1
|
Gul I, Isham IM, Najimudeen SM, Hassan A, Haq E, Shah RA, Ganai NA, Ahmad SM, Chikan NA, Abdul-Careem MF, Shabir N. An integrated in silico and ex vivo study identifies quinazolinedione L134716 as a potential inhibitor of infectious bronchitis virus. Vet Res Commun 2025; 49:175. [PMID: 40261587 DOI: 10.1007/s11259-025-10742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/14/2025] [Indexed: 04/24/2025]
Abstract
Infectious Bronchitis Virus (IBV) poses a persistent threat to poultry health and productivity, resulting in substantial economic losses. Despite the deployment of live attenuated and inactivated vaccines, effective control of IBV remains challenging, emphasizing the need for alternative strategies to manage infections. This study identifies dual inhibitors targeting the main protease (Mpro) and papain-like protease (PLpro) of infectious bronchitis virus (IBV) using a combinatorial in silico and ex vivo approach. Screening of the MyriaScreen Diversity Library II, comprising 10,000 diverse small molecules, resulted in the selection of two promising compounds, ST092577 and L134716, based on their strong and stable interactions with both proteases. Molecular dynamics (MD) simulations further confirmed the stability of these complexes, with their binding interactions validated through MM-PBSA binding free energy calculations. Ex vivo validation utilizing tracheal organ cultures and quantitative PCR demonstrated that 50 µM of L134716 (4-(4-(benzyloxy)ph)-7,7-dimethyl-4,6,7,8-tetrahydro-2,5(1 H,3 H)-quinazolinedione) significantly reduced the IBV genome load in infected tracheal rings. This reduction in viral load was further corroborated by immunohistochemical analysis. These findings underscore the promising potential of targeting key viral proteases Mpro and PLpro as part of alternative therapeutic strategies against IBV infections in poultry. While the results are encouraging, additional in ovo and in vivo studies are necessary to validate these findings and further explore the efficacy of L134716 in practical applications.
Collapse
Affiliation(s)
- Irfan Gul
- Laboratory of Vaccine Biotechnology, Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e- Kashmir University of Agricultural Sciences and Technology, Shuhama, Kashmir, 190006, India
- Department of Biotechnology, University of Kashmir, Srinagar, 190006, India
| | - Ishara M Isham
- Health Research Innovation Centre, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2 N 4 N1, Canada
| | - Shahnas M Najimudeen
- Health Research Innovation Centre, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2 N 4 N1, Canada
| | - Amreena Hassan
- Laboratory of Vaccine Biotechnology, Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e- Kashmir University of Agricultural Sciences and Technology, Shuhama, Kashmir, 190006, India
- Department of Biotechnology, University of Kashmir, Srinagar, 190006, India
| | - Ehtishamul Haq
- Department of Biotechnology, University of Kashmir, Srinagar, 190006, India
| | - Riaz Ahmad Shah
- Laboratory of Vaccine Biotechnology, Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e- Kashmir University of Agricultural Sciences and Technology, Shuhama, Kashmir, 190006, India
| | - Nazir Ahmad Ganai
- Laboratory of Vaccine Biotechnology, Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e- Kashmir University of Agricultural Sciences and Technology, Shuhama, Kashmir, 190006, India
| | - Syed Mudasir Ahmad
- Laboratory of Vaccine Biotechnology, Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e- Kashmir University of Agricultural Sciences and Technology, Shuhama, Kashmir, 190006, India
| | - Naveed Anjum Chikan
- Division of Computational Biology, Daskdan Innovations, PVT Ltd., Kashmir, 190006, India
| | - Mohamed Faizal Abdul-Careem
- Health Research Innovation Centre, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2 N 4 N1, Canada.
| | - Nadeem Shabir
- Laboratory of Vaccine Biotechnology, Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e- Kashmir University of Agricultural Sciences and Technology, Shuhama, Kashmir, 190006, India.
| |
Collapse
|
2
|
Dong B, Chen Y, Wang X, Li J, Zhang S, Kang X, Li Y, Li B, Liao L, Zhang Z, Xiong J, Shao L, Huang S, Feng Y, Jiang T. Development of a highly sensitive luciferase assay for intracellular evaluation of coronavirus Mpro activity. Front Microbiol 2025; 16:1560251. [PMID: 40241735 PMCID: PMC12000094 DOI: 10.3389/fmicb.2025.1560251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/06/2025] [Indexed: 04/18/2025] Open
Abstract
COVID-19, caused by SARS-CoV-2 virus, has emerged as a global threat to human health. The main protease (Mpro) of SARS-CoV-2 is an excellent target for the development of antiviral drugs against COVID-19, and various protease biosensors have been developed to evaluate anti-coronavirus drugs. However, the application of these protease biosensors was limited due to high background fluorescence, poor signal-to-noise ratios, and constraints in enzyme activity thresholds for accessing live viruses. In this study, we rationally designed a highly conserved Mpro cleavage site sequence among different coronaviruses (CoVs) with high proteolytic activity, and described an intracellular coronavirus Mpro proteolytic (ICMP) reporter system that takes advantage of virus-encoded Mpro expressed in infected cells to reform the NanoBiT fluorescent protein. The system can be used to visualize and identify cells infected with coronavirus, and demonstrated high compatibility with various Mpro proteins from 13 different mammalian coronaviruses (covering α, β, γ, and δ CoVs), exhibiting at least a 1,030-fold increase in luminescence. Stronger Nluc signals were detectable with CoV 229E virus infection at a MOI of 0.001. Additionally, the system proved suitable for evaluating and screening of antiviral compounds, including lufotrelvir, GC376, Nirmatrelvir, X77, MG-101, and the potential inhibitor Cynaroside. The ICMP system is not only an invaluable tool for the detection of live coronaviruses, but also for the discovery of antivirals against current and future pandemic coronaviruses.
Collapse
Affiliation(s)
- Bao Dong
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Yuehong Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Xin Wang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Jing Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Sen Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Xiaoping Kang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Yuchang Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Biao Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Liangning Liao
- School of Public Health, Mudanjiang Medical University, Mudanjiang, China
| | - Zhengwei Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jiaqi Xiong
- School of Public Health, Mudanjiang Medical University, Mudanjiang, China
| | - Lele Shao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shenghai Huang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ye Feng
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Tao Jiang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
- School of Public Health, Mudanjiang Medical University, Mudanjiang, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Teixeira AP, Franko N, Fussenegger M. Engineering Gene and Protein Switches for Regulation of Lineage-Specifying Transcription Factors. Biotechnol Bioeng 2025; 122:1051-1061. [PMID: 39801452 DOI: 10.1002/bit.28920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 03/12/2025]
Abstract
Human pluripotent stem cells (hPSCs) can be differentiated in vitro to an increasing number of mature cell types, presenting significant promise for addressing a wide range of diseases and studying human development. One approach to further enhance stem cell differentiation methods would be to coordinate multiple inducible gene or protein switches to operate simultaneously within the same cell, with minimal cross-interference, to precisely regulate a network of lineage-specifying transcription factors (TFs) to guide cell fate decisions. Therefore, in this study, we designed and tested various mammalian gene and protein switches responsive to clinically safe small-molecule inhibitors of viral proteases. First, we leveraged hepatitis C virus and human rhinovirus proteases to control the activity of chimeric transcription factors, enabling gene expression activation exclusively in the presence of protease inhibitors and achieving high fold-inductions in hPSC lines. Second, we built single-chain protein switches regulating the activity of three differentiation-related pancreatic TFs, MafA, Pdx1, and Ngn3, each engineered with a protease cleavage site within its structure and having the corresponding protease fused at one terminus. While variants lacking the protease retained most of the unmodified TF activity, the attachment of the protease significantly decreased the activity, which could be rescued upon addition of the corresponding protease inhibitor. We confirmed the functionality of these protein switches for simultaneously controlling the activity of three TFs with a common input molecule, as well as the orthogonality of each protease-based system to independently regulate two TFs. Finally, we validated these very compact systems for precisely controlling TF activity in hPSCs. Our results suggest that they will be valuable tools for research in both developmental biology and regenerative medicine.
Collapse
Affiliation(s)
- Ana P Teixeira
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Nik Franko
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
Li M, Bei ZC, Yuan Y, Wang B, Zhang D, Xu L, Zhao L, Xu Q, Song Y. In-cell bioluminescence resonance energy transfer (BRET)-based assay uncovers ceritinib and CA-074 as SARS-CoV-2 papain-like protease inhibitors. J Enzyme Inhib Med Chem 2024; 39:2387417. [PMID: 39163165 PMCID: PMC11338211 DOI: 10.1080/14756366.2024.2387417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024] Open
Abstract
Papain-like protease (PLpro) is an attractive anti-coronavirus target. The development of PLpro inhibitors, however, is hampered by the limitations of the existing PLpro assay and the scarcity of validated active compounds. We developed a novel in-cell PLpro assay based on BRET and used it to evaluate and discover SARS-CoV-2 PLpro inhibitors. The developed assay demonstrated remarkable sensitivity for detecting the reduction of intracellular PLpro activity while presenting high reliability and performance for inhibitor evaluation and high-throughput screening. Using this assay, three protease inhibitors were identified as novel PLpro inhibitors that are structurally disparate from those previously known. Subsequent enzymatic assays and ligand-protein interaction analysis based on molecular docking revealed that ceritinib directly inhibited PLpro, showing high geometric complementarity with the substrate-binding pocket in PLpro, whereas CA-074 methyl ester underwent intracellular hydrolysis, exposing a free carboxyhydroxyl group essential for hydrogen bonding with G266 in the BL2 groove, resulting in PLpro inhibition.
Collapse
Affiliation(s)
- Mei Li
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Zhu-Chun Bei
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Yongtian Yuan
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Baogang Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Dongna Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Likun Xu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Liangliang Zhao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Qin Xu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yabin Song
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Galvan S, Teixeira AP, Fussenegger M. Enhancing cell-based therapies with synthetic gene circuits responsive to molecular stimuli. Biotechnol Bioeng 2024; 121:2987-3000. [PMID: 38867466 DOI: 10.1002/bit.28770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/21/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024]
Abstract
Synthetic biology aims to contribute to the development of next-generation patient-specific cell-based therapies for chronic diseases especially through the construction of sophisticated synthetic gene switches to enhance the safety and spatiotemporal controllability of engineered cells. Indeed, switches that sense and process specific cues, which may be either externally administered triggers or endogenous disease-associated molecules, have emerged as powerful tools for programming and fine-tuning therapeutic outputs. Living engineered cells, often referred to as designer cells, incorporating such switches are delivered to patients either as encapsulated cell implants or by infusion, as in the case of the clinically approved CAR-T cell therapies. Here, we review recent developments in synthetic gene switches responsive to molecular stimuli, spanning regulatory mechanisms acting at the transcriptional, translational, and posttranslational levels. We also discuss current challenges facing clinical translation of cell-based therapies employing these devices.
Collapse
Affiliation(s)
- Silvia Galvan
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Ana P Teixeira
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| |
Collapse
|
6
|
Mansouri M, Fussenegger M. Small-Molecule Regulators for Gene Switches to Program Mammalian Cell Behaviour. Chembiochem 2024; 25:e202300717. [PMID: 38081780 DOI: 10.1002/cbic.202300717] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/11/2023] [Indexed: 01/13/2024]
Abstract
Synthetic or natural small molecules have been extensively employed as trigger signals or inducers to regulate engineered gene circuits introduced into living cells in order to obtain desired outputs in a controlled and predictable manner. Here, we provide an overview of small molecules used to drive synthetic-biology-based gene circuits in mammalian cells, together with examples of applications at different levels of control, including regulation of DNA manipulation, RNA synthesis and editing, and protein synthesis, maturation, and trafficking. We also discuss the therapeutic potential of these small-molecule-responsive gene circuits, focusing on the advantages and disadvantages of using small molecules as triggers, the mechanisms involved, and the requirements for selecting suitable molecules, including efficiency, specificity, orthogonality, and safety. Finally, we explore potential future directions for translation of these devices to clinical medicine.
Collapse
Affiliation(s)
- Maysam Mansouri
- ETH Zurich, Department of Biosystems Science and Engineering, Klingelbergstrasse 48, CH-4056, Basel, Switzerland
| | - Martin Fussenegger
- ETH Zurich, Department of Biosystems Science and Engineering, Klingelbergstrasse 48, CH-4056, Basel, Switzerland
- University of Basel, Faculty of Science, Klingelbergstrasse 48, CH-4056, Basel, Switzerland
| |
Collapse
|
7
|
Teixeira AP, Fussenegger M. Synthetic Gene Circuits for Regulation of Next-Generation Cell-Based Therapeutics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309088. [PMID: 38126677 PMCID: PMC10885662 DOI: 10.1002/advs.202309088] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Indexed: 12/23/2023]
Abstract
Arming human cells with synthetic gene circuits enables to expand their capacity to execute superior sensing and response actions, offering tremendous potential for innovative cellular therapeutics. This can be achieved by assembling components from an ever-expanding molecular toolkit, incorporating switches based on transcriptional, translational, or post-translational control mechanisms. This review provides examples from the three classes of switches, and discusses their advantages and limitations to regulate the activity of therapeutic cells in vivo. Genetic switches designed to recognize internal disease-associated signals often encode intricate actuation programs that orchestrate a reduction in the sensed signal, establishing a closed-loop architecture. Conversely, switches engineered to detect external molecular or physical cues operate in an open-loop fashion, switching on or off upon signal exposure. The integration of such synthetic gene circuits into the next generation of chimeric antigen receptor T-cells is already enabling precise calibration of immune responses in terms of magnitude and timing, thereby improving the potency and safety of therapeutic cells. Furthermore, pre-clinical engineered cells targeting other chronic diseases are gathering increasing attention, and this review discusses the path forward for achieving clinical success. With synthetic biology at the forefront, cellular therapeutics holds great promise for groundbreaking treatments.
Collapse
Affiliation(s)
- Ana P. Teixeira
- Department of Biosystems Science and EngineeringETH ZurichKlingelbergstrasse 48BaselCH‐4056Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and EngineeringETH ZurichKlingelbergstrasse 48BaselCH‐4056Switzerland
- Faculty of ScienceUniversity of BaselKlingelbergstrasse 48BaselCH‐4056Switzerland
| |
Collapse
|
8
|
Franko N, da Silva Santinha AJ, Xue S, Zhao H, Charpin-El Hamri G, Platt RJ, Teixeira AP, Fussenegger M. Integrated compact regulators of protein activity enable control of signaling pathways and genome-editing in vivo. Cell Discov 2024; 10:9. [PMID: 38263404 PMCID: PMC10805712 DOI: 10.1038/s41421-023-00632-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 12/02/2023] [Indexed: 01/25/2024] Open
Abstract
Viral proteases and clinically safe inhibitors were employed to build integrated compact regulators of protein activity (iCROP) for post-translational regulation of functional proteins by tunable proteolytic activity. In the absence of inhibitor, the co-localized/fused protease cleaves a target peptide sequence introduced in an exposed loop of the protein of interest, irreversibly fragmenting the protein structure and destroying its functionality. We selected three proteases and demonstrated the versatility of the iCROP framework by validating it to regulate the functional activity of ten different proteins. iCROP switches can be delivered either as mRNA or DNA, and provide rapid actuation kinetics with large induction ratios, while remaining strongly suppressed in the off state without inhibitor. iCROPs for effectors of the NF-κB and NFAT signaling pathways were assembled and confirmed to enable precise activation/inhibition of downstream events in response to protease inhibitors. In lipopolysaccharide-treated mice, iCROP-sr-IκBα suppressed cytokine release ("cytokine storm") by rescuing the activity of IκBα, which suppresses NF-κB signaling. We also constructed compact inducible CRISPR-(d)Cas9 variants and showed that iCROP-Cas9-mediated knockout of the PCSK9 gene in the liver lowered blood LDL-cholesterol levels in mice. iCROP-based protein switches will facilitate protein-level regulation in basic research and translational applications.
Collapse
Affiliation(s)
- Nik Franko
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Shuai Xue
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Haijie Zhao
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Ghislaine Charpin-El Hamri
- Département Génie Biologique, Institut Universitaire de Technologie, Université Claude Bernard Lyon 1, Villeurbanne, Cedex, France
| | | | - Ana Palma Teixeira
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
- Faculty of Science, University of Basel, Basel, Switzerland.
| |
Collapse
|
9
|
Teixeira AP, Xue S, Huang J, Fussenegger M. Evolution of molecular switches for regulation of transgene expression by clinically licensed gluconate. Nucleic Acids Res 2023; 51:e85. [PMID: 37497781 PMCID: PMC10450161 DOI: 10.1093/nar/gkad600] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/22/2023] [Accepted: 07/16/2023] [Indexed: 07/28/2023] Open
Abstract
Synthetic biology holds great promise to improve the safety and efficacy of future gene and engineered cell therapies by providing new means of endogenous or exogenous control of the embedded therapeutic programs. Here, we focused on gluconate as a clinically licensed small-molecule inducer and engineered gluconate-sensitive molecular switches to regulate transgene expression in human cell cultures and in mice. Several switch designs were assembled based on the gluconate-responsive transcriptional repressor GntR from Escherichia coli. Initially we assembled OFF- and ON-type switches by rewiring the native gluconate-dependent binding of GntR to target DNA sequences in mammalian cells. Then, we utilized the ability of GntR to dimerize in the presence of gluconate to activate gene expression from a split transcriptional activator. By means of random mutagenesis of GntR combined with phenotypic screening, we identified variants that significantly enhanced the functionality of the genetic devices, enabling the construction of robust two-input logic gates. We also demonstrated the potential utility of the synthetic switch in two in vivo settings, one employing implantation of alginate-encapsulated engineered cells and the other involving modification of host cells by DNA delivery. Then, as proof-of-concept, the gluconate-actuated genetic switch was connected to insulin secretion, and the components encoding gluconate-induced insulin production were introduced into type-1 diabetic mice as naked DNA via hydrodynamic tail vein injection. Normoglycemia was restored, thereby showcasing the suitability of oral gluconate to regulate in situ production of a therapeutic protein.
Collapse
Affiliation(s)
- Ana Palma Teixeira
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058Basel, Switzerland
| | - Shuai Xue
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058Basel, Switzerland
| | - Jinbo Huang
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058Basel, Switzerland
- Faculty of Science, University of Basel, Mattenstrasse 26, CH-4058Basel, Switzerland
| |
Collapse
|
10
|
Bressler EM, Adams S, Liu R, Colson YL, Wong WW, Grinstaff MW. Boolean logic in synthetic biology and biomaterials: Towards living materials in mammalian cell therapeutics. Clin Transl Med 2023; 13:e1244. [PMID: 37386762 PMCID: PMC10310979 DOI: 10.1002/ctm2.1244] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND The intersection of synthetic biology and biomaterials promises to enhance safety and efficacy in novel therapeutics. Both fields increasingly employ Boolean logic, which allows for specific therapeutic outputs (e.g., drug release, peptide synthesis) in response to inputs such as disease markers or bio-orthogonal stimuli. Examples include stimuli-responsive drug delivery devices and logic-gated chimeric antigen receptor (CAR) T cells. In this review, we explore recent manuscripts highlighting the potential of synthetic biology and biomaterials with Boolean logic to create novel and efficacious living therapeutics. MAIN BODY Collaborations in synthetic biology and biomaterials have led to significant advancements in drug delivery and cell therapy. Borrowing from synthetic biology, researchers have created Boolean-responsive biomaterials sensitive to multiple inputs including pH, light, enzymes and more to produce functional outputs such as degradation, gel-sol transition and conformational change. Biomaterials also enhance synthetic biology, particularly CAR T and adoptive T cell therapy, by modulating therapeutic immune cells in vivo. Nanoparticles and hydrogels also enable in situ generation of CAR T cells, which promises to drive down production costs and expand access to these therapies to a larger population. Biomaterials are also used to interface with logic-gated CAR T cell therapies, creating controllable cellular therapies that enhance safety and efficacy. Finally, designer cells acting as living therapeutic factories benefit from biomaterials that improve biocompatibility and stability in vivo. CONCLUSION By using Boolean logic in both cellular therapy and drug delivery devices, researchers have achieved better safety and efficacy outcomes. While early projects show incredible promise, coordination between these fields is ongoing and growing. We expect that these collaborations will continue to grow and realize the next generation of living biomaterial therapeutics.
Collapse
Affiliation(s)
- Eric M. Bressler
- Department of Biomedical Engineering and Biological Design CenterBoston UniversityBostonMassachusettsUSA
| | - Sarah Adams
- Department of Biomedical Engineering and Biological Design CenterBoston UniversityBostonMassachusettsUSA
| | - Rong Liu
- Division of Thoracic SurgeryDepartment of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Yolonda L. Colson
- Division of Thoracic SurgeryDepartment of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Wilson W. Wong
- Department of Biomedical Engineering and Biological Design CenterBoston UniversityBostonMassachusettsUSA
| | - Mark W. Grinstaff
- Department of Biomedical Engineering and Biological Design CenterBoston UniversityBostonMassachusettsUSA
- Department of Chemistry and Department of Biomedical EngineeringBoston UniversityBostonMassachusettsUSA
| |
Collapse
|
11
|
Liang Q, Huang Y, Wang M, Kuang D, Yang J, Yi Y, Shi H, Li J, Yang J, Li G. An electrochemical biosensor for SARS-CoV-2 detection via its papain-like cysteine protease and the protease inhibitor screening. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2023; 452:139646. [PMID: 36249721 PMCID: PMC9549716 DOI: 10.1016/j.cej.2022.139646] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/21/2022] [Accepted: 10/04/2022] [Indexed: 05/04/2023]
Abstract
The persistent coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is still infecting hundreds of thousands of people every day. Enriching the kits for SARS-CoV-2 detection and developing the drugs for patient treatments are still urgently needed for combating the spreading virus, especially after the emergence of various mutants. Herein, an electrochemical biosensor has been fabricated in this work for the detection of SARS-CoV-2 via its papain-like cysteine protease (PLpro) and the screening of protease inhibitor against SARS-CoV-2 by using our designed chimeric peptide-DNA (pDNA) nanoprobes. Utilizing this biosensor, the sensitive and specific detection of SARS-CoV-2 PLpro can be conducted in complex real environments including blood and saliva. Five positive and five negative patient throat swab samples have also been tested to verify the practical application capability of the biosensor. Moreover, we have obtained a detection limit of 27.18 fM and a linear detection range from 1 pg mL-1 to 10 μg mL-1 (I = 1.63 + 4.44 lgC). Meanwhile, rapid inhibitor screening against SARS-CoV-2 PLpro can be also obtained. Therefore, this electrochemical biosensor has the great potential for COVID-19 combating and drug development.
Collapse
Affiliation(s)
- Qizhi Liang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Yue Huang
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Minghui Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Deqi Kuang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Jiahua Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Yongxiang Yi
- Department of Clinical Laboratory, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, PR China
| | - Hai Shi
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Jinlong Li
- Department of Clinical Laboratory, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, PR China
| | - Jie Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Genxi Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| |
Collapse
|
12
|
Lei S, Chen X, Wu J, Duan X, Men K. Small molecules in the treatment of COVID-19. Signal Transduct Target Ther 2022; 7:387. [PMID: 36464706 PMCID: PMC9719906 DOI: 10.1038/s41392-022-01249-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 12/11/2022] Open
Abstract
The outbreak of COVID-19 has become a global crisis, and brought severe disruptions to societies and economies. Until now, effective therapeutics against COVID-19 are in high demand. Along with our improved understanding of the structure, function, and pathogenic process of SARS-CoV-2, many small molecules with potential anti-COVID-19 effects have been developed. So far, several antiviral strategies were explored. Besides directly inhibition of viral proteins such as RdRp and Mpro, interference of host enzymes including ACE2 and proteases, and blocking relevant immunoregulatory pathways represented by JAK/STAT, BTK, NF-κB, and NLRP3 pathways, are regarded feasible in drug development. The development of small molecules to treat COVID-19 has been achieved by several strategies, including computer-aided lead compound design and screening, natural product discovery, drug repurposing, and combination therapy. Several small molecules representative by remdesivir and paxlovid have been proved or authorized emergency use in many countries. And many candidates have entered clinical-trial stage. Nevertheless, due to the epidemiological features and variability issues of SARS-CoV-2, it is necessary to continue exploring novel strategies against COVID-19. This review discusses the current findings in the development of small molecules for COVID-19 treatment. Moreover, their detailed mechanism of action, chemical structures, and preclinical and clinical efficacies are discussed.
Collapse
Affiliation(s)
- Sibei Lei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xiaohua Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jieping Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xingmei Duan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
13
|
Nepali K, Sharma R, Sharma S, Thakur A, Liou JP. Beyond the vaccines: a glance at the small molecule and peptide-based anti-COVID19 arsenal. J Biomed Sci 2022; 29:65. [PMID: 36064696 PMCID: PMC9444709 DOI: 10.1186/s12929-022-00847-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/16/2022] [Indexed: 02/08/2023] Open
Abstract
Unprecedented efforts of the researchers have been witnessed in the recent past towards the development of vaccine platforms for the control of the COVID-19 pandemic. Albeit, vaccination stands as a practical strategy to prevent SARS-CoV-2 infection, supplementing the anti-COVID19 arsenal with therapeutic options such as small molecules/peptides and antibodies is being conceived as a prudent strategy to tackle the emerging SARS-CoV-2 variants. Noteworthy to mention that collective efforts from numerous teams have led to the generation of a voluminous library composed of chemically and mechanistically diverse small molecules as anti-COVID19 scaffolds. This review article presents an overview of medicinal chemistry campaigns and drug repurposing programs that culminated in the identification of a plethora of small molecule-based anti-COVID19 drugs mediating their antiviral effects through inhibition of proteases, S protein, RdRp, ACE2, TMPRSS2, cathepsin and other targets. In light of the evidence ascertaining the potential of small molecule drugs to approach conserved proteins required for the viral replication of all coronaviruses, accelerated FDA approvals are anticipated for small molecules for the treatment of COVID19 shortly. Though the recent attempts invested in this direction in pursuit of enrichment of the anti-COVID-19 armoury (chemical tools) are praiseworthy, some strategies need to be implemented to extract conclusive benefits of the recently reported small molecule viz. (i) detailed preclinical investigation of the generated anti-COVID19 scaffolds (ii) in-vitro profiling of the inhibitors against the emerging SARS-CoV-2 variants (iii) development of assays enabling rapid screening of the libraries of anti-COVID19 scaffold (iv) leveraging the applications of machine learning based predictive models to expedite the anti-COVID19 drug discovery campaign (v) design of antibody-drug conjugates.
Collapse
Affiliation(s)
- Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
- TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, 11031, Taiwan
| | - Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Sachin Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
- TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
14
|
Moghadasi SA, Esler MA, Otsuka Y, Becker JT, Moraes SN, Anderson CB, Chamakuri S, Belica C, Wick C, Harki DA, Young DW, Scampavia L, Spicer TP, Shi K, Aihara H, Brown WL, Harris RS. Gain-of-Signal Assays for Probing Inhibition of SARS-CoV-2 M pro/3CL pro in Living Cells. mBio 2022; 13:e0078422. [PMID: 35471084 PMCID: PMC9239272 DOI: 10.1128/mbio.00784-22] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
The main protease, Mpro, of SARS-CoV-2 is required to cleave the viral polyprotein into precise functional units for virus replication and pathogenesis. Here, we report quantitative reporters for Mpro function in living cells in which protease inhibition by genetic or chemical methods results in robust signal readouts by fluorescence (enhanced green fluorescent protein [eGFP]) or bioluminescence (firefly luciferase). These gain-of-signal systems are scalable to high-throughput platforms for quantitative discrimination between Mpro mutants and/or inhibitor potencies as evidenced by validation of several reported inhibitors. Additional utility is shown by single Mpro amino acid variants and structural information combining to demonstrate that both inhibitor conformational dynamics and amino acid differences are able to influence inhibitor potency. We further show that a recent variant of concern (Omicron) has an unchanged response to a clinically approved drug, nirmatrelvir, whereas proteases from divergent coronavirus species show differential susceptibility. Together, we demonstrate that these gain-of-signal systems serve as robust, facile, and scalable assays for live cell quantification of Mpro inhibition, which will help expedite the development of next-generation antivirals and enable the rapid testing of emerging variants. IMPORTANCE The main protease, Mpro, of SARS-CoV-2 is an essential viral protein required for the earliest steps of infection. It is therefore an attractive target for antiviral drug development. Here, we report the development and implementation of two complementary cell-based systems for quantification of Mpro inhibition by genetic or chemical approaches. The first is fluorescence based (eGFP), and the second is luminescence based (firefly luciferase). Importantly, both systems rely upon gain-of-signal readouts such that stronger inhibitors yield higher fluorescent or luminescent signal. The high versatility and utility of these systems are demonstrated by characterizing Mpro mutants and natural variants, including Omicron, as well as a panel of existing inhibitors. These systems rapidly, safely, and sensitively identify Mpro variants with altered susceptibilities to inhibition, triage-nonspecific, or off-target molecules and validate bona fide inhibitors, with the most potent thus far being the first-in-class drug nirmatrelvir.
Collapse
Affiliation(s)
- Seyed Arad Moghadasi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Morgan A. Esler
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yuka Otsuka
- Department of Molecular Medicine, Scripps Research, The Scripps Research Molecular Screening Center, Jupiter, Florida, USA
| | - Jordan T. Becker
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sofia N. Moraes
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Constance B. Anderson
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Srinivas Chamakuri
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - Christopher Belica
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Chloe Wick
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Daniel A. Harki
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Damian W. Young
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Louis Scampavia
- Department of Molecular Medicine, Scripps Research, The Scripps Research Molecular Screening Center, Jupiter, Florida, USA
| | - Timothy P. Spicer
- Department of Molecular Medicine, Scripps Research, The Scripps Research Molecular Screening Center, Jupiter, Florida, USA
| | - Ke Shi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
| | - William L. Brown
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
15
|
Fink T, Jerala R. Designed protease-based signaling networks. Curr Opin Chem Biol 2022; 68:102146. [DOI: 10.1016/j.cbpa.2022.102146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 12/27/2022]
|
16
|
Macip G, Garcia-Segura P, Mestres-Truyol J, Saldivar-Espinoza B, Pujadas G, Garcia-Vallvé S. A Review of the Current Landscape of SARS-CoV-2 Main Protease Inhibitors: Have We Hit the Bullseye Yet? Int J Mol Sci 2021; 23:259. [PMID: 35008685 PMCID: PMC8745775 DOI: 10.3390/ijms23010259] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/24/2021] [Accepted: 12/25/2021] [Indexed: 01/01/2023] Open
Abstract
In this review, we collected 1765 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) M-pro inhibitors from the bibliography and other sources, such as the COVID Moonshot project and the ChEMBL database. This set of inhibitors includes only those compounds whose inhibitory capacity, mainly expressed as the half-maximal inhibitory concentration (IC50) value, against M-pro from SARS-CoV-2 has been determined. Several covalent warheads are used to treat covalent and non-covalent inhibitors separately. Chemical space, the variation of the IC50 inhibitory activity when measured by different methods or laboratories, and the influence of 1,4-dithiothreitol (DTT) are discussed. When available, we have collected the values of inhibition of viral replication measured with a cellular antiviral assay and expressed as half maximal effective concentration (EC50) values, and their possible relationship to inhibitory potency against M-pro is analyzed. Finally, the most potent covalent and non-covalent inhibitors that simultaneously inhibit the SARS-CoV-2 M-pro and the virus replication in vitro are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Gerard Pujadas
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Campus Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Catalonia, Spain; (G.M.); (P.G.-S.); (J.M.-T.); (B.S.-E.)
| | - Santiago Garcia-Vallvé
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Campus Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Catalonia, Spain; (G.M.); (P.G.-S.); (J.M.-T.); (B.S.-E.)
| |
Collapse
|