1
|
Xie LB, Sun LN, Zhang ZW, Chen YE, Yuan M, Yuan S. Phenotype Assessment and Putative Mechanisms of Ammonium Toxicity to Plants. Int J Mol Sci 2025; 26:2606. [PMID: 40141246 PMCID: PMC11941816 DOI: 10.3390/ijms26062606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/06/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025] Open
Abstract
Ammonium (NH4+) and nitrate (NO3-) are the primary inorganic nitrogen (N) sources that exert influence on plant growth and development. Nevertheless, when NH4+ constitutes the sole or dominant N source, it can inhibit plant growth, a process also known as ammonium toxicity. Over multiple decades, researchers have shown increasing interest in the primary causes, mechanisms, and detoxification strategies of ammonium toxicity. Despite this progress, the current investigations into the mechanisms of ammonium toxicity remain equivocal. This review initially presents a comprehensive assessment of phenotypes induced by ammonium toxicity. Additionally, this review also recapitulates the existing mechanisms of ammonium toxicity, such as ion imbalance, disruption of the phytohormones homeostasis, ROS (reactive oxygen species) burst, energy expenditure, and rhizosphere acidification. We conclude that alterations in carbon-nitrogen (C-N) metabolism induced by high NH4+ may be one of the main reasons for ammonium toxicity and that SnRK1 (Sucrose non-fermenting 1-related kinase) might be involved in this process. The insights proffered in this review will facilitate the exploration of NH4+ tolerance mechanisms and the development of NH4+-tolerant crops in agricultural industries.
Collapse
Affiliation(s)
- Lin-Bei Xie
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (L.-B.X.); (L.-N.S.); (Z.-W.Z.)
| | - Li-Na Sun
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (L.-B.X.); (L.-N.S.); (Z.-W.Z.)
| | - Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (L.-B.X.); (L.-N.S.); (Z.-W.Z.)
| | - Yang-Er Chen
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.-E.C.); (M.Y.)
| | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.-E.C.); (M.Y.)
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (L.-B.X.); (L.-N.S.); (Z.-W.Z.)
| |
Collapse
|
2
|
Zhou M, Ye JY, Shi YJ, Jiang YJ, Zhuang Y, Zhu QY, Liu XX, Ding ZJ, Zheng SJ, Jin CW. Apoplastic pH is a chemical switch for extracellular H 2O 2 signaling in abscisic acid-mediated inhibition of cotyledon greening. THE NEW PHYTOLOGIST 2025; 245:2600-2615. [PMID: 39834016 DOI: 10.1111/nph.20400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/22/2024] [Indexed: 01/22/2025]
Abstract
The apoplastic pH (pHApo) in plants is susceptible to environmental stimuli. However, the biological implications of pHApo variation have remained largely unknown. The universal stress phytohormone abscisic acid (ABA) as well as the major environmental stimuli drought and salinity were selected as representative cases to investigate how changes in pHApo relate to plant behaviors in Arabidopsis. Variations in pHApo negatively regulated the cotyledon greening inhibition to the universal stress hormone ABA or environmental stimuli through the action of extracellular hydrogen peroxide (eH2O2). Further studies revealed that an increase in pHApo diminishes the chemical reactivity of eH2O2, effectively functioning as an 'off' switch for its action in oxidizing thiols of plasma membrane proteins. Consequently, this suppresses the eH2O2-mediated cotyledon greening inhibition to environmental stimuli and ABA, alongside inhibiting the eH2O2-mediated intracellular Ca2+ signaling. Conversely, a decrease in pHApo serves as an 'on' switch for the action of eH2O2. In summary, the pHApo is a crucial messenger and chemical switch for eH2O2 in signal transduction, notwithstanding the apparent simplicity of the underlying mechanism. Our findings provide a novel fundamental biological insight into the significance of pH.
Collapse
Affiliation(s)
- Miao Zhou
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou, 310058, China
| | - Jia Yuan Ye
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou, 310058, China
| | - Yi Ju Shi
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou, 310058, China
| | - Yi Jie Jiang
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou, 310058, China
| | - Yao Zhuang
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou, 310058, China
| | - Qing Yang Zhu
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou, 310058, China
| | - Xing Xing Liu
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou, 310058, China
| | - Zhong Jie Ding
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou, 310058, China
| | - Shao Jian Zheng
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou, 310058, China
| | - Chong Wei Jin
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
3
|
Chao ZF, Chao DY. Barriers and carriers for transition metal homeostasis in plants. PLANT COMMUNICATIONS 2025; 6:101235. [PMID: 39731291 PMCID: PMC11897463 DOI: 10.1016/j.xplc.2024.101235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/02/2024] [Accepted: 12/25/2024] [Indexed: 12/29/2024]
Abstract
Transition metals are types of metals with high chemical activity. They play critical roles in plant growth, development, reproduction, and environmental adaptation, as well as in human health. However, the acquisition, transport, and storage of these metals pose specific challenges due to their high reactivity and poor solubility. In addition, distinct yet interconnected apoplastic and symplastic diffusion barriers impede their movement throughout plants. To overcome these obstacles, plants have evolved sophisticated carrier systems to facilitate metal transport, relying on the tight coordination of vesicles, enzymes, metallochaperones, low-molecular-weight metal ligands, and membrane transporters for metals, ligands, and metal-ligand complexes. This review highlights recent advances in the homeostasis of transition metals in plants, focusing on the barriers to transition metal transport and the carriers that facilitate their passage through these barriers.
Collapse
Affiliation(s)
- Zhen-Fei Chao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Leibniz Institute of Plant Genetics & Crop Plant Research (IPK) OT Gatersleben, Corrensstr 3, 06466 Seeland, Germany
| | - Dai-Yin Chao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
4
|
Yan J, Feng Z, Xiao Y, Zhou M, Zhao X, Lin X, Shi W, Busch W, Li B. ANAC044 orchestrates mitochondrial stress signaling to trigger iron-induced stem cell death in root meristems. Proc Natl Acad Sci U S A 2025; 122:e2411579122. [PMID: 39793035 PMCID: PMC11725852 DOI: 10.1073/pnas.2411579122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/22/2024] [Indexed: 01/12/2025] Open
Abstract
While iron (Fe) is essential for life and plays important roles for almost all growth related processes, it can trigger cell death in both animals and plants. However, the underlying mechanisms for Fe-induced cell death in plants remain largely unknown. S-nitrosoglutathione reductase (GSNOR) has previously been reported to regulate nitric oxide homeostasis to prevent Fe-induced cell death within root meristems. Here, we found that in the absence of GSNOR, exposure to high Fe treatment results in DNA damage-dependent cell death specifically in vascular stem cells in root meristems within 48 h. Through a series of time-course transcriptomic analyses, we unveil that in the absence of GSNOR, mitochondrial dysfunction emerges as the most prominent response to high Fe treatment. Consistently, the application of mitochondrial respiratory inhibitors leads to stem cell death in root meristems, and pharmacological blockage of the voltage-dependent anion channel that is responsible for the release of mitochondrial-derived molecules into the cytosol or genetic changes that abolish the ANAC017- and ANAC013-mediated mitochondrial retrograde signaling effectively eliminate Fe-induced stem cell death in gsnor root meristems. We further identify the nuclear transcription factor ANAC044 as a mediator of this mitochondrial retrograde signaling. Disruption of ANAC044 completely abolishes the GSNOR-dependent, Fe-induced stem cell death in root meristems, while ectopic expression of ANAC044 causes severe root stem cell death. Collectively, our findings reveal a mechanism responsible for initiating Fe-induced stem cell death in the root meristem, which is the ANAC044-mediated GSNOR-regulated mitochondrial stress signaling pathway.
Collapse
Affiliation(s)
- Juanmei Yan
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, China
| | - Zhihang Feng
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, China
| | - Yihui Xiao
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, China
| | - Ming Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou310058, China
| | - Xiaobo Zhao
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Key Laboratory of Nuclear Agricultural Sciences of Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Xianyong Lin
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, China
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing210008, China
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA92037
| | - Baohai Li
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, China
| |
Collapse
|
5
|
Clúa J, Jaskolowski A, Abriata LA, Poirier Y. Spotlight on cytochrome b561 and DOMON domain proteins. TRENDS IN PLANT SCIENCE 2024:S1360-1385(24)00308-X. [PMID: 39674795 DOI: 10.1016/j.tplants.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/28/2024] [Accepted: 11/19/2024] [Indexed: 12/16/2024]
Abstract
Biotic and abiotic stresses constrain plant growth worldwide. Therefore, understanding the molecular mechanisms contributing to plant resilience is key to achieving food security. In recent years, proteins containing dopamine β-monooxygenase N-terminal (DOMON) and/or cytochrome b561 domains have been identified as important regulators of plant responses to multiple stress factors. Recent findings show that these proteins control the redox states of different cellular compartments to modulate plant development, stress responses, and iron homeostasis. In this review, we analyze the distribution and structure of proteins with DOMON and/or cytochrome b561 domains in model plants. We also discuss their biological roles and the molecular mechanisms by which this poorly characterized group of proteins exert their functions.
Collapse
Affiliation(s)
- Joaquín Clúa
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Aime Jaskolowski
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015 Lausanne, Switzerland
| | - Luciano A Abriata
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland; Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Yves Poirier
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
6
|
De la Peña M, Poucet T, Montardit-Tarda F, Urmeneta L, Urbano-Gámez JA, Cassan C, Vega-Mas I, Catalán P, Igartua E, Gibon Y, Gonzalez-Moro MB, Marino D. Natural variation in the adjustment of primary metabolism determines ammonium tolerance in the model grass Brachypodium distachyon. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:7237-7253. [PMID: 39292826 PMCID: PMC11629996 DOI: 10.1093/jxb/erae382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/17/2024] [Indexed: 09/20/2024]
Abstract
Nitrogen (N) fertilization is essential to maximize crop production. However, around half of the applied N is lost to the environment, causing water and air pollution and contributing to climate change. Understanding the natural genetic and metabolic basis underlying plants N use efficiency is of great interest to attain an agriculture with less N demand and thus more sustainable. The study of ammonium (NH4+) nutrition is of particular interest, because it mitigates N losses due to nitrate (NO3-) leaching or denitrification. In this work, we studied Brachypodium distachyon, the model plant for C3 grasses, grown with NH4+ or NO3- supply. We performed gene expression analysis in the root of the B. distachyon reference accession Bd21 and examined the phenotypic variation across 52 natural accessions through analyzing plant growth and a panel of 22 metabolic traits in leaf and root. We found that the adjustment of primary metabolism to NH4+ nutrition is essential for the natural variation of NH4+ tolerance, notably involving NH4+ assimilation and phosphoenolpyruvate carboxylase (PEPC) activity. Additionally, genome-wide association studies (GWAS) indicated several loci associated with B. distachyon growth and metabolic adaptation to NH4+ nutrition. We found that the GDH2 gene was associated with the induction of root glutamate dehydrogenase activity under NH4+ nutrition and that two genes encoding malic enzyme were associated with leaf PEPC activity. Altogether, our work underlines the value of natural variation and the key role of primary metabolism to improve NH4+ tolerance.
Collapse
Affiliation(s)
- Marlon De la Peña
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), E-48940, Leioa, Spain
| | - Théo Poucet
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), E-48940, Leioa, Spain
- Université de Bordeaux, INRAE, UMR Biologie du Fruit et Pathologie, Bordeaux Metabolome, F-33140 Villenave d’Ornon, France
| | - Francesc Montardit-Tarda
- Department of Genetics and Plant Breeding, Aula Dei Experimental Station, CSIC, Avda Montañana 1005, 50059 Zaragoza, Spain
| | - Leyre Urmeneta
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), E-48940, Leioa, Spain
| | - Jose Alberto Urbano-Gámez
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), E-48940, Leioa, Spain
| | - Cédric Cassan
- Université de Bordeaux, INRAE, UMR Biologie du Fruit et Pathologie, Bordeaux Metabolome, F-33140 Villenave d’Ornon, France
| | - Izargi Vega-Mas
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), E-48940, Leioa, Spain
| | - Pilar Catalán
- Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Ctra. Cuarte km 1, 22071 Huesca, Spain
| | - Ernesto Igartua
- Department of Genetics and Plant Breeding, Aula Dei Experimental Station, CSIC, Avda Montañana 1005, 50059 Zaragoza, Spain
| | - Yves Gibon
- Université de Bordeaux, INRAE, UMR Biologie du Fruit et Pathologie, Bordeaux Metabolome, F-33140 Villenave d’Ornon, France
| | - M Begoña Gonzalez-Moro
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), E-48940, Leioa, Spain
| | - Daniel Marino
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), E-48940, Leioa, Spain
| |
Collapse
|
7
|
Pandey A, Devi LL, Gupta S, Prasad P, Agrwal K, Asif MH, Pandey AK, Bandyopadhyay K, Singh AP. Jasmonate signaling modulates root growth by suppressing iron accumulation during ammonium stress. PLANT PHYSIOLOGY 2024; 196:2213-2231. [PMID: 39046110 DOI: 10.1093/plphys/kiae390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 07/25/2024]
Abstract
Plants adapt to changing environmental conditions by adjusting their growth physiology. Nitrate (NO3-) and ammonium (NH4+) are the major inorganic nitrogen forms for plant uptake. However, high NH4+ inhibits plant growth, and roots undergo striking changes, such as inhibition of cell expansion and division, leading to reduced root elongation. In this work, we show that high NH4+ modulates nitrogen metabolism and root developmental physiology by inhibiting iron (Fe)-dependent Jasmonate (JA) signaling and response in Arabidopsis (Arabidopsis thaliana). Transcriptomic data suggested that NH4+ availability regulates Fe and JA-responsive genes. High NH4+ levels led to enhanced root Fe accumulation, which impaired nitrogen balance and growth by suppressing JA biosynthesis and signaling response. Integrating pharmacological, physiological, and genetic experiments revealed the involvement of NH4+ and Fe-derived responses in regulating root growth and nitrogen metabolism through modulation of the JA pathway during NH4+ stress. The JA signaling transcription factor MYC2 directly bound the promoter of the NITRATE TRANSPORTER 1.1 (NRT1.1) and repressed it to optimize the NH4+/Fe-JA balance for plant adaptation during NH4+ stress. Our findings illustrate the intricate balance between nutrient and hormone-derived signaling pathways that appear essential for optimizing plant growth by adjusting physiological and metabolic responses during NH4+/Fe stress.
Collapse
Affiliation(s)
- Anshika Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | - Shreya Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Priti Prasad
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Kanupriya Agrwal
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Sector 81, Sahibzada Ajit Singh Nagar 140306, India
| | - Mehar Hasan Asif
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Ajay Kumar Pandey
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Sector 81, Sahibzada Ajit Singh Nagar 140306, India
| | | | - Amar Pal Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
8
|
Fei J, Bai X, Jiang C, Yin X, Ni BJ. A state-of-the-art review of environmental behavior and potential risks of biodegradable microplastics in soil ecosystems: Comparison with conventional microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176342. [PMID: 39312976 DOI: 10.1016/j.scitotenv.2024.176342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/03/2024] [Accepted: 09/15/2024] [Indexed: 09/25/2024]
Abstract
As the use of biodegradable plastics becomes increasingly widespread, their environmental behaviors and impacts warrant attention. Unlike conventional plastics, their degradability predisposes them to fragment into microplastics (MPs) more readily. These MPs subsequently enter the terrestrial environment. The abundant functional groups of biodegradable MPs significantly affect their transport and interactions with other contaminants (e.g., organic contaminants and heavy metals). The intermediates and additives released from depolymerization of biodegradable MPs, as well as coexisting contaminants, induce alterations in soil ecosystems. These processes indicate that the impacts of biodegradable MPs on soil ecosystems might significantly diverge from conventional MPs. However, an exhaustive and timely comparison of the environmental behaviors and effects of biodegradable and conventional MPs within soil ecosystems remains scarce. To address this gap, the Web of Science database and bibliometric software were utilized to identify publications with keywords containing biodegradable MPs and soil. Moreover, this review comprehensively summarizes the transport behavior of biodegradable MPs, their role as contaminant carriers, and the potential risks they pose to soil physicochemical properties, nutrient cycling, biota, and CO2 emissions as compared with conventional MPs. Biodegradable MPs, due to their great transport and adsorption capacity, facilitate the mobility of coexisting contaminants, potentially inducing widespread soil and groundwater contamination. Additionally, these MPs and their depolymerization products can disrupt soil ecosystems by altering physicochemical properties, increasing microbial biomass, decreasing microbial diversity, inhibiting the development of plants and animals, and increasing CO2 emissions. Finally, some perspectives are proposed to outline future research directions. Overall, this study emphasizes the pronounced effects of biodegradable MPs on soil ecosystems relative to their conventional counterparts and contributes to the understanding and management of biodegradable plastic contamination within the terrestrial ecosystem.
Collapse
Affiliation(s)
- Jiao Fei
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Xue Bai
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chuanjia Jiang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China.
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
9
|
Guan M, Zheng X, Zhu Y. S-nitrosoglutathione reductase disfavors cadmium tolerance in shoots of Arabidopsis. Sci Rep 2024; 14:26401. [PMID: 39488641 PMCID: PMC11531582 DOI: 10.1038/s41598-024-77759-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
S-nitrosoglutathione reductase (GSNOR) is involved in the response to cadmium (Cd) exposure. In this study, the plants of mutant (gsnor1-3) with lossing-function of- and over-expression (GSNOROE5) of GSNOR were used to clear the role of GSNOR in Cd tolerance. GSNOR activity increased through upregulating the expression of the AtGSNOR gene and protein in Arabidopsis thaliana under Cd stress, which attenuated Cd tolerance. Oxidative damage was more serious in GSNOROE5 and was alleviated in gsnor1-3 under Cd stress, compared with Col-0. Induction of GSNOR facilitated H2O2 accumulation but inhibited catalase (CAT) activity in shoots under Cd stress. This phenotype was eliminated by 3-amino-1,2,4-triazole (3-AT), a CAT inhibitor. In addition, the expressions of AtCAT1 and AtCAT2 were down-regulated with increasing GSNOR activity under Cd stress. This suggested that GSNOR was involved in the accumulation of hydrogen peroxide (H2O2) through regulating CAT expression and activity under Cd exposure. Furthermore, Cd tolerance and CAT activity were improved by spraying S-nitrosoglutathione (GSNO) onto the surface of the leaves. The in vitro activity of CAT increased with GSNO concentration until a GSNO/CAT ratio of 2 was reached. Thus, CAT activity was relative to GSNOR through regulating the expression and S-nitrosylation level of proteins. In summary, the Cd-induced promotion of GSNOR activity aggravated Cd toxicity in plants by mediating H2O2 accumulation controlled by CAT.
Collapse
Affiliation(s)
- Meiyan Guan
- Rice Product Quality Supervision and Inspection Center, China National Rice Research Institute, Hangzhou, 310006, China
| | - Xiaolong Zheng
- Rice Product Quality Supervision and Inspection Center, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yaxin Zhu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
10
|
Li L, Jia L, Duan X, Lv Y, Ye C, Ding C, Zhang Y, Qi W, Motte H, Beeckman T, Luo L, Xuan W. A nitrogen-responsive cytokinin oxidase/dehydrogenase regulates root response to high ammonium in rice. THE NEW PHYTOLOGIST 2024; 244:1391-1407. [PMID: 39297368 DOI: 10.1111/nph.20128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/27/2024] [Indexed: 10/18/2024]
Abstract
Plant root system is significantly influenced by high soil levels of ammonium nitrogen, leading to reduced root elongation and enhanced lateral root branching. In Arabidopsis, these processes have been reported to be mediated by phytohormones and their downstream signaling pathways, while the controlling mechanisms remain elusive in crops. Through a transcriptome analysis of roots subjected to high/low ammonium treatments, we identified a cytokinin oxidase/dehydrogenase encoding gene, CKX3, whose expression is induced by high ammonium. Knocking out CKX3 and its homologue CKX8 results in shorter seminal roots, fewer lateral roots, and reduced sensitivity to high ammonium. Endogenous cytokinin levels are elevated by high ammonium or in ckx3 mutants. Cytokinin application results in shorter seminal roots and fewer lateral roots in wild-type, mimicking the root responses of ckx3 mutants to high ammonium. Furthermore, CKX3 is transcriptionally activated by type-B RR25 and RR26, and ckx3 mutants have reduced auxin content and signaling in roots under low ammonium. This study identified RR25/26-CKX3-cytokinin as a signal module that mediates root responses to external ammonium by modulating of auxin signaling in the root meristem and lateral root primordium. This highlights the critical role of cytokinin metabolism in regulating rice root development in response to ammonium.
Collapse
Affiliation(s)
- Lun Li
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Letian Jia
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xingliang Duan
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanda Lv
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Chengyu Ye
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chengqiang Ding
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, 210095, China
- Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry, Nanjing, 210095, China
| | - Yuwen Zhang
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weicong Qi
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Hans Motte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, B-9052, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark 71, Ghent, B-9052, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, B-9052, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark 71, Ghent, B-9052, Belgium
| | - Le Luo
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Xuan
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
11
|
Zhu QY, Ren ML, Jiang YJ, He C, Ding ZJ, Zheng SJ, Wang ZG, Jin CW. Co-mutation of OsLPR1/3/4/5 provides a promising strategy to minimize Cd contamination in rice grains. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135165. [PMID: 38996675 DOI: 10.1016/j.jhazmat.2024.135165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Minimizing cadmium (Cd) contamination in rice grains is crucial for ensuring food security and promoting sustainable agriculture. Utilizing genetic modification to generate rice varieties with low Cd accumulation is a promising strategy due to its cost-effectiveness and operational simplicity. Our study demonstrated that the CRISPR-Cas9-mediated quadruple mutation of the multicopper oxidase genes OsLPR1/3/4/5 in the japonica rice cultivar Tongjing 981 had little effect on yields. However, a notable increase was observed in the cell wall functional groups that bind with Cd. As a result, the quadruple mutation of OsLPR1/3/4/5 enhanced Cd sequestration within the cell wall while reducing Cd concentrations in both xylem and phloem sap, thereby inhibiting Cd transport from roots to shoots. Consequently, Cd concentrations in brown rice and husk in oslpr1/3/4/5 quadruple mutants (qm) decreased by 52% and 55%, respectively, compared to the wild-type. These findings illustrate that the quadruple mutation of OsLPR1/3/4/5 is an effective method for minimizing Cd contamination in rice grains without compromising yields. Therefore, the quadruple mutation of OsLPR1/3/4/5 via biotechnological pathways may represent a valuable strategy for the generation of new rice varieties with low Cd accumulation.
Collapse
Affiliation(s)
- Qing Yang Zhu
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou 310058, China
| | - Meng Lian Ren
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Yi Jie Jiang
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou 310058, China
| | - Chao He
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Zhong Jie Ding
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou 310058, China
| | - Shao Jian Zheng
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou 310058, China
| | - Ze Gang Wang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China.
| | - Chong Wei Jin
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
12
|
Wang Z, Zhang Y, Wu Y, Lai D, Deng Y, Ju C, Sun L, Huang P, Wang C. CPK10 protein kinase regulates Arabidopsis tolerance to boron deficiency through phosphorylation and activation of BOR1 transporter. THE NEW PHYTOLOGIST 2024; 243:1795-1809. [PMID: 38622812 DOI: 10.1111/nph.19712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/12/2024] [Indexed: 04/17/2024]
Abstract
Boron (B) is crucial for plant growth and development. B deficiency can impair numerous physiological and metabolic processes, particularly in root development and pollen germination, seriously impeding crop growth and yield. However, the molecular mechanism underlying boron signal perception and signal transduction is rather limited. In this study, we discovered that CPK10, a calcium-dependent protein kinase in the CPK family, has the strongest interaction with the boron transporter BOR1. Mutations in CPK10 led to growth and root development defects under B-deficiency conditions, while constitutively active CPK10 enhanced plant tolerance to B deficiency. Furthermore, we found that CPK10 interacted with and phosphorylated BOR1 at the Ser689 residue. Through various biochemical analyses and complementation of B transport in yeast and plants, we revealed that Ser689 of BOR1 is important for its transport activity. In summary, these findings highlight the significance of the CPK10-BOR1 signaling pathway in maintaining B homeostasis in plants and provide targets for the genetic improvement of crop tolerance to B-deficiency stress.
Collapse
Affiliation(s)
- Zhangqing Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanting Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yaru Wu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Duoduo Lai
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuan Deng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chuanfeng Ju
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lv Sun
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Panpan Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Cun Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
13
|
Zhu Y, Wang H, Xiang X, Hayat K, Wu R, Tian J, Zheng H, Xie M, Li B, Du S. A dose-dependent effect of UV-328 on photosynthesis: Exploring light harvesting and UV-B sensing mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134670. [PMID: 38781858 DOI: 10.1016/j.jhazmat.2024.134670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/27/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Benzotriazole ultraviolet (UV) stabilizers (BUVs) have emerged as significant environmental contaminants, frequently detected in various ecosystems. While the toxicity of BUVs to aquatic organisms is well-documented, studies on their impact on plant life are scarce. Plants are crucial as they provide the primary source of energy and organic matter in ecosystems through photosynthesis. This study investigated the effects of UV-328 (2-(2-hydroxy-4',6'-di-tert-amylphenyl) benzotriazole) on plant growth indices and photosynthesis processes, employing conventional physiological experiments, RNA sequencing (RNA-seq) analysis, and computational methods. Results demonstrated a biphasic response in plant biomass and the maximum quantum yield of PS II (Fv/Fm), showing improvement at a 50 μM UV-328 treatment but reduction under 150 μM UV-328 exposure. Additionally, disruption in thylakoid morphology was observed at the higher concentration. RNA-seq and qRT-PCR analysis identified key differentially expressed genes (light-harvesting chlorophyll-protein complex Ⅰ subunit A4, light-harvesting chlorophyll b-binding protein 3, UVR8, and curvature thylakoid 1 A) related to photosynthetic light harvesting, UV-B sensing, and chloroplast structure pathways, suggesting they may contribute to the observed alterations in photosynthesis activity induced by UV-328 exposure. Molecular docking analyses further supported the binding affinity between these proteins and UV-328. Overall, this study provided comprehensive physiological and molecular insights, contributing valuable information to the evaluation of the potential risks posed by UV-328 to critical plant physiological processes.
Collapse
Affiliation(s)
- Yaxin Zhu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Hua Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xiaobo Xiang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Kashif Hayat
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Ran Wu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Jiaying Tian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Haoyi Zheng
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Minghui Xie
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Beier Li
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Shaoting Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
14
|
Zhu Y, You Y, Zheng S, Li J, Wang Y, Wu R, Fang Z, Liu H, Du S. ABA-importing transporter (AIT1) synergies enhances exogenous ABA minimize heavy metals accumulations in Arabidopsis. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134718. [PMID: 38797079 DOI: 10.1016/j.jhazmat.2024.134718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Exogenous abscisic acid (ABA) presents a novel approach to mitigate heavy metal (HM) accumulation in plants, yet its efficacy against multiple HMs and potential enhancement methods remain underexplored. In this study, we demonstrated that the exogenous ABA application simultaneously decreased Zn, Cd and Ni accumulation by 22-25 %, 27-39 % and 60-62 %, respectively, in wild-type (WT) Arabidopsis. Conversely, ABA reduced Pb in shoots but increased its root concentration. ABA application also modulated the expression of HM uptake genes, inhibiting IRT1, NRAMP1, NRAMP4, and HMA3, and increasing ZIP1 and ZIP4 expressions. Further analysis revealed that overexpressing the ABA-importing transporter (AIT1) in plants intensified the reduction of Cd, Zn, and Ni, compared to WT. However, the inhibitory effect of exogenous ABA on Pb accumulation was mitigated in shoots with higher AIT1 expression. Furthermore, HMs-induced growth inhibition and the damage to photosynthesis were also alleviated with ABA treatment. Conclusively, AIT1's synergistic effect with ABA effectively reduces Cd, Zn and Ni accumulation, offering a synergistic approach to mitigate HM stress in plants.
Collapse
Affiliation(s)
- Yaxin Zhu
- Key Laboratory of Pollution Exposure and Health Intervention Technology, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Yue You
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Shihao Zheng
- Key Laboratory of Pollution Exposure and Health Intervention Technology, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Jiaxin Li
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yuying Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ran Wu
- Key Laboratory of Pollution Exposure and Health Intervention Technology, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Zhiguo Fang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Huijun Liu
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Shaoting Du
- Key Laboratory of Pollution Exposure and Health Intervention Technology, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
15
|
Leng X, Wang H, Cao L, Chang R, Zhang S, Xu C, Yu J, Xu X, Qu C, Xu Z, Liu G. Overexpressing GLUTAMINE SYNTHETASE 1;2 maintains carbon and nitrogen balance under high-ammonium conditions and results in increased tolerance to ammonium toxicity in hybrid poplar. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4052-4073. [PMID: 38497908 DOI: 10.1093/jxb/erae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/16/2024] [Indexed: 03/19/2024]
Abstract
The glutamine synthetase/glutamic acid synthetase (GS/GOGAT) cycle plays important roles in N metabolism, growth, development, and stress resistance in plants. Excess ammonium (NH4+) restricts growth, but GS can help to alleviate its toxicity. In this study, the 84K model clone of hybrid poplar (Populus alba × P. tremula var. glandulosa), which has reduced biomass accumulation and leaf chlorosis under high-NH4+ stress, showed less severe symptoms in transgenic lines overexpressing GLUTAMINE SYNTHETASE 1;2 (GS1;2-OE), and more severe symptoms in RNAi lines (GS1;2-RNAi). Compared with the wild type, the GS1;2-OE lines had increased GS and GOGAT activities and higher contents of free amino acids, soluble proteins, total N, and chlorophyll under high-NH4+ stress, whilst the antioxidant and NH4+ assimilation capacities of the GS1;2-RNAi lines were decreased. The total C content and C/N ratio in roots and leaves of the overexpression lines were higher under stress, and there were increased contents of various amino acids and sugar alcohols, and reduced contents of carbohydrates in the roots. Under high-NH4+ stress, genes related to amino acid biosynthesis, sucrose and starch degradation, galactose metabolism, and the antioxidant system were significantly up-regulated in the roots of the overexpression lines. Thus, overexpression of GS1;2 affected the carbon and amino acid metabolism pathways under high-NH4+ stress to help maintain the balance between C and N metabolism and alleviate the symptoms of toxicity. Modification of the GS/GOGAT cycle by genetic engineering is therefore a potential strategy for improving the NH4+ tolerance of cultivated trees.
Collapse
Affiliation(s)
- Xue Leng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- College of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132109, China
| | - Hanzeng Wang
- College of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132109, China
| | - Lina Cao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Ruhui Chang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Shuang Zhang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Caifeng Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jiajie Yu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xiuyue Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Chunpu Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- College of Forestry, Guizhou University, Guiyang 550025, China
| | - Zhiru Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Guanjun Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
16
|
Yang H, Zhou J, Zhou J. Interactive effects of ammonium sulfate and lead on alfalfa in rare earth tailings: Physiological responses and toxicity thresholds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174439. [PMID: 38971260 DOI: 10.1016/j.scitotenv.2024.174439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024]
Abstract
Ion-adsorption rare earth ore contains significant levels of leaching agents and heavy metals, leading to substantial co-contamination. This presents significant challenges for ecological rehabilitation, yet there is limited understanding of the toxicity thresholds associated with the co-contamination of ammonium sulfate (AS) and lead (Pb) on pioneer plants. Here, we investigated the toxicity thresholds of various aspects of alfalfa, including growth, ultrastructural changes, metabolism, antioxidant system response, and Pb accumulation. The results indicated that the co-contamination of AS-Pb decreased the dry weight of shoot and root by 26 %-77 % and 18 %-92 %, respectively, leading to irregular root cell morphology and nucleus disintegration. The high concentration and combined exposures to AS and Pb induced oxidative stress on alfalfa, which stimulated the defense of the antioxidative system and resulted in an increase in proline levels and a decrease in soluble sugars. Structural equation modeling analysis and integrated biomarker response elucidated that the soluble sugars, proline, and POD were the key physiological indicators of alfalfa under stresses and indicated that co-exposure induced more severe oxidative stress in alfalfa. The toxicity thresholds under single exposure were 496 (EC5), 566 (EC10), 719 (EC25), 940 (EC50) mg kg-1 for AS and 505 (EC5), 539 (EC10), 605 (EC25), 678 (EC50) mg kg-1 for Pb. This study showed that AS-Pb pollution notably influenced plant growth performance and had negative impacts on the growth processes, metabolite levels, and the antioxidant system in plants. Our findings contribute to a theoretical foundation and research necessity for evaluating ecological risks in mining areas and assessing the suitability of ecological restoration strategies.
Collapse
Affiliation(s)
- Huixian Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
17
|
Zhu H, Wang J, Huang R, Yang Z, Fan W, Huang L, Yang J, Chen W. Epigenetic modification of a pectin methylesterase gene activates apoplastic iron reutilization in tomato roots. PLANT PHYSIOLOGY 2024; 195:2339-2353. [PMID: 38506490 DOI: 10.1093/plphys/kiae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/06/2024] [Accepted: 02/17/2024] [Indexed: 03/21/2024]
Abstract
Iron (Fe) distribution and reutilization are crucial for maintaining Fe homeostasis in plants. Here, we demonstrate that the tomato (Solanum lycopersicum) Colorless nonripening (Cnr) epimutant exhibits increased Fe retention in cell wall pectin due to an increase in pectin methylesterase (PME) activity. This ultimately leads to Fe deficiency responses even under Fe-sufficient conditions when compared to the wild type (WT). Whole-genome bisulfite sequencing revealed that modifications to cell wall-related genes, especially CG hypermethylation in the intron region of PECTIN METHYLESTERASE53 (SlPME53), are involved in the Cnr response to Fe deficiency. When this intron hypermethylation of SlPME53 was artificially induced in WT, we found that elevated SlPME53 expression was accompanied by increased PME activity and increased pectin-Fe retention. The manipulation of SlPME53, either through overexpression in WT or knockdown in Cnr, influenced levels of pectin methylesterification and accumulation of apoplast Fe in roots. Moreover, CG hypermethylation mediated by METHYLTRANSFERASE1 (SlMET1) increased SlPME53 transcript abundance, resulting in greater PME activity and higher Fe retention in cell wall pectin. Therefore, we conclude that the Cnr mutation epigenetically modulates SlPME53 expression by SlMET1-mediated CG hypermethylation, and thus the capacity of the apoplastic Fe pool, creating opportunities for genetic improvement of crop mineral nutrition.
Collapse
Affiliation(s)
- Huihui Zhu
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China
- State Key Laboratory of Plant Physiology and Biochemistry, Institute of Plant Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiayi Wang
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China
- State Key Laboratory of Plant Physiology and Biochemistry, Institute of Plant Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ru'nan Huang
- Research Centre for Plant RNA Signaling and Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zheng'an Yang
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China
| | - Wei Fan
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Jianli Yang
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China
| | - Weiwei Chen
- Research Centre for Plant RNA Signaling and Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
18
|
Xie M, Zhu Y, Zhao K, Zhao L, Gong Y, Wang Y, Wang Y, Zhu M, Ran W, Cai M, Du S. R-Napropamide Potentially Regulates Cadmium Accumulation in Arabidopsis Shoots through Transport Channel Modulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38842427 DOI: 10.1021/acs.jafc.4c03404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Heavy metal contamination in soils poses a significant environmental threat to human health. This study examines the effects of the chiral herbicide napropamide (NAP) on Arabidopsis thaliana, focusing on growth metrics and cadmium (Cd) accumulation. R-NAP does not adversely affect plant growth compared to the control, whereas S-NAP significantly reduces root length and fresh weight. Notably, R-NAP markedly increases Cd accumulation in the shoots, exceeding levels observed in the control and S-NAP. This increase coincides with reduced photosynthetic efficiency. Noninvasive electrode techniques reveal a higher net Cd absorption flux in the root mature zone under R-NAP than S-NAP, although similar to the control. Transcriptomic analysis highlights significant stereoisomer differences in Cd transporters, predominantly under R-NAP treatment. SEM and molecular docking simulations support that R-NAP primarily upregulates transporters such as HMA4. The results suggest careful management of herbicides like R-NAP in contaminated fields to avoid excessive heavy metal buildup in crops.
Collapse
Affiliation(s)
- Minghui Xie
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yaxin Zhu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Kai Zhao
- Zhejiang Zhongyi Testing Research Institute Co., Ltd, Ningbo 315040, China
| | - Lu Zhao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Yanxia Gong
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yin Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yuying Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Mengfei Zhu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Wu Ran
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Miaozhen Cai
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Shaoting Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| |
Collapse
|
19
|
Li G, Wu J, Kronzucker HJ, Li B, Shi W. Physiological and molecular mechanisms of plant-root responses to iron toxicity. JOURNAL OF PLANT PHYSIOLOGY 2024; 297:154257. [PMID: 38688043 DOI: 10.1016/j.jplph.2024.154257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
The chemical form and physiological activity of iron (Fe) in soil are dependent on soil pH and redox potential (Eh), and Fe levels in soils are frequently elevated to the point of causing Fe toxicity in plants, with inhibition of normal physiological activities and of growth and development. In this review, we describe how iron toxicity triggers important physiological changes, including nitric-oxide (NO)-mediated potassium (K+) efflux at the tips of roots and accumulation of reactive oxygen species (ROS) and reactive nitrogen (RNS) in roots, resulting in physiological stress. We focus on the root system, as the first point of contact with Fe in soil, and describe the key processes engaged in Fe transport, distribution, binding, and other mechanisms that are drawn upon to defend against high-Fe stress. We describe the root-system regulation of key physiological processes and of morphological development through signaling substances such as ethylene, auxin, reactive oxygen species, and nitric oxide, and discuss gene-expression responses under high Fe. We especially focus on studies on the physiological and molecular mechanisms in rice and Arabidopsis under high Fe, hoping to provide a valuable theoretical basis for improving the ability of crop roots to adapt to soil Fe toxicity.
Collapse
Affiliation(s)
- Guangjie Li
- State Key Laboratory of Nutrient Use and Management, Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| | - Jinlin Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Herbert J Kronzucker
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Baohai Li
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China; University of the Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China.
| |
Collapse
|
20
|
Li G, Zhang L, Wu J, Wang Z, Wang M, Kronzucker HJ, Shi W. Plant iron status regulates ammonium-use efficiency through protein N-glycosylation. PLANT PHYSIOLOGY 2024; 195:1712-1727. [PMID: 38401163 DOI: 10.1093/plphys/kiae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/26/2024]
Abstract
Improving nitrogen-use efficiency is an important path toward enhancing crop yield and alleviating the environmental impacts of fertilizer use. Ammonium (NH4+) is the energetically preferred inorganic N source for plants. The interaction of NH4+ with other nutrients is a chief determinant of ammonium-use efficiency (AUE) and of the tipping point toward ammonium toxicity, but these interactions have remained ill-defined. Here, we report that iron (Fe) accumulation is a critical factor determining AUE and have identified a substance that can enhance AUE by manipulating Fe availability. Fe accumulation under NH4+ nutrition induces NH4+ efflux in the root system, reducing both growth and AUE in Arabidopsis (Arabidopsis thaliana). Low external availability of Fe and a low plant Fe status substantially enhance protein N-glycosylation through a Vitamin C1-independent pathway, thereby reducing NH4+ efflux to increase AUE during the vegetative stage in Arabidopsis under elevated NH4+ supply. We confirm the validity of the iron-ammonium interaction in the important crop species lettuce (Lactuca sativa). We further show that dolomite can act as an effective substrate to subdue Fe accumulation under NH4+ nutrition by reducing the expression of Low Phosphate Root 2 and acidification of the rhizosphere. Our findings present a strategy to improve AUE and reveal the underlying molecular-physiological mechanism.
Collapse
Affiliation(s)
- Guangjie Li
- State Key Laboratory of Nutrient Use and Management, Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lin Zhang
- State Key Laboratory of Nutrient Use and Management, Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jinlin Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Zhaoyue Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Meng Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Herbert J Kronzucker
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| |
Collapse
|
21
|
Fang XZ, Xu XL, Ye ZQ, Liu D, Zhao KL, Li DM, Liu XX, Jin CW. Excessive iron deposition in root apoplast is involved in growth arrest of roots in response to low pH. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3188-3200. [PMID: 38401150 DOI: 10.1093/jxb/erae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/23/2024] [Indexed: 02/26/2024]
Abstract
The rhizotoxicity of protons (H+) in acidic soils is a fundamental constraint that results in serious yield losses. However, the mechanisms underlying H+-mediated inhibition of root growth are poorly understood. In this study, we revealed that H+-induced root growth inhibition in Arabidopsis depends considerably on excessive iron deposition in the root apoplast. Reducing such aberrant iron deposition by decreasing the iron supply or disrupting the ferroxidases LOW PHOSPHATE ROOT 1 (LPR) and LPR2 attenuates the inhibitory effect of H+ on primary root growth efficiently. Further analysis showed that excessive iron deposition triggers a burst of highly reactive oxygen species, consequently impairing normal root development. Our study uncovered a valuable strategy for improving the ability of plants to tolerate H+ toxicity by manipulating iron availability.
Collapse
Affiliation(s)
- Xian Zhi Fang
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xiao Lan Xu
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China
| | - Zheng Qian Ye
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China
| | - Dan Liu
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China
| | - Ke Li Zhao
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China
| | - Dong Ming Li
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010000, Inner Mongolia, China
| | - Xing Xing Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010000, Inner Mongolia, China
| | - Chong Wei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
22
|
Guo Y, Li H, Hao Y, Shang H, Jia W, Liang A, Xu X, Li C, Ma C. Size Effects of Copper Oxide Nanoparticles on Boosting Soybean Growth via Differentially Modulating Nitrogen Assimilation. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:746. [PMID: 38727340 PMCID: PMC11085672 DOI: 10.3390/nano14090746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024]
Abstract
Nanoscale agrochemicals have been widely used in sustainable agriculture and may potentially affect the nitrogen fixation process in legume crops. The present study investigated the size-effects of copper oxide nanoparticles (CuO NPs) on nitrogen assimilation in soybean (G. max (L.) Merrill) plants, which were treated with different sizes (20 and 50 nm) of CuO NPs at low use doses (1 and 10 mg/kg) for 21 days under greenhouse conditions. The results showed that 50 nm CuO NPs significantly increased the fresh biomass more than 20 nm CuO NPs achieved at 10 mg/kg. The activities of N assimilation-associated enzymes and the contents of nitrogenous compounds, including nitrates, proteins, and amino acids, in soybean tissues were greatly increased across all the CuO NP treatments. The use doses of two sizes of CuO NPs had no impact on the Cu contents in shoots and roots but indeed increased the Cu contents in soils in a dose-dependent fashion. Overall, our findings demonstrated that both 20 and 50 nm CuO NPs could positively alter soybean growth and boost N assimilation, furthering our understanding that the application of nanoscale micro-nutrient-related agrochemicals at an optimal size and dose will greatly contribute to increasing the yield and quality of crops.
Collapse
Affiliation(s)
- Yaozu Guo
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; (Y.G.); (H.L.); (Y.H.); (H.S.); (A.L.); (X.X.); (C.L.)
| | - Hao Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; (Y.G.); (H.L.); (Y.H.); (H.S.); (A.L.); (X.X.); (C.L.)
| | - Yi Hao
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; (Y.G.); (H.L.); (Y.H.); (H.S.); (A.L.); (X.X.); (C.L.)
| | - Heping Shang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; (Y.G.); (H.L.); (Y.H.); (H.S.); (A.L.); (X.X.); (C.L.)
| | - Weili Jia
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Anqi Liang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; (Y.G.); (H.L.); (Y.H.); (H.S.); (A.L.); (X.X.); (C.L.)
| | - Xinxin Xu
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; (Y.G.); (H.L.); (Y.H.); (H.S.); (A.L.); (X.X.); (C.L.)
| | - Chunyang Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; (Y.G.); (H.L.); (Y.H.); (H.S.); (A.L.); (X.X.); (C.L.)
| | - Chuanxin Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; (Y.G.); (H.L.); (Y.H.); (H.S.); (A.L.); (X.X.); (C.L.)
| |
Collapse
|
23
|
Wang S, He X, Tian J, Wu R, Liu H, Fang Z, Du S. NRT1.2 overexpression enhances the synergistic interplay between ABA-generating bacteria and biochars in reducing heavy metal accumulation in pak choi. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171276. [PMID: 38417500 DOI: 10.1016/j.scitotenv.2024.171276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/07/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
The agricultural sector faces severe challenges owing to heavy metal (HM) contamination of farmlands, requiring urgent preventive measures. To address this, we investigated the impact of the synergistic application of Azospirillum brasilense, a growth-promoting rhizobacterium producing abscisic acid (ABA), and biochar to minimize HM accumulation in pak choi, using three distinct expression levels of the ABA transporter NRT1.2 in pak choi and three different types of contaminated soils as experimental materials. The results revealed that pak choi with low, medium, and high NRT1.2 expression intensity, when subjected to bacterial strain-biochar treatment, exhibited an increasing trend in ABA content compared to the control. Correspondingly, the aboveground HM content decreased by 1-49 %, 22-52 %, and 15-96 %, whereas the fresh weight increased by 12-38 %, 88-126 %, and 152-340 %, respectively, showing a significant correlation with NRT1.2 expression. Pearson correlation analysis demonstrated that NRT1.2 expression intensity was inversely associated with the combined treatment's reduction in HM accumulation and positively correlated with the promotional effect. Simultaneously, soil discrepancies significantly affected the combined treatment, which was likely associated with variations in the active forms of HM in each soil. Consequently, when employing ABA-producing bacteria for mitigating crop HM accumulation, selecting plants with higher relative NRT1.2 expression intensity, combined with biochar, is recommended.
Collapse
Affiliation(s)
- Shengtao Wang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xiaolin He
- Jiangxi Province Agricultural Technology Extension Center, Nanchang 330045, China
| | - Jiaying Tian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Ran Wu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Huijun Liu
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Zhiguo Fang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Shaoting Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
24
|
Fan C, Li J, Dai S, Xuan X, Xu D, Wen Y. Plasma Membrane (PM) H +-ATPase Mediates Rhizosphere Acidification and Regulates Herbicide Imazethapyr Toxicity in Wheat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38623691 DOI: 10.1021/acs.jafc.4c00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The plasma membrane (PM) H+-ATPase is crucial for a plant defense system. However, there is currently no consensus on whether the PM H+-ATPase plays a role in alleviating the toxic effects of herbicides on nontarget plants. We found that under the herbicide imazethapyr (IM) exposure, PM H+-ATPase activity in wheat roots increased by approximately 69.53%, leading to rhizosphere acidification. When PM H+-ATPase activity is inhibited, the toxicity of IM significantly increases: When exposed to IM alone, the total Fe content of wheat roots decreased by 29.07%, the relative Fe2+ content increased by 27.75%, and the ROS content increased by 27.74%. When the PM H+-ATPase activity was inhibited, the corresponding data under IM exposure were 37.36%, 215%, and 57.68%, respectively. This work delves into the role of PM H+-ATPase in mediating the detoxification mechanism in plants exposed to herbicides, offering new insights into enhancing crop resistance against herbicides.
Collapse
Affiliation(s)
- Chenyang Fan
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jun Li
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Siyuan Dai
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xuan Xuan
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Dongmei Xu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yuezhong Wen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
25
|
Wu R, Fang J, Xiang X, Liu H, Zhu Y, Du S. Graphene oxide influences transfer of plasmid-mediated antibiotic resistance genes into plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168652. [PMID: 37979849 DOI: 10.1016/j.scitotenv.2023.168652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/04/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
As an emerging contaminant, antibiotic resistance genes (ARGs) are raising concerns about its significant threat to public health. Meanwhile, graphene oxide (GO), which also has a potential ecological damage with increasingly entering the environment, has a great influence on the transfer of ARGs. However, little is known about the effects mechanisms of GO on the migration of antibiotic resistance genes (ARGs) from bacteria into plants. In this study, we investigated the influence of GO on the transfer of ARGs carried by RP4 plasmids from Bacillus subtilis into rice plants. Our results showed that the presence of GO at concentrations ranging from 0 to 400 mg L-1 significantly reduced the transfer of ARGs into rice roots by 13-71 %. Moreover, the migration of RP4 from the roots to aboveground parts was significantly impaired by GO. These effects may be attributed to several factors. First, higher GO concentrations led to low pH in the culture solution, resulting in a substantial decrease in the number of antibiotic-resistant bacteria. Second, GO induced oxidative stress in rice, as indicated by enhanced Evans blue dye staining, and elevated levels of malondialdehyde, nitric oxide, and phenylalanine ammonia-lyase activity. The oxidative stress negatively affected plant growth, as demonstrated by the reduced fresh weight and altered lignin content in the rice. Microscopic observations confirmed the entry of GO into root cells but not leaf mesophyll cells. Furthermore, potential recipients of RP4 plasmid strains in rice after co-cultivation experiments were identified, including Bacillus subtilis, Bacillus amyloliquefaciens, and Bacillus cereus. These findings clarify the influence of GO on ARGs in the bacteria-plant system and emphasize the need to consider its potential ecological risks.
Collapse
Affiliation(s)
- Ran Wu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Jin Fang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xiaobo Xiang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Huijun Liu
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yaxin Zhu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Shaoting Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
26
|
Yang H, Zhang X, Yan C, Zhou R, Li J, Liu S, Wang Z, Zhou J, Zhu L, Jia H. Novel Insights into the Promoted Accumulation of Nitro-Polycyclic Aromatic Hydrocarbons in the Roots of Legume Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2058-2068. [PMID: 38230546 DOI: 10.1021/acs.est.3c08255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Substituted polycyclic aromatic hydrocarbons (sub-PAHs) are receiving increased attention due to their high toxicity and ubiquitous presence. However, the accumulation behaviors of sub-PAHs in crop roots remain unclear. In this study, the accumulation mechanism of sub-PAHs in crop roots was systematically disclosed by hydroponic experiments from the perspectives of utilization, uptake, and elimination. The obtained results showed an interesting phenomenon that despite not having the strongest hydrophobicity among the five sub-PAHs, nitro-PAHs (including 9-nitroanthracene and 1-nitropyrene) displayed the strongest accumulation potential in the roots of legume plants, including mung bean and soybean. The nitrogen-deficient experiments, inhibitor experiments, and transcriptomics analysis reveal that nitro-PAHs could be utilized by legumes as a nitrogen source, thus being significantly absorbed by active transport, which relies on amino acid transporters driven by H+-ATPase. Molecular docking simulation further demonstrates that the nitro group is a significant determinant of interaction with an amino acid transporter. Moreover, the depuration experiments indicate that the nitro-PAHs may enter the root cells, further slowing their elimination rates and enhancing the accumulation potential in legume roots. Our results shed light on a previously unappreciated mechanism for root accumulation of sub-PAHs, which may affect their biogeochemical processes in soils.
Collapse
Affiliation(s)
- Huiqiang Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-Carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Xianglei Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-Carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Chenghe Yan
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-Carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Run Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-Carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Jiahui Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-Carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Siqian Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-Carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Zhiqiang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-Carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-Carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-Carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-Carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| |
Collapse
|
27
|
Maniero RA, Picco C, Hartmann A, Engelberger F, Gradogna A, Scholz-Starke J, Melzer M, Künze G, Carpaneto A, von Wirén N, Giehl RFH. Ferric reduction by a CYBDOM protein counteracts increased iron availability in root meristems induced by phosphorus deficiency. Nat Commun 2024; 15:422. [PMID: 38212310 PMCID: PMC10784544 DOI: 10.1038/s41467-023-43912-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 11/23/2023] [Indexed: 01/13/2024] Open
Abstract
To mobilize sparingly available phosphorus (P) in the rhizosphere, many plant species secrete malate to release P sorbed onto (hydr)oxides of aluminum and iron (Fe). In the presence of Fe, malate can provoke Fe over-accumulation in the root apoplast, triggering a series of events that inhibit root growth. Here, we identified HYPERSENSITIVE TO LOW P1 (HYP1), a CYBDOM protein constituted of a DOMON and a cytochrome b561 domain, as critical to maintain cell elongation and meristem integrity under low P. We demonstrate that HYP1 mediates ascorbate-dependent trans-plasma membrane electron transport and can reduce ferric and cupric substrates in Xenopus laevis oocytes and in planta. HYP1 expression is up-regulated in response to P deficiency in the proximal zone of the root apical meristem. Disruption of HYP1 leads to increased Fe and callose accumulation in the root meristem and causes significant transcriptional changes in roots. We further demonstrate that HYP1 activity overcomes malate-induced Fe accumulation, thereby preventing Fe-dependent root growth arrest in response to low P. Collectively, our results uncover an ascorbate-dependent metalloreductase that is critical to protect root meristems of P-deficient plants from increased Fe availability and provide insights into the physiological function of the yet poorly characterized but ubiquitous CYBDOM proteins.
Collapse
Affiliation(s)
- Rodolfo A Maniero
- Leibniz Institute of Plant Genetics & Crop Plant Research (IPK) OT Gatersleben, Corrensstr 3, 06466, Seeland, Germany
| | - Cristiana Picco
- Institute of Biophysics, National Research Council, Via De Marini 16, 16149, Genoa, Italy
| | - Anja Hartmann
- Leibniz Institute of Plant Genetics & Crop Plant Research (IPK) OT Gatersleben, Corrensstr 3, 06466, Seeland, Germany
| | - Felipe Engelberger
- Institute for Drug Discovery, Leipzig University, SAC 04103, Leipzig, Germany
| | - Antonella Gradogna
- Institute of Biophysics, National Research Council, Via De Marini 16, 16149, Genoa, Italy
| | - Joachim Scholz-Starke
- Institute of Biophysics, National Research Council, Via De Marini 16, 16149, Genoa, Italy
| | - Michael Melzer
- Leibniz Institute of Plant Genetics & Crop Plant Research (IPK) OT Gatersleben, Corrensstr 3, 06466, Seeland, Germany
| | - Georg Künze
- Institute for Drug Discovery, Leipzig University, SAC 04103, Leipzig, Germany
- Center for Scalable Data Analytics and Artificial Intelligence, Leipzig University, 04105, Leipzig, Germany
- Interdisciplinary Center for Bioinformatics, Leipzig University, 04107, Leipzig, Germany
| | - Armando Carpaneto
- Institute of Biophysics, National Research Council, Via De Marini 16, 16149, Genoa, Italy
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Viale Benedetto XV 5, 16132, Genoa, Italy
| | - Nicolaus von Wirén
- Leibniz Institute of Plant Genetics & Crop Plant Research (IPK) OT Gatersleben, Corrensstr 3, 06466, Seeland, Germany
| | - Ricardo F H Giehl
- Leibniz Institute of Plant Genetics & Crop Plant Research (IPK) OT Gatersleben, Corrensstr 3, 06466, Seeland, Germany.
| |
Collapse
|
28
|
Clúa J, Montpetit J, Jimenez-Sandoval P, Naumann C, Santiago J, Poirier Y. A CYBDOM protein impacts iron homeostasis and primary root growth under phosphate deficiency in Arabidopsis. Nat Commun 2024; 15:423. [PMID: 38212368 PMCID: PMC10784552 DOI: 10.1038/s41467-023-43911-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 11/23/2023] [Indexed: 01/13/2024] Open
Abstract
Arabidopsis primary root growth response to phosphate (Pi) deficiency is mainly controlled by changes in apoplastic iron (Fe). Upon Pi deficiency, apoplastic Fe deposition in the root apical meristem activates pathways leading to the arrest of meristem maintenance and inhibition of cell elongation. Here, we report that a member of the uncharacterized cytochrome b561 and DOMON domain (CYBDOM) protein family, named CRR, promotes iron reduction in an ascorbate-dependent manner and controls apoplastic iron deposition. Under low Pi, the crr mutant shows an enhanced reduction of primary root growth associated with increased apoplastic Fe in the root meristem and a reduction in meristematic cell division. Conversely, CRR overexpression abolishes apoplastic Fe deposition rendering primary root growth insensitive to low Pi. The crr single mutant and crr hyp1 double mutant, harboring a null allele in another member of the CYDOM family, shows increased tolerance to high-Fe stress upon germination and seedling growth. Conversely, CRR overexpression is associated with increased uptake and translocation of Fe to the shoot and results in plants highly sensitive to Fe excess. Our results identify a ferric reductase implicated in Fe homeostasis and developmental responses to abiotic stress, and reveal a biological role for CYBDOM proteins in plants.
Collapse
Affiliation(s)
- Joaquín Clúa
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015, Lausanne, Switzerland
| | - Jonatan Montpetit
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015, Lausanne, Switzerland
| | - Pedro Jimenez-Sandoval
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015, Lausanne, Switzerland
| | - Christin Naumann
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Germany
| | - Julia Santiago
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015, Lausanne, Switzerland
| | - Yves Poirier
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
29
|
Zhu Y, Wang Y, Liu H, Wang H, Xie M, Fang Z, Du S. ABA-metabolizing bacteria and rhamnolipids as valuable allies for enhancing phytoremediation efficiency in heavy metal-contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167398. [PMID: 37758153 DOI: 10.1016/j.scitotenv.2023.167398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/19/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
Microbial-assisted phytoremediation has great potential to improve the efficiency of phytoremediation in heavy metal (HM)-contaminated soils. In this study, the synergistic effects of rhamnolipids and the abscisic acid (ABA)-metabolizing bacterium Rhodococcus qingshengii on the phytoremediation efficiency of Indian mustard (Brassica juncea) in HM-contaminated soils were investigated. The Cd, Zn, and Pb contents in plants treated with a combination of rhamnolipids and R. qingshengii were 48.4-77.1 %, 14.6-40.4 %, and 16.1-20.0 % higher, respectively, than in those treated with R. qingshengii alone, and 42.8-59.2 %, 13.1-48.2 %, and 7.3-67.5 % higher, respectively, than in those treated with rhamnolipids alone. In addition, the bioconcentration factors of each metal were improved, and the biomass further increased by 36.6-65.7 % compared to that of single treatments. Pearson's correlation analysis showed that rhamnolipids and R. qingshengii enhanced the accumulation of HMs in B. juncea by activating the available forms of HMs in the soil and regulating the ABA and indole-3-acetic acid in plants, respectively. The structural equation model indicated that R. qingshengii had a larger path coefficient than rhamnolipids in terms of HM content and plant biomass, suggesting that R. qingshengii may have a greater contribution to promoting the extraction of HMs from the soil under synergistic conditions. In conclusion, the combination of rhamnolipids and R. qingshengii has great potential to enhance the phytoremediation efficiency of hyperaccumulating plants in HM-contaminated soils.
Collapse
Affiliation(s)
- Yaxin Zhu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Yu Wang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Huijun Liu
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Hua Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Minghui Xie
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Zhiguo Fang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Shaoting Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
30
|
Coleto I, Marín-Peña AJ, Urbano-Gámez JA, González-Hernández AI, Shi W, Li G, Marino D. Interaction of ammonium nutrition with essential mineral cations. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6131-6144. [PMID: 37279530 DOI: 10.1093/jxb/erad215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023]
Abstract
Plant growth and development depend on sufficient nutrient availability in soils. Agricultural soils are generally nitrogen (N) deficient, and thus soils need to be supplemented with fertilizers. Ammonium (NH4+) is a major inorganic N source. However, at high concentrations, NH4+ becomes a stressor that inhibits plant growth. The cause of NH4+ stress or toxicity is multifactorial, but the interaction of NH4+ with other nutrients is among the main determinants of plants' sensitivity towards high NH4+ supply. In addition, NH4+ uptake and assimilation provoke the acidification of the cell external medium (apoplast/rhizosphere), which has a clear impact on nutrient availability. This review summarizes current knowledge, at both the physiological and the molecular level, of the interaction of NH4+ nutrition with essential mineral elements that are absorbed as cations, both macronutrients (K+, Ca2+, Mg2+) and micronutrients (Fe2+/3+, Mn2+, Cu+/2+, Zn2+, Ni2+). We hypothesize that considering these nutritional interactions, and soil pH, when formulating fertilizers may be key in order to boost the use of NH4+-based fertilizers, which have less environmental impact compared with nitrate-based ones. In addition, we are convinced that better understanding of these interactions will help to identify novel targets with the potential to improve crop productivity.
Collapse
Affiliation(s)
- Inmaculada Coleto
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Agustín J Marín-Peña
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - José Alberto Urbano-Gámez
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | | | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Guangjie Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Daniel Marino
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| |
Collapse
|
31
|
Zhu Y, Wang Y, He X, Li B, Du S. Plant growth-promoting rhizobacteria: A good companion for heavy metal phytoremediation. CHEMOSPHERE 2023; 338:139475. [PMID: 37442391 DOI: 10.1016/j.chemosphere.2023.139475] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Phytoremediation is an environment-friendly approach regarded as a potential candidate for remediating heavy metal (HM)-contaminated soils. However, the low efficacy of phytoremediation is a major limitation that hampers its large-scale application. Therefore, developing strategies to enhance phytoremediation efficacy for contaminated soils is crucial. Plant growth-promoting rhizobacteria (PGPR) considerably contribute to phytoremediation intensification. To improve the efficiency of plant-microbe symbiosis for remediation, the mechanisms underlying PGPR-stimulated HM accumulation and tolerance in plants should be comprehensively understood. This review focuses on hyperaccumulators, PGPR, and the mechanisms by which PGPR enhance phytoremediation from four aspects: providing nutrients to plants, secreting plant hormones and specific enzymes, inducing systemic resistance, and altering the bioavailability of HMs in soils. It also provides a theoretical and technical basis for future research on PGPR synergism in promoting the phytoextraction efficiency in HM-contaminated soils.
Collapse
Affiliation(s)
- Yaxin Zhu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Yu Wang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Xiaolin He
- Jiangxi Province Agricultural Technology Extension Center, Nanchang, 330045, China
| | - Beier Li
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Shaoting Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
32
|
Sun X, Wang S, Tian J, Xiang X, Zheng H, Liu H, Fang Z, Tian Z, Liu L, Zhu Y, Du S. Synergistic interplay between ABA-generating bacteria and biochar in the reduction of heavy metal accumulation in radish, pakchoi, and tomato. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122084. [PMID: 37356790 DOI: 10.1016/j.envpol.2023.122084] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
Heavy metal (HM) contamination is an environmental concern that threatens the agricultural product safety and human health. To address this concern, we developed a novel strategy involving the synergistic application of Azospirillum brasilense, a growth-promoting rhizobacterium which produces abscisic acid (ABA), and biochar to minimize HM accumulation in the edible parts of vegetable crops. Compared to A. brasilense or biochar alone, the concentrations of Cd, Ni, Pb, and Zn in radish (Raphanus sativus L.), pakchoi (Brassica chinensis L.), and tomato (Lycopersicon esculentum L.) decreased by 18-63% and 14-56%, respectively. Additionally, the synergistic treatment led to a 14-63% decrease in the bioconcentration factor. The biomass of the edible parts of the three crops increased by 65-278% after synergistic treatment, surpassing the effects of single treatments. Furthermore, the synergistic application enhanced the SPAD values by 1-45% compared to single treatments. The MDA concentrations in stressed plants decreased by 16-39% with the bacteria-biochar co-treatment compared to single treatments. Co-treatment also resulted in increased soluble protein and sugar concentrations by 8-174%, and improvements in flavonoids, total phenols, ascorbic acid, and DPPH levels by 2-50%. Pearson correlation analysis and structural equation modeling revealed that the synergistic effect was attributed to the enhanced growth of A. brasilense facilitated by biochar and the improved availability of HMs in soils. Notably, although ABA concentrations were not as high as those achieved with A. brasilense alone, they were maintained at relatively high levels. Overall, the synergistic application of A. brasilense-biochar might have remarkable potential for reducing the accumulation of HMs while promoting growth and improving nutritional and antioxidant qualities in tuberous, leafy, and fruit crops.
Collapse
Affiliation(s)
- Xiaohang Sun
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Shengtao Wang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Jiaying Tian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Xiaobo Xiang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Haoyi Zheng
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Huijun Liu
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Zhiguo Fang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Zhongling Tian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Lijuan Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Yaxin Zhu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Shaoting Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
33
|
Liu XX, Zhu XF, Xue DW, Zheng SJ, Jin CW. Beyond iron-storage pool: functions of plant apoplastic iron during stress. TRENDS IN PLANT SCIENCE 2023; 28:941-954. [PMID: 37019715 DOI: 10.1016/j.tplants.2023.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/17/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Iron (Fe) is an essential micronutrient for plants, and its storage in the apoplast represents an important Fe pool. Plants have developed various strategies to reutilize this apoplastic Fe pool to adapt to Fe deficiency. In addition, growing evidence indicates that the dynamic changes in apoplastic Fe are critical for plant adaptation to other stresses, including ammonium stress, phosphate deficiency, and pathogen attack. In this review, we discuss and scrutinize the relevance of apoplastic Fe for plant behavior changes in response to stress cues. We mainly focus on the relevant components that modulate the actions and downstream events of apoplastic Fe in stress signaling networks.
Collapse
Affiliation(s)
- Xing Xing Liu
- State Key Laboratory of Plant Physiology and Biochemistry, Zhejiang University, Hangzhou, China
| | - Xiao Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Da Wei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Shao Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, Zhejiang University, Hangzhou, China
| | - Chong Wei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, Zhejiang University, Hangzhou, China.
| |
Collapse
|
34
|
Bailey M, Hsieh EJ, Tsai HH, Ravindran A, Schmidt W. Alkalinity modulates a unique suite of genes to recalibrate growth and pH homeostasis. FRONTIERS IN PLANT SCIENCE 2023; 14:1100701. [PMID: 37457359 PMCID: PMC10348880 DOI: 10.3389/fpls.2023.1100701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Alkaline soils pose a conglomerate of constraints to plants, restricting the growth and fitness of non-adapted species in habitats with low active proton concentrations. To thrive under such conditions, plants have to compensate for a potential increase in cytosolic pH and restricted softening of the cell wall to invigorate cell elongation in a proton-depleted environment. To discern mechanisms that aid in the adaptation to external pH, we grew plants on media with pH values ranging from 5.5 to 8.5. Growth was severely restricted above pH 6.5 and associated with decreasing chlorophyll levels at alkaline pH. Bicarbonate treatment worsened plant performance, suggesting effects that differ from those exerted by pH as such. Transcriptional profiling of roots subjected to short-term transfer from optimal (pH 5.5) to alkaline (pH 7.5) media unveiled a large set of differentially expressed genes that were partially congruent with genes affected by low pH, bicarbonate, and nitrate, but showed only a very small overlap with genes responsive to the availability of iron. Further analysis of selected genes disclosed pronounced responsiveness of their expression over a wide range of external pH values. Alkalinity altered the expression of various proton/anion co-transporters, possibly to recalibrate cellular proton homeostasis. Co-expression analysis of pH-responsive genes identified a module of genes encoding proteins with putative functions in the regulation of root growth, which appears to be conserved in plants subjected to low pH or bicarbonate. Our analysis provides an inventory of pH-sensitive genes and allows comprehensive insights into processes that are orchestrated by external pH.
Collapse
Affiliation(s)
- Mitylene Bailey
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - En-Jung Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Huei-Hsuan Tsai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Arya Ravindran
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
35
|
Tabata R. Regulation of the iron-deficiency response by IMA/FEP peptide. FRONTIERS IN PLANT SCIENCE 2023; 14:1107405. [PMID: 37180394 PMCID: PMC10167411 DOI: 10.3389/fpls.2023.1107405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/24/2023] [Indexed: 05/16/2023]
Abstract
Iron (Fe) is an essential micronutrient for plant growth and development, participating in many significant biological processes including photosynthesis, respiration, and nitrogen fixation. Although abundant in the earth's crust, most Fe is oxidized and difficult for plants to absorb under aerobic and alkaline pH conditions. Plants, therefore, have evolved complex means to optimize their Fe-acquisition efficiency. In the past two decades, regulatory networks of transcription factors and ubiquitin ligases have proven to be essential for plant Fe uptake and translocation. Recent studies in Arabidopsis thaliana (Arabidopsis) suggest that in addition to the transcriptional network, IRON MAN/FE-UPTAKE-INDUCING PEPTIDE (IMA/FEP) peptide interacts with a ubiquitin ligase, BRUTUS (BTS)/BTS-LIKE (BTSL). Under Fe-deficient conditions, IMA/FEP peptides compete with IVc subgroup bHLH transcription factors (TFs) to interact with BTS/BTSL. The resulting complex inhibits the degradation of these TFs by BTS/BTSL, which is important for maintaining the Fe-deficiency response in roots. Furthermore, IMA/FEP peptides control systemic Fe signaling. By organ-to-organ communication in Arabidopsis, Fe deficiency in one part of a root drives the upregulation of a high-affinity Fe-uptake system in other root regions surrounded by sufficient levels of Fe. IMA/FEP peptides regulate this compensatory response through Fe-deficiency-triggered organ-to-organ communication. This mini-review summarizes recent advances in understanding how IMA/FEP peptides function in the intracellular signaling of the Fe-deficiency response and systemic Fe signaling to regulate Fe acquisition.
Collapse
Affiliation(s)
- Ryo Tabata
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
36
|
Chen C, Zhang Y, Cai J, Qiu Y, Li L, Gao C, Gao Y, Ke M, Wu S, Wei C, Chen J, Xu T, Friml J, Wang J, Li R, Chao D, Zhang B, Chen X, Gao Z. Multi-copper oxidases SKU5 and SKS1 coordinate cell wall formation using apoplastic redox-based reactions in roots. PLANT PHYSIOLOGY 2023:kiad207. [PMID: 37010107 DOI: 10.1093/plphys/kiad207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/07/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
The primary cell wall is a fundamental plant constituent that is flexible but sufficiently rigid to support the plant cell shape. Although many studies have demonstrated that reactive oxygen species (ROS) serve as important signaling messengers to modify the cell wall structure and affect cellular growth, the regulatory mechanism underlying the spatial-temporal regulation of ROS activity for cell wall maintenance remains largely unclear. Here, we demonstrate a role of the Arabidopsis (Arabidopsis thaliana) multi-copper oxidase-like protein skewed 5 (SKU5) and its homolog SKU5-similar 1 (SKS1) in root cell wall formation through modulating ROS homeostasis. Loss of SKU5 and SKS1 function resulted in aberrant division planes, protruding cell walls, ectopic deposition of iron, and NADPH oxidase-dependent ROS overproduction in the root epidermis-cortex and cortex-endodermis junctions. A decrease of ROS level or inhibition of NADPH oxidase activity rescued the cell wall defects of sku5 sks1 double mutants. SKU5 and SKS1 proteins were activated by iron treatment, and iron over-accumulated in the walls between root epidermis and cortex cell layers of sku5 sks1. The glycosylphosphatidylinositol-anchored motif was crucial for membrane association and functionality of SKU5 and SKS1. Overall, our results identified SKU5 and SKS1 as regulators of ROS at the cell surface for regulation of cell wall structure and root cell growth.
Collapse
Affiliation(s)
- Chaofan Chen
- College of Life Science and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yi Zhang
- College of Life Science and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jianfa Cai
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuting Qiu
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Lihong Li
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Chengxu Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yiqun Gao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Meiyu Ke
- College of Life Science and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shengwei Wu
- College of Life Science and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Chuan Wei
- College of Life Science and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jiaomei Chen
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Tongda Xu
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Junqi Wang
- Department of Biology, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ruixi Li
- Department of Biology, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Daiyin Chao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xu Chen
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhen Gao
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
37
|
Xiao C, Fang Y, Wang S, He K. The alleviation of ammonium toxicity in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36790049 DOI: 10.1111/jipb.13467] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Nitrogen (N) is an essential macronutrient for plants and profoundly affects crop yields and qualities. Ammonium (NH4 + ) and nitrate (NO3 - ) are major inorganic N forms absorbed by plants from the surrounding environments. Intriguingly, NH4 + is usually toxic to plants when it serves as the sole or dominant N source. It is thus important for plants to coordinate the utilization of NH4 + and the alleviation of NH4 + toxicity. To fully decipher the molecular mechanisms underlying how plants minimize NH4 + toxicity may broadly benefit agricultural practice. In the current minireview, we attempt to discuss recent discoveries in the strategies for mitigating NH4 + toxicity in plants, which may provide potential solutions for improving the nitrogen use efficiency (NUE) and stress adaptions in crops.
Collapse
Affiliation(s)
- Chengbin Xiao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Yuan Fang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Suomin Wang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Kai He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
38
|
Ai H, Liu X, Hu Z, Cao Y, Kong N, Gao F, Hu S, Shen X, Huang X, Xu G, Sun S. Mutation of OsLPR3 Enhances Tolerance to Phosphate Starvation in Rice. Int J Mol Sci 2023; 24:ijms24032437. [PMID: 36768758 PMCID: PMC9917114 DOI: 10.3390/ijms24032437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
Low Phosphate Root (LPR) encodes a protein localized to the endoplasmic reticulum (ER) and cell wall. This gene plays a key role in responding to phosphate (Pi) deprivation, especially in remodeling the root system architecture (RSA). An identification and expression analysis of the OsLPR family in rice (Oryza sativa) has been previously reported, and OsLPR5, functioning in Pi uptake and translocation, is required for the normal growth and development of rice. However, the role of OsLPR3, one of the five members of this family in rice, in response to Pi deficiency and/or in the regulation of plant growth and development is unknown. Therefore, in this study, the roles of OsLPR3 in these processes were investigated, and some functions were found to differ between OsLPR3 and OsLPR5. OsLPR3 was found to be induced in the leaf blades, leaf sheaths, and roots under Pi deprivation. OsLPR3 overexpression strongly inhibited the growth and development of the rice but did not affect the Pi homeostasis of the plant. However, oslpr3 mutants improved RSA and Pi utilization, and they exhibited a higher tolerance to low Pi stress in rice. The agronomic traits of the oslpr3 mutants, such as 1000-grain weight and seed length, were stimulated under Pi-sufficient conditions, indicating that OsLPR3 plays roles different from those of OsLPR5 during plant growth and development, as well as in the maintenance of the Pi status of rice.
Collapse
Affiliation(s)
- Hao Ai
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiuli Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhi Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yue Cao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Nannan Kong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Feiyan Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Siwen Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xing Shen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xianzhong Huang
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shubin Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: ; Fax: +86-25-84396238
| |
Collapse
|
39
|
Xu ZR, Cai ML, Yang Y, You TT, Ma JF, Wang P, Zhao FJ. The ferroxidases LPR1 and LPR2 control iron translocation in the xylem of Arabidopsis plants. MOLECULAR PLANT 2022; 15:1962-1975. [PMID: 36348623 DOI: 10.1016/j.molp.2022.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/06/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Iron (Fe) deficiency is common in agricultural crops and affects millions of people worldwide. Translocation of Fe in the xylem is a key step for Fe distribution in plants. The mechanism controlling this process remains largely unknown. Here, we report that two Arabidopsis ferroxidases, LPR1 and LPR2, play a crucial and redundant role in controlling Fe translocation in the xylem. LPR1 and LPR2 are mainly localized in the cell walls of xylem vessels and the surrounding cells in roots, leaves, and stems. Knockout of both LPR1 and LPR2 increased the proportion of Fe(II) in the xylem sap, and caused Fe deposition along the vascular bundles especially in the petioles and main veins of leaves, which was alleviated by blocking blue light. The lpr1 lpr2 double mutant displayed constitutive expression of Fe deficiency response genes and overaccumulation of Fe in the roots and mature leaves under Fe-sufficient supply, but Fe deficiency chlorosis in the new leaves and inflorescences under low Fe supply. Moreover, the lpr1 lpr2 double mutant showed lower Fe concentrations in the xylem and phloem saps, and impaired 57Fe translocation along the xylem. In vitro assays showed that Fe(III)-citrate, the main form of Fe in xylem sap, is easily photoreduced to Fe(II)-citrate, which is unstable and prone to adsorption by cell walls. Taken together, these results indicate that LPR1 and LPR2 are required to oxidize Fe(II) and maintain Fe(III)-citrate stability and mobility during xylem translocation against photoreduction. Our study not only uncovers an essential physiological role of LPR1 and LPR2 but also reveals a new mechanism by which plants maintain Fe mobility during long-distance translocation in the xylem.
Collapse
Affiliation(s)
- Zhong-Rui Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Mei-Ling Cai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ting-Ting You
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan
| | - Peng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China.
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
40
|
Zhu QY, Wang Y, Liu XX, Ye JY, Zhou M, Jing XT, Du WX, Hu WJ, He C, Zhu YX, Jin CW. The ferroxidases are critical for Fe(II) oxidation in xylem to ensure a healthy Fe allocation in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:958984. [PMID: 36061760 PMCID: PMC9428407 DOI: 10.3389/fpls.2022.958984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
The long-distance transport of iron (Fe) in the xylem is critical for maintaining systemic Fe homeostasis in plants. The loading form of Fe(II) into the xylem and the long-distance translocation form of Fe(III)-citrate have been identified, but how Fe(II) is oxidized to Fe(III) in the xylem remains unknown. Here, we showed that the cell wall-resided ferroxidases LPR1 and LPR2 (LPRs) were both specifically expressed in the vascular tissues of Arabidopsis thaliana, while disruption of both of them increased Fe(II) in the xylem sap and caused excessive Fe deposition in the xylem vessel wall under Fe-sufficient conditions. As a result, a large amount of Fe accumulated in both roots and shoots, hindering plant growth. Moreover, under low-Fe conditions, LPRs were preferentially induced in old leaves, but the loss of LPRs increased Fe deposition in the vasculature of older leaves and impeded Fe allocation to younger leaves. Therefore, disruption of both LPRs resulted in severer chlorosis in young leaves under Fe-deficient conditions. Taken together, the oxidation of Fe(II) to Fe(III) by LPRs in the cell wall of vasculature plays an important role in xylem Fe allocation, ensuring healthy Fe homeostasis for normal plant growth.
Collapse
Affiliation(s)
- Qing-Yang Zhu
- College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Yun Wang
- Planting Technology Extension Center of Dongyang, Jinhua, China
| | - Xing-Xing Liu
- College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Jia-Yuan Ye
- College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Miao Zhou
- College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Xiang-Ting Jing
- College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Wen-Xin Du
- College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Wei-Jie Hu
- College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Chao He
- College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Ya-Xin Zhu
- College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Chong-Wei Jin
- College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| |
Collapse
|