1
|
Liu W, Soliman A, Emam HE, Zhang J, Bonventre JV, Lee LP, Nasr ML. Self-Assembly of Nanogold Triplets on Trimeric Viral Proteins for Infectious Disease Diagnosis. ACS NANO 2025; 19:17514-17524. [PMID: 40323304 DOI: 10.1021/acsnano.4c17685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Timely and accurate diagnostics for infectious diseases are essential in preventing their worldwide spread. Though rapid diagnostic tests are favored for their speed, cost-effectiveness, and ease of use, most tests compromise sensitivity, which risks false-negative results. Here, we present the self-assembly of nanogold triplets on trimeric viral surface proteins for a sensitive colorimetric assay to identify viruses. Gold triplets were self-assembled on the viral trimeric surface proteins using ultrasmall gold nanoparticles. We observed a significant wavelength shift of 70 nm, enabling straightforward naked-eye detection through gold triplets that act as catalysts for producing nanoplasmonic viruses. We established the detection limit of 3 × 105 copies/ml using an effective colorimetric assay for detecting SARS-CoV-2. The self-assembly of gold triplets on trimeric viral surface proteins provides a reliable approach to the accurate and sensitive detection of viruses.
Collapse
Affiliation(s)
- Wenpeng Liu
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Ahmed Soliman
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Hagar E Emam
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jun Zhang
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Joseph V Bonventre
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Luke P Lee
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Korea
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Mahmoud L Nasr
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, UAE
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
2
|
Chen H, Song F, Wang B, Huang H, Luo Y, Han X, He H, Lin S, Wan L, Huang Z, Fu Z, Ledesma-Amaro R, Yin D, Mao H, He L, Yang T, Chen Z, Ma Y, Xue EY, Wan Y, Mao C. Ultrasensitive detection of clinical pathogens through a target-amplification-free collateral-cleavage-enhancing CRISPR-CasΦ tool. Nat Commun 2025; 16:3929. [PMID: 40280947 PMCID: PMC12032082 DOI: 10.1038/s41467-025-59219-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Clinical pathogen diagnostics detect targets by qPCR (but with low sensitivity) or blood culturing (but time-consuming). Here we leverage a dual-stem-loop DNA amplifier to enhance non-specific collateral enzymatic cleavage of an oligonucleotide linker between a fluophore and its quencher by CRISPR-CasΦ, achieving ultrasensitive target detection. Specifically, the target pathogens are lysed to release DNA, which binds its complementary gRNA in CRISPR-CasΦ to activate the collateral DNA-cleavage capability of CasΦ, enabling CasΦ to cleave the stem-loops in the amplifier. The cleavage product binds its complementary gRNA in another CRISPR-CasΦ to activate more CasΦ. The activated CasΦ collaterally cleaves the linker, releasing the fluophore to recover its fluorescent signal. The cycle of stem-loop-cleavage/CasΦ-activation/fluorescence-recovery amplifies the detection signal. Our target amplification-free collateral-cleavage-enhancing CRISPR-CasΦ method (TCC), with a detection limit of 0.11 copies/μL, demonstrates enhanced sensitivity compared to qPCR. It can detect pathogenic bacteria as low as 1.2 CFU/mL in serum within 40 min.
Collapse
Affiliation(s)
- Huiyou Chen
- State key laboratory of digital medical engineering, Hainan University, Haikou, 570228, China
- School of Life and Health Sciences, Hainan University, Haikou, 570228, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Fengge Song
- State key laboratory of digital medical engineering, Hainan University, Haikou, 570228, China
- School of Life and Health Sciences, Hainan University, Haikou, 570228, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Buhua Wang
- State key laboratory of digital medical engineering, Hainan University, Haikou, 570228, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Hui Huang
- Microbial Medical Laboratory, People's Hospital of Haikou, Haikou, 570208, China
| | - Yanchi Luo
- State key laboratory of digital medical engineering, Hainan University, Haikou, 570228, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Xiaosheng Han
- Microbial Medical Laboratory, People's Hospital of Haikou, Haikou, 570208, China
| | - Hewen He
- Hainan Viewkr Biotechnology Co., Ltd, Haikou, 570228, China
| | - Shaolu Lin
- Hainan Viewkr Biotechnology Co., Ltd, Haikou, 570228, China
| | - Liudang Wan
- Hainan Viewkr Biotechnology Co., Ltd, Haikou, 570228, China
| | | | - Zhaoyong Fu
- Hainan Viewkr Biotechnology Co., Ltd, Haikou, 570228, China
| | - Rodrigo Ledesma-Amaro
- Imperial College Centre for Synthetic Biology, Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Dapeng Yin
- Hainan Center for Disease Control and Prevention, Haikou, 570228, China
| | - Haimei Mao
- Products Quality Supervision and Testing Institute of Hainan Province, Haikou, 570003, China
| | - Linwen He
- School of Marine Biology and Fisheries, Hainan University, Haikou, 570228, China
| | - Tao Yang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zijing Chen
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yubin Ma
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Evelyn Y Xue
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yi Wan
- State key laboratory of digital medical engineering, Hainan University, Haikou, 570228, China.
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China.
- School of Biomedical Engineering, Hainan University, Haikou, 570228, China.
| | - Chuanbin Mao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
3
|
Lu P, Zhou Y, Niu X, Zhan C, Lang P, Zhao Y, Chen Y. Deep-Learning-Assisted Microfluidic Immunoassay via Smartphone-Based Imaging Transcoding System for On-Site and Multiplexed Biosensing. NANO LETTERS 2025; 25:6803-6812. [PMID: 40203242 DOI: 10.1021/acs.nanolett.5c01435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Point-of-care testing (POCT) with multiplexed capability, ultrahigh sensitivity, affordable smart devices, and user-friendly operation is critically needed for clinical diagnostics and food safety. This study presents a deep-learning-assisted microfluidic immunoassay platform that uses a smartphone-based imaging transcoding system, polystyrene microsphere-based encoding, and artificial-intelligence-assisted decoding. Microspheres of varying sizes act as multiprobes, with their quantities correlating to target concentrations after an immunoreaction and separation-filtration within the microfluidic chip. A smartphone with intelligent decoding software captures images of multiprobes from the chip and performs classification, counting, and concentration calculations. The "encoding-decoding" strategy and integrated microfluidic chip design allow these processes to be completed in simple steps, eliminating the need for additional immunomagnetic separation. As a proof of concept, this platform successfully detected multiple respiratory viruses and antibiotics in various real samples with high sensitivity within 30 min, demonstrating great potential as a smart, universal toolkit for next-generation POCT applications.
Collapse
Affiliation(s)
- Peng Lu
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Zhou
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xiaohu Niu
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Chen Zhan
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Pengzhou Lang
- Henan Mechanical & Electrical Vocational College, Zhengzhou 451192, China
| | - Yongkun Zhao
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Yiping Chen
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
- Dalian Jinshiwan Laboratory, Dalian 116034, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
4
|
Rad MB, Mohebbi SR, Yadegar A, Ghourchian H. Porous GNPs assisted LAMP-CRISPR/Cas12a amperometric biosensor as a potential point of care testing system for SARS-CoV-2. Mikrochim Acta 2025; 192:280. [PMID: 40195165 DOI: 10.1007/s00604-025-07094-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/04/2025] [Indexed: 04/09/2025]
Abstract
A simple and ultrasensitive amperometric biosensor is introduced which has the potential to be applied as a point of care test for SARS-CoV-2 monitoring. It was prepared by integrating the reverse transcription loop-mediated isothermal amplification (RT‑LAMP) and CRISPR/Cas12a nuclease activity on a modified gold screen-printed electrode (GSPE). The GSPE is modified with double-end thiolated oligonucleotide reporters conjugated to porous gold nanoparticles (PGNPs) and inserted into a homemade poly-methyl methacrylate cartridge. This biosensor was integrated with a low-cost electronic kit to make a platform with the potential to be applied as a point-of-care testing system. The PGNPs on the reporters create a dense, negatively charged barrier that repels the redox couple of [Fe(CN)6]3-/4- from the GSPE surface. Upon the addition of a real sample, followed by LAMP amplification and Cas12a nuclease activity on disposable GSPE, in the presence of SARS-CoV-2, the single-guide RNA binds to the target sequence and activates Cas12a. The activated Cas12a then cleaves the reporters, releasing the PGNPs. This removal of electrostatic hindrance allows the redox couple of [Fe(CN)6]3-/4- to approach the positively charged GSPE, enhancing the amperometric signal. This biosensor offers an outstanding detection limit of 143 zM (~ 86 copies/mL) and a linear response from 4.7 to 7062 aM for SARS-CoV-2 real samples. By using double-end thiolated reporters and porous GNPs, this novel testing system makes it possible to minimize the required sample volume and reagent costs.
Collapse
Affiliation(s)
- Mohammad Behnam Rad
- Laboratory of Bioanalysis, Institute of Biochemistry & Biophysics, University of Tehran, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hedayatollah Ghourchian
- Laboratory of Bioanalysis, Institute of Biochemistry & Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
5
|
van Dongen JE, Segerink LI. Building the Future of Clinical Diagnostics: An Analysis of Potential Benefits and Current Barriers in CRISPR/Cas Diagnostics. ACS Synth Biol 2025; 14:323-331. [PMID: 39880685 PMCID: PMC11854988 DOI: 10.1021/acssynbio.4c00816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/31/2025]
Abstract
Advancements in molecular diagnostics, such as polymerase chain reaction and next-generation sequencing, have revolutionized disease management and prognosis. Despite these advancements in molecular diagnostics, the field faces challenges due to high operational costs and the need for sophisticated equipment and highly trained personnel besides having several technical limitations. The emergent field of CRISPR/Cas sensing technology is showing promise as a new paradigm in clinical diagnostics, although widespread clinical adoption remains limited. This perspective paper discusses specific cases where CRISPR/Cas technology can surmount the challenges of existing diagnostic methods by stressing the significant role that CRISPR/Cas technology can play in revolutionizing clinical diagnostics. It underscores the urgency and importance of addressing the technological and regulatory hurdles that must be overcome to harness this technology effectively in clinical laboratories.
Collapse
Affiliation(s)
- Jeanne E. van Dongen
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical
Medical Centre, Max Planck Institute for Complex Fluid Dynamics, University
of Twente, P.O. Box 217, 7500 AE Enschede, The
Netherlands
| | - Loes I. Segerink
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical
Medical Centre, Max Planck Institute for Complex Fluid Dynamics, University
of Twente, P.O. Box 217, 7500 AE Enschede, The
Netherlands
| |
Collapse
|
6
|
Duan BF, Feng Y. Current knowledge on the epidemiology and detection methods of hepatitis E virus in China. Virol J 2024; 21:307. [PMID: 39593111 PMCID: PMC11590246 DOI: 10.1186/s12985-024-02576-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Hepatitis E is recognized as a significant zoonotic disease burden in China, with the hepatitis E virus (HEV) identified as the etiological agent responsible for this disease. HEV exhibits no specific host tropism, which facilitates its transmission among various mammalian species, including humans, pigs, cattle, goats, and others. Currently, the availability of effective therapeutic agents and vaccines for HEV infection is limited. Therefore, a comprehensive understanding of the epidemiological characteristics of HEV, and the existing detection methods, is crucial for disease prevention and control. In this review, we provide an overview of the current knowledge on HEV in China, mainly focusing on detection strategies, molecular characteristics, and the prevalence of this pathogen in the human population and other susceptible species. This review will be useful to enhance public awareness of HEV and to accelerate disease control efforts in the future.
Collapse
Affiliation(s)
- Bo-Fang Duan
- Xiangtan Central Hospital (The affiliated hospital of Hunan University), Xiangtan, 411100, Hunan Province, China
- Central for Animal Disease Control and Prevention of Yunnan Province, Kunming, 650051, Yunnan Province, China
| | - Yuan Feng
- Xiangtan Central Hospital (The affiliated hospital of Hunan University), Xiangtan, 411100, Hunan Province, China.
| |
Collapse
|
7
|
Qian X, Xu Q, Lyon CJ, Hu TY. CRISPR for companion diagnostics in low-resource settings. LAB ON A CHIP 2024; 24:4717-4740. [PMID: 39268697 PMCID: PMC11393808 DOI: 10.1039/d4lc00340c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/15/2024] [Indexed: 09/17/2024]
Abstract
New point-of-care tests (POCTs), which are especially useful in low-resource settings, are needed to expand screening capacity for diseases that cause significant mortality: tuberculosis, multiple cancers, and emerging infectious diseases. Recently, clustered regularly interspaced short palindromic repeats (CRISPR)-based diagnostic (CRISPR-Dx) assays have emerged as powerful and versatile alternatives to traditional nucleic acid tests, revealing a strong potential to meet this need for new POCTs. In this review, we discuss CRISPR-Dx assay techniques that have been or could be applied to develop POCTs, including techniques for sample processing, target amplification, multiplex assay design, and signal readout. This review also describes current and potential applications for POCTs in disease diagnosis and includes future opportunities and challenges for such tests. These tests need to advance beyond initial assay development efforts to broadly meet criteria for use in low-resource settings.
Collapse
Affiliation(s)
- Xu Qian
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| | - Qiang Xu
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| | - Christopher J Lyon
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA.
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Tony Y Hu
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA.
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| |
Collapse
|
8
|
Goswami HN, Ahmadizadeh F, Wang B, Addo-Yobo D, Zhao Y, Whittington A, He H, Terns M, Li H. Molecular basis for cA6 synthesis by a type III-A CRISPR-Cas enzyme and its conversion to cA4 production. Nucleic Acids Res 2024; 52:10619-10629. [PMID: 38989619 PMCID: PMC11417356 DOI: 10.1093/nar/gkae603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024] Open
Abstract
The type III-A (Csm) CRISPR-Cas systems are multi-subunit and multipronged prokaryotic enzymes in guarding the hosts against viral invaders. Beyond cleaving activator RNA transcripts, Csm confers two additional activities: shredding single-stranded DNA and synthesizing cyclic oligoadenylates (cOAs) by the Cas10 subunit. Known Cas10 enzymes exhibit a fascinating diversity in cOA production. Three major forms-cA3, cA4 and cA6have been identified, each with the potential to trigger unique downstream effects. Whereas the mechanism for cOA-dependent activation is well characterized, the molecular basis for synthesizing different cOA isoforms remains unclear. Here, we present structural characterization of a cA6-producing Csm complex during its activation by an activator RNA. Analysis of the captured intermediates of cA6 synthesis suggests a 3'-to-5' nucleotidyl transferring process. Three primary adenine binding sites can be identified along the chain elongation path, including a unique tyrosine-threonine dyad found only in the cA6-producing Cas10. Consistently, disrupting the tyrosine-threonine dyad specifically impaired cA6 production while promoting cA4 production. These findings suggest that Cas10 utilizes a unique enzymatic mechanism for forming the phosphodiester bond and has evolved distinct strategies to regulate the cOA chain length.
Collapse
Affiliation(s)
- Hemant N Goswami
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Fozieh Ahmadizadeh
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Bing Wang
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Doreen Addo-Yobo
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Yu Zhao
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - A Carl Whittington
- Department of Biological Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Huan He
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Michael P Terns
- Biochemistry and Molecular Biology, Genetics and Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Hong Li
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
9
|
He Q, Chen Q, Lian L, Qu J, Yuan X, Wang C, Xu L, Wei J, Zeng S, Yu D, Dong Y, Zhang Y, Deng L, Du K, Zhang C, Pandey V, Gul I, Qin P. Unraveling the influence of CRISPR/Cas13a reaction components on enhancing trans-cleavage activity for ultrasensitive on-chip RNA detection. Mikrochim Acta 2024; 191:466. [PMID: 39017814 DOI: 10.1007/s00604-024-06545-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024]
Abstract
The CRISPR/Cas13 nucleases have been widely documented for nucleic acid detection. Understanding the intricacies of CRISPR/Cas13's reaction components is pivotal for harnessing its full potential for biosensing applications. Herein, we report on the influence of CRISPR/Cas13a reaction components on its trans-cleavage activity and the development of an on-chip total internal reflection fluorescence microscopy (TIRFM)-powered RNA sensing system. We used SARS-CoV-2 synthetic RNA and pseudovirus as a model system. Our results show that optimizing Mg2+ concentration, reporter length, and crRNA combination significantly improves the detection sensitivity. Under optimized conditions, we detected 100 fM unamplified SARS-CoV-2 synthetic RNA using a microtiter plate reader. To further improve sensitivity and provide a new amplification-free RNA sensing toolbox, we developed a TIRFM-based amplification-free RNA sensing system. We were able to detect RNA down to 100 aM. Furthermore, the TIRM-based detection system developed in this study is 1000-fold more sensitive than the off-coverslip assay. The possible clinical applicability of the system was demonstrated by detecting SARS-CoV-2 pseudovirus RNA. Our proposed sensing system has the potential to detect any target RNA with slight modifications to the existing setup, providing a universal RNA detection platform.
Collapse
Affiliation(s)
- Qian He
- School of Communication Engineering, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, China
| | - Qun Chen
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, China
| | - Lijin Lian
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, China
| | - Jiuxin Qu
- Clinical Laboratory, Shenzhen Third People's Hospital, Shenzhen, 518115, Guangdong Province, China
| | - Xi Yuan
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, China
| | - Chuhui Wang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, China
| | - Lidan Xu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Jiazhang Wei
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 6 Taoyuan Road, Nanning, 530021, China
| | - Shaoling Zeng
- Animal and Plant Inspection and Quarantine Technology Center, Shenzhen Customs, Shenzhen, 518010, Guangdong Province, China
| | - Dongmei Yu
- School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai, 264209, Shandong, China
| | - Yuhan Dong
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, China
| | - Yongbing Zhang
- Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Lin Deng
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Ke Du
- Chemical and Environmental Engineering, University of California, Riverside, USA
| | - Canyang Zhang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, China
| | - Vijay Pandey
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, China
| | - Ijaz Gul
- School of Communication Engineering, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China.
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, China.
| | - Peiwu Qin
- School of Communication Engineering, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China.
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, China.
| |
Collapse
|
10
|
Li X, Han J, Yang J, Zhang H. The structural biology of type III CRISPR-Cas systems. J Struct Biol 2024; 216:108070. [PMID: 38395113 DOI: 10.1016/j.jsb.2024.108070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
CRISPR-Cas system is an RNA-guided adaptive immune system widespread in bacteria and archaea. Among them, type III CRISPR-Cas systems are the most ancient throughout the CRISPR-Cas family, proving anti-phage defense through a crRNA-guided RNA targeting manner and possessing multiple enzymatic activities. Type III CRISPR-Cas systems comprise four typical members (type III-A to III-D) and two atypical members (type III-E and type III-F), providing immune defense through distinct mechanisms. Here, we delve into structural studies conducted on three well-characterized members: the type III-A, III-B, and III-E systems, provide an overview of the structural insights into the crRNA-guided target RNA cleavage, self/non-self discrimination, and the target RNA-dependent regulation of enzymatic subunits in the effector complex.
Collapse
Affiliation(s)
- Xuzichao Li
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jie Han
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jie Yang
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Heng Zhang
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
11
|
Sridhara S. Multiple structural flavors of RNase P in precursor tRNA processing. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1835. [PMID: 38479802 DOI: 10.1002/wrna.1835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 06/06/2024]
Abstract
The precursor transfer RNAs (pre-tRNAs) require extensive processing to generate mature tRNAs possessing proper fold, structural stability, and functionality required to sustain cellular viability. The road to tRNA maturation follows an ordered process: 5'-processing, 3'-processing, modifications at specific sites, if any, and 3'-CCA addition before aminoacylation and recruitment to the cellular protein synthesis machinery. Ribonuclease P (RNase P) is a universally conserved endonuclease in all domains of life, performing the hydrolysis of pre-tRNA sequences at the 5' end by the removal of phosphodiester linkages between nucleotides at position -1 and +1. Except for an archaeal species: Nanoarchaeum equitans where tRNAs are transcribed from leaderless-position +1, RNase P is indispensable for life and displays fundamental variations in terms of enzyme subunit composition, mechanism of substrate recognition and active site architecture, utilizing in all cases a two metal ion-mediated conserved catalytic reaction. While the canonical RNA-based ribonucleoprotein RNase P has been well-known to occur in bacteria, archaea, and eukaryotes, the occurrence of RNA-free protein-only RNase P in eukaryotes and RNA-free homologs of Aquifex RNase P in prokaryotes has been discovered more recently. This review aims to provide a comprehensive overview of structural diversity displayed by various RNA-based and RNA-free RNase P holoenzymes towards harnessing critical RNA-protein and protein-protein interactions in achieving conserved pre-tRNA processing functionality. Furthermore, alternate roles and functional interchangeability of RNase P are discussed in the context of its employability in several clinical and biotechnological applications. This article is categorized under: RNA Processing > tRNA Processing RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Sagar Sridhara
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
12
|
Wang Z, Feng N, Zhou Y, Cheng X, Zhou C, Ma A, Wang Q, Li Y, Chen Y. Mesophilic Argonaute-Mediated Polydisperse Droplet Biosensor for Amplification-Free, One-Pot, and Multiplexed Nucleic Acid Detection Using Deep Learning. Anal Chem 2024; 96:2068-2077. [PMID: 38259216 DOI: 10.1021/acs.analchem.3c04426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Detection of nucleic acids from a single multiplexed and amplification-free test is critical for ensuring food safety, clinical diagnostics, and environmental monitoring. In this study, we introduced a mesophilic Argonaute protein from Clostridium butyricum (CbAgo), which exhibits nucleic acid endonuclease activity, to achieve a programmable, amplification-free system (PASS) for rapid nucleic acid quantification at ambient temperatures in one pot. By using CbAgo-mediated binding with specific guide DNA (gDNA) and subsequent targeted cleavage of wild-type target DNAs complementary to gDNA, PASS can detect multiple foodborne pathogen DNA (<102 CFU/mL) simultaneously. The fluorescence signals were then transferred to polydisperse emulsions and analyzed by using deep learning. This simplifies the process and increases the suitability of polydisperse emulsions compared to traditional digital PCR, which requires homogeneous droplets for accurate detection. We believe that PASS has the potential to become a next-generation point-of-care digital nucleic acid detection method.
Collapse
Affiliation(s)
- Zhipan Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Niu Feng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yanan Zhou
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xinrui Cheng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Cuiyun Zhou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Qinyu Wang
- Department of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan 430000, Hubei China
| | - Yingjun Li
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
13
|
Li Y, Tang X, Wang N, Zhao Z, Man S, Zhu L, Ma L. Argonaute-DNAzyme tandem biosensing for highly sensitive and simultaneous dual-gene detection of methicillin-resistant Staphylococcus aureus. Biosens Bioelectron 2024; 244:115758. [PMID: 37931440 DOI: 10.1016/j.bios.2023.115758] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 11/08/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), a common zoonotic multidrug-resistant bacterium, puts a great threat to public health and food safety. Rapid and reliable detection of MRSA is crucial to guide effective patient treatment at early stages of infection and control the spread of MRSA infections. Herein, we developed a Simultaneous dual-gene and ulTra-sensitive detection for methicillin-resistant Staphylococcus aureus using Argonaute-DNAzyme tandem Detection (STAND). Simply, loop-mediated isothermal amplification (LAMP) was used for the amplification of the species-specific mecA and nuc gene, followed by STAND enabled by the site-specific cleavage of programable Argonaute. The Argonaute-DNAzyme tandem reaction rendered a conceptually novel signal amplification and transduction module that was more sensitive (1 or 2 order of magnitude higher) than the original Argonaute-based biosensing. With the strategy, the target nucleic acid signals gene were dexterously converted into fluorescent signals. STAND could detect the nuc gene and mecA gene simultaneously in a single reaction with 1 CFU/mL MRSA and a dynamic range from 1 to 108 CFU/mL. This method was confirmed by clinical samples and challenged by identifying contaminated foods and MRSA-infected animals. This work enriches the arsenal of Argonaute-mediated biosensing and presents a novel biosensing strategy to detect pathogenic bacteria with ultra-sensitivity, specificity and on-site capability.
Collapse
Affiliation(s)
- Yaru Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Xiaoqin Tang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Nan Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Zhiying Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Lei Zhu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| |
Collapse
|
14
|
Jungfer K, Sigg A, Jinek M. Substrate selectivity and catalytic activation of the type III CRISPR ancillary nuclease Can2. Nucleic Acids Res 2024; 52:462-473. [PMID: 38033326 PMCID: PMC10783487 DOI: 10.1093/nar/gkad1102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
Type III CRISPR-Cas systems provide adaptive immunity against foreign mobile genetic elements through RNA-guided interference. Sequence-specific recognition of RNA targets by the type III effector complex triggers the generation of cyclic oligoadenylate (cOA) second messengers that activate ancillary effector proteins, thus reinforcing the host immune response. The ancillary nuclease Can2 is activated by cyclic tetra-AMP (cA4); however, the mechanisms underlying cA4-mediated activation and substrate selectivity remain elusive. Here we report crystal structures of Thermoanaerobacter brockii Can2 (TbrCan2) in substrate- and product-bound complexes. We show that TbrCan2 is a single strand-selective DNase and RNase that binds substrates via a conserved SxTTS active site motif, and reveal molecular interactions underpinning its sequence preference for CA dinucleotides. Furthermore, we identify a molecular interaction relay linking the cA4 binding site and the nuclease catalytic site to enable divalent metal cation coordination and catalytic activation. These findings provide key insights into the molecular mechanisms of Can2 nucleases in type III CRISPR-Cas immunity and may guide their technological development for nucleic acid detection applications.
Collapse
Affiliation(s)
- Kenny Jungfer
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Annina Sigg
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Li Y, Liu Y, Tang X, Qiao J, Kou J, Man S, Zhu L, Ma L. CRISPR/Cas-Powered Amplification-Free Detection of Nucleic Acids: Current State of the Art, Challenges, and Futuristic Perspectives. ACS Sens 2023; 8:4420-4441. [PMID: 37978935 DOI: 10.1021/acssensors.3c01463] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
CRISPR/Cas system is becoming an increasingly influential technology that has been repositioned in nucleic acid detection. A preamplification step is usually required to improve the sensitivity of CRISPR/Cas-based detection. The striking biological features of CRISPR/Cas, including programmability, high sensitivity and sequence specificity, and single-base resolution. More strikingly, the target-activated trans-cleavage could act as a biocatalytic signal transductor and amplifier, thereby empowering it to potentially perform nucleic acid detection without a preamplification step. The reports of such work are on the rise, which is not only scientifically significant but also promising for futuristic end-user applications. This review started with the introduction of the detection methods of nucleic acids and the CRISPR/Cas-based diagnostics (CRISPR-Dx). Next, we objectively discussed the pros and cons of preamplification steps for CRISPR-Dx. We then illustrated and highlighted the recently developed strategies for CRISPR/Cas-powered amplification-free detection that can be realized through the uses of ultralocalized reactors, cascade reactions, ultrasensitive detection systems, or others. Lastly, the challenges and futuristic perspectives were proposed. It can be expected that this work not only makes the researchers better understand the current strategies for this emerging field, but also provides insight for designing novel CRISPR-Dx without a preamplification step to win practicable use in the near future.
Collapse
Affiliation(s)
- Yaru Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yajie Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xiaoqin Tang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jiali Qiao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jun Kou
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lei Zhu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
16
|
Koonin EV, Gootenberg JS, Abudayyeh OO. Discovery of Diverse CRISPR-Cas Systems and Expansion of the Genome Engineering Toolbox. Biochemistry 2023; 62:3465-3487. [PMID: 37192099 PMCID: PMC10734277 DOI: 10.1021/acs.biochem.3c00159] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/23/2023] [Indexed: 05/18/2023]
Abstract
CRISPR systems mediate adaptive immunity in bacteria and archaea through diverse effector mechanisms and have been repurposed for versatile applications in therapeutics and diagnostics thanks to their facile reprogramming with RNA guides. RNA-guided CRISPR-Cas targeting and interference are mediated by effectors that are either components of multisubunit complexes in class 1 systems or multidomain single-effector proteins in class 2. The compact class 2 CRISPR systems have been broadly adopted for multiple applications, especially genome editing, leading to a transformation of the molecular biology and biotechnology toolkit. The diversity of class 2 effector enzymes, initially limited to the Cas9 nuclease, was substantially expanded via computational genome and metagenome mining to include numerous variants of Cas12 and Cas13, providing substrates for the development of versatile, orthogonal molecular tools. Characterization of these diverse CRISPR effectors uncovered many new features, including distinct protospacer adjacent motifs (PAMs) that expand the targeting space, improved editing specificity, RNA rather than DNA targeting, smaller crRNAs, staggered and blunt end cuts, miniature enzymes, promiscuous RNA and DNA cleavage, etc. These unique properties enabled multiple applications, such as harnessing the promiscuous RNase activity of the type VI effector, Cas13, for supersensitive nucleic acid detection. class 1 CRISPR systems have been adopted for genome editing, as well, despite the challenge of expressing and delivering the multiprotein class 1 effectors. The rich diversity of CRISPR enzymes led to rapid maturation of the genome editing toolbox, with capabilities such as gene knockout, base editing, prime editing, gene insertion, DNA imaging, epigenetic modulation, transcriptional modulation, and RNA editing. Combined with rational design and engineering of the effector proteins and associated RNAs, the natural diversity of CRISPR and related bacterial RNA-guided systems provides a vast resource for expanding the repertoire of tools for molecular biology and biotechnology.
Collapse
Affiliation(s)
- Eugene V. Koonin
- National
Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, United States
| | - Jonathan S. Gootenberg
- McGovern
Institute for Brain Research at MIT, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Omar O. Abudayyeh
- McGovern
Institute for Brain Research at MIT, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
17
|
Yigci D, Atçeken N, Yetisen AK, Tasoglu S. Loop-Mediated Isothermal Amplification-Integrated CRISPR Methods for Infectious Disease Diagnosis at Point of Care. ACS OMEGA 2023; 8:43357-43373. [PMID: 38027359 PMCID: PMC10666231 DOI: 10.1021/acsomega.3c04422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/26/2023] [Indexed: 12/01/2023]
Abstract
Infectious diseases continue to pose an imminent threat to global public health, leading to high numbers of deaths every year and disproportionately impacting developing countries where access to healthcare is limited. Biological, environmental, and social phenomena, including climate change, globalization, increased population density, and social inequity, contribute to the emergence of novel communicable diseases. Rapid and accurate diagnoses of infectious diseases are essential to preventing the transmission of infectious diseases. Although some commonly used diagnostic technologies provide highly sensitive and specific measurements, limitations including the requirement for complex equipment/infrastructure and refrigeration, the need for trained personnel, long sample processing times, and high cost remain unresolved. To ensure global access to affordable diagnostic methods, loop-mediated isothermal amplification (LAMP) integrated clustered regularly interspaced short palindromic repeat (CRISPR) based pathogen detection has emerged as a promising technology. Here, LAMP-integrated CRISPR-based nucleic acid detection methods are discussed in point-of-care (PoC) pathogen detection platforms, and current limitations and future directions are also identified.
Collapse
Affiliation(s)
- Defne Yigci
- School
of Medicine, Koç University, Istanbul 34450, Turkey
| | - Nazente Atçeken
- Koç
University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Turkey
| | - Ali K. Yetisen
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Savas Tasoglu
- Koç
University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Turkey
- Boğaziçi
Institute of Biomedical Engineering, Boğaziçi
University, Istanbul 34684, Turkey
- Koç
University Arçelik Research Center for Creative Industries
(KUAR), Koç University, Istanbul 34450, Turkey
- Physical
Intelligence Department, Max Planck Institute
for Intelligent Systems, Stuttgart 70569, Germany
| |
Collapse
|
18
|
He Q, Lei X, Liu Y, Wang X, Ji N, Yin H, Wang H, Zhang H, Yu G. Nucleic Acid Detection through RNA-Guided Protease Activity in Type III-E CRISPR-Cas Systems. Chembiochem 2023; 24:e202300401. [PMID: 37710076 DOI: 10.1002/cbic.202300401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
RNA-guided protease activity was recently discovered in the type III-E CRISPR-Cas systems (Craspase), providing a novel platform for engineering a protein probe instead of the commonly used nucleic acid probe in nucleic acid detection assays. Here, by adapting a fluorescence readout technique using the affinity- and fluorescent protein dual-tagged Csx30 protein substrate, we have established an assay monitoring Csx30 cleavage by target ssRNA-activated Craspase. Four Craspase-based nucleic acid detection systems for genes from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), norovirus, and the influenza virus (IFV) were reconstituted with demonstrated specificity. The assay could reliably detect target ssRNAs at concentrations down to 25 pM, which could be further improved approximately 15 000-fold (ca. 2 fM) by incorporating a recombinase polymerase isothermal preamplification step. Importantly, the species-specific substrate cleavage specificity of Craspase enabled multiplexed diagnosis, as demonstrated by the reconstituted composite systems for simultaneous detection of two genes from the same virus (SARS-CoV-2, spike and nsp12) or two types of viruses (SARS-CoV-2 and IFV). The assay could be further expanded by diversifying the fluorescent tags in the substrate and including Craspase systems from various species, thus potentially providing an easily adaptable platform for clinical diagnosis.
Collapse
Affiliation(s)
- Qiuqiu He
- The Province and Ministry Co-sponsored Collaborative, Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and, Disease (Ministry of Education), Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300070, P. R. China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Xinlong Lei
- The Province and Ministry Co-sponsored Collaborative, Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and, Disease (Ministry of Education), Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300070, P. R. China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Yuanjun Liu
- The Province and Ministry Co-sponsored Collaborative, Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and, Disease (Ministry of Education), Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300070, P. R. China
- Department of Dermatovenereology, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, P. R. China
| | - Xiaoshen Wang
- The Province and Ministry Co-sponsored Collaborative, Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and, Disease (Ministry of Education), Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300070, P. R. China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Nan Ji
- The Province and Ministry Co-sponsored Collaborative, Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and, Disease (Ministry of Education), Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300070, P. R. China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Hang Yin
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Huiping Wang
- The Province and Ministry Co-sponsored Collaborative, Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and, Disease (Ministry of Education), Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300070, P. R. China
- Department of Dermatovenereology, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, P. R. China
| | - Heng Zhang
- The Province and Ministry Co-sponsored Collaborative, Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and, Disease (Ministry of Education), Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300070, P. R. China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Guimei Yu
- The Province and Ministry Co-sponsored Collaborative, Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and, Disease (Ministry of Education), Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300070, P. R. China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, P. R. China
| |
Collapse
|
19
|
Wang B, Yang H. Progress of CRISPR-based programmable RNA manipulation and detection. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1804. [PMID: 37282821 DOI: 10.1002/wrna.1804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/08/2023]
Abstract
Prokaryotic clustered regularly interspaced short palindromic repeats and CRISPR associated (CRISPR-Cas) systems provide adaptive immunity by using RNA-guided endonucleases to recognize and eliminate invading foreign nucleic acids. Type II Cas9, type V Cas12, type VI Cas13, and type III Csm/Cmr complexes have been well characterized and developed as programmable platforms for selectively targeting and manipulating RNA molecules of interest in prokaryotic and eukaryotic cells. These Cas effectors exhibit remarkable diversity of ribonucleoprotein (RNP) composition, target recognition and cleavage mechanisms, and self discrimination mechanisms, which are leveraged for various RNA targeting applications. Here, we summarize the current understanding of mechanistic and functional characteristics of these Cas effectors, give an overview on RNA detection and manipulation toolbox established so far including knockdown, editing, imaging, modification, and mapping RNA-protein interactions, and discuss the future directions for CRISPR-based RNA targeting tools. This article is categorized under: RNA Methods > RNA Analyses in Cells RNA Processing > RNA Editing and Modification RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Beibei Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hui Yang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
20
|
Deng B, Xue J. HIV infection detection using CRISPR/Cas systems: Present and future prospects. Comput Struct Biotechnol J 2023; 21:4409-4423. [PMID: 37711183 PMCID: PMC10498128 DOI: 10.1016/j.csbj.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023] Open
Abstract
Human immunodeficiency virus (HIV) infection poses substantial medical risks to global public health. An essential strategy to combat the HIV epidemic is timely and effective virus testing. CRISPR-based assays combine the highly compatible CRISPR system with different elements, yielding portability, digitization capabilities, low economic burden and low operational thresholds. The application of CRISPR-based assays has demonstrated rapid, accurate, and accessible means of pathogen testing, suggesting great potential as point-of-care (POC) assays. This review outlines the different types of CRISPR/Cas systems based on Cas proteins and their applications for the detection of HIV. Additionally, we also offer an overview of future perspectives on CRISPR-based methods for HIV detection, including advances in nucleic acid amplification-free testing, improved personal testing, and refined testing for HIV genotypes and drug-resistant strains.
Collapse
Affiliation(s)
- Bingpeng Deng
- Beijing Key Laboratory for Animal Models of Emerging and Re-Emerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, China
- NHC Key Laboratory of Human Disease Comparative Medicine, Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Jing Xue
- Beijing Key Laboratory for Animal Models of Emerging and Re-Emerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, China
- NHC Key Laboratory of Human Disease Comparative Medicine, Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
- Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
21
|
Ma T, Huang K, Cheng N. Recent Advances in Nanozyme-Mediated Strategies for Pathogen Detection and Control. Int J Mol Sci 2023; 24:13342. [PMID: 37686145 PMCID: PMC10487713 DOI: 10.3390/ijms241713342] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/13/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Pathogen detection and control have long presented formidable challenges in the domains of medicine and public health. This review paper underscores the potential of nanozymes as emerging bio-mimetic enzymes that hold promise in effectively tackling these challenges. The key features and advantages of nanozymes are introduced, encompassing their comparable catalytic activity to natural enzymes, enhanced stability and reliability, cost effectiveness, and straightforward preparation methods. Subsequently, the paper delves into the detailed utilization of nanozymes for pathogen detection. This includes their application as biosensors, facilitating rapid and sensitive identification of diverse pathogens, including bacteria, viruses, and plasmodium. Furthermore, the paper explores strategies employing nanozymes for pathogen control, such as the regulation of reactive oxygen species (ROS), HOBr/Cl regulation, and clearance of extracellular DNA to impede pathogen growth and transmission. The review underscores the vast potential of nanozymes in pathogen detection and control through numerous specific examples and case studies. The authors highlight the efficiency, rapidity, and specificity of pathogen detection achieved with nanozymes, employing various strategies. They also demonstrate the feasibility of nanozymes in hindering pathogen growth and transmission. These innovative approaches employing nanozymes are projected to provide novel options for early disease diagnoses, treatment, and prevention. Through a comprehensive discourse on the characteristics and advantages of nanozymes, as well as diverse application approaches, this paper serves as a crucial reference and guide for further research and development in nanozyme technology. The expectation is that such advancements will significantly contribute to enhancing disease control measures and improving public health outcomes.
Collapse
Affiliation(s)
- Tianyi Ma
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.M.); (K.H.)
| | - Kunlun Huang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.M.); (K.H.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
| | - Nan Cheng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.M.); (K.H.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
| |
Collapse
|
22
|
Paraan M, Nasef M, Chou-Zheng L, Khweis SA, Schoeffler AJ, Hatoum-Aslan A, Stagg SM, Dunkle JA. The structure of a Type III-A CRISPR-Cas effector complex reveals conserved and idiosyncratic contacts to target RNA and crRNA among Type III-A systems. PLoS One 2023; 18:e0287461. [PMID: 37352230 PMCID: PMC10289348 DOI: 10.1371/journal.pone.0287461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 06/06/2023] [Indexed: 06/25/2023] Open
Abstract
Type III CRISPR-Cas systems employ multiprotein effector complexes bound to small CRISPR RNAs (crRNAs) to detect foreign RNA transcripts and elicit a complex immune response that leads to the destruction of invading RNA and DNA. Type III systems are among the most widespread in nature, and emerging interest in harnessing these systems for biotechnology applications highlights the need for detailed structural analyses of representatives from diverse organisms. We performed cryo-EM reconstructions of the Type III-A Cas10-Csm effector complex from S. epidermidis bound to an intact, cognate target RNA and identified two oligomeric states, a 276 kDa complex and a 318 kDa complex. 3.1 Å density for the well-ordered 276 kDa complex allowed construction of atomic models for the Csm2, Csm3, Csm4 and Csm5 subunits within the complex along with the crRNA and target RNA. We also collected small-angle X-ray scattering data which was consistent with the 276 kDa Cas10-Csm architecture we identified. Detailed comparisons between the S. epidermidis Cas10-Csm structure and the well-resolved bacterial (S. thermophilus) and archaeal (T. onnurineus) Cas10-Csm structures reveal differences in how the complexes interact with target RNA and crRNA which are likely to have functional ramifications. These structural comparisons shed light on the unique features of Type III-A systems from diverse organisms and will assist in improving biotechnologies derived from Type III-A effector complexes.
Collapse
Affiliation(s)
- Mohammadreza Paraan
- National Center for In-situ Tomographic Ultramicroscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States of America
| | - Mohamed Nasef
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL, United States of America
| | - Lucy Chou-Zheng
- Department of Microbiology, University of Illinois, Urbana-Champaign, IL, United States of America
| | - Sarah A. Khweis
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL, United States of America
| | - Allyn J. Schoeffler
- Department of Chemistry and Biochemistry, Loyola University New Orleans, New Orleans, LA, United States of America
| | - Asma Hatoum-Aslan
- Department of Microbiology, University of Illinois, Urbana-Champaign, IL, United States of America
| | - Scott M. Stagg
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, United States of America
| | - Jack A. Dunkle
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL, United States of America
| |
Collapse
|
23
|
Wang J, Xie Q, Song H, Chen X, Zhang X, Zhao X, Hao Y, Zhang Y, Li H, Li N, Fan K, Wang X. Utilizing nanozymes for combating COVID-19: advancements in diagnostics, treatments, and preventative measures. J Nanobiotechnology 2023; 21:200. [PMID: 37344839 PMCID: PMC10283317 DOI: 10.1186/s12951-023-01945-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/29/2023] [Indexed: 06/23/2023] Open
Abstract
The emergence of human severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses significant challenges to global public health. Despite the extensive efforts of researchers worldwide, there remains considerable opportunities for improvement in timely diagnosis, specific treatment, and effective vaccines for SARS-CoV-2. This is due, in part, to the large number of asymptomatic carriers, rapid virus mutations, inconsistent confinement policies, untimely diagnosis and limited clear treatment plans. The emerging of nanozymes offers a promising approach for combating SARS-CoV-2 due to their stable physicochemical properties and high surface areas, which enable easier and multiple nano-bio interactions in vivo. Nanozymes inspire the development of sensitive and economic nanosensors for rapid detection, facilitate the development of specific medicines with minimal side effects for targeted therapy, trigger defensive mechanisms in the form of vaccines, and eliminate SARS-CoV-2 in the environment for prevention. In this review, we briefly present the limitations of existing countermeasures against coronavirus disease 2019 (COVID-19). We then reviewed the applications of nanozyme-based platforms in the fields of diagnostics, therapeutics and the prevention in COVID-19. Finally, we propose opportunities and challenges for the further development of nanozyme-based platforms for COVID-19. We expect that our review will provide valuable insights into the new emerging and re-emerging infectious pandemic from the perspective of nanozymes.
Collapse
Affiliation(s)
- Jia Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001 China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 China
| | - Qingpeng Xie
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001 China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 China
| | - Haoyue Song
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001 China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 China
| | - Xiaohang Chen
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001 China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 China
| | - Xiaoxuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001 China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 China
| | - Xiangyu Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001 China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 China
| | - Yujia Hao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001 China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 China
| | - Yuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001 China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 China
| | - Huifei Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001 China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 China
| | - Na Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001 China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001 China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 China
| |
Collapse
|
24
|
CRISPR/Cas12a-based MUSCA-PEC strategy for HSV-1 assay. Anal Chim Acta 2023; 1250:340955. [PMID: 36898814 DOI: 10.1016/j.aca.2023.340955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 02/07/2023] [Indexed: 02/10/2023]
Abstract
In the photoelectrochemical sensing, constant potential excitation to get the photoelectrochemical signal is the main excitation signal mode. Novel method for photoelectrochemical signal obtaining is needed. Inspired by this ideal, a photoelectrochemical strategy for Herpes simplex virus (HSV-1) detection with multiple potential step chronoamperometry (MUSCA) pattern was fabricated using CRISPR/Cas12a cleavage coupled with entropy-driven target recycling. In the presence of target, HSV-1, the Cas12a was activated by the H1-H2 complex obtained by entropy-driven, then digesting the circular fragment of csRNA to expose single-stranded crRNA2 and alkaline phosphatase (ALP). The inactive Cas12a was self-assembled with crRNA2 and activated again with the help of assistant dsDNA. After multiple rounds of CRISPR/Cas12a cleavage and magnetic separation, MUSCA, as a signal amplifier, collected the enhanced photocurrent responses generated by catalyzed p-Aminophenol (p-AP). Different from the reported signal enhancement strategies based on photoactive nanomaterials and sensing mechanisms, MUSCA technique endowed the strategy with unique advantages of direct, fast and ultrasensitive. A superior detection limit of 3 aM toward HSV-1 was achieved. This strategy was successfully applied for HSV-1 detection in Human serum samples. The combination of MUSCA technique and CRISPR/Cas12a assay brings broader potential prospect for the detection of nucleic acids.
Collapse
|
25
|
Chen Y, Zeng Z, She Q, Han W. The abortive infection functions of CRISPR-Cas and Argonaute. Trends Microbiol 2023; 31:405-418. [PMID: 36463018 DOI: 10.1016/j.tim.2022.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022]
Abstract
CRISPR-Cas and prokaryotic Argonaute (pAgo) are nucleic acid (NA)-guided defense systems that protect prokaryotes against the invasion of mobile genetic elements. Previous studies established that they are directed by NA fragments (guides) to recognize invading complementary NA (targets), and that they cleave the targets to silence the invaders. Nevertheless, growing evidence indicates that many CRISPR-Cas and pAgo systems exploit the abortive infection (Abi) strategy to confer immunity. The CRISPR-Cas and pAgo Abi systems typically sense invaders using the NA recognition ability and activate various toxic effectors to kill the infected cells to prevent the invaders from spreading. This review summarizes the diverse mechanisms of these CRISPR-Cas and pAgo systems, and highlights their critical roles in the arms race between microbes and invaders.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070 Wuhan, China
| | - Zhifeng Zeng
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070 Wuhan, China
| | - Qunxin She
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Jimo, 266237, Qingdao, China
| | - Wenyuan Han
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070 Wuhan, China.
| |
Collapse
|
26
|
Yang H, Zhang Y, Teng X, Hou H, Deng R, Li J. CRISPR-based nucleic acid diagnostics for pathogens. Trends Analyt Chem 2023; 160:116980. [PMID: 36818498 PMCID: PMC9922438 DOI: 10.1016/j.trac.2023.116980] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/28/2022] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
Pathogenic infection remains the primary threat to human health, such as the global COVID-19 pandemic. It is important to develop rapid, sensitive and multiplexed tools for detecting pathogens and their mutated variants, particularly the tailor-made strategies for point-of-care diagnosis allowing for use in resource-constrained settings. The rapidly evolving CRISPR/Cas systems have provided a powerful toolbox for pathogenic diagnostics via nucleic acid tests. In this review, we firstly describe the resultant promising class 2 (single, multidomain effector) and recently explored class 1 (multisubunit effector complexes) CRISPR tools. We present diverse engineering nucleic acid diagnostics based on CRISPR/Cas systems for pathogenic viruses, bacteria and fungi, and highlight the application for detecting viral variants and drug-resistant bacteria enabled by CRISPR-based mutation profiling. Finally, we discuss the challenges involved in on-site diagnostic assays and present emerging CRISPR systems and CRISPR cascade that potentially enable multiplexed and preamplification-free pathogenic diagnostics.
Collapse
Affiliation(s)
- Hao Yang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, Sichuan, 610065, China,Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Yong Zhang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xucong Teng
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Hongwei Hou
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450003, China,Beijing Institute of Life Science and Technology, Beijing, 102206, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, Sichuan, 610065, China,Corresponding author
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China,Corresponding author
| |
Collapse
|
27
|
Yu Z, Xu J, She Q. Harnessing the LdCsm RNA Detection Platform for Efficient microRNA Detection. Int J Mol Sci 2023; 24:ijms24032857. [PMID: 36769177 PMCID: PMC9918065 DOI: 10.3390/ijms24032857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
In cancer diagnosis, diverse microRNAs (miRNAs) are used as biomarkers for carcinogenesis of distinctive human cancers. Thus, the detection of these miRNAs and their quantification are very important in prevention of cancer diseases in human beings. However, efficient RNA detection often requires RT-PCR, which is very complex for miRNAs. Recently, the development of CRISPR-based nucleic acid detection tools has brought new promises to efficient miRNA detection. Three CRISPR systems can be explored for miRNA detection, including type III, V, and VI, among which type III (CRISPR-Cas10) systems have a unique property as they recognize RNA directly and cleave DNA collaterally. In particular, a unique type III-A Csm system encoded by Lactobacillus delbrueckii subsp. bulgaricus (LdCsm) exhibits robust target RNA-activated DNase activity, which makes it a promising candidate for developing efficient miRNA diagnostic tools. Herein, LdCsm was tested for RNA detection using fluorescence-quenched DNA reporters. We found that the system is capable of specific detection of miR-155, a microRNA implicated in the carcinogenesis of human breast cancer. The RNA detection system was then improved by various approaches including assay conditions and modification of the 5'-repeat tag of LdCsm crRNAs. Due to its robustness, the resulting LdCsm detection platform has the potential to be further developed as a better point-of-care miRNA diagnostics relative to other CRISPR-based RNA detection tools.
Collapse
Affiliation(s)
| | | | - Qunxin She
- Correspondence: ; Tel.: +86-532-58631522
| |
Collapse
|
28
|
Jiang W, Aman R, Ali Z, Mahfouz M. Bio-SCAN V2: A CRISPR/dCas9-based lateral flow assay for rapid detection of theophylline. Front Bioeng Biotechnol 2023; 11:1118684. [PMID: 36741753 PMCID: PMC9893010 DOI: 10.3389/fbioe.2023.1118684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
Rapid, specific, and robust diagnostic strategies are needed to develop sensitive biosensors for small molecule detection, which could aid in controlling contamination and disease transmission. Recently, the target-induced collateral activity of Cas nucleases [clustered regularly interspaced short palindromic repeats (CRISPR)-associated nucleases] was exploited to develop high-throughput diagnostic modules for detecting nucleic acids and small molecules. Here, we have expanded the diagnostic ability of the CRISPR-Cas system by developing Bio-SCAN V2, a ligand-responsive CRISPR-Cas platform for detecting non-nucleic acid small molecule targets. The Bio-SCAN V2 consists of an engineered ligand-responsive sgRNA (ligRNA), biotinylated dead Cas9 (dCas9-biotin), 6-carboxyfluorescein (FAM)-labeled amplicons, and lateral flow assay (LFA) strips. LigRNA interacts with dCas9-biotin only in the presence of sgRNA-specific ligand molecules to make a ribonucleoprotein (RNP). Next, the ligand-induced ribonucleoprotein is exposed to FAM-labeled amplicons for binding, and the presence of the ligand (small molecule) is detected as a visual signal [(dCas9-biotin)-ligRNA-FAM labeled DNA-AuNP complex] at the test line of the lateral flow assay strip. With the Bio-SCAN V2 platform, we are able to detect the model molecule theophylline with a limit of detection (LOD) up to 2 μM in a short time, requiring only 15 min from sample application to visual readout. Taken together, Bio-SCAN V2 assay provides a rapid, specific, and ultrasensitive detection platform for theophylline.
Collapse
|
29
|
Nemudraia A, Nemudryi A, Buyukyoruk M, Scherffius AM, Zahl T, Wiegand T, Pandey S, Nichols JE, Hall LN, McVey A, Lee HH, Wilkinson RA, Snyder LR, Jones JD, Koutmou KS, Santiago-Frangos A, Wiedenheft B. Sequence-specific capture and concentration of viral RNA by type III CRISPR system enhances diagnostic. Nat Commun 2022; 13:7762. [PMID: 36522348 PMCID: PMC9751510 DOI: 10.1038/s41467-022-35445-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Type-III CRISPR-Cas systems have recently been adopted for sequence-specific detection of SARS-CoV-2. Here, we repurpose the type III-A CRISPR complex from Thermus thermophilus (TtCsm) for programmable capture and concentration of specific RNAs from complex mixtures. The target bound TtCsm complex generates two cyclic oligoadenylates (i.e., cA3 and cA4) that allosterically activate ancillary nucleases. We show that both Can1 and Can2 nucleases cleave single-stranded RNA, single-stranded DNA, and double-stranded DNA in the presence of cA4. We integrate the Can2 nuclease with type III-A RNA capture and concentration for direct detection of SARS-CoV-2 RNA in nasopharyngeal swabs with 15 fM sensitivity. Collectively, this work demonstrates how type-III CRISPR-based RNA capture and concentration simultaneously increases sensitivity, limits time to result, lowers cost of the assay, eliminates solvents used for RNA extraction, and reduces sample handling.
Collapse
Affiliation(s)
- Anna Nemudraia
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Artem Nemudryi
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Murat Buyukyoruk
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Andrew M Scherffius
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Trevor Zahl
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Tanner Wiegand
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Shishir Pandey
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Joseph E Nichols
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Laina N Hall
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Aidan McVey
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Helen H Lee
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Royce A Wilkinson
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Laura R Snyder
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Joshua D Jones
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Kristin S Koutmou
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Andrew Santiago-Frangos
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA.
| | - Blake Wiedenheft
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
30
|
Wu L, Wang X, Wu X, Xu S, Liu M, Cao X, Tang T, Huang X, Huang H. MnO 2 Nanozyme-Mediated CRISPR-Cas12a System for the Detection of SARS-CoV-2. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50534-50542. [PMID: 36301087 PMCID: PMC9631339 DOI: 10.1021/acsami.2c14497] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The CRISPR-Cas system was developed into a molecular diagnostic tool with high sensitivity, low cost, and high specificity in recent years. Colorimetric assays based on nanozymes offer an attractive point-of-care testing method for their low cost of use and user-friendly operation. Here, a MnO2 nanozyme-mediated CRISPR-Cas12a system was instituted to detect SARS-CoV-2. MnO2 nanorods linked to magnetic beads via a single-stranded DNA (ssDNA) linker used as an oxidase-like nanozyme inducing the color change of 3,3',5,5'-tetramethylbenzidine, which can be distinguished by the naked eye. The detection buffer color will change when the Cas12a is activated by SARS-CoV-2 and indiscriminately cleave the linker ssDNA. The detection limit was 10 copies per microliter and showed no cross-reaction with other coronaviruses. The nanozyme-mediated CRISPR-Cas12a system shows high selectivity and facile operation, with great potential for molecular diagnosis in point-of-care testing applications.
Collapse
Affiliation(s)
- Lina Wu
- School of Food Science and Pharmaceutical Engineering,
Nanjing Normal University, Nanjing210023,
People’s Republic of China
- Zhejiang Laboratory,
Hangzhou311100, People’s Republic of China
| | - Xinjie Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern
Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs,
Agricultural Genomics Institute at Shenzhen, Chinese Academy of
Agricultural Sciences, Shenzhen, 518120, People’s Republic
of China
| | - Xiangchuan Wu
- School of Food Science and Pharmaceutical Engineering,
Nanjing Normal University, Nanjing210023,
People’s Republic of China
| | - Shiqi Xu
- School of Food Science and Pharmaceutical Engineering,
Nanjing Normal University, Nanjing210023,
People’s Republic of China
| | - Ming Liu
- State Key Laboratory of Respiratory Disease, National
Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory
Health, The First Affiliated Hospital, Guangzhou Medical
University, Guangzhou510120, China
| | - Xizhong Cao
- State Key Laboratory of Respiratory Disease, National
Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory
Health, The First Affiliated Hospital, Guangzhou Medical
University, Guangzhou510120, China
| | - Taishan Tang
- State Key Laboratory of Respiratory Disease, National
Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory
Health, The First Affiliated Hospital, Guangzhou Medical
University, Guangzhou510120, China
| | - Xingxu Huang
- Zhejiang Laboratory,
Hangzhou311100, People’s Republic of China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering,
Nanjing Normal University, Nanjing210023,
People’s Republic of China
| |
Collapse
|
31
|
Gul I, Zhai S, Zhong X, Chen Q, Yuan X, Du Z, Chen Z, Raheem MA, Deng L, Leeansyah E, Zhang C, Yu D, Qin P. Angiotensin-Converting Enzyme 2-Based Biosensing Modalities and Devices for Coronavirus Detection. BIOSENSORS 2022; 12:984. [PMID: 36354493 PMCID: PMC9688389 DOI: 10.3390/bios12110984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 05/30/2023]
Abstract
Rapid and cost-effective diagnostic tests for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are a critical and valuable weapon for the coronavirus disease 2019 (COVID-19) pandemic response. SARS-CoV-2 invasion is primarily mediated by human angiotensin-converting enzyme 2 (hACE2). Recent developments in ACE2-based SARS-CoV-2 detection modalities accentuate the potential of this natural host-virus interaction for developing point-of-care (POC) COVID-19 diagnostic systems. Although research on harnessing ACE2 for SARS-CoV-2 detection is in its infancy, some interesting biosensing devices have been developed, showing the commercial viability of this intriguing new approach. The exquisite performance of the reported ACE2-based COVID-19 biosensors provides opportunities for researchers to develop rapid detection tools suitable for virus detection at points of entry, workplaces, or congregate scenarios in order to effectively implement pandemic control and management plans. However, to be considered as an emerging approach, the rationale for ACE2-based biosensing needs to be critically and comprehensively surveyed and discussed. Herein, we review the recent status of ACE2-based detection methods, the signal transduction principles in ACE2 biosensors and the development trend in the future. We discuss the challenges to development of ACE2-biosensors and delineate prospects for their use, along with recommended solutions and suggestions.
Collapse
Affiliation(s)
- Ijaz Gul
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Shiyao Zhai
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xiaoyun Zhong
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qun Chen
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xi Yuan
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhicheng Du
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhenglin Chen
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Muhammad Akmal Raheem
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Lin Deng
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Edwin Leeansyah
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Canyang Zhang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Dongmei Yu
- Department of Computer Science and Technology, School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai 264209, China
| | - Peiwu Qin
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
32
|
Li J, Wang Y, Wang B, Lou J, Ni P, Jin Y, Chen S, Duan G, Zhang R. Application of CRISPR/Cas Systems in the Nucleic Acid Detection of Infectious Diseases. Diagnostics (Basel) 2022; 12:2455. [PMID: 36292145 PMCID: PMC9600689 DOI: 10.3390/diagnostics12102455] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/21/2022] [Accepted: 10/04/2022] [Indexed: 11/24/2022] Open
Abstract
The CRISPR/Cas system is a protective adaptive immune system against attacks from foreign mobile genetic elements. Since the discovery of the excellent target-specific sequence recognition ability of the CRISPR/Cas system, the CRISPR/Cas system has shown excellent performance in the development of pathogen nucleic-acid-detection technology. In combination with various biosensing technologies, researchers have made many rapid, convenient, and feasible innovations in pathogen nucleic-acid-detection technology. With an in-depth understanding and development of the CRISPR/Cas system, it is no longer limited to CRISPR/Cas9, CRISPR/Cas12, and other systems that had been widely used in the past; other CRISPR/Cas families are designed for nucleic acid detection. We summarized the application of CRISPR/Cas-related technology in infectious-disease detection and its development in SARS-CoV-2 detection.
Collapse
Affiliation(s)
- Junwei Li
- International School of Public Health and One Health, First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yuexia Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Juan Lou
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Ni
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Rongguang Zhang
- International School of Public Health and One Health, First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
33
|
Ma X, Xu J, Zhou F, Ye J, Yang D, Wang H, Wang P, Li M. Recent advances in PCR-free nucleic acid detection for SARS-COV-2. Front Bioeng Biotechnol 2022; 10:999358. [PMID: 36277389 PMCID: PMC9585218 DOI: 10.3389/fbioe.2022.999358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
As the outbreak of Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory disease coronavirus 2 (SARS-COV-2), fast, accurate, and economic detection of viral infection has become crucial for stopping the spread. Polymerase chain reaction (PCR) of viral nucleic acids has been the gold standard method for SARS-COV-2 detection, which, however, generally requires sophisticated facilities and laboratory space, and is time consuming. This review presents recent advances in PCR-free nucleic acid detection methods for SARS-CoV-2, including emerging methods of isothermal amplification, nucleic acid enzymes, electrochemistry and CRISPR.
Collapse
Affiliation(s)
| | | | | | | | | | - Hua Wang
- Department of Laboratory Medicine, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Pengfei Wang
- Department of Laboratory Medicine, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Min Li
- Department of Laboratory Medicine, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
34
|
Santiago-Frangos A, Nemudryi A, Nemudraia A, Wiegand T, Nichols JE, Krishna P, Scherffius AM, Zahl TR, Wilkinson RA, Wiedenheft B. CRISPR-Cas, Argonaute proteins and the emerging landscape of amplification-free diagnostics. Methods 2022; 205:1-10. [PMID: 35690249 PMCID: PMC9181078 DOI: 10.1016/j.ymeth.2022.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/06/2022] [Accepted: 06/04/2022] [Indexed: 01/04/2023] Open
Abstract
Polymerase Chain Reaction (PCR) is the reigning gold standard for molecular diagnostics. However, the SARS-CoV-2 pandemic reveals an urgent need for new diagnostics that provide users with immediate results without complex procedures or sophisticated equipment. These new demands have stimulated a tsunami of innovations that improve turnaround times without compromising the specificity and sensitivity that has established PCR as the paragon of diagnostics. Here we briefly introduce the origins of PCR and isothermal amplification, before turning to the emergence of CRISPR-Cas and Argonaute proteins, which are being coupled to fluorimeters, spectrometers, microfluidic devices, field-effect transistors, and amperometric biosensors, for a new generation of nucleic acid-based diagnostics.
Collapse
Affiliation(s)
| | - Artem Nemudryi
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Anna Nemudraia
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Tanner Wiegand
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Joseph E Nichols
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Pushya Krishna
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Andrew M Scherffius
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Trevor R Zahl
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Royce A Wilkinson
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Blake Wiedenheft
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
35
|
Woodside WT, Vantsev N, Catchpole RJ, Garrett SC, Olson S, Graveley BR, Terns MP. Type III-A CRISPR systems as a versatile gene knockdown technology. RNA (NEW YORK, N.Y.) 2022; 28:1074-1088. [PMID: 35618430 PMCID: PMC9297841 DOI: 10.1261/rna.079206.122] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/09/2022] [Indexed: 05/31/2023]
Abstract
CRISPR-Cas systems are functionally diverse prokaryotic antiviral defense systems, which encompass six distinct types (I-VI) that each encode different effector Cas nucleases with distinct nucleic acid cleavage specificities. By harnessing the unique attributes of the various CRISPR-Cas systems, a range of innovative CRISPR-based DNA and RNA targeting tools and technologies have been developed. Here, we exploit the ability of type III-A CRISPR-Cas systems to carry out RNA-guided and sequence-specific target RNA cleavage for establishment of research tools for post-transcriptional control of gene expression. Type III-A systems from three bacterial species (L. lactis, S. epidermidis, and S. thermophilus) were each expressed on a single plasmid in E. coli, and the efficiency and specificity of gene knockdown was assessed by northern blot and transcriptomic analysis. We show that engineered type III-A modules can be programmed using tailored CRISPR RNAs to efficiently knock down gene expression of both coding and noncoding RNAs in vivo. Moreover, simultaneous degradation of multiple cellular mRNA transcripts can be directed by utilizing a CRISPR array expressing corresponding gene-targeting crRNAs. Our results demonstrate the utility of distinct type III-A modules to serve as specific and effective gene knockdown platforms in heterologous cells. This transcriptome engineering technology has the potential to be further refined and exploited for key applications including gene discovery and gene pathway analyses in additional prokaryotic and perhaps eukaryotic cells and organisms.
Collapse
Affiliation(s)
- Walter T Woodside
- Department of Microbiology, University of Georgia, Athens, Georgia 30602, USA
| | - Nikita Vantsev
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Ryan J Catchpole
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Sandra C Garrett
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Sara Olson
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Brenton R Graveley
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Michael P Terns
- Department of Microbiology, University of Georgia, Athens, Georgia 30602, USA
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
36
|
Nemudraia A, Nemudryi A, Buyukyoruk M, Scherffius AM, Zahl T, Wiegand T, Pandey S, Nichols JE, Hall L, McVey A, Lee HH, Wilkinson RA, Snyder LR, Jones JD, Koutmou KS, Santiago-Frangos A, Wiedenheft B. Sequence-specific capture and concentration of viral RNA by type III CRISPR system enhances diagnostic. RESEARCH SQUARE 2022:rs.3.rs-1466718. [PMID: 35475170 PMCID: PMC9040678 DOI: 10.21203/rs.3.rs-1466718/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Type-III CRISPR-Cas systems have recently been adopted for sequence-specific detection of SARS-CoV-2. Here, we make two major advances that simultaneously limit sample handling and significantly enhance the sensitivity of SARS-CoV-2 RNA detection directly from patient samples. First, we repurpose the type III-A CRISPR complex from Thermus thermophilus (TtCsm) for programmable capture and concentration of specific RNAs from complex mixtures. The target bound TtCsm complex primarily generates two cyclic oligoadenylates (i.e., cA3 and cA4) that allosterically activate ancillary nucleases. To improve sensitivity of the diagnostic, we identify and test several ancillary nucleases (i.e., Can1, Can2, and NucC). We show that Can1 and Can2 are activated by both cA3 and cA4, and that different activators trigger changes in the substrate specificity of these nucleases. Finally, we integrate the type III-A CRISPR RNA-guided capture technique with the Can2 nuclease for 90 fM (5x104 copies/ul) detection of SARS-CoV-2 RNA directly from nasopharyngeal swab samples.
Collapse
Affiliation(s)
- Anna Nemudraia
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- These authors contributed equally
| | - Artem Nemudryi
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- These authors contributed equally
| | - Murat Buyukyoruk
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- These authors contributed equally
| | - Andrew M. Scherffius
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- These authors contributed equally
| | - Trevor Zahl
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Tanner Wiegand
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Shishir Pandey
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Joseph E. Nichols
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Laina Hall
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Aidan McVey
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Helen H Lee
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Royce A. Wilkinson
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Laura R. Snyder
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48105, USA
| | - Joshua D. Jones
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48105, USA
| | - Kristin S. Koutmou
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48105, USA
| | - Andrew Santiago-Frangos
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Blake Wiedenheft
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Lead contact
| |
Collapse
|
37
|
Sridhara S, Rai J, Whyms C, Goswami H, He H, Woodside W, Terns MP, Li H. Structural and biochemical characterization of in vivo assembled Lactococcus lactis CRISPR-Csm complex. Commun Biol 2022; 5:279. [PMID: 35351985 PMCID: PMC8964682 DOI: 10.1038/s42003-022-03187-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/14/2022] [Indexed: 12/15/2022] Open
Abstract
The small RNA-mediated immunity in bacteria depends on foreign RNA-activated and self RNA-inhibited enzymatic activities. The multi-subunit Type III-A CRISPR-Cas effector complex (Csm) exemplifies this principle and is in addition regulated by cellular metabolites such as divalent metals and ATP. Recognition of the foreign or cognate target RNA (CTR) triggers its single-stranded deoxyribonuclease (DNase) and cyclic oligoadenylate (cOA) synthesis activities. The same activities remain dormant in the presence of the self or non-cognate target RNA (NTR) that differs from CTR only in its 3'-protospacer flanking sequence (3'-PFS). Here we employ electron cryomicroscopy (cryoEM), functional assays, and comparative cross-linking to study in vivo assembled mesophilic Lactococcus lactis Csm (LlCsm) at the three functional states: apo, the CTR- and the NTR-bound. Unlike previously studied Csm complexes, we observed binding of 3'-PFS to Csm in absence of bound ATP and analyzed the structures of the four RNA cleavage sites. Interestingly, comparative crosslinking results indicate a tightening of the Csm3-Csm4 interface as a result of CTR but not NTR binding, reflecting a possible role of protein dynamics change during activation.
Collapse
Affiliation(s)
- Sagar Sridhara
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306, USA
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Jay Rai
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306, USA
| | - Charlisa Whyms
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Hemant Goswami
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306, USA
| | - Huan He
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306, USA
| | - Walter Woodside
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA
| | - Michael P Terns
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Hong Li
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306, USA.
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
38
|
Miao P, Chai H, Tang Y. DNA Hairpins and Dumbbell-Wheel Transitions Amplified Walking Nanomachine for Ultrasensitive Nucleic Acid Detection. ACS NANO 2022; 16:4726-4733. [PMID: 35188755 DOI: 10.1021/acsnano.1c11582] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nucleic acids, including circulating tumor DNA (ctDNA), microRNA, and virus DNA/RNA, have been widely applied as potential disease biomarkers for early clinical diagnosis. In this study, we present a concept of DNA nanostructures transitions for the construction of DNA bipedal walking nanomachine, which integrates dual signal amplification for direct nucleic acid assay. DNA hairpins transition is developed to facilitate the generation of multiple target sequences; meanwhile, the subsequent DNA dumbbell-wheel transition is controlled to achieve the bipedal walker, which cleaves multiple tracks around electrode surface. Through combination of strand displacement reaction and digestion cycles, DNA monolayer at the electrode interface could be engineered and target-induced signal variation is realized. In addition, pH-assisted detachable intermolecular DNA triplex design is utilized for the regeneration of electrochemical biosensor. The high consistency between this work and standard quantitative polymerase chain reaction is validated. Moreover, the feasibilities of this biosensor to detect ctDNA and SARS-CoV-2 RNA in clinical samples are demonstrated with satisfactory accuracy and reliability. Therefore, the proposed approach has great potential applications for nucleic acid based clinical diagnostics.
Collapse
Affiliation(s)
- Peng Miao
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China
| | - Hua Chai
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China
| | - Yuguo Tang
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
39
|
Wan Y, Zong C, Li X, Wang A, Li Y, Yang T, Bao Q, Dubow M, Yang M, Rodrigo LA, Mao C. New Insights for Biosensing: Lessons from Microbial Defense Systems. Chem Rev 2022; 122:8126-8180. [PMID: 35234463 DOI: 10.1021/acs.chemrev.1c01063] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Microorganisms have gained defense systems during the lengthy process of evolution over millions of years. Such defense systems can protect them from being attacked by invading species (e.g., CRISPR-Cas for establishing adaptive immune systems and nanopore-forming toxins as virulence factors) or enable them to adapt to different conditions (e.g., gas vesicles for achieving buoyancy control). These microorganism defense systems (MDS) have inspired the development of biosensors that have received much attention in a wide range of fields including life science research, food safety, and medical diagnosis. This Review comprehensively analyzes biosensing platforms originating from MDS for sensing and imaging biological analytes. We first describe a basic overview of MDS and MDS-inspired biosensing platforms (e.g., CRISPR-Cas systems, nanopore-forming proteins, and gas vesicles), followed by a critical discussion of their functions and properties. We then discuss several transduction mechanisms (optical, acoustic, magnetic, and electrical) involved in MDS-inspired biosensing. We further detail the applications of the MDS-inspired biosensors to detect a variety of analytes (nucleic acids, peptides, proteins, pathogens, cells, small molecules, and metal ions). In the end, we propose the key challenges and future perspectives in seeking new and improved MDS tools that can potentially lead to breakthrough discoveries in developing a new generation of biosensors with a combination of low cost; high sensitivity, accuracy, and precision; and fast detection. Overall, this Review gives a historical review of MDS, elucidates the principles of emulating MDS to develop biosensors, and analyzes the recent advancements, current challenges, and future trends in this field. It provides a unique critical analysis of emulating MDS to develop robust biosensors and discusses the design of such biosensors using elements found in MDS, showing that emulating MDS is a promising approach to conceptually advancing the design of biosensors.
Collapse
Affiliation(s)
- Yi Wan
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Pharmaceutical Sciences, Marine College, Hainan University, Haikou 570228, P. R. China
| | - Chengli Zong
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Pharmaceutical Sciences, Marine College, Hainan University, Haikou 570228, P. R. China
| | - Xiangpeng Li
- Department of Bioengineering and Therapeutic Sciences, Schools of Medicine and Pharmacy, University of California, San Francisco, 1700 Fourth Street, Byers Hall 303C, San Francisco, California 94158, United States
| | - Aimin Wang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Pharmaceutical Sciences, Marine College, Hainan University, Haikou 570228, P. R. China
| | - Yan Li
- College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Tao Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Qing Bao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Michael Dubow
- Institute for Integrative Biology of the Cell (I2BC), UMR 9198 CNRS, CEA, Université Paris-Saclay, Campus C.N.R.S, Bâtiment 12, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Mingying Yang
- College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Ledesma-Amaro Rodrigo
- Imperial College Centre for Synthetic Biology, Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States.,School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| |
Collapse
|
40
|
Das A, Goswami HN, Whyms CT, Sridhara S, Li H. Structural Principles of CRISPR-Cas Enzymes Used in Nucleic Acid Detection. J Struct Biol 2022; 214:107838. [PMID: 35123001 PMCID: PMC8924977 DOI: 10.1016/j.jsb.2022.107838] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/22/2021] [Accepted: 01/25/2022] [Indexed: 12/15/2022]
Abstract
Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-based technology has revolutionized the field of biomedicine with broad applications in genome editing, therapeutics and diagnostics. While a majority of applications involve the RNA-guided site-specific DNA or RNA cleavage by CRISPR enzymes, recent successes in nucleic acid detection rely on their collateral and non-specific cleavage activated by viral DNA or RNA. Ranging in enzyme composition, the mechanism for distinguishing self- from foreign-nucleic acids, the usage of second messengers, and enzymology, the CRISPR enzymes provide a diverse set of diagnosis tools in further innovations. Structural biology plays an important role in elucidating the mechanisms of these CRISPR enzymes. Here we summarize and compare structures of three types of CRISPR enzymes used in nucleic acid detection captured in their respective functional forms and illustrate the current understanding of their activation mechanism.
Collapse
Affiliation(s)
- Anuska Das
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Hemant N Goswami
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Charlisa T Whyms
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Sagar Sridhara
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Hong Li
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA; Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|