Chauhan W, Sudharshan SJ, Kafle S, Zennadi R. SnoRNAs: Exploring Their Implication in Human Diseases. Int J Mol Sci 2024; 25:7202. [PMID: 39000310 PMCID: PMC11240930 DOI: 10.3390/ijms25137202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Small nucleolar RNAs (snoRNAs) are earning increasing attention from research communities due to their critical role in the post-transcriptional modification of various RNAs. These snoRNAs, along with their associated proteins, are crucial in regulating the expression of a vast array of genes in different human diseases. Primarily, snoRNAs facilitate modifications such as 2'-O-methylation, N-4-acetylation, and pseudouridylation, which impact not only ribosomal RNA (rRNA) and their synthesis but also different RNAs. Functionally, snoRNAs bind with core proteins to form small nucleolar ribonucleoproteins (snoRNPs). These snoRNAs then direct the protein complex to specific sites on target RNA molecules where modifications are necessary for either standard cellular operations or the regulation of pathological mechanisms. At these targeted sites, the proteins coupled with snoRNPs perform the modification processes that are vital for controlling cellular functions. The unique characteristics of snoRNAs and their involvement in various non-metabolic and metabolic diseases highlight their potential as therapeutic targets. Moreover, the precise targeting capability of snoRNAs might be harnessed as a molecular tool to therapeutically address various disease conditions. This review delves into the role of snoRNAs in health and disease and explores the broad potential of these snoRNAs as therapeutic agents in human pathologies.
Collapse
Affiliation(s)
| | | | | | - Rahima Zennadi
- Department of Physiology, University of Tennessee Health Science Center, 71 S. Manassas St., Memphis, TN 38103, USA; (W.C.); (S.S.); (S.K.)
| |
Collapse
|
9
|
Chabronova A, Holmes TL, Hoang DM, Denning C, James V, Smith JGW, Peffers MJ. SnoRNAs in cardiovascular development, function, and disease. Trends Mol Med 2024; 30:562-578. [PMID: 38523014 DOI: 10.1016/j.molmed.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
Small nucleolar RNAs (snoRNAs) are emerging as important regulators of cardiovascular (patho)biology. Several roles of snoRNAs have recently been identified in heart development and congenital heart diseases, as well as their dynamic regulation in hypertrophic and dilated cardiomyopathies, coronary heart disease (CHD), myocardial infarction (MI), cardiac fibrosis, and heart failure. Furthermore, reports of changes in vesicular snoRNA expression and altered levels of circulating snoRNAs in response to cardiac stress suggest that snoRNAs also function in cardiac signaling and intercellular communication. In this review, we summarize and discuss key findings and outline the clinical potential of snoRNAs considering current challenges and gaps in the field of cardiovascular diseases (CVDs).
Collapse
Affiliation(s)
- Alzbeta Chabronova
- Department of Musculoskeletal Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK.
| | - Terri L Holmes
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Duc M Hoang
- Department of Stem Cell Biology, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Chris Denning
- Department of Stem Cell Biology, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Victoria James
- School of Veterinary Medicine and Science, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - James G W Smith
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Mandy J Peffers
- Department of Musculoskeletal Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
| |
Collapse
|
10
|
Zhang L, Guo H, Zhang X, Wang L, Wei F, Zhao Y, Wang B, Meng Y, Li Y. Small nucleolar RNA Snora73 promotes psoriasis progression by sponging miR-3074-5p and regulating PBX1 expression. Funct Integr Genomics 2024; 24:15. [PMID: 38240925 PMCID: PMC10799104 DOI: 10.1007/s10142-024-01300-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/22/2024]
Abstract
Chronic psoriasis is a kind of immune-mediated skin illness and the underlying molecular mechanisms of pathogenesis remain incompletely understood. Here, we used small RNA microarray assays to scan the differential expressed RNAs in psoriasis patient samples. The downstream miRNAs and its targets were predicted using bioinformatics analysis from online bases and confirmed using fluorescence in situ hybridization and dual‑luciferase report gene assay. Cell ability of proliferation and migration were detected using CCK-8 and transwell assays. The results showed that a new snoRNA Snora73 was upregulated in psoriasis patient samples. Overexpression of Snora73 significantly increased psoriasis cells viability and migration, while knockdown of Snora73 got the opposite results. Mechanistically, our results showed that Snora73 acted as a sponge for miR-3074-5p and PBX1 is a direct target of miR-3074-5p in psoriasis cells. Furthermore, miR-3074-5p suppressed psoriasis cell proliferation and migration, while PBX1 promoted cell proliferation and migration in psoriasis. Collectively, these findings reveal a crucial role of Snora73 in progression of psoriasis through miR-3074-5p/PBX1 signaling pathway and suggest a potential therapeutic strategy.
Collapse
Affiliation(s)
- Lihua Zhang
- Department of Dermatology, Clinical Medical Research Center of Dermatology and Venereal Disease in Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
- Construction Unit of the Sub-Center of the National Center for Clinical Medical Research On Skin and Immunological Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Hui Guo
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoguang Zhang
- Department of Dermatology, Clinical Medical Research Center of Dermatology and Venereal Disease in Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
- Construction Unit of the Sub-Center of the National Center for Clinical Medical Research On Skin and Immunological Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Ling Wang
- Department of Dermatology, Clinical Medical Research Center of Dermatology and Venereal Disease in Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
- Construction Unit of the Sub-Center of the National Center for Clinical Medical Research On Skin and Immunological Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Feng Wei
- Department of Dermatology, Clinical Medical Research Center of Dermatology and Venereal Disease in Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
- Construction Unit of the Sub-Center of the National Center for Clinical Medical Research On Skin and Immunological Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Yike Zhao
- Department of Dermatology, Clinical Medical Research Center of Dermatology and Venereal Disease in Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
- Construction Unit of the Sub-Center of the National Center for Clinical Medical Research On Skin and Immunological Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Bo Wang
- Department of Dermatology, Clinical Medical Research Center of Dermatology and Venereal Disease in Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
- Construction Unit of the Sub-Center of the National Center for Clinical Medical Research On Skin and Immunological Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Yibo Meng
- Department of Dermatology, Clinical Medical Research Center of Dermatology and Venereal Disease in Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
- Construction Unit of the Sub-Center of the National Center for Clinical Medical Research On Skin and Immunological Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Yanling Li
- Department of Dermatology, Clinical Medical Research Center of Dermatology and Venereal Disease in Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
- Construction Unit of the Sub-Center of the National Center for Clinical Medical Research On Skin and Immunological Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| |
Collapse
|
11
|
Dubey G, Singh M, Singh H, Agarwal M, Chandel SS, Mishra A, Singh RP, Kukreti N. Emerging roles of SnoRNAs in the pathogenesis and treatment of autoimmune disorders. Pathol Res Pract 2024; 253:154952. [PMID: 38000202 DOI: 10.1016/j.prp.2023.154952] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
SnoRNAs (small non-coding RNAs) have recently gained prominence in autoimmune diseases, revealing their crucial role in modulating the immune response and contributing to disease pathogenesis. Initially known for their involvement in ribosomal RNA processing and modification, molecular biology and genomics advancements have uncovered their broader impact on cellular function, especially in autoimmune disorders. Autoimmune diseases represent conditions characterized by the immune system's erroneous attacks on self-tissues, encompassing disorders like systemic lupus erythematosus, rheumatoid arthritis, and multiple sclerosis. The complex etiology of these conditions involves a delicate interplay of genetic and environmental factors. Emerging evidence suggests that snoRNAs initially recognized for their housekeeping roles, extend their influence on immune regulation through diverse mechanisms. SnoRNAs have been implicated in epigenetic modification, directly affecting the gene expression profiles of immune cells. Their ability to guide site-specific changes on ribosomal RNAs and other non-coding RNAs can significantly influence the translation of proteins involved in immune response pathways. Moreover, snoRNAs interact with key immune-related proteins, modulating their functions and subsequently impacting immune cell development, activation, and tolerance. Dysregulation of snoRNA expression has been observed in various autoimmune diseases, underscoring their potential as biomarkers for disease diagnosis, prognosis, and therapeutic targets. Manipulating snoRNA expression or activity is a promising therapeutic intervention avenue, offering the potential for personalized treatment strategies in autoimmune diseases. However, there remains a need for comprehensive research efforts to elucidate the precise molecular mechanisms underlying snoRNA-mediated immune modulation. Further investigations in this domain are essential to unravel the potential of snoRNAs in autoimmune disorders.
Collapse
Affiliation(s)
- Gaurav Dubey
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, India
| | - Mithilesh Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, India.
| | - Himmat Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, India
| | - Mohit Agarwal
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, India
| | | | - Anurag Mishra
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, India
| | - Ravindra Pal Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, India
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| |
Collapse
|
12
|
Sun X, Wang G, Luo W, Gu H, Ma W, Wei X, Liu D, Jia S, Cao S, Wang Y, Yuan Z. Small but strong: the emerging role of small nucleolar RNA in cardiovascular diseases. Front Cell Dev Biol 2023; 11:1292925. [PMID: 38033868 PMCID: PMC10682241 DOI: 10.3389/fcell.2023.1292925] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality and disability worldwide. Numerous studies have demonstrated that non-coding RNAs (ncRNAs) play a primary role in CVD development. Therefore, studies on the mechanisms of ncRNAs are essential for further efforts to prevent and treat CVDs. Small nucleolar RNAs (snoRNAs) are a novel species of non-conventional ncRNAs that guide post-transcriptional modifications and the subsequent maturation of small nuclear RNA and ribosomal RNA. Evidently, snoRNAs are extensively expressed in human tissues and may regulate different illnesses. Particularly, as the next-generation sequencing techniques have progressed, snoRNAs have been shown to be differentially expressed in CVDs, suggesting that they may play a role in the occurrence and progression of cardiac illnesses. However, the molecular processes and signaling pathways underlying the function of snoRNAs remain unidentified. Therefore, it is of great value to comprehensively investigate the association between snoRNAs and CVDs. The aim of this review was to collate existing literature on the biogenesis, characteristics, and potential regulatory mechanisms of snoRNAs. In particular, we present a scientific update on these snoRNAs and their relevance to CVDs in an effort to cast new light on the functions of snoRNAs in the clinical diagnosis of CVDs.
Collapse
Affiliation(s)
- Xue Sun
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Gebang Wang
- Department of Thoracic Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
| | - Wenting Luo
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wei Ma
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaowei Wei
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Dan Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shanshan Jia
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Songying Cao
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yu Wang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
13
|
Yu Z, Yin J, Tang Z, Hu T, Wang Z, Chen Y, Liu T, Zhang W. Non-coding RNAs are key players and promising therapeutic targets in atherosclerosis. Front Cell Dev Biol 2023; 11:1237941. [PMID: 37719883 PMCID: PMC10502512 DOI: 10.3389/fcell.2023.1237941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023] Open
Abstract
Cardiovascular disease (CVD) is the primary cause of death in humans. Atherosclerosis (AS) is the most common CVD and a major cause of many CVD-related fatalities. AS has numerous risk factors and complex pathogenesis, and while it has long been a research focus, most mechanisms underlying its progression remain unknown. Noncoding RNAs (ncRNAs) represent an important focus in epigenetics studies and are critical biological regulators that form a complex network of gene regulation. Abnormal ncRNA expression disrupts the normal function of tissues or cells, leading to disease development. A large body of evidence suggests that ncRNAs are involved in all stages of atherosclerosis, from initiation to progression, and that some are significantly differentially expressed during AS development, suggesting that they may be powerful markers for screening AS or potential treatment targets. Here, we review the role of ncRNAs in AS development and recent developments in the use of ncRNAs for AS-targeted therapy, providing evidence for ncRNAs as diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Zhun Yu
- School of Clinical Medical, Changchun University of Chinese Medicine, Jilin, China
| | - JinZhu Yin
- Cardiology Department, Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| | - ZhiTong Tang
- Department of Massage, Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| | - Ting Hu
- Internal Medicine of Chinese Medicine, Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| | - ZhuoEr Wang
- School of Clinical Medical, Changchun University of Chinese Medicine, Jilin, China
| | - Ying Chen
- Cardiology Department, Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| | - Tianjia Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Jilin, China
| | - Wei Zhang
- Orthopedics Department, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| |
Collapse
|
14
|
Farina FM, Weber C, Santovito D. The emerging landscape of non-conventional RNA functions in atherosclerosis. Atherosclerosis 2023; 374:74-86. [PMID: 36725418 DOI: 10.1016/j.atherosclerosis.2023.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/15/2022] [Accepted: 01/12/2023] [Indexed: 01/22/2023]
Abstract
Most of the human genome is transcribed into non-coding RNAs (ncRNAs), which encompass a heterogeneous family of transcripts including microRNAs (miRNAs), long ncRNAs (lncRNAs), circular RNAs (circRNAs), and others. Although the detailed modes of action of some classes are not fully elucidated, the common notion is that ncRNAs contribute to sculpting gene expression of eukaryotic cells at multiple levels. These range from the regulation of chromatin remodeling and transcriptional activity to post-transcriptional regulation of messenger RNA splicing, stability, and decay. Many of these functions ultimately govern the expression of coding and non-coding genes to affect diverse physiological and pathological mechanisms in vascular biology and beyond. As such, different classes of ncRNAs emerged as crucial regulators of vascular integrity as well as active players in the pathophysiology of atherosclerosis from the early stages of endothelial dysfunction to the clinically relevant complications. However, research in recent years revealed unexpected findings such as small ncRNAs being able to biophysically regulate protein function, the glycosylation of ncRNAs to be exposed on the cell surface, the release of ncRNAs in the extracellular space to act as ligands of receptors, and even the ability of non-coding portion of messenger RNAs to mediate structural functions. This evidence expanded the functional repertoire of ncRNAs far beyond gene regulation and highlighted an additional layer of biological control of cell function. In this Review, we will discuss these emerging aspects of ncRNA biology, highlight the implications for the mechanisms of vascular biology and atherosclerosis, and discuss possible translational implications.
Collapse
Affiliation(s)
- Floriana Maria Farina
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany; Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Donato Santovito
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany; Institute for Genetic and Biomedical Research (IRGB), Unit of Milan, National Research Council, Milan, Italy.
| |
Collapse
|
15
|
Hellwege JN, Stallings SC, Piekos JA, Jasper EA, Aronoff DM, Edwards TL, Velez Edwards DR. Association of genetically-predicted placental gene expression with adult blood pressure traits. J Hypertens 2023; 41:1024-1032. [PMID: 37016918 PMCID: PMC10287061 DOI: 10.1097/hjh.0000000000003427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
OBJECTIVE Blood pressure is a complex, polygenic trait, and the need to identify prehypertensive risks and new gene targets for blood pressure control therapies or prevention continues. We hypothesize a developmental origins model of blood pressure traits through the life course where the placenta is a conduit mediating genomic and nongenomic transmission of disease risk. Genetic control of placental gene expression has recently been described through expression quantitative trait loci (eQTL) studies which have identified associations with childhood phenotypes. METHODS We conducted a transcriptome-wide gene expression analysis estimating the predicted gene expression of placental tissue in adult individuals with genome-wide association study (GWAS) blood pressure summary statistics. We constructed predicted expression models of 15 154 genes from reference placenta eQTL data and investigated whether genetically-predicted gene expression in placental tissue is associated with blood pressure traits using published GWAS summary statistics. Functional annotation of significant genes was generated using FUMA. RESULTS We identified 18, 9, and 21 genes where predicted expression in placenta was significantly associated with systolic blood pressure (SBP), diastolic blood pressure (DBP), and pulse pressure (PP), respectively. There were 14 gene-tissue associations (13 unique genes) significant only in placenta. CONCLUSIONS In this meta-analysis using S-PrediXcan and GWAS summary statistics, the predicted expression in placenta of 48 genes was statistically significantly associated with blood pressure traits. Notable findings included the association of FGFR1 expression with increased SBP and PP. This evidence of gene expression variation in placenta preceding the onset of adult blood pressure phenotypes is an example of extreme preclinical biological changes which may benefit from intervention.
Collapse
Affiliation(s)
- Jacklyn N Hellwege
- Department of Medicine, Division of Genetic Medicine
- Vanderbilt Genetics Institute
| | - Sarah C Stallings
- Department of Medicine, Division of Genetic Medicine
- Vanderbilt Genetics Institute
| | - Jacqueline A Piekos
- Vanderbilt Genetics Institute
- Department of Obstetrics and Gynecology, Division of Quantitative Sciences
| | - Elizabeth A Jasper
- Department of Obstetrics and Gynecology, Division of Quantitative Sciences
| | - David M Aronoff
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Todd L Edwards
- Vanderbilt Genetics Institute
- Department of Medicine, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Digna R Velez Edwards
- Vanderbilt Genetics Institute
- Department of Obstetrics and Gynecology, Division of Quantitative Sciences
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
16
|
Small Nucleolar RNAs and Their Comprehensive Biological Functions in Hepatocellular Carcinoma. Cells 2022; 11:cells11172654. [PMID: 36078062 PMCID: PMC9454744 DOI: 10.3390/cells11172654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Small nucleolar RNAs (snoRNAs) are a class of highly conserved, stable non-coding RNAs involved in both post-transcriptional modification of RNA and in ribosome biogenesis. Recent research shows that the dysfunction of snoRNAs plays a pivotal role in hepatocellular carcinoma (HCC) and related etiologies, such as hepatitis B virus (HBV), hepatitis C virus (HCV), and non-alcoholic fatty liver disease (NAFLD). Growing evidence suggests that snoRNAs act as oncogenes or tumor suppressors in hepatocellular carcinoma (HCC) through multiple mechanisms. Furthermore, snoRNAs are characterized by their stability in body fluids and their clinical relevance and represent promising tools as diagnostic and prognostic biomarkers. SnoRNAs represent an emerging area of cancer research. In this review, we summarize the classification, biogenesis, activity, and functions of snoRNAs, as well as highlight the mechanism and roles of snoRNAs in HCC and related diseases. Our findings will aid in the understanding of complex processes of tumor occurrence and development, as well as suggest potential diagnostic markers and treatment targets. Furthermore, we discuss several limitations and suggest future research and application directions.
Collapse
|
17
|
Sommerauer C, Kutter C. Noncoding RNAs in liver physiology and metabolic diseases. Am J Physiol Cell Physiol 2022; 323:C1003-C1017. [PMID: 35968891 DOI: 10.1152/ajpcell.00232.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The liver holds central roles in detoxification, energy metabolism and whole-body homeostasis but can develop malignant phenotypes when being chronically overwhelmed with fatty acids and glucose. The global rise of metabolic-associated fatty liver disease (MAFLD) is already affecting a quarter of the global population. Pharmaceutical treatment options against different stages of MAFLD do not yet exist and several clinical trials against hepatic transcription factors and other proteins have failed. However, emerging roles of noncoding RNAs, including long (lncRNA) and short noncoding RNAs (sRNA), in various cellular processes pose exciting new avenues for treatment interventions. Actions of noncoding RNAs mostly rely on interactions with proteins, whereby the noncoding RNA fine-tunes protein function in a process termed riboregulation. The developmental stage-, disease stage- and cell type-specific nature of noncoding RNAs harbors enormous potential to precisely target certain cellular pathways in a spatio-temporally defined manner. Proteins interacting with RNAs can be categorized into canonical or non-canonical RNA binding proteins (RBPs) depending on the existence of classical RNA binding domains. Both, RNA- and RBP-centric methods have generated new knowledge of the RNA-RBP interface and added an additional regulatory layer. In this review, we summarize recent advances of how of RBP-lncRNA interactions and various sRNAs shape cellular physiology and the development of liver diseases such as MAFLD and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Christian Sommerauer
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, grid.4714.6Karolinska Institute, Stockholm, Sweden
| | - Claudia Kutter
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, grid.4714.6Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
18
|
Kwon EJ, Kim HJ, Woo BH, Joo JY, Kim YH, Park HR. Profiling of plasma-derived exosomal RNA expression in patients with periodontitis: a pilot study. Oral Dis 2022; 29:1726-1737. [PMID: 35119164 DOI: 10.1111/odi.14145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/04/2022] [Accepted: 01/17/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE This study aimed to profile differentially expressed (DE) exosomal RNAs in healthy subjects and periodontitis patients and compare their levels before and after treatment. MATERIALS AND METHODS Plasma samples from healthy subjects and patients with periodontitis (pre-/post-periodontal treatment) were collected for this case-control study. After isolation of exosomes from the plasma, the RNA was extracted and small RNA sequencing was performed (3 healthy samples, 4 pre-treatment samples, and 5 post-treatment samples). Two-way analyses were conducted according to the treatment status in the periodontitis group, unpaired analysis (grouping as pre-/post-treatment) and paired analysis (matching pre- and post-treatment in the same subject). The DE exosomal RNAs were screened by sequencing and visualized using the R software. Gene Ontology analysis was performed, and target genes were identified. RESULTS In both paired and unpaired analyses, two DE microRNAs (DEmiRs; miR-1304-3p and miR-200c-3p) and two DE small nucleolar RNAs (DEsnoRs; SNORD57 and SNODB1771) were common, and they were found to be downregulated during periodontitis and recovered to healthy levels after treatment. The top three target genes (NR3C1, GPR158, and CNN3) commonly regulated by DEmiRs were identified. CONCLUSIONS Plasma-derived exosomal miRs (miR-1304-3p and miR-200c-3p) and snoRs (SNORD57 and SNODB1771) could be valuable biomarkers for periodontitis.
Collapse
Affiliation(s)
- Eun Jung Kwon
- Interdisciplinary Program of Genomic Science, Pusan National University, Yangsan, Republic of Korea
| | - Hyun-Joo Kim
- Department of Periodontology, Dental and Life Science Institute, Pusan National University, School of Dentistry, Yangsan, Republic of Korea.,Department of Periodontology and Dental Research Institute, Pusan National University Dental Hospital, Yangsan, Republic of Korea
| | - Bok Hee Woo
- Department of Oral Pathology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea.,Periodontal Disease Signaling Network Research Center, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Ji-Young Joo
- Department of Periodontology, Dental and Life Science Institute, Pusan National University, School of Dentistry, Yangsan, Republic of Korea.,Department of Periodontology and Dental Research Institute, Pusan National University Dental Hospital, Yangsan, Republic of Korea
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea.,Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Hae Ryoun Park
- Department of Oral Pathology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea.,Periodontal Disease Signaling Network Research Center, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|