1
|
Hilal ML, Rosina E, Pedini G, Restivo L, Bagni C. Dysregulation of the mTOR-FMRP pathway and synaptic plasticity in an environmental model of ASD. Mol Psychiatry 2025; 30:1937-1951. [PMID: 39604505 PMCID: PMC12014490 DOI: 10.1038/s41380-024-02805-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024]
Abstract
Autism Spectrum Disorder (ASD) is caused by genetic, epigenetic, and environmental factors. Mutations in the human FMR1 gene, encoding the Fragile X Messenger Ribonucleoprotein 1 (FMRP), cause the most common monogenic form of ASD, the Fragile X Syndrome (FXS). This study explored the interaction between the FMR1 gene and a viral-like infection as an environmental insult, focusing on the impact on core autistic-like behaviors and the mGluR1/5-mTOR pathway. Pregnant heterozygous Fmr1 mouse females were exposed to maternal immune activation (MIA), by injecting the immunostimulant Poly (I:C) at the embryonic stage 12.5, simulating viral infections. Subsequently, ASD-like behaviors were analyzed in the adult offspring, at 8-10 weeks of age. MIA exposure in wild-type mice led to ASD-like behaviors in the adult offspring. These effects were specifically confined to the intrauterine infection, as immune activation at later stages, namely puberty (Pubertal Immune Activation, PIA) at post-natal day 35 or adulthood (Adult Immune Activation, AIA) at post-natal day 56, did not alter adult behavior. Importantly, combining the Fmr1 mutation with MIA exposure did not intensify core autistic-like behaviors, suggesting an occlusion effect. Mechanistically, MIA provided a strong activation of the mGluR1/5-mTOR pathway, leading to increased LTP and downregulation of FMRP specifically in the hippocampus. Finally, FMRP modulates mTOR activity via TSC2. These findings further strengthen the key role of the mGluR1/5-mTOR pathway in causing ASD-like core symptoms.
Collapse
Affiliation(s)
- Muna L Hilal
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
- Hôpitaux du Léman, 74200, Thonon-les-Bains, France
| | - Eleonora Rosina
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Giorgia Pedini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Leonardo Restivo
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
| | - Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland.
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
2
|
Zhao D, Huo Y, Zheng N, Zhu X, Yang D, Zhou Y, Wang S, Jiang Y, Wu Y, Zhang YW. Mdga2 deficiency leads to an aberrant activation of BDNF/TrkB signaling that underlies autism-relevant synaptic and behavioral changes in mice. PLoS Biol 2025; 23:e3003047. [PMID: 40168357 PMCID: PMC11960969 DOI: 10.1371/journal.pbio.3003047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 01/30/2025] [Indexed: 04/03/2025] Open
Abstract
Memprin/A5/mu (MAM) domain containing glycosylphosphatidylinositol anchor 2 (MDGA2) is an excitatory synaptic suppressor and its mutations have been associated with autism spectrum disorder (ASD). However, the detailed physiological function of MDGA2 and the mechanism underlying MDGA2 deficiency-caused ASD has yet to be elucidated. Herein, we not only confirm that Mdga2 +/- mice exhibit increased excitatory synapse transmission and ASD-like behaviors, but also identify aberrant brain-derived neurotrophic factor/tyrosine kinase B (BDNF/TrkB) signaling activation in these mice. We demonstrate that MDGA2 interacts with TrkB through its memprin/A5/mu domain, thereby competing the binding of BDNF to TrkB. Both loss of MDGA2 and the ASD-associated MDGA2 V930I mutation promote the BDNF/TrkB signaling activity. Importantly, we demonstrate that inhibiting the BDNF/TrkB signaling by both small molecular compound and MDGA2-derived peptide can attenuate the increase of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor-mediated excitatory synaptic activity and social deficits in MDGA2-deficient mice. These results highlight a novel MDGA2-BDNF/TrkB-dependent mechanism underlying the synaptic function regulation, which may become a therapeutic target for ASD.
Collapse
Affiliation(s)
- Dongdong Zhao
- Institute of Aging, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yuanhui Huo
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Naizhen Zheng
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiang Zhu
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Dingting Yang
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yunqiang Zhou
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Shengya Wang
- Institute of Aging, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiru Jiang
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yili Wu
- Institute of Aging, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yun-wu Zhang
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
3
|
Wu G, Song L, Xu Y, Zhang G, Fang J, Xiong S, Yang W, Jiang L. Functional gradient characteristics analysis of preschool-aged children with autism spectrum disorder. Cereb Cortex 2025; 35:bhaf098. [PMID: 40298445 DOI: 10.1093/cercor/bhaf098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition marked by social and behavioral impairments, emerging in early childhood with unclear causes. The primary aim of this study is to investigate shifts in the functional gradients underlying hierarchical brain network organization in ASD and to assess their potential contribution to clinical symptom severity. Resting-state functional magnetic resonance imaging was used to examine changes in functional gradients across seven major brain networks in a cohort of 52 individuals with ASD and 40 healthy controls. In the somatomotor network, neither the first nor third gradient showed significant group differences; however, two regions-right paracentral lobule and right postcentral gyrus-exhibited significant differences in the second gradient. In the frontoparietal network, only the left middle frontal gyrus in the second gradient showed a significant group difference. For the ventral attention network, only the primary gradient exhibited significant differences in the left insula, the right insula, and the right median cingulate and paracingulate gyri. In the default mode network, all three gradients showed statistically significant differences. These results suggest potential neuroimaging biomarkers for assessing the severity of ASD in preschool-aged children.
Collapse
Affiliation(s)
- Guangrong Wu
- Department of Radiology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuangbei Street 98 #, Zunyi 563000, Guizhou, China
| | - Linfeng Song
- Department of Radiology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuangbei Street 98 #, Zunyi 563000, Guizhou, China
| | - Yuanyuan Xu
- Department of Radiology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuangbei Street 98 #, Zunyi 563000, Guizhou, China
| | - Guomin Zhang
- Department of Radiology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuangbei Street 98 #, Zunyi 563000, Guizhou, China
| | - Jie Fang
- Department of Radiology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuangbei Street 98 #, Zunyi 563000, Guizhou, China
| | - Siyan Xiong
- Department of Radiology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuangbei Street 98 #, Zunyi 563000, Guizhou, China
| | - Wei Yang
- Department of Radiology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuangbei Street 98 #, Zunyi 563000, Guizhou, China
| | - Lin Jiang
- Department of Radiology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuangbei Street 98 #, Zunyi 563000, Guizhou, China
| |
Collapse
|
4
|
Ismail R, Negm WA, Basha EH, Rizk FH, Attallah NGM, Altwaijry N, Ibrahim HA, Eltantawy AF, Elkordy A, Osama A, Magdeldin S, Azzam AR. The potential neuroprotective effects of Spirulina platensis in a valproic acid-induced experimental model of autism in the siblings of albino rats: targeting PIk3/AKT/mTOR signalling pathway. Nutr Neurosci 2025; 28:448-470. [PMID: 39083252 DOI: 10.1080/1028415x.2024.2381154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
INTRODUCTION Autism spectrum disorders (ASDs) are a group of neurodevelopmental disorders with poor social interaction, communication issues, aberrant motor movements, and limited repetitive interests and behaviour. Spirulina platensis (SP) contains several multi-nutrients and has a wide range of neuroprotective properties. AIM The target of the current experiment is to detect the protective effects of S. platensis on valproic-induced autism in adult female albino rats' siblings for the first time. MATERIALS AND METHODS Twelve Pregnant rats were separated into four main groups; Group I (control); Group II (S. platensis); Group III (autistic group); and Group IV (autistic SP-treated group). Fifteen offspring pups from each group were sacrificed, brain was divided for biochemical analysis as superoxide dismutase and malondialdehyde were evaluated spectrophotometrically while interleukin-6, interleukin-12, Bcl-2-associated X protein, B-cell lymphoma-2, Beclin-1, brain-derived neurotrophic factor were assessed by ELISA, other division of brain were used for gene expression of PI3k, Akt and mTOR pathway, last division of brain were stained using (H&E) and Giemsa stains. Tumour necrosis factor alpha (TNF-α ) and Synaptophysin (SYN) markers were used for immunohistochemical staining. RESULTS Autistic Group (III) showed an increment in levels of MDA, IL-6, IL12 and BAX while showing a decrement in SOD, Bcl-2 and Beclin-1 as well as increased PI3k, Akt and mTOR gene expression. Autistic Group (III) also exhibited hypocellularity and disorganization of hippocampal and prefrontal cortex cells. The autistic SP-treated group (IV) showed improvement in these biochemical markers and pathological changes. Our findings suggest that Spirulina platensis will be significant in managing autism.
Collapse
Affiliation(s)
- Radwa Ismail
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Eman H Basha
- Physiology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Fatma H Rizk
- Physiology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Najla Altwaijry
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Hoda Ali Ibrahim
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Alaa Elkordy
- Neuropsychiatry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Aya Osama
- Proteomics and Metabolomics Research Program, Department of Basic Research, Children's Cancer Hospital, Cairo, Egypt
| | - Sameh Magdeldin
- Proteomics and Metabolomics Research Program, Department of Basic Research, Children's Cancer Hospital, Cairo, Egypt
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Asmaa Ramadan Azzam
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
5
|
Alvino FG, Gini S, Minetti A, Pagani M, Sastre-Yagüe D, Barsotti N, De Guzman E, Schleifer C, Stuefer A, Kushan L, Montani C, Galbusera A, Papaleo F, Kates WR, Murphy D, Lombardo MV, Pasqualetti M, Bearden CE, Gozzi A. Synaptic-dependent developmental dysconnectivity in 22q11.2 deletion syndrome. SCIENCE ADVANCES 2025; 11:eadq2807. [PMID: 40073125 PMCID: PMC11900866 DOI: 10.1126/sciadv.adq2807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 02/04/2025] [Indexed: 03/14/2025]
Abstract
Chromosome 22q11.2 deletion increases the risk of neuropsychiatric disorders like autism and schizophrenia. Disruption of large-scale functional connectivity in 22q11 deletion syndrome (22q11DS) has been widely reported, but the biological factors driving these changes remain unclear. We used a cross-species design to uncover the developmental trajectory and neural underpinnings of brain dysconnectivity in 22q11DS. In LgDel mice, a model for 22q11DS, we found age-specific patterns of brain dysconnectivity, with widespread fMRI hyperconnectivity in juvenile mice reconfiguring to hippocampal hypoconnectivity over puberty. These changes correlated with developmental alterations in dendritic spine density, and both were transiently normalized by GSK3β inhibition, suggesting a synaptic origin for this phenomenon. Notably, analogous pubertal hyperconnectivity-to-hypoconnectivity reconfiguration occurs in human 22q11DS, affecting cortical regions enriched for GSK3β-associated synaptic genes and autism-relevant transcripts. This dysconnectivity also predicts age-dependent social alterations in 22q11DS individuals. These results suggest that synaptic mechanisms underlie developmental brain dysconnectivity in 22q11DS.
Collapse
Affiliation(s)
- Filomena Grazia Alvino
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
| | - Silvia Gini
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
- Center for Mind and Brain Sciences, University of Trento, Rovereto, Italy
| | - Antea Minetti
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa, Italy
| | - Marco Pagani
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
- IMT School for Advanced Studies, Lucca, Italy
| | - David Sastre-Yagüe
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
- Center for Mind and Brain Sciences, University of Trento, Rovereto, Italy
| | - Noemi Barsotti
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa, Italy
- Centro per l’Integrazione della Strumentazione Scientifica dell’Università di Pisa (CISUP), Pisa, Italy
| | - Elizabeth De Guzman
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
| | - Charles Schleifer
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA, USA
| | - Alexia Stuefer
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
- Center for Mind and Brain Sciences, University of Trento, Rovereto, Italy
| | - Leila Kushan
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA, USA
| | - Caterina Montani
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
| | - Alberto Galbusera
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genova, Italy
| | - Wendy R. Kates
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Declan Murphy
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Institute of Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Michael Vincent Lombardo
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Massimo Pasqualetti
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa, Italy
- Centro per l’Integrazione della Strumentazione Scientifica dell’Università di Pisa (CISUP), Pisa, Italy
| | - Carrie E. Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA,USA
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
| |
Collapse
|
6
|
Pagani M, Zerbi V, Gini S, Alvino F, Banerjee A, Barberis A, Basson MA, Bozzi Y, Galbusera A, Ellegood J, Fagiolini M, Lerch J, Matteoli M, Montani C, Pozzi D, Provenzano G, Scattoni ML, Wenderoth N, Xu T, Lombardo M, Milham MP, Martino AD, Gozzi A. Biological subtyping of autism via cross-species fMRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.04.641400. [PMID: 40093106 PMCID: PMC11908180 DOI: 10.1101/2025.03.04.641400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
It is frequently assumed that the phenotypic heterogeneity in autism spectrum disorder reflects underlying pathobiological variation. However, direct evidence in support of this hypothesis is lacking. Here, we leverage cross-species functional neuroimaging to examine whether variability in brain functional connectivity reflects distinct biological mechanisms. We find that fMRI connectivity alterations in 20 distinct mouse models of autism (n=549 individual mice) can be clustered into two prominent hypo- and hyperconnectivity subtypes. We show that these connectivity profiles are linked to distinct signaling pathways, with hypoconnectivity being associated with synaptic dysfunction, and hyperconnectivity reflecting transcriptional and immune-related alterations. Extending these findings to humans, we identify analogous hypo- and hyperconnectivity subtypes in a large, multicenter resting state fMRI dataset of n=940 autistic and n=1036 neurotypical individuals. Remarkably, hypo- and hyperconnectivity autism subtypes are replicable across independent cohorts (accounting for 25.1% of all autism data), exhibit distinct functional network architecture, are behaviorally dissociable, and recapitulate synaptic and immune mechanisms identified in corresponding mouse subtypes. Our cross-species investigation, thus, decodes the heterogeneity of fMRI connectivity in autism into distinct pathway-specific etiologies, offering a new empirical framework for targeted subtyping of autism.
Collapse
Affiliation(s)
- Marco Pagani
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
- Autism Center, Child Mind Institute, New York, NY, USA
- IMT School for Advanced Studies, Lucca, Italy
| | - Valerio Zerbi
- Department of Psychiatry, University of Geneva, Switzerland
- Department of Basic Neurosciences, University of Geneva, Switzerland
| | - Silvia Gini
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
- Center for Mind and Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| | - Filomena Alvino
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| | | | - Andrea Barberis
- Synaptic Plasticity of Inhibitory Networks, Istituto Italiano di Tecnologia, Genova, Italy
| | - M. Albert Basson
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, UK
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Yuri Bozzi
- Center for Mind and Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| | - Alberto Galbusera
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| | - Jacob Ellegood
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | | | - Jason Lerch
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Michela Matteoli
- Humanitas University, Milan, Italy
- CNR Institute of Neuroscience c/o Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy
| | - Caterina Montani
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| | - Davide Pozzi
- CNR Institute of Neuroscience c/o Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy
| | - Giovanni Provenzano
- Department of Cellular, Computational and Integrative Biology. University of Trento, Trento, Italy
| | - Maria Luisa Scattoni
- Research Coordination and Support Service, Istituto Superiore di Sanità, Rome, Italy
| | | | - Ting Xu
- Center for Integrative Developing Brain, Child Mind Institute, New York, NY, USA
| | - Michael Lombardo
- Laboratory for Autism and Neurodevelopmental Disorders, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, Rovereto, Italy
| | - Michael P Milham
- Center for the Integrative Developmental Neuroscience, Child Mind Institute, New York, NY, USA
| | | | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| |
Collapse
|
7
|
Al-Garni AM, Hosny SA, Almasabi F, Shati AA, Alzamil NM, ShamsEldeen AM, El-Shafei AA, Al-Hashem F, Zafrah H, Maarouf A, Al-Ani B, Bin-Jaliah I, Kamar SS. Identifying iNOS and glycogen as biomarkers for degenerated cerebellar purkinje cells in autism spectrum disorder: Protective effects of erythropoietin and zinc sulfate. PLoS One 2025; 20:e0317695. [PMID: 39946495 PMCID: PMC11824972 DOI: 10.1371/journal.pone.0317695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 01/02/2025] [Indexed: 02/16/2025] Open
Abstract
Autism spectrum disorder (ASD) is a collective neurodevelopmental disorder affecting young children and accounting for 1% of the world's population. The cerebellum is the major part of the human brain affected by ASD and is associated with a substantial reduction in the number of Purkinje cells. An association between ASD and the expression of the nitrosative stress biomarker inducible nitric oxide synthase (iNOS), as well as glycogen deposition in damaged Purkinje cells, has not been previously reported in the medical literature. To explore this correlation, young rats were injected with propionic acid (PPA) (500 mg/kg) for 5 days (model group), while the protection groups were treated with either erythropoietin (EPO, 5,000 U/kg) or 2 mg/kg zinc sulfate immediately after the PPA injections. ASD-like features were developed in the model group, as evidenced by cerebellum damage (degeneration of Purkinje cells) and cerebellar dysfunction (behavioral impairment). This study documented the exclusive expression of iNOS in the degenerated Purkinje cells, along with glycogen deposition in these cells. Additionally, PPA significantly (p < 0.001) modulated cerebellar tissue levels of mammalian target of rapamycin (mTOR), gamma-aminobutyric acid (GABA), GABAA receptor, serotonin, the marker of neuronal loss (calbindin D28K), and social interaction deficit. Some of these parameters were differentially protected by EPO and zinc sulfate, with the former providing greater protection than zinc sulfate. Furthermore, a significant correlation between the iNOS score and these parameters associated with ASD was observed. These findings demonstrate the colocalization of iNOS and glycogen in the damaged Purkinje cells induced by ASD, along with the modulation of ASD parameters, which were protected by EPO and zinc sulfate treatments. Thus, these potential novel biomarkers may offer possible therapeutic targets for the treatment of ASD.
Collapse
Affiliation(s)
- Abdulaziz M. Al-Garni
- Psychiatry section, Department of Medicine, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Department of Psychiatry, School of Medicine, Queen’s University, Kingston, Ontario, Canada
| | - Sara A. Hosny
- Medical Histology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Faris Almasabi
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ayed A. Shati
- Department of Child Health, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Norah M. Alzamil
- Department of Family and Community Medicine, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | - Asmaa A. El-Shafei
- Medical Histology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Fahaid Al-Hashem
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Hind Zafrah
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Amro Maarouf
- Department of Clinical Biochemistry, Russells Hall Hospital, Dudley, United Kingdom
| | - Bahjat Al-Ani
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ismaeel Bin-Jaliah
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Samaa S. Kamar
- Medical Histology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
8
|
Jo D, Choi SY, Ahn SY, Song J. IGF1 enhances memory function in obese mice and stabilizes the neural structure under insulin resistance via AKT-GSK3β-BDNF signaling. Biomed Pharmacother 2025; 183:117846. [PMID: 39805192 DOI: 10.1016/j.biopha.2025.117846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025] Open
Abstract
Obesity is a prevalent metabolic disorder linked to insulin resistance, hyperglycemia, increased adiposity, chronic inflammation, and cognitive dysfunction. Recent research has focused on developing therapeutic strategies to mitigate cognitive impairment associated with obesity. Insulin growth factor-1 (IGF1) deficiency is linked to insulin resistance, glucose intolerance, and the progression of obesity-related central nervous system (CNS) disorders. In this study, we investigated the neuroprotective effects of IGF1 in two obesity models: diet-induced obesity (high-fat diet mice) and genetic obesity (ob/ob mice which is genetically deficient in leptin), and in vitro Neuro2A neuronal cells and primary cortical neurons under insulin resistance conditions. We performed RNA sequencing analysis using the cortex of high-fat diet mice injected with IGF1. Also, we detected cytokine levels in blood of high-fat diet mice injected with IGF1. In addition, we conducted the Barnes maze test as a spatial memory function test and open field test as an anxiety behavior test in ob/ob mice. We measured the levels of proteins and mRNAs related to insulin signaling, including synaptic density proteins in brain cortex of ob/ob mice. Our results showed that IGF1 injection enhanced spatial memory function and synaptic plasticity in obese mice. Furthermore, in vitro data demonstrated that IGF1 treated neurons revealed enhanced neural complexity and improved neurite outgrowth under insulin resistance condition through the AKT-GSK3β-BDNF pathway related to antidepressant, cognitive function and anti-apoptotic mechanisms. Therefore, our results provided that IGF1 have potential to alleviate cognitive impairment by promoting synaptic plasticity and neural complexity in the obese brain.
Collapse
Affiliation(s)
- Danbi Jo
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea.
| | - Seo Yoon Choi
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea.
| | - Seo Yeon Ahn
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea.
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea.
| |
Collapse
|
9
|
Chu MC, Wu HF, Lee CW, Wu CC, Chi H, Ko CY, Lee YC, Tang CW, Chen PS, Lin HC. Soluble epoxide hydrolase deletion rescues behavioral and synaptic deficits by AMPK-mTOR pathway in autism animals. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111190. [PMID: 39510156 DOI: 10.1016/j.pnpbp.2024.111190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/25/2024] [Accepted: 11/03/2024] [Indexed: 11/15/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social defects often accompanied with emotional comorbidities. Aberrations in synaptic function and plasticity are the core feature in the pathophysiology of ASD. Targeting soluble epoxide hydrolase (sEH) has been found to exert protection in a wide-range of pathological conditions. However, the regulation of sEH deficiency on the synaptic deficits of ASD and the underlying mechanisms remain unclear. The valproate (VPA)-treated ASD animal model with genetic sEH knockout was applied in the present study. The results showed that the sEH expression was significantly increased in the prefrontal cortex of VPA-treated animals. Although no effect was found on tail malformation and body weight loss, genetic sEH deletion alleviated social deficits, and fear learning and memory extinction in the VPA-treated mice. After a series of electrophysiological assessments, we found that the beneficial effects of sEH deletion focused on the long-term synaptic plasticity, rather than presynaptic efficiency, in the VPA-treated mice. Furthermore, we observed that the dysregulated AMPK-mTOR pathway was restored under genetic sEH deletion in VPA-treated mice. Taken together, these findings uncovered an important role of sEH deficiency in the synaptic dysfunctions of ASD mediated by AMPK-mTOR pathway, providing a novel therapeutic target for ASD.
Collapse
Affiliation(s)
- Ming-Chia Chu
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Han-Fang Wu
- Department of Optometry, MacKay Medical College, New Taipei City, Taiwan
| | - Chi-Wei Lee
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chi-Chun Wu
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiang Chi
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chiung-Yuan Ko
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan; Institute of Biomedical Sciences, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan; Department of Biomedical Science and Environment Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan; Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yi-Chao Lee
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chih-Wei Tang
- Department of Neurology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Po See Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Ching Lin
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Brain Research Center and Membrane Protein Structural Biology Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
10
|
Persico AM, Asta L, Chehbani F, Mirabelli S, Parlatini V, Cortese S, Arango C, Vitiello B. The pediatric psychopharmacology of autism spectrum disorder: A systematic review - Part II: The future. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111176. [PMID: 39490514 DOI: 10.1016/j.pnpbp.2024.111176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/31/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
Part I of this systematic review summarized the state-of-the-art of pediatric psychopharmacology for Autism Spectrum Disorder (ASD), a severe and lifelong neurodevelopmental disorder. The purpose of this Part II follow-up article is to provide a systematic overview of the experimental psychopharmacology of ASD. To this aim, we have first identified in the Clinicaltrials.gov website all the 157 pharmacological and nutraceutical compounds which have been experimentally tested in children and adolescents with ASD using the randomized placebo-controlled trial (RCT) design. After excluding 24 drugs already presented in Part I, a systematic review spanning each of the remaining 133 compounds was registered on Prospero (ID: CRD42023476555), performed on PubMed (August 8, 2024), and completed with EBSCO, PsycINFO (psychology and psychiatry literature) and the Cochrane Database of Systematic reviews, yielding a total of 115 published RCTs, including 57 trials for 23 pharmacological compounds and 48 trials for 17 nutraceuticals/supplements. Melatonin and oxytocin were not included, because recent systematic reviews have been already published for both these compounds. RCTs of drugs with the strongest foundation in preclinical research, namely arbaclofen, balovaptan and bumetanide have all failed to reach their primary end-points, although efforts to target specific patient subgroups do warrant further investigation. For the vast majority of compounds, including cannabidiol, vasopressin, and probiotics, insufficient evidence of efficacy and safety is available. However, a small subset of compounds, including N-acetylcysteine, folinic acid, l-carnitine, coenzyme Q10, sulforaphane, and metformin may already be considered, with due caution, for clinical use, because there is promising evidence of efficacy and a high safety profile. For several other compounds, such as secretin, efficacy can be confidently excluded, and/or the data discourage undertaking new RCTs. Part I and Part II summarize "drug-based" information, which will be ultimately merged to provide clinicians with a "symptom-based" consensus statement in a conclusive Part III, with the overarching aim to foster evidence-based clinical practices and to organize new strategies for future clinical trials.
Collapse
Affiliation(s)
- Antonio M Persico
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Child & Adolescent Neuropsychiatry Program, Modena University Hospital, Modena, Italy.
| | - Lisa Asta
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fethia Chehbani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvestro Mirabelli
- Interdepartmental Program "Autism 0-90", "G. Martino" University Hospital, Messina, Italy
| | - Valeria Parlatini
- Center for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK; Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK; Solent NHS Trust, Southampton, UK
| | - Samuele Cortese
- Center for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK; Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK; Solent NHS Trust, Southampton, UK; Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York City, NY, USA; DiMePRe-J-Department of Precision and Regenerative Medicine-Jonic Area, University "Aldo Moro", Bari, Italy
| | - Celso Arango
- Child and Adolescent Psychiatry Department, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, School of Medicine Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| | - Benedetto Vitiello
- Department of Public Health and Pediatric Sciences, Section of Child and Adolescent Neuropsychiatry, University of Turin, Turin, Italy
| |
Collapse
|
11
|
Liu Z, Zhao Z, Du H, Zhou Q, Li M, Gui Z, Wu J, Gao Y, Zheng N, Zhang Y, Du A, Wang H, Wang J. Intermittent Fasting Enhances Motor Coordination Through Myelin Preservation in Aged Mice. Aging Cell 2025:e14476. [PMID: 39780365 DOI: 10.1111/acel.14476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/30/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Integrating dietary interventions have been extensively studied for their health benefits, such as Alzheimer's disease, Huntington's disease, and aging. However, it is necessary to fully understand the mechanisms of long-term effects and practical applications of these dietary interventions for health. A 10-week intermittent fasting (IMF) regimen was implemented on the aging animals in the current study. The variations of cerebral functions were analyzed employing a comprehensive experimental design that includes behavioral tests, neuroimaging, and ultrastructural analysis, such as resting-state functional MRI (rsfMRI), EEG/EMG recordings, transmission electron microscopy, and immunohistochemistry. Over a 10-week regimen, IMF significantly improved locomotor activity, motor coordination, and muscle strength compared to controls (p < 0.01). Resting-state fMRI (rsfMRI) demonstrated that IMF modulates brain-wide functional connectivity, enhancing communication between key brain regions. Advanced imaging techniques revealed increased expression of myelin-related proteins, including myelin basic protein (MBP), and myelin-associated glycoprotein (MAG), indicating enhanced myelin integrity and repair, particularly in axons with diameters < 400 nm (p < 0.01). These findings suggest that IMF may mitigate age-related declines by promoting better neuronal signaling. This study highlights the potential function of IMF as a non-pharmacological intervention to promote brain health and mitigate cognitive decline in aging populations.
Collapse
Affiliation(s)
- Zhuang Liu
- Department of Neurology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziyue Zhao
- Department of Neurology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongying Du
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Qingqing Zhou
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Mei Li
- Department of Anesthesiology, First People Hospital of Foshan, Foshan, China
| | - Zhu Gui
- Department of Neurology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinfeng Wu
- Department of Neurology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunling Gao
- Institute of Neuroscience and Brain Diseases; Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Ning Zheng
- Clinical & Technical Support, Philips Healthcare, Shanghai, China
| | - Yu Zhang
- Department of Neurology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ailian Du
- Department of Neurology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongxing Wang
- Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Jie Wang
- Department of Neurology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Neuroscience and Brain Diseases; Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| |
Collapse
|
12
|
Lyamtsev AS, Sentyabreva AV, Tsvetkov IS, Miroshnichenko EA, Kosyreva AM. Morphological and Molecular Biological Changes in the Hippocampus and Prefrontal Cortex of the Brain of Newborn Male and Female Wistar Rats after LPS-Induced Activation of the Maternal Immune Response. Bull Exp Biol Med 2025; 178:381-386. [PMID: 39945955 DOI: 10.1007/s10517-025-06341-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Indexed: 02/28/2025]
Abstract
Infectious and inflammatory processes during pregnancy in women provoke maternal immunity activation (MIA) and increase the risk of neuropsychiatric disorders in children. These disorders can lead to neurodegenerative diseases later in life. To study these effects, we evaluated the morphological and molecular biological changes in the hippocampus and prefrontal cortex of male and female Wistar rats on the 1st day of postnatal ontogenesis after LPS-induced MIA. The level of calprotectin in the blood serum of postpartum rats, the number and morphological properties of microglial cells in the hippocampus, and the expression of proinflammatory, stem, and adaptation markers in fragments of the prefrontal cortex in offspring of both sexes were determined. It was found that LPS-induced MIA had a negative effect on the developing offspring, with an increase in the level of expression of Nfκb and App in the prefrontal cortex of newborns being observed. Sex differences in morphological and molecular biological changes in the brains of newborn Wistar rats were also revealed: the number of microglial cells increased in male rats, while the number of ramified microglial cells decreased in female rats. In addition, only in females, the expression levels of the mRNA markers for stem cells, Sox2 and Sox9, decreased, while the expression level of Hif1α, which has a neuroprotective effect, increased only in males. These data may explain the differences in the incidence of neurodegenerative diseases among elderly patients of different sexes.
Collapse
Affiliation(s)
- A S Lyamtsev
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - A V Sentyabreva
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia.
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), Moscow, Russia.
| | - I S Tsvetkov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - E A Miroshnichenko
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), Moscow, Russia
| | - A M Kosyreva
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), Moscow, Russia
| |
Collapse
|
13
|
Kong C, Bing Z, Yang L, Huang Z, Wang W, Grebogi C. Transcriptomic Evidence Reveals the Dysfunctional Mechanism of Synaptic Plasticity Control in ASD. Genes (Basel) 2024; 16:11. [PMID: 39858558 PMCID: PMC11764921 DOI: 10.3390/genes16010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND/OBJECTIVES A prominent endophenotype in Autism Spectrum Disorder (ASD) is the synaptic plasticity dysfunction, yet the molecular mechanism remains elusive. As a prototype, we investigate the postsynaptic signal transduction network in glutamatergic neurons and integrate single-cell nucleus transcriptomics data from the Prefrontal Cortex (PFC) to unveil the malfunction of translation control. METHODS We devise an innovative and highly dependable pipeline to transform our acquired signal transduction network into an mRNA Signaling-Regulatory Network (mSiReN) and analyze it at the RNA level. We employ Cell-Specific Network Inference via Integer Value Programming and Causal Reasoning (CS-NIVaCaR) to identify core modules and Cell-Specific Probabilistic Contextualization for mRNA Regulatory Networks (CS-ProComReN) to quantitatively reveal activated sub-pathways involving MAPK1, MKNK1, RPS6KA5, and MTOR across different cell types in ASD. RESULTS The results indicate that specific pivotal molecules, such as EIF4EBP1 and EIF4E, lacking Differential Expression (DE) characteristics and responsible for protein translation with long-term potentiation (LTP) or long-term depression (LTD), are dysregulated. We further uncover distinct activation patterns causally linked to the EIF4EBP1-EIF4E module in excitatory and inhibitory neurons. CONCLUSIONS Importantly, our work introduces a methodology for leveraging extensive transcriptomics data to parse the signal transduction network, transforming it into mSiReN, and mapping it back to the protein level. These algorithms can serve as potent tools in systems biology to analyze other omics and regulatory networks. Furthermore, the biomarkers within the activated sub-pathways, revealed by identifying convergent dysregulation, illuminate potential diagnostic and prognostic factors in ASD.
Collapse
Affiliation(s)
- Chao Kong
- School of Systems Science, Beijing Normal University, Beijing 100875, China;
| | - Zhitong Bing
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Lei Yang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zigang Huang
- School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Wenxu Wang
- School of Systems Science, Beijing Normal University, Beijing 100875, China;
| | - Celso Grebogi
- Institute for Complex Systems and Mathematical Biology, King’s College, University of Aberdeen, Old Aberdeen AB24 3UE, UK
| |
Collapse
|
14
|
Carbonell-Roig J, Aaltonen A, Wilson K, Molinari M, Cartocci V, McGuirt A, Mosharov E, Kehr J, Lieberman OJ, Sulzer D, Borgkvist A, Santini E. Dysregulated acetylcholine-mediated dopamine neurotransmission in the eIF4E Tg mouse model of autism spectrum disorders. Cell Rep 2024; 43:114997. [PMID: 39607825 DOI: 10.1016/j.celrep.2024.114997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/18/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024] Open
Abstract
Autism spectrum disorder (ASD) consists of diverse neurodevelopmental conditions where core behavioral symptoms are critical for diagnosis. Altered dopamine (DA) neurotransmission in the striatum has been suggested to contribute to the behavioral features of ASD. Here, we examine DA neurotransmission in a mouse model of ASD characterized by elevated expression of eukaryotic initiation factor 4E (eIF4E), a key regulator of cap-dependent translation, using a comprehensive approach that encompasses genetics, behavior, synaptic physiology, and imaging. The results indicate that increased eIF4E expression leads to behavioral inflexibility and impaired striatal DA release. The loss of normal DA neurotransmission is due to a defect in nicotinic receptor signaling that regulates calcium dynamics in dopaminergic axons. These findings provide a mechanistic understanding of ASD symptoms and offer a foundation for targeted therapeutic interventions by revealing the intricate interplay between eIF4E, DA neurotransmission, and behavioral flexibility.
Collapse
Affiliation(s)
| | - Alina Aaltonen
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
| | - Karin Wilson
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
| | - Maya Molinari
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
| | - Veronica Cartocci
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
| | - Avery McGuirt
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA
| | - Eugene Mosharov
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA
| | - Jan Kehr
- Pronexus Analytical AB, 16733 Stockholm-Bromma, Sweden
| | - Ori J Lieberman
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA; Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA 94143, USA
| | - David Sulzer
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA
| | - Anders Borgkvist
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden.
| | - Emanuela Santini
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden.
| |
Collapse
|
15
|
Segura P, Pagani M, Bishop SL, Thomson P, Colcombe S, Xu T, Factor ZZ, Hector EC, Kim SH, Lombardo MV, Gozzi A, Castellanos XF, Lord C, Milham MP, Martino AD. Connectome-based symptom mapping and in silico related gene expression in children with autism and/or attention-deficit/hyperactivity disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.09.24318621. [PMID: 39711728 PMCID: PMC11661353 DOI: 10.1101/2024.12.09.24318621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Clinical, neuroimaging and genomics evidence have increasingly underscored a degree of overlap between autism and attention-deficit/hyperactivity disorder (ADHD). This study explores the specific contribution of their core symptoms to shared biology in a sample of N=166 verbal children (6-12 years) with rigorously-established primary diagnoses of either autism or ADHD (without autism). We investigated the associations between inter-individual differences in clinician-based dimensional measures of autism and ADHD symptoms and whole-brain low motion intrinsic functional connectivity (iFC). Additionally, we explored their linked gene expression patterns in silico. Whole-brain multivariate distance matrix regression revealed a transdiagnostic association between autism severity and iFC of two nodes: the middle frontal gyrus of the frontoparietal network and posterior cingulate cortex of the default mode network. Across children, the greater the iFC between these nodes, the more severe the autism symptoms, even after controlling for ADHD symptoms. Results from segregation analyses were consistent with primary findings, underscoring the significance of internetwork iFC interactions for autism symptom severity across diagnoses. No statistically significant brain-behavior relationships were observed for ADHD symptoms. Genetic enrichment analyses of the iFC maps associated with autism symptoms implicated genes known to: (i) have greater rate of variance in autism and ADHD, and (ii) be involved in neuron projection, suggesting shared genetic mechanisms for this specific brain-clinical phenotype. Overall, these findings underscore the relevance of transdiagnostic dimensional approaches in linking clinically-defined phenomena to shared presentations at the macroscale circuit- and genomic-levels among children with diagnoses of autism and ADHD.
Collapse
Affiliation(s)
- Patricia Segura
- Child Mind Institute, New York, NY, USA
- Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain
| | - Marco Pagani
- Child Mind Institute, New York, NY, USA
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy
- Istituzioni Mercati Tecnologie School for Advanced Studies, Lucca, Italy
| | - Somer L. Bishop
- Department of Psychiatry and Behavioral Sciences and Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | | | - Stanley Colcombe
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Ting Xu
- Child Mind Institute, New York, NY, USA
| | | | - Emily C. Hector
- Department of Statistics, North Carolina State University, Raleigh, North Carolina, USA
| | - So Hyun Kim
- School of Psychology, Korea University, Seoul, South Korea
| | - Michael V. Lombardo
- Laboratory for Autism and Neurodevelopmental Disorders Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, 38068, Italy
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Xavier F. Castellanos
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Department of Child and Adolescent Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - Catherine Lord
- Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Michael P. Milham
- Child Mind Institute, New York, NY, USA
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | | |
Collapse
|
16
|
Shen N, Zhuo Z, Luo X, Li B, Lin X, Luo S, Ye Z, Wang P, He N, Shi Y, Liao W. Variants of TSC1 are associated with developmental and epileptic encephalopathy and focal epilepsy without tuberous sclerosis : For the China Epilepsy Gene 1.0 Project. ACTA EPILEPTOLOGICA 2024; 6:41. [PMID: 40217423 PMCID: PMC11960315 DOI: 10.1186/s42494-024-00189-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/26/2024] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND The TSC1 gene encodes a growth inhibitory protein hamartin, which plays a crucial role in negative regulation of the activity of mTORC1 (mechanistic target of rapamycin complex 1). TSC1 has been associated with tuberous sclerosis complex (TSC). This study aims to investigate the association between TSC1 variants and common epilepsy. METHODS Trio-based whole-exome sequencing was performed in epilepsy patients without acquired etiologies from the China Epilepsy Gene 1.0 Project platform. The pathogenicity of the variants was evaluated according to the American College of Medical Genetics and Genomic (ACMG) guidelines. RESULTS Two TSC1 de novo variants, including c.1498 C > T/p.Arg500* and c.2356 C > T/p.Arg786*, were identified in two patients with developmental and epileptic encephalopathy (DEE). The patients exhibited frequent seizures and neurodevelopmental delay. Additionally, we identified two heterozygous TSC1 variants that affected four individuals with focal epilepsy from two unrelated families. The four probands did not present any typical symptom of TSC and had normal brain MRI findings. The four variants were absent in the Genome Aggregation Database (gnomAD) and were predicted to be damaging with a in silico prediction tool. Based on the ACMG guidelines, the four variants were evaluated to be "pathogenic" or "likely pathogenic". Of the patients in the China Epilepsy Gene 1.0 Project, 22 patients carried TSC1 variants and were diagnosed with TSC. The ratio of patients carrying TSC1 variants with or without TSC is about 5:1. CONCLUSIONS TSC1 is potentially associated with common epilepsy without tuberous sclerosis.
Collapse
Affiliation(s)
- Nanxiang Shen
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Zhihong Zhuo
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Xiangyun Luo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Bingmei Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Xuqing Lin
- Guangzhou Medical University, Guangzhou, 511436, China
| | - Sheng Luo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Zilong Ye
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Pengyu Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Na He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Yiwu Shi
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Weiping Liao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
17
|
Lee S, Jung WB, Moon H, Im GH, Noh YW, Shin W, Kim YG, Yi JH, Hong SJ, Jung Y, Ahn S, Kim SG, Kim E. Anterior cingulate cortex-related functional hyperconnectivity underlies sensory hypersensitivity in Grin2b-mutant mice. Mol Psychiatry 2024; 29:3195-3207. [PMID: 38704508 PMCID: PMC11449790 DOI: 10.1038/s41380-024-02572-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/06/2024]
Abstract
Sensory abnormalities are observed in ~90% of individuals with autism spectrum disorders (ASD), but the underlying mechanisms are poorly understood. GluN2B, an NMDA receptor subunit that regulates long-term depression and circuit refinement during brain development, has been strongly implicated in ASD, but whether GRIN2B mutations lead to sensory abnormalities remains unclear. Here, we report that Grin2b-mutant mice show behavioral sensory hypersensitivity and brain hyperconnectivity associated with the anterior cingulate cortex (ACC). Grin2b-mutant mice with a patient-derived C456Y mutation (Grin2bC456Y/+) show sensory hypersensitivity to mechanical, thermal, and electrical stimuli through supraspinal mechanisms. c-fos and functional magnetic resonance imaging indicate that the ACC is hyperactive and hyperconnected with other brain regions under baseline and stimulation conditions. ACC pyramidal neurons show increased excitatory synaptic transmission. Chemogenetic inhibition of ACC pyramidal neurons normalizes ACC hyperconnectivity and sensory hypersensitivity. These results suggest that GluN2B critically regulates ASD-related cortical connectivity and sensory brain functions.
Collapse
Affiliation(s)
- Soowon Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Korea
| | - Won Beom Jung
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Korea
- Emotion, Cognition & Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu, 41062, Korea
| | - Heera Moon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Geun Ho Im
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Korea
| | - Young Woo Noh
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Wangyong Shin
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Yong Gyu Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Jee Hyun Yi
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Seok Jun Hong
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 16419, Korea
| | - Yongwhan Jung
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Korea
| | - Sunjoo Ahn
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Korea.
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 16419, Korea.
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 16419, Korea.
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea.
| |
Collapse
|
18
|
Tiddia G, Sergi L, Golosio B. Theoretical framework for learning through structural plasticity. Phys Rev E 2024; 110:044311. [PMID: 39562962 DOI: 10.1103/physreve.110.044311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 06/19/2024] [Indexed: 11/21/2024]
Abstract
A growing body of research indicates that structural plasticity mechanisms are crucial for learning and memory consolidation. Starting from a simple phenomenological model, we exploit a mean-field approach to develop a theoretical framework of learning through this kind of plasticity, capable of taking into account several features of the connectivity and pattern of activity of biological neural networks, including probability distributions of neuron firing rates, selectivity of the responses of single neurons to multiple stimuli, probabilistic connection rules, and noisy stimuli. More importantly, it describes the effects of stabilization, pruning, and reorganization of synaptic connections. This framework is used to compute the values of some relevant quantities used to characterize the learning and memory capabilities of the neuronal network in training and testing procedures as the number of training patterns and other model parameters vary. The results are then compared with those obtained through simulations with firing-rate-based neuronal network models.
Collapse
|
19
|
Binder MS, Escobar I, Xu Y, Sokolov AM, Zhang L, Bordey A. Reducing Filamin A Restores Cortical Synaptic Connectivity and Early Social Communication Following Cellular Mosaicism in Autism Spectrum Disorder Pathways. J Neurosci 2024; 44:e1245232024. [PMID: 39164108 PMCID: PMC11426378 DOI: 10.1523/jneurosci.1245-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 06/17/2024] [Accepted: 06/27/2024] [Indexed: 08/22/2024] Open
Abstract
Communication in the form of nonverbal, social vocalization, or crying is evolutionary conserved in mammals and is impaired early in human infants that are later diagnosed with autism spectrum disorder (ASD). Defects in infant vocalization have been proposed as an early sign of ASD that may exacerbate ASD development. However, the neural mechanisms associated with early communicative deficits in ASD are not known. Here, we expressed a constitutively active mutant of Rheb (RhebS16H), which is known to upregulate two ASD core pathways, mTOR complex 1 (mTORC1) and ERK1/2, in Layer (L) 2/3 pyramidal neurons of the neocortex of mice of either sex. We found that cellular mosaic expression of RhebS16H in L2/3 pyramidal neurons altered the production of isolation calls from neonatal mice. This was accompanied by an expected misplacement of neurons and dendrite overgrowth, along with an unexpected increase in spine density and length, which was associated with increased excitatory synaptic activity. This contrasted with the known decrease in spine density in RhebS16H neurons of 1-month-old mice. Reducing the levels of the actin cross-linking and adaptor protein filamin A (FLNA), known to be increased downstream of ERK1/2, attenuated dendrite overgrowth and fully restored spine properties, synaptic connectivity, and the production of pup isolation calls. These findings suggest that upper-layer cortical pyramidal neurons contribute to communicative deficits in a condition known to affect two core ASD pathways and that these mechanisms are regulated by FLNA.
Collapse
Affiliation(s)
- Matthew S Binder
- Departments of Neurosurgery, and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8082
| | - Iris Escobar
- Departments of Neurosurgery, and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8082
| | - Youfen Xu
- Departments of Neurosurgery, and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8082
| | - Aidan M Sokolov
- Departments of Neurosurgery, and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8082
| | - Longbo Zhang
- Departments of Neurosurgery, and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8082
| | - Angélique Bordey
- Departments of Neurosurgery, and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8082
| |
Collapse
|
20
|
Liloia D, Zamfira DA, Tanaka M, Manuello J, Crocetta A, Keller R, Cozzolino M, Duca S, Cauda F, Costa T. Disentangling the role of gray matter volume and concentration in autism spectrum disorder: A meta-analytic investigation of 25 years of voxel-based morphometry research. Neurosci Biobehav Rev 2024; 164:105791. [PMID: 38960075 DOI: 10.1016/j.neubiorev.2024.105791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/22/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Despite over two decades of neuroimaging research, a unanimous definition of the pattern of structural variation associated with autism spectrum disorder (ASD) has yet to be found. One potential impeding issue could be the sometimes ambiguous use of measurements of variations in gray matter volume (GMV) or gray matter concentration (GMC). In fact, while both can be calculated using voxel-based morphometry analysis, these may reflect different underlying pathological mechanisms. We conducted a coordinate-based meta-analysis, keeping apart GMV and GMC studies of subjects with ASD. Results showed distinct and non-overlapping patterns for the two measures. GMV decreases were evident in the cerebellum, while GMC decreases were mainly found in the temporal and frontal regions. GMV increases were found in the parietal, temporal, and frontal brain regions, while GMC increases were observed in the anterior cingulate cortex and middle frontal gyrus. Age-stratified analyses suggested that such variations are dynamic across the ASD lifespan. The present findings emphasize the importance of considering GMV and GMC as distinct yet synergistic indices in autism research.
Collapse
Affiliation(s)
- Donato Liloia
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Denisa Adina Zamfira
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Szeged, Hungary
| | - Jordi Manuello
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Annachiara Crocetta
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Roberto Keller
- Adult Autism Center, DSM Local Health Unit, ASL TO, Turin, Italy
| | - Mauro Cozzolino
- Department of Humanities, Philosophical and Educational Sciences, University of Salerno, Fisciano, Italy
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Franco Cauda
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Tommaso Costa
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy
| |
Collapse
|
21
|
Asad Z, Fakheir Y, Abukhaled Y, Khalil R. Implications of altered pyramidal cell morphology on clinical symptoms of neurodevelopmental disorders. Eur J Neurosci 2024; 60:4877-4892. [PMID: 39054743 DOI: 10.1111/ejn.16484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/26/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
The prevalence of pyramidal cells (PCs) in the mammalian cerebral cortex underscore their value as they play a crucial role in various brain functions, ranging from cognition, sensory processing, to motor output. PC morphology significantly influences brain connectivity and plays a critical role in maintaining normal brain function. Pathological alterations to PC morphology are thought to contribute to the aetiology of neurodevelopmental disorders such as autism spectrum disorder (ASD) and schizophrenia. This review explores the relationship between abnormalities in PC morphology in key cortical areas and the clinical manifestations in schizophrenia and ASD. We focus largely on human postmortem studies and provide evidence that dendritic segment length, complexity and spine density are differentially affected in these disorders. These morphological alterations can lead to disruptions in cortical connectivity, potentially contributing to the cognitive and behavioural deficits observed in these disorders. Furthermore, we highlight the importance of investigating the functional and structural characteristics of PCs in these disorders to illuminate the underlying pathogenesis and stimulate further research in this area.
Collapse
Affiliation(s)
- Zummar Asad
- School of Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Yara Fakheir
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Yara Abukhaled
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Reem Khalil
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
22
|
Sun H, Yisi Shan, Cao L, Wu X, Chen J, Yuan R, Qian M. Unveiling the hidden dangers: a review of non-apoptotic programmed cell death in anesthetic-induced developmental neurotoxicity. Cell Biol Toxicol 2024; 40:63. [PMID: 39093513 PMCID: PMC11297112 DOI: 10.1007/s10565-024-09895-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/21/2024] [Indexed: 08/04/2024]
Abstract
Anesthetic-induced developmental neurotoxicity (AIDN) can arise due to various factors, among which aberrant nerve cell death is a prominent risk factor. Animal studies have reported that repeated or prolonged anesthetic exposure can cause significant neuroapoptosis in the developing brain. Lately, non-apoptotic programmed cell deaths (PCDs), characterized by inflammation and oxidative stress, have gained increasing attention. Substantial evidence suggests that non-apoptotic PCDs are essential for neuronal cell death in AIDN compared to apoptosis. This article examines relevant publications in the PubMed database until April 2024. Only original articles in English that investigated the potential manifestations of non-apoptotic PCD in AIDN were analysed. Specifically, it investigates necroptosis, pyroptosis, ferroptosis, and parthanatos, elucidating the signaling mechanisms associated with each form. Furthermore, this study explores the potential relevance of these non-apoptotic PCDs pathways to the pathological mechanisms underlying AIDN, drawing upon their distinctive characteristics. Despite the considerable challenges involved in translating fundamental scientific knowledge into clinical therapeutic interventions, this comprehensive review offers a theoretical foundation for developing innovative preventive and treatment strategies targeting non-apoptotic PCDs in the context of AIDN.
Collapse
Affiliation(s)
- Haiyan Sun
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
- Department of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
| | - Yisi Shan
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
- Department of Neurology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
| | - Liyan Cao
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
- Department of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
| | - Xiping Wu
- Department of Anesthesiology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Jiangdong Chen
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
- Department of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
| | - Rong Yuan
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China.
- Department of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China.
| | - Min Qian
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China.
- Department of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China.
| |
Collapse
|
23
|
Brandt N, Köper F, Hausmann J, Bräuer AU. Spotlight on plasticity-related genes: Current insights in health and disease. Pharmacol Ther 2024; 260:108687. [PMID: 38969308 DOI: 10.1016/j.pharmthera.2024.108687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/07/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
The development of the central nervous system is highly complex, involving numerous developmental processes that must take place with high spatial and temporal precision. This requires a series of complex and well-coordinated molecular processes that are tighly controlled and regulated by, for example, a variety of proteins and lipids. Deregulations in these processes, including genetic mutations, can lead to the most severe maldevelopments. The present review provides an overview of the protein family Plasticity-related genes (PRG1-5), including their role during neuronal differentiation, their molecular interactions, and their participation in various diseases. As these proteins can modulate the function of bioactive lipids, they are able to influence various cellular processes. Furthermore, they are dynamically regulated during development, thus playing an important role in the development and function of synapses. First studies, conducted not only in mouse experiments but also in humans, revealed that mutations or dysregulations of these proteins lead to changes in lipid metabolism, resulting in severe neurological deficits. In recent years, as more and more studies have shown their involvement in a broad range of diseases, the complexity and broad spectrum of known and as yet unknown interactions between PRGs, lipids, and proteins make them a promising and interesting group of potential novel therapeutic targets.
Collapse
Affiliation(s)
- Nicola Brandt
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Franziska Köper
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Jens Hausmann
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Anja U Bräuer
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany; Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| |
Collapse
|
24
|
Yu L, Liu Y, Xia J, Feng S, Chen F. KCNH5 deletion increases autism susceptibility by regulating neuronal growth through Akt/mTOR signaling pathway. Behav Brain Res 2024; 470:115069. [PMID: 38797494 DOI: 10.1016/j.bbr.2024.115069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Recent clinical studies have highlighted mutations in the voltage-gated potassium channel Kv10.2 encoded by the KCNH5 gene among individuals with autism spectrum disorder (ASD). Our preliminary study found that Kv10.2 was decreased in the hippocampus of valproic acid (VPA) - induced ASD rats. Nevertheless, it is currently unclear how KCNH5 regulates autism-like features, or becomes a new target for autism treatment. We employed KCNH5 knockout (KCNH5-/-) rats and VPA - induced ASD rats in this study. Then, we used behavioral assessments, combined with electrophysiological recordings and hippocampal brain slice, to elucidate the impact of KCNH5 deletion and environmental factors on neural development and function in rats. We found that KCNH5-/- rats showed early developmental delay, neuronal overdevelopment, and abnormal electroencephalogram (EEG) signals, but did not exhibit autism-like behavior. KCNH5-/- rats exposed to VPA (KCNH5-/--VPA) exhibit even more severe autism-like behaviors and abnormal neuronal development. The absence of KCNH5 excessively enhances the activity of the Protein Kinase B (Akt)/Mechanistic Target of Rapamycin (mTOR) signaling pathway in the hippocampus of rats after exposure to VPA. Overall, our findings underscore the deficiency of KCNH5 increases the susceptibility to autism under environmental exposures, suggesting its potential utility as a target for screening and diagnosis in ASD.
Collapse
Affiliation(s)
- Lele Yu
- School of Life Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, PR China.
| | - Yamei Liu
- School of Life Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, PR China.
| | - Junyu Xia
- School of Life Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, PR China.
| | - Shini Feng
- School of Life Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, PR China.
| | - Fuxue Chen
- School of Life Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, PR China.
| |
Collapse
|
25
|
Azidane S, Gallego X, Durham L, Cáceres M, Guney E, Pérez-Cano L. Identification of novel driver risk genes in CNV loci associated with neurodevelopmental disorders. HGG ADVANCES 2024; 5:100316. [PMID: 38850022 PMCID: PMC11264174 DOI: 10.1016/j.xhgg.2024.100316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
Copy-number variants (CNVs) are genome-wide structural variations involving the duplication or deletion of large nucleotide sequences. While these types of variations can be commonly found in humans, large and rare CNVs are known to contribute to the development of various neurodevelopmental disorders (NDDs), including autism spectrum disorder (ASD). Nevertheless, given that these NDD-risk CNVs cover broad regions of the genome, it is particularly challenging to pinpoint the critical gene(s) responsible for the manifestation of the phenotype. In this study, we performed a meta-analysis of CNV data from 11,614 affected individuals with NDDs and 4,031 control individuals from SFARI database to identify 41 NDD-risk CNV loci, including 24 novel regions. We also found evidence for dosage-sensitive genes within these regions being significantly enriched for known NDD-risk genes and pathways. In addition, a significant proportion of these genes was found to (1) converge in protein-protein interaction networks, (2) be among most expressed genes in the brain across all developmental stages, and (3) be hit by deletions that are significantly over-transmitted to individuals with ASD within multiplex ASD families from the iHART cohort. Finally, we conducted a burden analysis using 4,281 NDD cases from Decipher and iHART cohorts, and 2,504 neurotypical control individuals from 1000 Genomes and iHART, which resulted in the validation of the association of 162 dosage-sensitive genes driving risk for NDDs, including 22 novel NDD-risk genes. Importantly, most NDD-risk CNV loci entail multiple NDD-risk genes in agreement with a polygenic model associated with the majority of NDD cases.
Collapse
Affiliation(s)
- Sara Azidane
- STALICLA Discovery and Data Science Unit, World Trade Center, Moll de Barcelona, Edif Este, 08039 Barcelona, Spain; Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Xavier Gallego
- STALICLA Discovery and Data Science Unit, World Trade Center, Moll de Barcelona, Edif Este, 08039 Barcelona, Spain
| | - Lynn Durham
- STALICLA Discovery and Data Science Unit, World Trade Center, Moll de Barcelona, Edif Este, 08039 Barcelona, Spain
| | - Mario Cáceres
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; ICREA, 08010 Barcelona, Spain; Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Research Institute, Barcelona, Spain
| | - Emre Guney
- STALICLA Discovery and Data Science Unit, World Trade Center, Moll de Barcelona, Edif Este, 08039 Barcelona, Spain
| | - Laura Pérez-Cano
- STALICLA Discovery and Data Science Unit, World Trade Center, Moll de Barcelona, Edif Este, 08039 Barcelona, Spain.
| |
Collapse
|
26
|
Montani C, Balasco L, Pagani M, Alvino FG, Barsotti N, de Guzman AE, Galbusera A, de Felice A, Nickl-Jockschat TK, Migliarini S, Casarosa S, Lau P, Mattioni L, Pasqualetti M, Provenzano G, Bozzi Y, Lombardo MV, Gozzi A. Sex-biasing influence of autism-associated Ube3a gene overdosage at connectomic, behavioral, and transcriptomic levels. SCIENCE ADVANCES 2024; 10:eadg1421. [PMID: 38996019 PMCID: PMC11244557 DOI: 10.1126/sciadv.adg1421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/07/2024] [Indexed: 07/14/2024]
Abstract
Genomic mechanisms enhancing risk in males may contribute to sex bias in autism. The ubiquitin protein ligase E3A gene (Ube3a) affects cellular homeostasis via control of protein turnover and by acting as transcriptional coactivator with steroid hormone receptors. Overdosage of Ube3a via duplication or triplication of chromosomal region 15q11-13 causes 1 to 2% of autistic cases. Here, we test the hypothesis that increased dosage of Ube3a may influence autism-relevant phenotypes in a sex-biased manner. We show that mice with extra copies of Ube3a exhibit sex-biasing effects on brain connectomics and autism-relevant behaviors. These effects are associated with transcriptional dysregulation of autism-associated genes, as well as genes differentially expressed in 15q duplication and in autistic people. Increased Ube3a dosage also affects expression of genes on the X chromosome, genes influenced by sex steroid hormone, and genes sex-differentially regulated by transcription factors. These results suggest that Ube3a overdosage can contribute to sex bias in neurodevelopmental conditions via influence on sex-differential mechanisms.
Collapse
Affiliation(s)
- Caterina Montani
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| | - Luigi Balasco
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Marco Pagani
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
- Autism Center, Child Mind Institute, New York, NY, USA
- IMT School for Advanced Studies, Lucca, Italy
| | - Filomena Grazia Alvino
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| | - Noemi Barsotti
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy
| | - A. Elizabeth de Guzman
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| | - Alberto Galbusera
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| | - Alessia de Felice
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| | - Thomas K. Nickl-Jockschat
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany
- German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, Germany
- Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, Germany
| | - Sara Migliarini
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy
| | - Simona Casarosa
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Centre for Medical Sciences (CISMed), University of Trento, Trento, Italy
| | - Pierre Lau
- Istituto Italiano di Tecnologia, Center for Human Technologies, Genova, Italy
| | - Lorenzo Mattioni
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Massimo Pasqualetti
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy
| | - Giovanni Provenzano
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Yuri Bozzi
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
- CNR Neuroscience Institute, Pisa, Italy
| | - Michael V. Lombardo
- Laboratory for Autism and Neurodevelopmental Disorders, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| |
Collapse
|
27
|
Le Belle JE, Condro M, Cepeda C, Oikonomou KD, Tessema K, Dudley L, Schoenfield J, Kawaguchi R, Geschwind D, Silva AJ, Zhang Z, Shokat K, Harris NG, Kornblum HI. Acute rapamycin treatment reveals novel mechanisms of behavioral, physiological, and functional dysfunction in a maternal inflammation mouse model of autism and sensory over-responsivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602602. [PMID: 39026891 PMCID: PMC11257517 DOI: 10.1101/2024.07.08.602602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Maternal inflammatory response (MIR) during early gestation in mice induces a cascade of physiological and behavioral changes that have been associated with autism spectrum disorder (ASD). In a prior study and the current one, we find that mild MIR results in chronic systemic and neuro-inflammation, mTOR pathway activation, mild brain overgrowth followed by regionally specific volumetric changes, sensory processing dysregulation, and social and repetitive behavior abnormalities. Prior studies of rapamycin treatment in autism models have focused on chronic treatments that might be expected to alter or prevent physical brain changes. Here, we have focused on the acute effects of rapamycin to uncover novel mechanisms of dysfunction and related to mTOR pathway signaling. We find that within 2 hours, rapamycin treatment could rapidly rescue neuronal hyper-excitability, seizure susceptibility, functional network connectivity and brain community structure, and repetitive behaviors and sensory over-responsivity in adult offspring with persistent brain overgrowth. These CNS-mediated effects are also associated with alteration of the expression of several ASD-,ion channel-, and epilepsy-associated genes, in the same time frame. Our findings suggest that mTOR dysregulation in MIR offspring is a key contributor to various levels of brain dysfunction, including neuronal excitability, altered gene expression in multiple cell types, sensory functional network connectivity, and modulation of information flow. However, we demonstrate that the adult MIR brain is also amenable to rapid normalization of these functional changes which results in the rescue of both core and comorbid ASD behaviors in adult animals without requiring long-term physical alterations to the brain. Thus, restoring excitatory/inhibitory imbalance and sensory functional network modularity may be important targets for therapeutically addressing both primary sensory and social behavior phenotypes, and compensatory repetitive behavior phenotypes.
Collapse
|
28
|
Dautan D, Monai A, Maltese F, Chang X, Molent C, Mauro D, Galbusera A, Vecchia D, Antonelli F, Benedetti A, Drago F, Leggio GM, Pagani M, Fellin T, Gozzi A, Schumann G, Managò F, Papaleo F. Cortico-cortical transfer of socially derived information gates emotion recognition. Nat Neurosci 2024; 27:1318-1332. [PMID: 38769153 DOI: 10.1038/s41593-024-01647-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/09/2024] [Indexed: 05/22/2024]
Abstract
Emotion recognition and the resulting responses are important for survival and social functioning. However, how socially derived information is processed for reliable emotion recognition is incompletely understood. Here, we reveal an evolutionarily conserved long-range inhibitory/excitatory brain network mediating these socio-cognitive processes. Anatomical tracing in mice revealed the existence of a subpopulation of somatostatin (SOM) GABAergic neurons projecting from the medial prefrontal cortex (mPFC) to the retrosplenial cortex (RSC). Through optogenetic manipulations and Ca2+ imaging fiber photometry in mice and functional imaging in humans, we demonstrate the specific participation of these long-range SOM projections from the mPFC to the RSC, and an excitatory feedback loop from the RSC to the mPFC, in emotion recognition. Notably, we show that mPFC-to-RSC SOM projections are dysfunctional in mouse models relevant to psychiatric vulnerability and can be targeted to rescue emotion recognition deficits in these mice. Our findings demonstrate a cortico-cortical circuit underlying emotion recognition.
Collapse
Affiliation(s)
- Daniel Dautan
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, Genova, Italy
- Bioclinicum, Karolinska Institute, Stockholm, Sweden
| | - Anna Monai
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Federica Maltese
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Xiao Chang
- Centre for Population Neuroscience and Stratified Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, P. R. China
| | - Cinzia Molent
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Daniele Mauro
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Alberto Galbusera
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Dania Vecchia
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Federica Antonelli
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Arianna Benedetti
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Marco Pagani
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, P. R. China
- Centre for Population Neuroscience and Stratified Medicine (PONS), Charite Mental Health, Department of Psychiatry and Psychotherapy, CCM, Charite Universitätsmedizin Berlin, Berlin, Germany
| | - Francesca Managò
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, Genova, Italy.
| |
Collapse
|
29
|
Dalton GD, Siecinski SK, Nikolova VD, Cofer GP, Hornburg KJ, Qi Y, Johnson GA, Jiang YH, Moy SS, Gregory SG. Transcriptome analysis identifies an ASD-Like phenotype in oligodendrocytes and microglia from C58/J amygdala that is dependent on sex and sociability. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:14. [PMID: 38898502 PMCID: PMC11188533 DOI: 10.1186/s12993-024-00240-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is a group of neurodevelopmental disorders with higher incidence in males and is characterized by atypical verbal/nonverbal communication, restricted interests that can be accompanied by repetitive behavior, and disturbances in social behavior. This study investigated brain mechanisms that contribute to sociability deficits and sex differences in an ASD animal model. METHODS Sociability was measured in C58/J and C57BL/6J mice using the 3-chamber social choice test. Bulk RNA-Seq and snRNA-Seq identified transcriptional changes in C58/J and C57BL/6J amygdala within which DMRseq was used to measure differentially methylated regions in amygdala. RESULTS C58/J mice displayed divergent social strata in the 3-chamber test. Transcriptional and pathway signatures revealed immune-related biological processes differ between C58/J and C57BL/6J amygdala. Hypermethylated and hypomethylated genes were identified in C58/J versus C57BL/6J amygdala. snRNA-Seq data in C58/J amygdala identified differential transcriptional signatures within oligodendrocytes and microglia characterized by increased ASD risk gene expression and predicted impaired myelination that was dependent on sex and sociability. RNA velocity, gene regulatory network, and cell communication analysis showed diminished oligodendrocyte/microglia differentiation. Findings were verified using Bulk RNA-Seq and demonstrated oxytocin's beneficial effects on myelin gene expression. LIMITATIONS Our findings are significant. However, limitations can be noted. The cellular mechanisms linking reduced oligodendrocyte differentiation and reduced myelination to an ASD phenotype in C58/J mice need further investigation. Additional snRNA-Seq and spatial studies would determine if effects in oligodendrocytes/microglia are unique to amygdala or if this occurs in other brain regions. Oxytocin's effects need further examination to understand its' potential as an ASD therapeutic. CONCLUSIONS Our work demonstrates the C58/J mouse model's utility in evaluating the influence of sex and sociability on the transcriptome in concomitant brain regions involved in ASD. Our single-nucleus transcriptome analysis elucidates potential pathological roles of oligodendrocytes and microglia in ASD. This investigation provides details regarding regulatory features disrupted in these cell types, including transcriptional gene dysregulation, aberrant cell differentiation, altered gene regulatory networks, and changes to key pathways that promote microglia/oligodendrocyte differentiation. Our studies provide insight into interactions between genetic risk and epigenetic processes associated with divergent affiliative behavior and lack of positive sociability.
Collapse
Affiliation(s)
- George D Dalton
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 27701, USA
| | - Stephen K Siecinski
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 27701, USA
| | - Viktoriya D Nikolova
- Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
| | - Gary P Cofer
- Center for In Vivo Microscopy, Duke University, Durham, NC, 27710, USA
| | | | - Yi Qi
- Center for In Vivo Microscopy, Duke University, Durham, NC, 27710, USA
| | - G Allan Johnson
- Center for In Vivo Microscopy, Duke University, Durham, NC, 27710, USA
| | - Yong-Hui Jiang
- Department of Genetics, Neuroscience, and Pediatrics, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Sheryl S Moy
- Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
| | - Simon G Gregory
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 27701, USA.
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Neurology, Molecular Genetics and Microbiology Duke Molecular Physiology Institute, 300 N. Duke Street, DUMC 104775, Durham, NC, 27701, USA.
| |
Collapse
|
30
|
Leow KQ, Tonta MA, Lu J, Coleman HA, Parkington HC. Towards understanding sex differences in autism spectrum disorders. Brain Res 2024; 1833:148877. [PMID: 38513995 DOI: 10.1016/j.brainres.2024.148877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by social deficits, repetitive behaviours and lack of empathy. Its significant genetic heritability and potential comorbidities often lead to diagnostic and therapeutic challenges. This review addresses the biological basis of ASD, focusing on the sex differences in gene expression and hormonal influences. ASD is more commonly diagnosed in males at a ratio of 4:1, indicating a potential oversight in female-specific ASD research and a risk of underdiagnosis in females. We consider how ASD manifests differently across sexes by exploring differential gene expression in female and male brains and consider how variations in steroid hormones influence ASD characteristics. Synaptic function, including excitation/inhibition ratio imbalance, is influenced by gene mutations and this is explored as a key factor in the cognitive and behavioural manifestations of ASD. We also discuss the role of micro RNAs (miRNAs) and highlight a novel mutation in miRNA-873, which affects a suite of key synaptic genes, neurexin, neuroligin, SHANK and post-synaptic density proteins, implicated in the pathology of ASD. Our review suggests that genetic predisposition, sex differences in brain gene expression, and hormonal factors significantly contribute to the presentation, identification and severity of ASD, necessitating sex-specific considerations in diagnosis and treatments. These findings advocate for personalized interventions to improve the outcomes for individuals with ASD.
Collapse
Affiliation(s)
- Karen Q Leow
- Department of Physiology, Biomedical Discovery Institute, Monash University, Victoria, Australia
| | - Mary A Tonta
- Department of Physiology, Biomedical Discovery Institute, Monash University, Victoria, Australia
| | - Jing Lu
- Tianjin Institute of Infectious Disease, Second Hospital of Tianjin Medical University, China
| | - Harold A Coleman
- Department of Physiology, Biomedical Discovery Institute, Monash University, Victoria, Australia
| | - Helena C Parkington
- Department of Physiology, Biomedical Discovery Institute, Monash University, Victoria, Australia.
| |
Collapse
|
31
|
Awad PN, Zerbi V, Johnson-Venkatesh EM, Damiani F, Pagani M, Markicevic M, Nickles S, Gozzi A, Umemori H, Fagiolini M. CDKL5 sculpts functional callosal connectivity to promote cognitive flexibility. Mol Psychiatry 2024; 29:1698-1709. [PMID: 36737483 PMCID: PMC11371650 DOI: 10.1038/s41380-023-01962-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 01/02/2023] [Accepted: 01/13/2023] [Indexed: 02/05/2023]
Abstract
Functional and structural connectivity alterations in short- and long-range projections have been reported across neurodevelopmental disorders (NDD). Interhemispheric callosal projection neurons (CPN) represent one of the major long-range projections in the brain, which are particularly important for higher-order cognitive function and flexibility. However, whether a causal relationship exists between interhemispheric connectivity alterations and cognitive deficits in NDD remains elusive. Here, we focused on CDKL5 Deficiency Disorder (CDD), a severe neurodevelopmental disorder caused by mutations in the X-linked Cyclin-dependent kinase-like 5 (CDKL5) gene. We found an increase in homotopic interhemispheric connectivity and functional hyperconnectivity across higher cognitive areas in adult male and female CDKL5-deficient mice by resting-state functional MRI (rs-fMRI) analysis. This was accompanied by an increase in the number of callosal synaptic inputs but decrease in local synaptic connectivity in the cingulate cortex of juvenile CDKL5-deficient mice, suggesting an impairment in excitatory synapse development and a differential role of CDKL5 across excitatory neuron subtypes. These deficits were associated with significant cognitive impairments in CDKL5 KO mice. Selective deletion of CDKL5 in the largest subtype of CPN likewise resulted in an increase of functional callosal inputs, without however significantly altering intracortical cingulate networks. Notably, such callosal-specific changes were sufficient to cause cognitive deficits. Finally, when CDKL5 was selectively re-expressed only in this CPN subtype, in otherwise CDKL5-deficient mice, it was sufficient to prevent the cognitive impairments of CDKL5 mutants. Together, these results reveal a novel role of CDKL5 by demonstrating that it is both necessary and sufficient for proper CPN connectivity and cognitive function and flexibility, and further validates a causal relationship between CPN dysfunction and cognitive impairment in a model of NDD.
Collapse
Affiliation(s)
- Patricia Nora Awad
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Valerio Zerbi
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuro-X Institute, School of Engineering (STI), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
| | - Erin M Johnson-Venkatesh
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Francesca Damiani
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marco Pagani
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
- Autism Center, Child Mind Institute, New York, NY, USA
| | - Marija Markicevic
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Sarah Nickles
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Hisashi Umemori
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michela Fagiolini
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Hock E. Tan and K. Lisa Yang Center for Autism Research at Harvard University, Boston, MA, USA.
- International Research Center for Neurointelligence (IRCN), University of Tokyo Institutes for Advanced Study, Tokyo, Japan.
| |
Collapse
|
32
|
Xie PL, Zheng MY, Han R, Chen WX, Mao JH. Pharmacological mTOR inhibitors in ameliorating Alzheimer's disease: current review and perspectives. Front Pharmacol 2024; 15:1366061. [PMID: 38873415 PMCID: PMC11169825 DOI: 10.3389/fphar.2024.1366061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/25/2024] [Indexed: 06/15/2024] Open
Abstract
Traditionally, pharmacological mammalian/mechanistic targets of rapamycin (mTOR) kinase inhibitors have been used during transplantation and tumor treatment. Emerging pre-clinical evidence from the last decade displayed the surprising effectiveness of mTOR inhibitors in ameliorating Alzheimer's Disease (AD), a common neurodegenerative disorder characterized by progressive cognitive function decline and memory loss. Research shows mTOR activation as an early event in AD development, and inhibiting mTOR may promote the resolution of many hallmarks of Alzheimer's. Aberrant protein aggregation, including amyloid-beta (Aβ) deposition and tau filaments, and cognitive defects, are reversed upon mTOR inhibition. A closer inspection of the evidence highlighted a temporal dependence and a hallmark-specific nature of such beneficial effects. Time of administration relative to disease progression, and a maintenance of a functional lysosomal system, could modulate its effectiveness. Moreover, mTOR inhibition also exerts distinct effects between neurons, glial cells, and endothelial cells. Different pharmacological properties of the inhibitors also produce different effects based on different blood-brain barrier (BBB) entry capacities and mTOR inhibition sites. This questions the effectiveness of mTOR inhibition as a viable AD intervention strategy. In this review, we first summarize the different mTOR inhibitors available and their characteristics. We then comprehensively update and discuss the pre-clinical results of mTOR inhibition to resolve many of the hallmarks of AD. Key pathologies discussed include Aβ deposition, tauopathies, aberrant neuroinflammation, and neurovascular system breakdowns.
Collapse
Affiliation(s)
- Pei-Lun Xie
- University College London, London, United Kingdom
| | | | - Ran Han
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Wei-Xin Chen
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Jin-Hua Mao
- Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
33
|
Nobutoki T. Vitamin D in tuberous sclerosis complex-associated tumors. Front Pediatr 2024; 12:1392380. [PMID: 38846332 PMCID: PMC11153746 DOI: 10.3389/fped.2024.1392380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/10/2024] [Indexed: 06/09/2024] Open
Abstract
Mammalian target of rapamycin inhibitors (mTORi) have been used to treat pediatric tuberous sclerosis complex (TSC)-associated tumors, particularly in cases with contraindications to surgery or difficulties in complete tumor resection. However, some patients experience side effects and tumor regression after discontinuation of the treatment. Therefore, there is an urgent need to develop drugs that can be used in combination with mTORi to increase their efficacy and minimize their side effects. 1,25-Dihydroxyvitamin D3 (1,25-D), which has anticancer properties, may be a promising candidate for adjuvant or alternative therapy because TSC and cancer cells share common mechanisms, including angiogenesis, cell growth, and proliferation. Vitamin D receptor-mediated signaling can be epigenetically modified and plays an important role in susceptibility to 1,25-D. Therefore, vitamin D signaling may be a promising drug target, and in vitro studies are required to evaluate the efficacy of 1,25-D in TSC-associated tumors, brain development, and core symptoms of psychiatric disorders.
Collapse
Affiliation(s)
- Tatsuro Nobutoki
- Department of Pediatrics, Social Welfare Aiseikai, Suihoen, Japan
| |
Collapse
|
34
|
Vakilzadeh G, Maseko BC, Bartely TD, McLennan YA, Martínez-Cerdeño V. Increased number of excitatory synapsis and decreased number of inhibitory synapsis in the prefrontal cortex in autism. Cereb Cortex 2024; 34:121-128. [PMID: 38696601 PMCID: PMC11065106 DOI: 10.1093/cercor/bhad268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/15/2023] [Accepted: 07/16/2023] [Indexed: 05/04/2024] Open
Abstract
Previous studies in autism spectrum disorder demonstrated an increased number of excitatory pyramidal cells and a decreased number of inhibitory parvalbumin+ chandelier interneurons in the prefrontal cortex of postmortem brains. How these changes in cellular composition affect the overall abundance of excitatory and inhibitory synapses in the cortex is not known. Herein, we quantified the number of excitatory and inhibitory synapses in the prefrontal cortex of 10 postmortem autism spectrum disorder brains and 10 control cases. To identify excitatory synapses, we used VGlut1 as a marker of the presynaptic component and postsynaptic density protein-95 as marker of the postsynaptic component. To identify inhibitory synapses, we used the vesicular gamma-aminobutyric acid transporter as a marker of the presynaptic component and gephyrin as a marker of the postsynaptic component. We used Puncta Analyzer to quantify the number of co-localized pre- and postsynaptic synaptic components in each area of interest. We found an increase in the number of excitatory synapses in upper cortical layers and a decrease in inhibitory synapses in all cortical layers in autism spectrum disorder brains compared with control cases. The alteration in the number of excitatory and inhibitory synapses could lead to neuronal dysfunction and disturbed network connectivity in the prefrontal cortex in autism spectrum disorder.
Collapse
Affiliation(s)
- Gelareh Vakilzadeh
- Department of Pathology and Laboratory Medicine, University of California, Davis School of Medicine, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children, Sacramento, CA, United States
| | - Busisiwe C Maseko
- Faculty of health Sciences, School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, The Republic of South Africa
| | - Trevor D Bartely
- Department of Pathology and Laboratory Medicine, University of California, Davis School of Medicine, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children, Sacramento, CA, United States
| | - Yingratana A McLennan
- Department of Pathology and Laboratory Medicine, University of California, Davis School of Medicine, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children, Sacramento, CA, United States
| | - Verónica Martínez-Cerdeño
- Department of Pathology and Laboratory Medicine, University of California, Davis School of Medicine, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children, Sacramento, CA, United States
- MIND Institute, UC Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|
35
|
Chi OZ, Liu X, Fortus H, Werlen G, Jacinto E, Weiss HR. Inhibition of p70 Ribosomal S6 Kinase (S6K1) Reduces Cortical Blood Flow in a Rat Model of Autism-Tuberous Sclerosis. Neuromolecular Med 2024; 26:10. [PMID: 38570425 PMCID: PMC10990997 DOI: 10.1007/s12017-024-08780-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/04/2024] [Indexed: 04/05/2024]
Abstract
The manifestations of tuberous sclerosis complex (TSC) in humans include epilepsy, autism spectrum disorders (ASD) and intellectual disability. Previous studies suggested the linkage of TSC to altered cerebral blood flow and metabolic dysfunction. We previously reported a significant elevation in cerebral blood flow in an animal model of TSC and autism of young Eker rats. Inhibition of the mammalian target of rapamycin (mTOR) by rapamycin could restore normal oxygen consumption and cerebral blood flow. In this study, we investigated whether inhibiting a component of the mTOR signaling pathway, p70 ribosomal S6 kinase (S6K1), would yield comparable effects. Control Long Evans and Eker rats were divided into vehicle and PF-4708671 (S6K1 inhibitor, 75 mg/kg for 1 h) treated groups. Cerebral regional blood flow (14C-iodoantipyrine) was determined in isoflurane anesthetized rats. We found significantly increased basal cortical (+ 32%) and hippocampal (+ 15%) blood flow in the Eker rats. PF-4708671 significantly lowered regional blood flow in the cortex and hippocampus of the Eker rats. PF-4708671 did not significantly lower blood flow in these regions in the control Long Evans rats. Phosphorylation of S6-Ser240/244 and Akt-Ser473 was moderately decreased in Eker rats but only the latter reached statistical significance upon PF-4708671 treatment. Our findings suggest that moderate inhibition of S6K1 with PF-4708671 helps to restore normal cortical blood flow in Eker rats and that this information might have therapeutic potential in tuberous sclerosis complex and autism.
Collapse
Affiliation(s)
- Oak Z Chi
- Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson Medical School, 125 Paterson Street, Suite 3100, New Brunswick, NJ, 08901-1977, USA.
| | - Xia Liu
- Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson Medical School, 125 Paterson Street, Suite 3100, New Brunswick, NJ, 08901-1977, USA
| | - Harvey Fortus
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Guy Werlen
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Harvey R Weiss
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| |
Collapse
|
36
|
Prem S, Dev B, Peng C, Mehta M, Alibutud R, Connacher RJ, St Thomas M, Zhou X, Matteson P, Xing J, Millonig JH, DiCicco-Bloom E. Dysregulation of mTOR signaling mediates common neurite and migration defects in both idiopathic and 16p11.2 deletion autism neural precursor cells. eLife 2024; 13:e82809. [PMID: 38525876 PMCID: PMC11003747 DOI: 10.7554/elife.82809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 03/04/2024] [Indexed: 03/26/2024] Open
Abstract
Autism spectrum disorder (ASD) is defined by common behavioral characteristics, raising the possibility of shared pathogenic mechanisms. Yet, vast clinical and etiological heterogeneity suggests personalized phenotypes. Surprisingly, our iPSC studies find that six individuals from two distinct ASD subtypes, idiopathic and 16p11.2 deletion, have common reductions in neural precursor cell (NPC) neurite outgrowth and migration even though whole genome sequencing demonstrates no genetic overlap between the datasets. To identify signaling differences that may contribute to these developmental defects, an unbiased phospho-(p)-proteome screen was performed. Surprisingly despite the genetic heterogeneity, hundreds of shared p-peptides were identified between autism subtypes including the mTOR pathway. mTOR signaling alterations were confirmed in all NPCs across both ASD subtypes, and mTOR modulation rescued ASD phenotypes and reproduced autism NPC-associated phenotypes in control NPCs. Thus, our studies demonstrate that genetically distinct ASD subtypes have common defects in neurite outgrowth and migration which are driven by the shared pathogenic mechanism of mTOR signaling dysregulation.
Collapse
Affiliation(s)
- Smrithi Prem
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
- Graduate Program in Neuroscience, Rutgers UniversityPiscatawayUnited States
| | - Bharati Dev
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
| | - Cynthia Peng
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
| | - Monal Mehta
- Graduate Program in Neuroscience, Rutgers UniversityPiscatawayUnited States
- Center for Advanced Biotechnology and Medicine, Rutgers UniversityPiscatawayUnited States
| | - Rohan Alibutud
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
| | - Robert J Connacher
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
- Graduate Program in Neuroscience, Rutgers UniversityPiscatawayUnited States
| | - Madeline St Thomas
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
- Graduate Program in Neuroscience, Rutgers UniversityPiscatawayUnited States
| | - Xiaofeng Zhou
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
| | - Paul Matteson
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
- Center for Advanced Biotechnology and Medicine, Rutgers UniversityPiscatawayUnited States
| | - Jinchuan Xing
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
| | - James H Millonig
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
- Center for Advanced Biotechnology and Medicine, Rutgers UniversityPiscatawayUnited States
| | - Emanuel DiCicco-Bloom
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical SchoolNew BrunswickUnited States
| |
Collapse
|
37
|
López-Otín C, Kroemer G. The missing hallmark of health: psychosocial adaptation. Cell Stress 2024; 8:21-50. [PMID: 38476764 PMCID: PMC10928495 DOI: 10.15698/cst2024.03.294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
The eight biological hallmarks of health that we initially postulated (Cell. 2021 Jan 7;184(1):33-63) include features of spatial compartmentalization (integrity of barriers, containment of local perturbations), maintenance of homeostasis over time (recycling & turnover, integration of circuitries, rhythmic oscillations) and an array of adequate responses to stress (homeostatic resilience, hormetic regulation, repair & regeneration). These hallmarks affect all eight somatic strata of the human body (molecules, organelles, cells, supracellular units, organs, organ systems, systemic circuitries and meta-organism). Here we postulate that mental and socioeconomic factors must be added to this 8×8 matrix as an additional hallmark of health ("psychosocial adaptation") and as an additional stratum ("psychosocial interactions"), hence building a 9×9 matrix. Potentially, perturbation of each of the somatic hallmarks and strata affects psychosocial factors and vice versa. Finally, we discuss the (patho)physiological bases of these interactions and their implications for mental health improvement.
Collapse
Affiliation(s)
- Carlos López-Otín
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Facultad de Ciencias de la Vida y la Naturaleza, Universidad Nebrija, Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| |
Collapse
|
38
|
Jaylet T, Coustillet T, Smith NM, Viviani B, Lindeman B, Vergauwen L, Myhre O, Yarar N, Gostner JM, Monfort-Lanzas P, Jornod F, Holbech H, Coumoul X, Sarigiannis DA, Antczak P, Bal-Price A, Fritsche E, Kuchovska E, Stratidakis AK, Barouki R, Kim MJ, Taboureau O, Wojewodzic MW, Knapen D, Audouze K. Comprehensive mapping of the AOP-Wiki database: identifying biological and disease gaps. FRONTIERS IN TOXICOLOGY 2024; 6:1285768. [PMID: 38523647 PMCID: PMC10958381 DOI: 10.3389/ftox.2024.1285768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/15/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction: The Adverse Outcome Pathway (AOP) concept facilitates rapid hazard assessment for human health risks. AOPs are constantly evolving, their number is growing, and they are referenced in the AOP-Wiki database, which is supported by the OECD. Here, we present a study that aims at identifying well-defined biological areas, as well as gaps within the AOP-Wiki for future research needs. It does not intend to provide a systematic and comprehensive summary of the available literature on AOPs but summarizes and maps biological knowledge and diseases represented by the already developed AOPs (with OECD endorsed status or under validation). Methods: Knowledge from the AOP-Wiki database were extracted and prepared for analysis using a multi-step procedure. An automatic mapping of the existing information on AOPs (i.e., genes/proteins and diseases) was performed using bioinformatics tools (i.e., overrepresentation analysis using Gene Ontology and DisGeNET), allowing both the classification of AOPs and the development of AOP networks (AOPN). Results: AOPs related to diseases of the genitourinary system, neoplasms and developmental anomalies are the most frequently investigated on the AOP-Wiki. An evaluation of the three priority cases (i.e., immunotoxicity and non-genotoxic carcinogenesis, endocrine and metabolic disruption, and developmental and adult neurotoxicity) of the EU-funded PARC project (Partnership for the Risk Assessment of Chemicals) are presented. These were used to highlight under- and over-represented adverse outcomes and to identify and prioritize gaps for further research. Discussion: These results contribute to a more comprehensive understanding of the adverse effects associated with the molecular events in AOPs, and aid in refining risk assessment for stressors and mitigation strategies. Moreover, the FAIRness (i.e., data which meets principles of findability, accessibility, interoperability, and reusability (FAIR)) of the AOPs appears to be an important consideration for further development.
Collapse
Affiliation(s)
- Thomas Jaylet
- Université Paris Cité, Inserm UMR-S 1124 T3S, Paris, France
| | | | - Nicola M. Smith
- Norwegian Institute of Public Health, Division of Climate and Environment, Oslo, Norway
| | - Barbara Viviani
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Birgitte Lindeman
- Norwegian Institute of Public Health, Division of Climate and Environment, Oslo, Norway
| | - Lucia Vergauwen
- Zebrafishlab, Department of Veterinary Sciences, Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, Belgium
| | - Oddvar Myhre
- Norwegian Institute of Public Health, Division of Climate and Environment, Oslo, Norway
| | - Nurettin Yarar
- Norwegian Institute of Public Health, Division of Climate and Environment, Oslo, Norway
| | - Johanna M. Gostner
- Institute of Medical Biochemistry, Medical University of Innsbruck, Innsbruck, Austria
| | - Pablo Monfort-Lanzas
- Institute of Medical Biochemistry, Medical University of Innsbruck, Innsbruck, Austria
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Henrik Holbech
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Xavier Coumoul
- Université Paris Cité, Inserm UMR-S 1124 T3S, Paris, France
| | - Dimosthenis A. Sarigiannis
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
- National Hellenic Research Foundation, Athens, Greece
- Science, Technology and Society Department, Environmental Health Engineering, University School for Advanced Studies (IUSS), Pavia, Italy
| | - Philipp Antczak
- Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Anna Bal-Price
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Ellen Fritsche
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
- Heinrich-Heine-University, Düsseldorf, Germany
- Swiss Centre for Applied Human Toxicology, Basel, Switzerland
- DNTOX GmbH, Düsseldorf, Germany
| | - Eliska Kuchovska
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Antonios K. Stratidakis
- Science, Technology and Society Department, Environmental Health Engineering, University School for Advanced Studies (IUSS), Pavia, Italy
| | - Robert Barouki
- Université Paris Cité, Inserm UMR-S 1124 T3S, Paris, France
| | - Min Ji Kim
- Inserm UMR-S 1124, Université Sorbonne Paris Nord, Bobigny, Paris, France
| | - Olivier Taboureau
- Université Paris Cité, BFA, Team CMPLI, Inserm U1133, CNRS UMR 8251, Paris, France
| | - Marcin W. Wojewodzic
- Norwegian Institute of Public Health, Division of Climate and Environment, Oslo, Norway
- Cancer Registry of Norway, NIPH, Oslo, Norway
| | - Dries Knapen
- Zebrafishlab, Department of Veterinary Sciences, Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, Belgium
| | - Karine Audouze
- Université Paris Cité, Inserm UMR-S 1124 T3S, Paris, France
| |
Collapse
|
39
|
Borreca A, Mantovani C, Desiato G, Corradini I, Filipello F, Elia CA, D'Autilia F, Santamaria G, Garlanda C, Morini R, Pozzi D, Matteoli M. Loss of interleukin 1 signaling causes impairment of microglia- mediated synapse elimination and autistic-like behaviour in mice. Brain Behav Immun 2024; 117:493-509. [PMID: 38307446 DOI: 10.1016/j.bbi.2024.01.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/11/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024] Open
Abstract
In the last years, the hypothesis that elevated levels of proinflammatory cytokines contribute to the pathogenesis of neurodevelopmental diseases has gained popularity. IL-1 is one of the main cytokines found to be elevated in Autism spectrum disorder (ASD), a complex neurodevelopmental condition characterized by defects in social communication and cognitive impairments. In this study, we demonstrate that mice lacking IL-1 signaling display autistic-like defects associated with an excessive number of synapses. We also show that microglia lacking IL-1 signaling at early neurodevelopmental stages are unable to properly perform the process of synapse engulfment and display excessive activation of mammalian target of rapamycin (mTOR) signaling. Notably, even the acute inhibition of IL-1R1 by IL-1Ra is sufficient to enhance mTOR signaling and reduce synaptosome phagocytosis in WT microglia. Finally, we demonstrate that rapamycin treatment rescues the defects in IL-1R deficient mice. These data unveil an exclusive role of microglial IL-1 in synapse refinement via mTOR signaling and indicate a novel mechanism possibly involved in neurodevelopmental disorders associated with defects in the IL-1 pathway.
Collapse
Affiliation(s)
- Antonella Borreca
- Institute of Neuroscience (IN-CNR), Consiglio Nazionale delle Ricerche, Milan, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Cristina Mantovani
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
| | - Genni Desiato
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Irene Corradini
- Institute of Neuroscience (IN-CNR), Consiglio Nazionale delle Ricerche, Milan, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Fabia Filipello
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Chiara Adriana Elia
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Francesca D'Autilia
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Giulia Santamaria
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Cecilia Garlanda
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
| | - Raffaella Morini
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Davide Pozzi
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy.
| | - Michela Matteoli
- Institute of Neuroscience (IN-CNR), Consiglio Nazionale delle Ricerche, Milan, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy.
| |
Collapse
|
40
|
Zhuang H, Liang Z, Ma G, Qureshi A, Ran X, Feng C, Liu X, Yan X, Shen L. Autism spectrum disorder: pathogenesis, biomarker, and intervention therapy. MedComm (Beijing) 2024; 5:e497. [PMID: 38434761 PMCID: PMC10908366 DOI: 10.1002/mco2.497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
Autism spectrum disorder (ASD) has become a common neurodevelopmental disorder. The heterogeneity of ASD poses great challenges for its research and clinical translation. On the basis of reviewing the heterogeneity of ASD, this review systematically summarized the current status and progress of pathogenesis, diagnostic markers, and interventions for ASD. We provided an overview of the ASD molecular mechanisms identified by multi-omics studies and convergent mechanism in different genetic backgrounds. The comorbidities, mechanisms associated with important physiological and metabolic abnormalities (i.e., inflammation, immunity, oxidative stress, and mitochondrial dysfunction), and gut microbial disorder in ASD were reviewed. The non-targeted omics and targeting studies of diagnostic markers for ASD were also reviewed. Moreover, we summarized the progress and methods of behavioral and educational interventions, intervention methods related to technological devices, and research on medical interventions and potential drug targets. This review highlighted the application of high-throughput omics methods in ASD research and emphasized the importance of seeking homogeneity from heterogeneity and exploring the convergence of disease mechanisms, biomarkers, and intervention approaches, and proposes that taking into account individuality and commonality may be the key to achieve accurate diagnosis and treatment of ASD.
Collapse
Affiliation(s)
- Hongbin Zhuang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Zhiyuan Liang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Guanwei Ma
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Ayesha Qureshi
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Xiaoqian Ran
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Chengyun Feng
- Maternal and Child Health Hospital of BaoanShenzhenP. R. China
| | - Xukun Liu
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Xi Yan
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Liming Shen
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
- Shenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research InstitutionsShenzhenP. R. China
| |
Collapse
|
41
|
Niu W, Siciliano B, Wen Z. Modeling tuberous sclerosis complex with human induced pluripotent stem cells. World J Pediatr 2024; 20:208-218. [PMID: 35759110 DOI: 10.1007/s12519-022-00576-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/23/2022] [Indexed: 12/20/2022]
Abstract
BACKGROUND Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disorder with a birth incidence of 1:6000 in the United States that is characterized by the growth of non-cancerous tumors in multiple organ systems including the brain, kidneys, lungs, and skin. Importantly, TSC is also associated with significant neurological manifestations including epilepsy, TSC-associated neuropsychiatric disorders, intellectual disabilities, and autism spectrum disorder. Mutations in the TSC1 or TSC2 genes are well-established causes of TSC, which lead to TSC1/TSC2 deficiency in organs and hyper-activation of the mammalian target of rapamycin signaling pathway. Animal models have been widely used to study the effect of TSC1/2 genes on the development and function of the brain. Despite considerable progress in understanding the molecular mechanisms underlying TSC in animal models, a human-specific model is urgently needed to investigate the effects of TSC1/2 mutations that are unique to human neurodevelopment. DATA SOURCES Literature reviews and research articles were published in PubMed-indexed journals. RESULTS Human-induced pluripotent stem cells (iPSCs), which capture risk alleles that are identical to their donors and have the capacity to differentiate into virtually any cell type in the human body, pave the way for the empirical study of previously inaccessible biological systems such as the developing human brain. CONCLUSIONS In this review, we present an overview of the recent progress in modeling TSC with human iPSC models, the existing limitations, and potential directions for future research.
Collapse
Affiliation(s)
- Weibo Niu
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Whitehead Research Building 447, 615 Michael Street, Atlanta, GA, 30322, USA
| | - Benjamin Siciliano
- The Graduate Program in Molecular and Systems Pharmacology, Laney Graduate School, Emory University, Atlanta, GA, 30322, USA
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Whitehead Research Building 447, 615 Michael Street, Atlanta, GA, 30322, USA.
- Department of Cell Biology, Emory University School of Medicine, Whitehead Research Building 447, 615 Michael Street, Atlanta, GA, 30322, USA.
- Department of Neurology, Emory University School of Medicine, Whitehead Research Building 447, 615 Michael Street, Atlanta, GA, 30322, USA.
| |
Collapse
|
42
|
Matsushima T, Izumi T, Vallortigara G. The domestic chick as an animal model of autism spectrum disorder: building adaptive social perceptions through prenatally formed predispositions. Front Neurosci 2024; 18:1279947. [PMID: 38356650 PMCID: PMC10864568 DOI: 10.3389/fnins.2024.1279947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Equipped with an early social predisposition immediately post-birth, humans typically form associations with mothers and other family members through exposure learning, canalized by a prenatally formed predisposition of visual preference to biological motion, face configuration, and other cues of animacy. If impaired, reduced preferences can lead to social interaction impairments such as autism spectrum disorder (ASD) via misguided canalization. Despite being taxonomically distant, domestic chicks could also follow a homologous developmental trajectory toward adaptive socialization through imprinting, which is guided via predisposed preferences similar to those of humans, thereby suggesting that chicks are a valid animal model of ASD. In addition to the phenotypic similarities in predisposition with human newborns, accumulating evidence on the responsible molecular mechanisms suggests the construct validity of the chick model. Considering the recent progress in the evo-devo studies in vertebrates, we reviewed the advantages and limitations of the chick model of developmental mental diseases in humans.
Collapse
Affiliation(s)
- Toshiya Matsushima
- Department of Biology, Faculty of Science, Hokkaido University, Sapporo, Japan
- Faculty of Pharmaceutical Science, Health Science University of Hokkaido, Tobetsu, Japan
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Takeshi Izumi
- Faculty of Pharmaceutical Science, Health Science University of Hokkaido, Tobetsu, Japan
| | | |
Collapse
|
43
|
Carbonell-Roig J, Aaltonen A, Cartocci V, McGuirt A, Mosharov E, Kehr J, Lieberman OJ, Sulzer D, Borgkvist A, Santini E. Dysregulated acetylcholine-mediated dopamine neurotransmission in the eIF4E Tg mouse model of autism spectrum disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577831. [PMID: 38352367 PMCID: PMC10862723 DOI: 10.1101/2024.01.29.577831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2024]
Abstract
Autism Spectrum Disorders (ASD) consist of diverse neurodevelopmental conditions where core behavioral symptoms are critical for diagnosis. Altered dopamine neurotransmission in the striatum has been suggested to contribute to the behavioral features of ASD. Here, we examine dopamine neurotransmission in a mouse model of ASD characterized by elevated expression of the eukaryotic initiation factor 4E (eIF4E), a key regulator of cap-dependent translation, using a comprehensive approach that encompasses genetics, behavior, synaptic physiology, and imaging. The results indicate that increased eIF4E expression leads to behavioral inflexibility and impaired striatal dopamine release. The loss of normal dopamine neurotransmission is due to a defective nicotinic receptor signaling that regulates calcium dynamics in dopaminergic axons. These findings reveal an intricate interplay between eIF4E, DA neurotransmission, and behavioral flexibility, provide a mechanistic understanding of ASD symptoms and offer a foundation for targeted therapeutic interventions.
Collapse
|
44
|
Dalton GD, Siecinski SK, Nikolova VD, Cofer GP, Hornburg K, Qi Y, Johnson GA, Jiang YH, Moy SS, Gregory SG. Transcriptome Analysis Identifies An ASD-Like Phenotype In Oligodendrocytes And Microglia From C58/J Amygdala That Is Dependent On Sex and Sociability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575733. [PMID: 38293238 PMCID: PMC10827122 DOI: 10.1101/2024.01.15.575733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Background Autism Spectrum Disorder (ASD) is a group of neurodevelopmental disorders with higher incidence in males and is characterized by atypical verbal/nonverbal communication, restricted interests that can be accompanied by repetitive behavior, and disturbances in social behavior. This study investigated brain mechanisms that contribute to sociability deficits and sex differences in an ASD animal model. Methods Sociability was measured in C58/J and C57BL/6J mice using the 3-chamber social choice test. Bulk RNA-Seq and snRNA-Seq identified transcriptional changes in C58/J and C57BL/6J amygdala within which DMRseq was used to measure differentially methylated regions in amygdala. Results C58/J mice displayed divergent social strata in the 3-chamber test. Transcriptional and pathway signatures revealed immune-related biological processes differ between C58/J and C57BL/6J amygdala. Hypermethylated and hypomethylated genes were identified in C58/J versus C57BL/6J amygdala. snRNA-Seq data in C58/J amygdala identified differential transcriptional signatures within oligodendrocytes and microglia characterized by increased ASD risk gene expression and predicted impaired myelination that was dependent on sex and sociability. RNA velocity, gene regulatory network, and cell communication analysis showed diminished oligodendrocyte/microglia differentiation. Findings were verified using bulk RNA-Seq and demonstrated oxytocin's beneficial effects on myelin gene expression. Limitations Our findings are significant. However, limitations can be noted. The cellular mechanisms linking reduced oligodendrocyte differentiation and reduced myelination to an ASD phenotype in C58/J mice need further investigation. Additional snRNA-Seq and spatial studies would determine if effects in oligodendrocytes/microglia are unique to amygdala or if this occurs in other brain regions. Oxytocin's effects need further examination to understand its potential as an ASD therapeutic. Conclusions Our work demonstrates the C58/J mouse model's utility in evaluating the influence of sex and sociability on the transcriptome in concomitant brain regions involved in ASD. Our single-nucleus transcriptome analysis elucidates potential pathological roles of oligodendrocytes and microglia in ASD. This investigation provides details regarding regulatory features disrupted in these cell types, including transcriptional gene dysregulation, aberrant cell differentiation, altered gene regulatory networks, and changes to key pathways that promote microglia/oligodendrocyte differentiation. Our studies provide insight into interactions between genetic risk and epigenetic processes associated with divergent affiliative behavior and lack of positive sociability.
Collapse
|
45
|
Idei H, Yamashita Y. Elucidating multifinal and equifinal pathways to developmental disorders by constructing real-world neurorobotic models. Neural Netw 2024; 169:57-74. [PMID: 37857173 DOI: 10.1016/j.neunet.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
Vigorous research has been conducted to accumulate biological and theoretical knowledge about neurodevelopmental disorders, including molecular, neural, computational, and behavioral characteristics; however, these findings remain fragmentary and do not elucidate integrated mechanisms. An obstacle is the heterogeneity of developmental pathways causing clinical phenotypes. Additionally, in symptom formations, the primary causes and consequences of developmental learning processes are often indistinguishable. Herein, we review developmental neurorobotic experiments tackling problems related to the dynamic and complex properties of neurodevelopmental disorders. Specifically, we focus on neurorobotic models under predictive processing lens for the study of developmental disorders. By constructing neurorobotic models with predictive processing mechanisms of learning, perception, and action, we can simulate formations of integrated causal relationships among neurodynamical, computational, and behavioral characteristics in the robot agents while considering developmental learning processes. This framework has the potential to bind neurobiological hypotheses (excitation-inhibition imbalance and functional disconnection), computational accounts (unusual encoding of uncertainty), and clinical symptoms. Developmental neurorobotic approaches may serve as a complementary research framework for integrating fragmented knowledge and overcoming the heterogeneity of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Hayato Idei
- Department of Information Medicine, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
| | - Yuichi Yamashita
- Department of Information Medicine, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan.
| |
Collapse
|
46
|
Curatolo P, Scheper M, Emberti Gialloreti L, Specchio N, Aronica E. Is tuberous sclerosis complex-associated autism a preventable and treatable disorder? World J Pediatr 2024; 20:40-53. [PMID: 37878130 DOI: 10.1007/s12519-023-00762-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/10/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND Tuberous sclerosis complex (TSC) is a genetic disorder caused by inactivating mutations in the TSC1 and TSC2 genes, causing overactivation of the mechanistic (previously referred to as mammalian) target of rapamycin (mTOR) signaling pathway in fetal life. The mTOR pathway plays a crucial role in several brain processes leading to TSC-related epilepsy, intellectual disability, and autism spectrum disorder (ASD). Pre-natal or early post-natal diagnosis of TSC is now possible in a growing number of pre-symptomatic infants. DATA SOURCES We searched PubMed for peer-reviewed publications published between January 2010 and April 2023 with the terms "tuberous sclerosis", "autism", or "autism spectrum disorder"," animal models", "preclinical studies", "neurobiology", and "treatment". RESULTS Prospective studies have highlighted that developmental trajectories in TSC infants who were later diagnosed with ASD already show motor, visual and social communication skills in the first year of life delays. Reliable genetic, cellular, electroencephalography and magnetic resonance imaging biomarkers can identify pre-symptomatic TSC infants at high risk for having autism and epilepsy. CONCLUSIONS Preventing epilepsy or improving therapy for seizures associated with prompt and tailored treatment strategies for autism in a sensitive developmental time window could have the potential to mitigate autistic symptoms in infants with TSC.
Collapse
Affiliation(s)
- Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, Rome, Italy
| | - Mirte Scheper
- Department of Neuropathology, Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Leonardo Emberti Gialloreti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Nicola Specchio
- Clinical and Experimental Neurology, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Piazza S. Onofrio 4, 00165, Rome, Italy.
| | - Eleonora Aronica
- Department of Neuropathology, Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Amsterdam, The Netherlands
| |
Collapse
|
47
|
Mehmetbeyoglu E, Duman A, Taheri S, Ozkul Y, Rassoulzadegan M. From Data to Insights: Machine Learning Empowers Prognostic Biomarker Prediction in Autism. J Pers Med 2023; 13:1713. [PMID: 38138941 PMCID: PMC10744627 DOI: 10.3390/jpm13121713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Autism Spectrum Disorder (ASD) poses significant challenges to society and science due to its impact on communication, social interaction, and repetitive behavior patterns in affected children. The Autism and Developmental Disabilities Monitoring (ADDM) Network continuously monitors ASD prevalence and characteristics. In 2020, ASD prevalence was estimated at 1 in 36 children, with higher rates than previous estimates. This study focuses on ongoing ASD research conducted by Erciyes University. Serum samples from 45 ASD patients and 21 unrelated control participants were analyzed to assess the expression of 372 microRNAs (miRNAs). Six miRNAs (miR-19a-3p, miR-361-5p, miR-3613-3p, miR-150-5p, miR-126-3p, and miR-499a-5p) exhibited significant downregulation in all ASD patients compared to healthy controls. The current study endeavors to identify dependable diagnostic biomarkers for ASD, addressing the pressing need for non-invasive, accurate, and cost-effective diagnostic tools, as current methods are subjective and time-intensive. A pivotal discovery in this study is the potential diagnostic value of miR-126-3p, offering the promise of earlier and more accurate ASD diagnoses, potentially leading to improved intervention outcomes. Leveraging machine learning, such as the K-nearest neighbors (KNN) model, presents a promising avenue for precise ASD diagnosis using miRNA biomarkers.
Collapse
Affiliation(s)
- Ecmel Mehmetbeyoglu
- Department of Cancer and Genetics, Cardiff University, Cardiff CF14 4XN, UK
- Betul-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri 38280, Turkey; (S.T.); (Y.O.); (M.R.)
| | - Abdulkerim Duman
- School of Engineering, Cardiff University, Cardiff CF24 3AA, UK;
| | - Serpil Taheri
- Betul-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri 38280, Turkey; (S.T.); (Y.O.); (M.R.)
- Department of Medical Biology, Erciyes University, Kayseri 38280, Turkey
| | - Yusuf Ozkul
- Betul-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri 38280, Turkey; (S.T.); (Y.O.); (M.R.)
- Department of Medical Genetics, Erciyes University, Kayseri 38280, Turkey
| | - Minoo Rassoulzadegan
- Betul-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri 38280, Turkey; (S.T.); (Y.O.); (M.R.)
- Inserm-CNRS, Université Côte d’Azur, 06107 Nice, France
| |
Collapse
|
48
|
Li A, Yang B, Naganawa M, Fontaine K, Toyonaga T, Carson RE, Tang J. Dose reduction in dynamic synaptic vesicle glycoprotein 2A PET imaging using artificial neural networks. Phys Med Biol 2023; 68:245006. [PMID: 37857316 PMCID: PMC10739622 DOI: 10.1088/1361-6560/ad0535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/02/2023] [Accepted: 10/19/2023] [Indexed: 10/21/2023]
Abstract
Objective. Reducing dose in positron emission tomography (PET) imaging increases noise in reconstructed dynamic frames, which inevitably results in higher noise and possible bias in subsequently estimated images of kinetic parameters than those estimated in the standard dose case. We report the development of a spatiotemporal denoising technique for reduced-count dynamic frames through integrating a cascade artificial neural network (ANN) with the highly constrained back-projection (HYPR) scheme to improve low-dose parametric imaging.Approach. We implemented and assessed the proposed method using imaging data acquired with11C-UCB-J, a PET radioligand bound to synaptic vesicle glycoprotein 2A (SV2A) in the human brain. The patch-based ANN was trained with a reduced-count frame and its full-count correspondence of a subject and was used in cascade to process dynamic frames of other subjects to further take advantage of its denoising capability. The HYPR strategy was then applied to the spatial ANN processed image frames to make use of the temporal information from the entire dynamic scan.Main results. In all the testing subjects including healthy volunteers and Parkinson's disease patients, the proposed method reduced more noise while introducing minimal bias in dynamic frames and the resulting parametric images, as compared with conventional denoising methods.Significance. Achieving 80% noise reduction with a bias of -2% in dynamic frames, which translates into 75% and 70% of noise reduction in the tracer uptake (bias, -2%) and distribution volume (bias, -5%) images, the proposed ANN+HYPR technique demonstrates the denoising capability equivalent to a 11-fold dose increase for dynamic SV2A PET imaging with11C-UCB-J.
Collapse
Affiliation(s)
- Andi Li
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States of America
| | - Bao Yang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Mika Naganawa
- Positron Emission Tomography Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States of America
| | - Kathryn Fontaine
- Positron Emission Tomography Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States of America
| | - Takuya Toyonaga
- Positron Emission Tomography Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States of America
| | - Richard E Carson
- Positron Emission Tomography Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States of America
| | - Jing Tang
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States of America
| |
Collapse
|
49
|
Pagani M, Gutierrez-Barragan D, de Guzman AE, Xu T, Gozzi A. Mapping and comparing fMRI connectivity networks across species. Commun Biol 2023; 6:1238. [PMID: 38062107 PMCID: PMC10703935 DOI: 10.1038/s42003-023-05629-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Technical advances in neuroimaging, notably in fMRI, have allowed distributed patterns of functional connectivity to be mapped in the human brain with increasing spatiotemporal resolution. Recent years have seen a growing interest in extending this approach to rodents and non-human primates to understand the mechanism of fMRI connectivity and complement human investigations of the functional connectome. Here, we discuss current challenges and opportunities of fMRI connectivity mapping across species. We underscore the critical importance of physiologically decoding neuroimaging measures of brain (dys)connectivity via multiscale mechanistic investigations in animals. We next highlight a set of general principles governing the organization of mammalian connectivity networks across species. These include the presence of evolutionarily conserved network systems, a dominant cortical axis of functional connectivity, and a common repertoire of topographically conserved fMRI spatiotemporal modes. We finally describe emerging approaches allowing comparisons and extrapolations of fMRI connectivity findings across species. As neuroscientists gain access to increasingly sophisticated perturbational, computational and recording tools, cross-species fMRI offers novel opportunities to investigate the large-scale organization of the mammalian brain in health and disease.
Collapse
Affiliation(s)
- Marco Pagani
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
- Autism Center, Child Mind Institute, New York, NY, USA
- IMT School for Advanced Studies, Lucca, Italy
| | - Daniel Gutierrez-Barragan
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - A Elizabeth de Guzman
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Ting Xu
- Center for the Integrative Developmental Neuroscience, Child Mind Institute, New York, NY, USA
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy.
| |
Collapse
|
50
|
Radwan K, Wu G, Banks-Word K, Rosenberger R. An Open-Label Case Series of Glutathione Use for Symptomatic Management in Children with Autism Spectrum Disorder. Med Sci (Basel) 2023; 11:73. [PMID: 37987328 PMCID: PMC10660524 DOI: 10.3390/medsci11040073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/29/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023] Open
Abstract
Autism spectrum disorder (ASD) is a type of neurodevelopmental disorder that has been diagnosed in an increasing number of children around the world. The existing data suggest that early diagnosis and intervention can improve ASD outcomes. The causes of ASD remain complex and unclear, and there are currently no clinical biomarkers for autism spectrum disorder. There is an increasing recognition that ASD might be associated with oxidative stress through several mechanisms including abnormal metabolism (lipid peroxidation) and the toxic buildup of reactive oxygen species (ROS). Glutathione acts as an antioxidant, a free radical scavenger and a detoxifying agent. This open-label pilot study investigates the tolerability and effectiveness of oral supplementation with OpitacTM gluthathione as a treatment for patients with ASD. The various aspects of glutathione OpitacTM glutathione bioavailability were examined when administered by oral routes. The absorption of glutathione from the gastrointestinal tract has been recently investigated. The results of this case series suggest that oral glutathione supplementation may improve oxidative markers, but this does not necessarily translate to the observed clinical improvement of subjects with ASD. The study reports a good safety profile of glutathione use, with stomach upset reported in four out of six subjects. This article discusses the role of the gut microbiome and redox balance in ASD and notes that a high baseline oxidative burden may make some patients poor responders to glutathione supplementation. In conclusion, an imbalance in redox reactions is only one of the many factors contributing to ASD, and further studies are necessary to investigate other factors, such as impaired neurotransmission, immune dysregulation in the brain, and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Karam Radwan
- Department of Psychiatry & Behavioral Neuroscience, University of Chicago Medical Center, Chicago, IL 60637, USA (R.R.)
| | - Gary Wu
- Department of Psychiatry & Behavioral Sciences, Rosalind Franklin University, North Chicago, IL 60064, USA;
| | - Kamilah Banks-Word
- Department of Psychiatry & Behavioral Neuroscience, University of Chicago Medical Center, Chicago, IL 60637, USA (R.R.)
| | - Ryan Rosenberger
- Department of Psychiatry & Behavioral Neuroscience, University of Chicago Medical Center, Chicago, IL 60637, USA (R.R.)
| |
Collapse
|