1
|
Dinata R, Baindara P, Mandal SM. Evolution of Antiviral Drug Resistance in SARS-CoV-2. Viruses 2025; 17:722. [PMID: 40431733 DOI: 10.3390/v17050722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 05/14/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
The COVID-19 pandemic has had a significant impact and continues to alarm the entire world due to the rapid emergence of new variants, even after mass vaccinations. There is still an urgent need for new antivirals or strategies to combat the SARS-CoV-2 infections; however, we have success stories with nirmatrelvir. Drug repurposing and drug discovery may lead to a successful SARS-CoV-2 antiviral; however, rapid drug use may cause unexpected mutations and antiviral drug resistance. Conversely, novel variants of the SARS-CoV-2 can diminish the neutralizing efficacy of vaccines, thereby enhancing viral fitness and increasing the likelihood of drug resistance emergence. Additionally, the disposal of antivirals in wastewater also contributes to drug resistance. Overall, the present review summarizes the strategies and mechanisms involved in the development of drug resistance in SARS-CoV-2. Understanding the mechanism of antiviral resistance is crucial to mitigate the significant healthcare threat and to develop effective therapeutics against drug resistance.
Collapse
Affiliation(s)
- Roy Dinata
- Animal Science Research Center, Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Piyush Baindara
- Animal Science Research Center, Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Santi M Mandal
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
2
|
Li Y, Li M, Xiao H, Liao F, Shen M, Ge W, Ou J, Liu Y, Chen L, Zhao Y, Wan P, Liu J, Chen J, Lan X, Wu S, Ding Q, Li G, Zhang Q, Pan P. The R203M and D377Y mutations of the nucleocapsid protein promote SARS-CoV-2 infectivity by impairing RIG-I-mediated antiviral signaling. PLoS Pathog 2025; 21:e1012886. [PMID: 39841800 PMCID: PMC11771877 DOI: 10.1371/journal.ppat.1012886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 01/27/2025] [Accepted: 01/03/2025] [Indexed: 01/24/2025] Open
Abstract
The viral protein mutations can modify virus-host interactions during virus evolution, and thus alter the extent of infection or pathogenicity. Studies indicate that nucleocapsid (N) protein of SARS-CoV-2 participates in viral genome assembly, intracellular signal regulation and immune interference. However, its biological function in viral evolution is not well understood. SARS-CoV-2 N protein mutations were analyzed in Delta, Omicron, and original strains. Two mutations with a methionine (M) residue at site 203 and a tyrosine (Y) residue at site 377 of the N protein were found in Delta strain but not in Omicron and original strains, and promoted SARS-CoV-2 infection therein. Those mutations, R203M and D377Y, enhanced the inhibitory impact of N protein on the impairment of RIG-I-mediated antiviral signaling, such as IRF3 phosphorylation and IFN-β activation. The viral RNA-binding activity of N protein was promoted by these mutations, effectively attenuating the recognition and interaction of RIG-I with viral RNA compared to the original or other variants. The R203M/D377Y mutations thus enhanced the suppressive activity of the N protein on RIG-I-mediated interferon induction both in vitro and in vivo, which in turn promoted viral replication. This study helps to understand the variability of SARS-CoV-2 in regulating host immunity.
Collapse
Affiliation(s)
- Yongkui Li
- State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Moran Li
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Heng Xiao
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Feng Liao
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Miaomiao Shen
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Weiwei Ge
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Junxian Ou
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yuqing Liu
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Lumiao Chen
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yue Zhao
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Pin Wan
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jinbiao Liu
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jun Chen
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xianwu Lan
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shaorong Wu
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qiang Ding
- School of Medicine, Tsinghua University, Beijing, China
| | - Geng Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiwei Zhang
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Pan Pan
- State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Fan H, Tian M, Liu S, Ye C, Li Z, Wu K, Zhu C. Strategies Used by SARS-CoV-2 to Evade the Innate Immune System in an Evolutionary Perspective. Pathogens 2024; 13:1117. [PMID: 39770376 PMCID: PMC11677916 DOI: 10.3390/pathogens13121117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/05/2025] Open
Abstract
By the end of 2019, the COVID-19 pandemic, resulting from the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), had diffused widely across the globe, with 770 million infected individuals and over 7 million deaths reported. In addition to its high infectivity and pathogenicity and its rapid mutation rate, the unique capacity of SARS-CoV-2 to circumvent the immune system has also contributed to the widespread nature of this pandemic. SARS-CoV-2 elicits the onset of innate immune system activation and initiates antiviral responses once it has infected the host. While battling the host's immune responses, SARS-CoV-2 has established many countermeasures to evade attack and clearance. As the exploration of SARS-CoV-2 continues, substantial evidence has revealed that the 29 proteins synthesized by the SARS-CoV-2 genome are integral to the viral infection process. They not only facilitate viral replication and transmission, but also assist SARS-CoV-2 in escaping the host's immune defenses, positioning them as promising therapeutic targets that have attracted considerable attention in recent studies. This review summarizes the manner in which SARS-CoV-2 interfaces with the innate immune system, with a particular focus on the continuous evolution of SARS-CoV-2 and the implications of mutations.
Collapse
Affiliation(s)
- Hong Fan
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China; (H.F.); (C.Y.); (Z.L.)
| | - Mingfu Tian
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (M.T.); (S.L.); (K.W.)
| | - Siyu Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (M.T.); (S.L.); (K.W.)
| | - Chenglin Ye
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China; (H.F.); (C.Y.); (Z.L.)
| | - Zhiqiang Li
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China; (H.F.); (C.Y.); (Z.L.)
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (M.T.); (S.L.); (K.W.)
| | - Chengliang Zhu
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China; (H.F.); (C.Y.); (Z.L.)
| |
Collapse
|
4
|
Dhamotharan K, Korn SM, Wacker A, Becker MA, Günther S, Schwalbe H, Schlundt A. A core network in the SARS-CoV-2 nucleocapsid NTD mediates structural integrity and selective RNA-binding. Nat Commun 2024; 15:10656. [PMID: 39653699 PMCID: PMC11628620 DOI: 10.1038/s41467-024-55024-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024] Open
Abstract
The SARS-CoV-2 nucleocapsid protein is indispensable for viral RNA genome processing. Although the N-terminal domain (NTD) is suggested to mediate specific RNA-interactions, high-resolution structures with viral RNA are still lacking. Available hybrid structures of the NTD with ssRNA and dsRNA provide valuable insights; however, the precise mechanism of complex formation remains elusive. Similarly, the molecular impact of nucleocapsid NTD mutations that have emerged since 2019 has not yet been fully explored. Using crystallography and solution NMR, we investigate how NTD mutations influence structural integrity and RNA-binding. We find that both features rely on a core network of residues conserved in Betacoronaviruses, crucial for protein stability and communication among flexible loop-regions that facilitate RNA-recognition. Our comprehensive structural analysis demonstrates that contacts within this network guide selective RNA-interactions. We propose that the core network renders the NTD evolutionarily robust in stability and plasticity for its versatile RNA processing roles.
Collapse
Affiliation(s)
- Karthikeyan Dhamotharan
- Institute for Molecular Biosciences, Goethe University, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt, Germany
| | - Sophie M Korn
- Institute for Molecular Biosciences, Goethe University, Frankfurt, Germany.
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt, Germany.
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| | - Anna Wacker
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt, Germany
- Institute for Organic Chemistry and Chemical Biology, Goethe University, Frankfurt, Germany
| | - Matthias A Becker
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt, Germany
- Institute for Organic Chemistry and Chemical Biology, Goethe University, Frankfurt, Germany
| | - Sebastian Günther
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg, Germany
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt, Germany
- Institute for Organic Chemistry and Chemical Biology, Goethe University, Frankfurt, Germany
| | - Andreas Schlundt
- Institute for Molecular Biosciences, Goethe University, Frankfurt, Germany.
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt, Germany.
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany.
| |
Collapse
|
5
|
Alkhamis MA, Hussain A, Al-Therban F. Comparative Evolutionary Epidemiology of SARS-CoV-2 Delta and Omicron Variants in Kuwait. Viruses 2024; 16:1872. [PMID: 39772182 PMCID: PMC11680180 DOI: 10.3390/v16121872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
Continuous surveillance is critical for early intervention against emerging novel SARS-CoV-2 variants. Therefore, we investigated and compared the variant-specific evolutionary epidemiology of all the Delta and Omicron sequences collected between 2021 and 2023 in Kuwait. We used Bayesian phylodynamic models to reconstruct, trace, and compare the two variants' demographics, phylogeographic, and host characteristics in shaping their evolutionary epidemiology. The Omicron had a higher evolutionary rate than the Delta. Both variants underwent periods of sequential growth and decline in their effective population sizes, likely linked to intervention measures and environmental and host characteristics. We found that the Delta strains were frequently introduced into Kuwait from East Asian countries between late 2020 and early 2021, while those of the Omicron strains were most likely from Africa and North America between late 2021 and early 2022. For both variants, our analyses revealed significant transmission routes from patients aged between 20 and 50 years on one side and other age groups, refuting the notion that children are superspreaders for the disease. In contrast, we found that sex has no significant role in the evolutionary history of both variants. We uncovered deeper variant-specific epidemiological insights using phylodynamic models and highlighted the need to integrate such models into current and future genomic surveillance programs.
Collapse
Affiliation(s)
- Moh A. Alkhamis
- Department of Epidemiology and Biostatistics, College of Public Health, Health Sciences Centre, Kuwait University, P.O. Box 24923, Kuwait City 13110, Kuwait;
| | - Abrar Hussain
- Department of Epidemiology and Biostatistics, College of Public Health, Health Sciences Centre, Kuwait University, P.O. Box 24923, Kuwait City 13110, Kuwait;
| | - Fayez Al-Therban
- Department of Public Health, Ministry of Health, P.O. Box 24923, Kuwait City 13110, Kuwait;
| |
Collapse
|
6
|
Mallick M, Boehm V, Xue G, Blackstone M, Gehring N, Chakrabarti S. Modulation of UPF1 catalytic activity upon interaction of SARS-CoV-2 Nucleocapsid protein with factors involved in nonsense mediated-mRNA decay. Nucleic Acids Res 2024; 52:13325-13339. [PMID: 39360627 PMCID: PMC11602160 DOI: 10.1093/nar/gkae829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/09/2024] [Accepted: 09/14/2024] [Indexed: 10/04/2024] Open
Abstract
The RNA genome of the SARS-CoV-2 virus encodes for four structural proteins, 16 non-structural proteins and nine putative accessory factors. A high throughput analysis of interactions between human and SARS-CoV-2 proteins identified multiple interactions of the structural Nucleocapsid (N) protein with RNA processing factors. The N-protein, which is responsible for packaging of the viral genomic RNA was found to interact with two RNA helicases, UPF1 and MOV10 that are involved in nonsense-mediated mRNA decay (NMD). Using a combination of biochemical and biophysical methods, we investigated the interaction of the SARS-CoV-2 N-protein with NMD factors at a molecular level. Our studies led us to identify the core NMD factor, UPF2, as an interactor of N. The viral N-protein engages UPF2 in multipartite interactions and can negate the stimulatory effect of UPF2 on UPF1 catalytic activity. N also inhibits UPF1 ATPase and unwinding activities by competing in binding to the RNA substrate. We further investigate the functional implications of inhibition of UPF1 catalytic activity by N in mammalian cells. The interplay of SARS-CoV-2 N with human UPF1 and UPF2 does not affect decay of host cell NMD targets but might play a role in stabilizing the viral RNA genome.
Collapse
Affiliation(s)
- Megha Mallick
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 6, D-14195 Berlin, Germany
| | - Volker Boehm
- Institute for Genetics, University of Cologne, Cologne 50674, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany
| | - Guangpu Xue
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 6, D-14195 Berlin, Germany
| | - Mark Blackstone
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 6, D-14195 Berlin, Germany
| | - Niels H Gehring
- Institute for Genetics, University of Cologne, Cologne 50674, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany
| | - Sutapa Chakrabarti
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 6, D-14195 Berlin, Germany
| |
Collapse
|
7
|
Han Y, Zhou H, Liu C, Wang W, Qin Y, Chen M. SARS-CoV-2 N protein coordinates viral particle assembly through multiple domains. J Virol 2024; 98:e0103624. [PMID: 39412257 PMCID: PMC11575404 DOI: 10.1128/jvi.01036-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/09/2024] [Indexed: 11/20/2024] Open
Abstract
Increasing evidence suggests that mutations in the nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may enhance viral replication by modulating the assembly process. However, the mechanisms governing the selective packaging of viral genomic RNA by the N protein, along with the assembly and budding processes, remain poorly understood. Utilizing a virus-like particles (VLPs) system, we have identified that the C-terminal domain (CTD) of the N protein is essential for its interaction with the membrane (M) protein during budding, crucial for binding and packaging genomic RNA. Notably, the isolated CTD lacks M protein interaction capacity and budding ability. Yet, upon fusion with the N-terminal domain (NTD) or the linker region (LKR), the resulting NTD/CTD and LKR/CTD acquire RNA-dependent interactions with the M protein and acquire budding capabilities. Furthermore, the presence of the C-tail is vital for efficient genomic RNA encapsidation by the N protein, possibly regulated by interactions with the M protein. Remarkably, the NTD of the N protein appears dispensable for virus particle assembly, offering the virus adaptive advantages. The emergence of N* (NΔN209) in the SARS-CoV-2 B.1.1 lineage corroborates our findings and hints at the potential evolution of a more streamlined N protein by the SARS-CoV-2 virus to facilitate the assembly process. Comparable observations have been noted with the N proteins of SARS-CoV and HCoV-OC43 viruses. In essence, these findings propose that β-coronaviruses may augment their replication by fine-tuning the assembly process.IMPORTANCEAs a highly transmissible zoonotic virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve. Adaptive mutations in the nucleocapsid (N) protein highlight the critical role of N protein-based assembly in the virus's replication and evolutionary dynamics. However, the precise molecular mechanisms of N protein-mediated viral assembly remain inadequately understood. Our study elucidates the intricate interactions between the N protein, membrane (M) protein, and genomic RNA, revealing a C-terminal domain (CTD)-based assembly mechanism common among β-coronaviruses. The appearance of the N* variant within the SARS-CoV-2 B.1.1 lineage supports our conclusion that the N-terminal domain (NTD) of the N protein is not essential for viral assembly. This work not only enhances our understanding of coronavirus assembly mechanisms but also provides new insights for developing antiviral drugs targeting these conserved processes.
Collapse
Affiliation(s)
- Yuewen Han
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Haiwu Zhou
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Cong Liu
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Weiwei Wang
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yali Qin
- School of Life Sciences, Hubei University, Wuhan, China
| | - Mingzhou Chen
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
- School of Life Sciences, Hubei University, Wuhan, China
- Hubei Jiangxia Laboratory, Wuhan, China
| |
Collapse
|
8
|
May MR, Rannala B. Early detection of highly transmissible viral variants using phylogenomics. SCIENCE ADVANCES 2024; 10:eadk7623. [PMID: 39141727 PMCID: PMC11323880 DOI: 10.1126/sciadv.adk7623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 07/09/2024] [Indexed: 08/16/2024]
Abstract
As demonstrated by the SARS-CoV-2 pandemic, the emergence of novel viral strains with increased transmission rates poses a serious threat to global health. Statistical models of genome sequence evolution may provide a critical tool for early detection of these strains. Using a novel stochastic model that links transmission rates to the entire viral genome sequence, we study the utility of phylogenetic methods that use a phylogenetic tree relating viral samples versus count-based methods that use case counts of variants over time exclusively to detect increased transmission rates and identify candidate causative mutations. We find that phylogenies in particular can detect novel transmission-enhancing variants very soon after their origin and may facilitate the development of early detection systems for outbreak surveillance.
Collapse
Affiliation(s)
- Michael R. May
- Department of Evolution and Ecology, University of California Davis, Davis, CA, USA
| | | |
Collapse
|
9
|
Focosi D, Spezia PG, Maggi F. Subsequent Waves of Convergent Evolution in SARS-CoV-2 Genes and Proteins. Vaccines (Basel) 2024; 12:887. [PMID: 39204013 PMCID: PMC11358953 DOI: 10.3390/vaccines12080887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 09/03/2024] Open
Abstract
Beginning in 2022, following widespread infection and vaccination among the global population, the SARS-CoV-2 virus mainly evolved to evade immunity derived from vaccines and past infections. This review covers the convergent evolution of structural, nonstructural, and accessory proteins in SARS-CoV-2, with a specific look at common mutations found in long-lasting infections that hint at the virus potentially reverting to an enteric sarbecovirus type.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy;
| | - Pietro Giorgio Spezia
- Laboratory of Virology and Laboratory of Biosecurity, National Institute of Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy;
| | - Fabrizio Maggi
- Laboratory of Virology and Laboratory of Biosecurity, National Institute of Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy;
| |
Collapse
|
10
|
Muradyan N, Arakelov V, Sargsyan A, Paronyan A, Arakelov G, Nazaryan K. Impact of mutations on the stability of SARS-CoV-2 nucleocapsid protein structure. Sci Rep 2024; 14:5870. [PMID: 38467657 PMCID: PMC10928099 DOI: 10.1038/s41598-024-55157-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/21/2024] [Indexed: 03/13/2024] Open
Abstract
The nucleocapsid (N) protein of SARS-CoV-2 is known to participate in various host cellular processes, including interferon inhibition, RNA interference, apoptosis, and regulation of virus life cycles. Additionally, it has potential as a diagnostic antigen and/or immunogen. Our research focuses on examining structural changes caused by mutations in the N protein. We have modeled the complete tertiary structure of native and mutated forms of the N protein using Alphafold2. Notably, the N protein contains 3 disordered regions. The focus was on investigating the impact of mutations on the stability of the protein's dimeric structure based on binding free energy calculations (MM-PB/GB-SA) and RMSD fluctuations after MD simulations. The results demonstrated that 28 mutations out of 37 selected mutations analyzed, compared with wild-type N protein, resulted in a stable dimeric structure, while 9 mutations led to destabilization. Our results are important to understand the tertiary structure of the N protein dimer of SARS-CoV-2 and the effect of mutations on it, their behavior in the host cell, as well as for the research of other viruses belonging to the same genus additionally, to anticipate potential strategies for addressing this viral illness․.
Collapse
Affiliation(s)
- Nelli Muradyan
- Laboratory of Computational Modeling of Biological Processes, Institute of Molecular Biology of the National Academy of Sciences of the Republic of Armenia (NAS RA), 0014, Yerevan, Armenia
| | - Vahram Arakelov
- Laboratory of Computational Modeling of Biological Processes, Institute of Molecular Biology of the National Academy of Sciences of the Republic of Armenia (NAS RA), 0014, Yerevan, Armenia
| | - Arsen Sargsyan
- Laboratory of Computational Modeling of Biological Processes, Institute of Molecular Biology of the National Academy of Sciences of the Republic of Armenia (NAS RA), 0014, Yerevan, Armenia
- Russian-Armenian University, 0051, Yerevan, Armenia
| | - Adrine Paronyan
- Laboratory of Computational Modeling of Biological Processes, Institute of Molecular Biology of the National Academy of Sciences of the Republic of Armenia (NAS RA), 0014, Yerevan, Armenia
- Russian-Armenian University, 0051, Yerevan, Armenia
| | - Grigor Arakelov
- Laboratory of Computational Modeling of Biological Processes, Institute of Molecular Biology of the National Academy of Sciences of the Republic of Armenia (NAS RA), 0014, Yerevan, Armenia.
- Russian-Armenian University, 0051, Yerevan, Armenia.
| | - Karen Nazaryan
- Laboratory of Computational Modeling of Biological Processes, Institute of Molecular Biology of the National Academy of Sciences of the Republic of Armenia (NAS RA), 0014, Yerevan, Armenia
- Russian-Armenian University, 0051, Yerevan, Armenia
| |
Collapse
|
11
|
Ling-Hu T, Simons LM, Dean TJ, Rios-Guzman E, Caputo MT, Alisoltani A, Qi C, Malczynski M, Blanke T, Jennings LJ, Ison MG, Achenbach CJ, Larkin PM, Kaul KL, Lorenzo-Redondo R, Ozer EA, Hultquist JF. Integration of individualized and population-level molecular epidemiology data to model COVID-19 outcomes. Cell Rep Med 2024; 5:101361. [PMID: 38232695 PMCID: PMC10829796 DOI: 10.1016/j.xcrm.2023.101361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 08/07/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with enhanced transmissibility and immune escape have emerged periodically throughout the coronavirus disease 2019 (COVID-19) pandemic, but the impact of these variants on disease severity has remained unclear. In this single-center, retrospective cohort study, we examined the association between SARS-CoV-2 clade and patient outcome over a two-year period in Chicago, Illinois. Between March 2020 and March 2022, 14,252 residual diagnostic specimens were collected from SARS-CoV-2-positive inpatients and outpatients alongside linked clinical and demographic metadata, of which 2,114 were processed for viral whole-genome sequencing. When controlling for patient demographics and vaccination status, several viral clades were associated with risk for hospitalization, but this association was negated by the inclusion of population-level confounders, including case count, sampling bias, and shifting standards of care. These data highlight the importance of integrating non-virological factors into disease severity and outcome models for the accurate assessment of patient risk.
Collapse
Affiliation(s)
- Ted Ling-Hu
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| | - Lacy M Simons
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| | - Taylor J Dean
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| | - Estefany Rios-Guzman
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| | - Matthew T Caputo
- Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Arghavan Alisoltani
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| | - Chao Qi
- Clinical Microbiology Laboratory, Department of Pathology, Northwestern Memorial Hospital, Chicago, IL 60611, USA
| | - Michael Malczynski
- Clinical Microbiology Laboratory, Department of Pathology, Northwestern Memorial Hospital, Chicago, IL 60611, USA
| | - Timothy Blanke
- Diagnostic Molecular Biology Laboratory, Northwestern Memorial Hospital, Chicago, IL 60611, USA
| | - Lawrence J Jennings
- Clinical Microbiology Laboratory, Department of Pathology, Northwestern Memorial Hospital, Chicago, IL 60611, USA
| | - Michael G Ison
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Chad J Achenbach
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Paige M Larkin
- Department of Molecular Microbiology, Northshore University HealthSystem, Evanston, IL 60201, USA
| | - Karen L Kaul
- Department of Pathology, Northshore University HealthSystem, Evanston, IL 60201, USA
| | - Ramon Lorenzo-Redondo
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| | - Egon A Ozer
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| | - Judd F Hultquist
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA.
| |
Collapse
|
12
|
Tang CY, Li T, Haynes TA, McElroy JA, Ritter D, Hammer RD, Sampson C, Webby R, Hang J, Wan XF. Rural populations facilitated early SARS-CoV-2 evolution and transmission in Missouri, USA. NPJ VIRUSES 2023; 1:7. [PMID: 38186942 PMCID: PMC10769004 DOI: 10.1038/s44298-023-00005-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/20/2023] [Indexed: 01/09/2024]
Abstract
In the United States, rural populations comprise 60 million individuals and suffered from high COVID-19 disease burdens. Despite this, surveillance efforts are biased toward urban centers. Consequently, how rurally circulating SARS-CoV-2 viruses contribute toward emerging variants remains poorly understood. In this study, we aim to investigate the role of rural communities in the evolution and transmission of SARS-CoV-2 during the early pandemic. We collected 544 urban and 435 rural COVID-19-positive respiratory specimens from an overall vaccine-naïve population in Southwest Missouri between July and December 2020. Genomic analyses revealed 53 SARS-CoV-2 Pango lineages in our study samples, with 14 of these lineages identified only in rural samples. Phylodynamic analyses showed that frequent bi-directional diffusions occurred between rural and urban communities in Southwest Missouri, and that four out of seven Missouri rural-origin lineages spread globally. Further analyses revealed that the nucleocapsid protein (N):R203K/G204R paired substitutions, which were detected disproportionately across multiple Pango lineages, were more associated with urban than rural sequences. Positive selection was detected at N:204 among rural samples but was not evident in urban samples, suggesting that viruses may encounter distinct selection pressures in rural versus urban communities. This study demonstrates that rural communities may be a crucial source of SARS-CoV-2 evolution and transmission, highlighting the need to expand surveillance and resources to rural populations for COVID-19 mitigation.
Collapse
Affiliation(s)
- Cynthia Y. Tang
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO, USA
- Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
- These authors contributed equally: Cynthia Y. Tang, Tao Li
| | - Tao Li
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- These authors contributed equally: Cynthia Y. Tang, Tao Li
| | - Tricia A. Haynes
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO, USA
- Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Jane A. McElroy
- Family and Community Medicine, University of Missouriś, Columbia, MO, USA
| | - Detlef Ritter
- Anatomic Pathology & Clinical Pathology, University of Missouri, Columbia, MO, USA
| | - Richard D. Hammer
- Anatomic Pathology & Clinical Pathology, University of Missouri, Columbia, MO, USA
| | | | - Richard Webby
- Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Jun Hang
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Xiu-Feng Wan
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO, USA
- Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
- Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, MO, USA
| |
Collapse
|
13
|
Haque S, Khatoon F, Ashgar SS, Faidah H, Bantun F, Jalal NA, Qashqari FSI, Kumar V. Energetic and frustration analysis of SARS-CoV-2 nucleocapsid protein mutations. Biotechnol Genet Eng Rev 2023; 39:1234-1254. [PMID: 36708355 DOI: 10.1080/02648725.2023.2170031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 01/11/2023] [Indexed: 01/29/2023]
Abstract
The ongoing COVID-19 spreads worldwide with the ability to evolve in diverse human populations. The nucleocapsid (N) protein is one of the mutational hotspots in the SARS-CoV-2 genome. The N protein is an abundant RNA-binding protein critical for viral genome packaging. It comprises two large domains including the N-terminal domain (NTD) and the C-terminal domain (CTD) linked by the centrally located linker region. Mutations in N protein have been reported to increase the severity of disease by modulating viral transmissibility, replication efficiency as well as virulence properties of the virus in different parts of the world. To study the effect of N protein missense mutations on protein stability, function, and pathogenicity, we analyzed 228 mutations from each domain of N protein. Further, we have studied the effect of mutations on local residual frustration changes in N protein. Out of 228 mutations, 11 mutations were predicted to be deleterious and destabilized. Among these mutations, R32C, R191C, and R203 M mutations fall into disordered regions and show significant change in frustration state. Overall, this work reveals that by altering the energetics and residual frustration, N protein mutations might affect the stability, function, and pathogenicity of the SARS-CoV-2.
Collapse
Affiliation(s)
- Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Fatima Khatoon
- Amity Institute of Neuropsychology & Neurosciences (AINN), Amity University, Noida, India
| | - Sami S Ashgar
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hani Faidah
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Farkad Bantun
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Naif A Jalal
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Fadi S I Qashqari
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Vijay Kumar
- Amity Institute of Neuropsychology & Neurosciences (AINN), Amity University, Noida, India
| |
Collapse
|
14
|
da Fonseca GC, Cavalcante LTF, Brustolini OJ, Luz PM, Pires DC, Jalil EM, Peixoto EM, Grinsztejn B, Veloso VG, Nazer S, Costa CAM, Villela DAM, Goedert GT, Santos CVBD, Rodrigues NCP, do Couto Motta F, Siqueira MM, Coelho LE, Struchiner CJ, Vasconcelos ATR. Differential Type-I Interferon Response in Buffy Coat Transcriptome of Individuals Infected with SARS-CoV-2 Gamma and Delta Variants. Int J Mol Sci 2023; 24:13146. [PMID: 37685953 PMCID: PMC10487928 DOI: 10.3390/ijms241713146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/07/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023] Open
Abstract
The innate immune system is the first line of defense against pathogens such as the acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The type I-interferon (IFN) response activation during the initial steps of infection is essential to prevent viral replication and tissue damage. SARS-CoV and SARS-CoV-2 can inhibit this activation, and individuals with a dysregulated IFN-I response are more likely to develop severe disease. Several mutations in different variants of SARS-CoV-2 have shown the potential to interfere with the immune system. Here, we evaluated the buffy coat transcriptome of individuals infected with Gamma or Delta variants of SARS-CoV-2. The Delta transcriptome presents more genes enriched in the innate immune response and Gamma in the adaptive immune response. Interactome and enriched promoter analysis showed that Delta could activate the INF-I response more effectively than Gamma. Two mutations in the N protein and one in the nsp6 protein found exclusively in Gamma have already been described as inhibitors of the interferon response pathway. This indicates that the Gamma variant evolved to evade the IFN-I response. Accordingly, in this work, we showed one of the mechanisms that variants of SARS-CoV-2 can use to avoid or interfere with the host Immune system.
Collapse
Affiliation(s)
- Guilherme C. da Fonseca
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro 25651-076, Brazil; (G.C.d.F.); (L.T.F.C.); (O.J.B.)
| | - Liliane T. F. Cavalcante
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro 25651-076, Brazil; (G.C.d.F.); (L.T.F.C.); (O.J.B.)
| | - Otávio J. Brustolini
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro 25651-076, Brazil; (G.C.d.F.); (L.T.F.C.); (O.J.B.)
| | - Paula M. Luz
- Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (P.M.L.); (D.C.P.); (E.M.J.); (E.M.P.); (B.G.); (V.G.V.); (S.N.); (L.E.C.)
| | - Debora C. Pires
- Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (P.M.L.); (D.C.P.); (E.M.J.); (E.M.P.); (B.G.); (V.G.V.); (S.N.); (L.E.C.)
| | - Emilia M. Jalil
- Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (P.M.L.); (D.C.P.); (E.M.J.); (E.M.P.); (B.G.); (V.G.V.); (S.N.); (L.E.C.)
| | - Eduardo M. Peixoto
- Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (P.M.L.); (D.C.P.); (E.M.J.); (E.M.P.); (B.G.); (V.G.V.); (S.N.); (L.E.C.)
| | - Beatriz Grinsztejn
- Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (P.M.L.); (D.C.P.); (E.M.J.); (E.M.P.); (B.G.); (V.G.V.); (S.N.); (L.E.C.)
| | - Valdilea G. Veloso
- Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (P.M.L.); (D.C.P.); (E.M.J.); (E.M.P.); (B.G.); (V.G.V.); (S.N.); (L.E.C.)
| | - Sandro Nazer
- Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (P.M.L.); (D.C.P.); (E.M.J.); (E.M.P.); (B.G.); (V.G.V.); (S.N.); (L.E.C.)
| | - Carlos A. M. Costa
- Escola Nacional de Saúde Pública, FIOCRUZ, Rio de Janeiro 21041-210, Brazil; (C.A.M.C.); (N.C.P.R.)
| | - Daniel A. M. Villela
- Programa de Computação Científica (PROCC), FIOCRUZ, Rio de Janeiro 21040-900, Brazil;
| | - Guilherme T. Goedert
- Escola de Matemática Aplicada (EMAp), Fundação Getúlio Vargas, Rio de Janeiro 22250-900, Brazil;
| | - Cleber V. B. D. Santos
- Instituto de Medicina Social Hesio Cordeiro (IMS), Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-013, Brazil;
| | - Nadia C. P. Rodrigues
- Escola Nacional de Saúde Pública, FIOCRUZ, Rio de Janeiro 21041-210, Brazil; (C.A.M.C.); (N.C.P.R.)
- Instituto de Medicina Social Hesio Cordeiro (IMS), Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-013, Brazil;
| | | | | | - Lara E. Coelho
- Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (P.M.L.); (D.C.P.); (E.M.J.); (E.M.P.); (B.G.); (V.G.V.); (S.N.); (L.E.C.)
| | - Claudio J. Struchiner
- Escola de Matemática Aplicada (EMAp), Fundação Getúlio Vargas, Rio de Janeiro 22250-900, Brazil;
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (F.d.C.M.); (M.M.S.)
| | - Ana Tereza R. Vasconcelos
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro 25651-076, Brazil; (G.C.d.F.); (L.T.F.C.); (O.J.B.)
| |
Collapse
|
15
|
Song W, Fang Z, Ma F, Li J, Huang Z, Zhang Y, Li J, Chen K. The role of SARS-CoV-2 N protein in diagnosis and vaccination in the context of emerging variants: present status and prospects. Front Microbiol 2023; 14:1217567. [PMID: 37675423 PMCID: PMC10478715 DOI: 10.3389/fmicb.2023.1217567] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/31/2023] [Indexed: 09/08/2023] Open
Abstract
Despite many countries rapidly revising their strategies to prevent contagions, the number of people infected with Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to surge. The emergent variants that can evade the immune response significantly affect the effectiveness of mainstream vaccines and diagnostic products based on the original spike protein. Therefore, it is essential to focus on the highly conserved nature of the nucleocapsid protein as a potential target in the field of vaccines and diagnostics. In this regard, our review initially discusses the structure, function, and mechanism of action of N protein. Based on this discussion, we summarize the relevant research on the in-depth development and application of diagnostic methods and vaccines based on N protein, such as serology and nucleic acid detection. Such valuable information can aid in designing more efficient diagnostic and vaccine tools that could help end the SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Wanchen Song
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhongbiao Fang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Feike Ma
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiaxuan Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Zhiwei Huang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yanjun Zhang
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Jianhua Li
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
16
|
May MR, Rannala B. Phylogenies increase power to detect highly transmissible viral genome variants. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.28.23293332. [PMID: 37577556 PMCID: PMC10418580 DOI: 10.1101/2023.07.28.23293332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
As demonstrated by the SARS-CoV-2 pandemic, the emergence of novel viral strains with increased transmission rates poses a significant threat to global health. Viral genome sequences, combined with statistical models of sequence evolution, may provide a critical tool for early detection of these strains. Using a novel statistical model that links transmission rates to the entire viral genome sequence, we study the power of phylogenetic methods-using a phylogenetic tree relating viral samples-and count-based methods-using case-counts of variants over time-to detect increased transmission rates, and to identify causative mutations. We find that phylogenies in particular can detect novel variants very soon after their origin, and may facilitate the development of early detection systems for outbreak surveillance.
Collapse
Affiliation(s)
- Michael R May
- Department of Evolution and Ecology, University of California Davis, Davis, CA USA
| | - Bruce Rannala
- Department of Evolution and Ecology, University of California Davis, Davis, CA USA
| |
Collapse
|
17
|
Almalki SSR, Izhari MA, Alyahyawi HE, Alatawi SK, Klufah F, Ahmed WAM, Alharbi R. Mutational Analysis of Circulating Omicron SARS-CoV-2 Lineages in the Al-Baha Region of Saudi Arabia. J Multidiscip Healthc 2023; 16:2117-2136. [PMID: 37529147 PMCID: PMC10389082 DOI: 10.2147/jmdh.s419859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023] Open
Abstract
Purpose Omicron (B.1.1.529) is one of the highly mutated variants of concern of SARS-CoV-2. Lineages of Omicron bear a remarkable degree of mutations leading to enhanced pathogenicity and upward transmission trajectory. Mutating Omicron lineages may trigger a fresh COVID-19 wave at any time in any region. We aimed at the whole-genome sequencing of SARS-CoV-2 to determine variants/subvariants and significant mutations which can foster virus evolution, monitoring of disease spread, and outbreak management. Methods We used Illumina-NovaSeq 6000 for SARS-CoV-2 genome sequencing, MEGA 10.2 and nextstrain tools for phylogeny; CD-HIT program (version 4.8.1) and MUSCLE program for clustering and alignment. At the same time, UCSF Chimera was employed for protein visualization. Results Predominant Omicron pango lineages in Al-Baha were BA.5.2/B22 (n=4, 57%), and other lineages were BA.2.12/21L (n=1, 14.28%), BV.1/22B (n=1, 14.28%) and BA.5.2.18/22B (n=1, 14.28%). 22B nextstrain clade was predominant, while only one lineage showed 21L. BA.5.2/22B, BA.5.2/22B harbored a maximum of n=24 mutations in the spike region. Twelve crucial RBD mutations: D405N, R408S, K417N, N440K, L452R, S477N, T478K, E484A, F486V, Q498R, N501Y, and Y505H were identified except the lineage BA.5.2/22B in which F486V mutation was not observed. Critical deletions S106 in membrane protein NSP6, E31in nucleocapsid, and L24 in spike region were observed in all the lineages. Furthermore, we identified common mutations of Omicron variants of SARS-CoV-2 in therapeutic hot spot spike region: T19I, D405N, R408S, K417N, N440K, L452R, S477N, T478K, E484A, F486V, Q498R, N501Y, Y505H, D614G, A653V, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K, D1146D, L452R, F486V, N679K and D796Y. The effect of RBD-targeted mutations on neutralizing (NAbs) binding was considerable. Conclusion The outcome of this first report on SARS-CoV-2 variants identification and mutation in the Al-Baha region could be used to lay down the policies to manage and impede the regional outbreak of COVID-19 effectively.
Collapse
Affiliation(s)
- Shaia S R Almalki
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Mohammad Asrar Izhari
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Hanan E Alyahyawi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Saleha Keder Alatawi
- Department of Optometry, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Faisal Klufah
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Waled A M Ahmed
- Department of Nursing, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Raed Alharbi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| |
Collapse
|
18
|
Shuaib M, Adroub S, Mourier T, Mfarrej S, Zhang H, Esau L, Alsomali A, Alofi FS, Ahmad AN, Shamsan A, Khogeer A, Hashem AM, Almontashiri NAM, Hala S, Pain A. Impact of the SARS-CoV-2 nucleocapsid 203K/204R mutations on the inflammatory immune response in COVID-19 severity. Genome Med 2023; 15:54. [PMID: 37475040 PMCID: PMC10360309 DOI: 10.1186/s13073-023-01208-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/04/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND The excessive inflammatory responses provoked by SARS-CoV-2 infection are critical factors affecting the severity and mortality of COVID-19. Previous work found that two adjacent co-occurring mutations R203K and G204R (KR) on the nucleocapsid (N) protein correlate with increased disease severity in COVID-19 patients. However, links with the host immune response remain unclear. METHODS Here, we grouped nasopharyngeal swab samples of COVID-19 patients into two cohorts based on the presence and absence of SARS-CoV-2 nucleocapsid KR mutations. We performed nasopharyngeal transcriptome analysis of age, gender, and ethnicity-matched COVID-19 patients infected with either SARS-CoV-2 with KR mutations in the N protein (KR patients n = 39) or with the wild-type N protein (RG patients n = 39) and compared to healthy controls (n = 34). The impact of KR mutation on immune response was further characterized experimentally by transcriptomic and proteomic profiling of virus-like-particle (VLP) incubated cells. RESULTS We observed markedly elevated expression of proinflammatory cytokines, chemokines, and interferon-stimulated (ISGs) genes in the KR patients compared to RG patients. Using nasopharyngeal transcriptome data, we found significantly higher levels of neutrophils and neutrophil-to-lymphocyte (NLR) ratio in KR patients than in the RG patients. Furthermore, transcriptomic and proteomic profiling of VLP incubated cells confirmed a similar hyper-inflammatory response mediated by the KR variant. CONCLUSIONS Our data demonstrate an unforeseen connection between nucleocapsid KR mutations and augmented inflammatory immune response in severe COVID-19 patients. These findings provide insights into how mutations in SARS-CoV-2 modulate host immune output and pathogenesis and may contribute to more efficient therapeutics and vaccine development.
Collapse
Affiliation(s)
- Muhammad Shuaib
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| | - Sabir Adroub
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Tobias Mourier
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Sara Mfarrej
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Huoming Zhang
- Bioscience Core Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Luke Esau
- Bioscience Core Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Afrah Alsomali
- Infectious Diseases Department, King Abdullah Medical Complex, Jeddah, MOH, Saudi Arabia
| | - Fadwa S Alofi
- Infectious Diseases Department, King Fahad Hospital, Madinah, MOH, Saudi Arabia
| | - Adeel Nazir Ahmad
- KAUST Health - Fakeeh Care, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Abbas Shamsan
- Dr. Suliman Al-Habib Medical Group, Riyadh, Saudi Arabia
| | - Asim Khogeer
- Plan and Research Department, General Directorate of Health Affairs Makkah Region, Makkah, MOH, Saudi Arabia
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Naif A M Almontashiri
- College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
- Center for Genetics and Inherited Diseases, Taibah University, Almadinah Almunwarah, Saudi Arabia
| | - Sharif Hala
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Infectious Disease Research Department, King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
| | - Arnab Pain
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- International Institute for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, 001-0020, Japan.
| |
Collapse
|
19
|
Puenpa J, Sawaswong V, Nimsamer P, Payungporn S, Rattanakomol P, Saengdao N, Chansaenroj J, Yorsaeng R, Suwannakarn K, Poovorawan Y. Investigation of the Molecular Epidemiology and Evolution of Circulating Severe Acute Respiratory Syndrome Coronavirus 2 in Thailand from 2020 to 2022 via Next-Generation Sequencing. Viruses 2023; 15:1394. [PMID: 37376693 PMCID: PMC10303178 DOI: 10.3390/v15061394] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious condition caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which surfaced in Thailand in early 2020. The current study investigated the SARS-CoV-2 lineages circulating in Thailand and their evolutionary history. Complete genome sequencing of 210 SARS-CoV-2 samples collected from collaborating hospitals and the Institute of Urban Disease Control and Prevention over two years, from December 2020 to July 2022, was performed using next-generation sequencing technology. Multiple lineage introductions were observed before the emergence of the B.1.1.529 omicron variant, including B.1.36.16, B.1.351, B.1.1, B.1.1.7, B.1.524, AY.30, and B.1.617.2. The B.1.1.529 omicron variant was subsequently detected between January 2022 and June 2022. The evolutionary rate for the spike gene of SARS-CoV-2 was estimated to be between 0.87 and 1.71 × 10-3 substitutions per site per year. There was a substantial prevalence of the predominant mutations C25672T (L94F), C25961T (T190I), and G26167T (V259L) in the ORF3a gene during the Thailand outbreaks. Complete genome sequencing can enhance the prediction of future variant changes in viral genomes, which is crucial to ensuring that vaccine strains are protective against worldwide outbreaks.
Collapse
Affiliation(s)
- Jiratchaya Puenpa
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (J.P.); (P.R.); (J.C.); (R.Y.)
| | - Vorthon Sawaswong
- Center of Excellence in Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (V.S.); (P.N.); (S.P.)
| | - Pattaraporn Nimsamer
- Center of Excellence in Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (V.S.); (P.N.); (S.P.)
| | - Sunchai Payungporn
- Center of Excellence in Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (V.S.); (P.N.); (S.P.)
| | - Patthaya Rattanakomol
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (J.P.); (P.R.); (J.C.); (R.Y.)
| | - Nutsada Saengdao
- Department of Microbiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (N.S.); (K.S.)
| | - Jira Chansaenroj
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (J.P.); (P.R.); (J.C.); (R.Y.)
| | - Ritthideach Yorsaeng
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (J.P.); (P.R.); (J.C.); (R.Y.)
| | - Kamol Suwannakarn
- Department of Microbiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (N.S.); (K.S.)
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (J.P.); (P.R.); (J.C.); (R.Y.)
- FRS(T), The Royal Society of Thailand, Sanam Sueapa, Dusit, Bangkok 10300, Thailand
| |
Collapse
|
20
|
Dong T, Wang M, Liu J, Ma P, Pang S, Liu W, Liu A. Diagnostics and analysis of SARS-CoV-2: current status, recent advances, challenges and perspectives. Chem Sci 2023; 14:6149-6206. [PMID: 37325147 PMCID: PMC10266450 DOI: 10.1039/d2sc06665c] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/03/2023] [Indexed: 06/17/2023] Open
Abstract
The disastrous spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has induced severe public healthcare issues and weakened the global economy significantly. Although SARS-CoV-2 infection is not as fatal as the initial outbreak, many infected victims suffer from long COVID. Therefore, rapid and large-scale testing is critical in managing patients and alleviating its transmission. Herein, we review the recent advances in techniques to detect SARS-CoV-2. The sensing principles are detailed together with their application domains and analytical performances. In addition, the advantages and limits of each method are discussed and analyzed. Besides molecular diagnostics and antigen and antibody tests, we also review neutralizing antibodies and emerging SARS-CoV-2 variants. Further, the characteristics of the mutational locations in the different variants with epidemiological features are summarized. Finally, the challenges and possible strategies are prospected to develop new assays to meet different diagnostic needs. Thus, this comprehensive and systematic review of SARS-CoV-2 detection technologies may provide insightful guidance and direction for developing tools for the diagnosis and analysis of SARS-CoV-2 to support public healthcare and effective long-term pandemic management and control.
Collapse
Affiliation(s)
- Tao Dong
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
- School of Pharmacy, Medical College, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Mingyang Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Junchong Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Pengxin Ma
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Shuang Pang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Wanjian Liu
- Qingdao Hightop Biotech Co., Ltd 369 Hedong Road, Hi-tech Industrial Development Zone Qingdao 266112 China
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| |
Collapse
|
21
|
Wang T, Wang C, Myshkevych Y, Mantilla-Calderon D, Talley E, Hong PY. SARS-CoV-2 wastewater-based epidemiology in an enclosed compound: A 2.5-year survey to identify factors contributing to local community dissemination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162466. [PMID: 36868271 PMCID: PMC9977070 DOI: 10.1016/j.scitotenv.2023.162466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Long-term (>2.5 years) surveillance of SARS-CoV-2 RNA concentrations in wastewater was conducted within an enclosed university compound. This study aims to demonstrate how coupling wastewater-based epidemiology (WBE) with meta-data can identify which factors contribute toward the dissemination of SARS-CoV-2 within a local community. Throughout the pandemic, the temporal dynamics of SARS-CoV-2 RNA concentrations were tracked by quantitative polymerase chain reaction and analyzed in the context of the number of positive swab cases, the extent of human movement, and intervention measures. Our findings suggest that during the early phase of the pandemic, when strict lockdown was imposed, the viral titer load in the wastewater remained below detection limits, with <4 positive swab cases reported over a 14-day period in the compound. After the lockdown was lifted and global travel gradually resumed, SARS-CoV-2 RNA was first detected in the wastewater on 12 August 2020 and increased in frequency thereafter, despite high vaccination rates and mandatory face-covering requirements in the community. Accompanied by a combination of the Omicron surge and significant global travel by community members, SARS-CoV-2 RNA was detected in most of the weekly wastewater samples collected in late December 2021 and January 2022. With the cease of mandatory face covering, SARS-CoV-2 was detected in at least two of the four weekly wastewater samples collected from May through August 2022. Retrospective Nanopore sequencing revealed the presence of the Omicron variant in the wastewater with a multitude of amino acid mutations, from which we could infer the likely geographical origins through bioinformatic analysis. This study demonstrated that long-term tracking of the temporal dynamics and sequencing of variants in wastewater would aid in identifying which factors contribute the most to SARS-CoV-2 dissemination within the local community, facilitating an appropriate public health response to control future outbreaks as we now live with endemic SARS-CoV-2.
Collapse
Affiliation(s)
- Tiannyu Wang
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Changzhi Wang
- Bioengineering Program, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Yevhen Myshkevych
- Environmental Science and Engineering Program, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - David Mantilla-Calderon
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Erik Talley
- Health, Safety and Environment, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Pei-Ying Hong
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Bioengineering Program, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Environmental Science and Engineering Program, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
22
|
Pather S, Madhi SA, Cowling BJ, Moss P, Kamil JP, Ciesek S, Muik A, Türeci Ö. SARS-CoV-2 Omicron variants: burden of disease, impact on vaccine effectiveness and need for variant-adapted vaccines. Front Immunol 2023; 14:1130539. [PMID: 37287979 PMCID: PMC10242031 DOI: 10.3389/fimmu.2023.1130539] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/05/2023] [Indexed: 06/09/2023] Open
Abstract
The highly transmissible Omicron (B.1.1.529) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first detected in late 2021. Initial Omicron waves were primarily made up of sub-lineages BA.1 and/or BA.2, BA.4, and BA.5 subsequently became dominant in mid-2022, and several descendants of these sub-lineages have since emerged. Omicron infections have generally caused less severe disease on average than those caused by earlier variants of concern in healthy adult populations, at least, in part, due to increased population immunity. Nevertheless, healthcare systems in many countries, particularly those with low population immunity, have been overwhelmed by unprecedented surges in disease prevalence during Omicron waves. Pediatric admissions were also higher during Omicron waves compared with waves of previous variants of concern. All Omicron sub-lineages exhibit partial escape from wild-type (Wuhan-Hu 1) spike-based vaccine-elicited neutralizing antibodies, with sub-lineages with more enhanced immuno-evasive properties emerging over time. Evaluating vaccine effectiveness (VE) against Omicron sub-lineages has become challenging against a complex background of varying vaccine coverage, vaccine platforms, prior infection rates, and hybrid immunity. Original messenger RNA vaccine booster doses substantially improved VE against BA.1 or BA.2 symptomatic disease. However, protection against symptomatic disease waned, with reductions detected from 2 months after booster administration. While original vaccine-elicited CD8+ and CD4+ T-cell responses cross-recognize Omicron sub-lineages, thereby retaining protection against severe outcomes, variant-adapted vaccines are required to expand the breadth of B-cell responses and improve durability of protection. Variant-adapted vaccines were rolled out in late 2022 to increase overall protection against symptomatic and severe infections caused by Omicron sub-lineages and antigenically aligned variants with enhanced immune escape mechanisms.
Collapse
Affiliation(s)
| | - Shabir A. Madhi
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Benjamin J. Cowling
- School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Paul Moss
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Jeremy P. Kamil
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
| | - Sandra Ciesek
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | | | | |
Collapse
|
23
|
Alsuwairi FA, Alsaleh AN, Alsanea MS, Al-Qahtani AA, Obeid D, Almaghrabi RS, Alahideb BM, AlAbdulkareem MA, Mutabagani MS, Althawadi SI, Altamimi SA, Alshukairi AN, Alhamlan FS. Association of SARS-CoV-2 Nucleocapsid Protein Mutations with Patient Demographic and Clinical Characteristics during the Delta and Omicron Waves. Microorganisms 2023; 11:1288. [PMID: 37317262 PMCID: PMC10224071 DOI: 10.3390/microorganisms11051288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/22/2023] [Accepted: 04/28/2023] [Indexed: 06/16/2023] Open
Abstract
SARS-CoV-2 genomic mutations outside the spike protein that may increase transmissibility and disease severity have not been well characterized. This study identified mutations in the nucleocapsid protein and their possible association with patient characteristics. We analyzed 695 samples from patients with confirmed COVID-19 in Saudi Arabia between 1 April 2021, and 30 April 2022. Nucleocapsid protein mutations were identified through whole genome sequencing. 𝜒2 tests and t tests assessed associations between mutations and patient characteristics. Logistic regression estimated the risk of intensive care unit (ICU) admission or death. Of the 60 mutations identified, R203K was the most common, followed by G204R, P13L, E31del, R32del, and S33del. These mutations were associated with reduced risk of ICU admission. P13L, E31del, R32del, and S33del were also associated with reduced risk of death. By contrast, D63G, R203M, and D377Y were associated with increased risk of ICU admission. Most mutations were detected in the SR-rich region, which was associated with low risk of death. The C-tail and central linker regions were associated with increased risk of ICU admission, whereas the N-arm region was associated with reduced ICU admission risk. Consequently, mutations in the N protein must be observed, as they may exacerbate viral infection and disease severity. Additional research is needed to validate the mutations' associations with clinical outcomes.
Collapse
Affiliation(s)
- Feda A. Alsuwairi
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Asma N. Alsaleh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Madain S. Alsanea
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Ahmed A. Al-Qahtani
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Dalia Obeid
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
- Public Health Laboratories, Public Health Authority, Riyadh 13351, Saudi Arabia
| | - Reem S. Almaghrabi
- Organ Transplant Center of Excellence, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Basma M. Alahideb
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Maha A. AlAbdulkareem
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Maysoon S. Mutabagani
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Sahar I. Althawadi
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Sara A. Altamimi
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Abeer N. Alshukairi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Medicine, King Faisal Specialist Hospital and Research Center, Jeddah 23433, Saudi Arabia
| | - Fatimah S. Alhamlan
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| |
Collapse
|
24
|
Sutandhio S, Furukawa K, Kurahashi Y, Marini MI, Effendi GB, Hasegawa N, Ishimaru H, Nishimura M, Arii J, Mori Y. Fourth mRNA vaccination increases cross-neutralizing antibody titers against SARS-CoV-2 variants, including BQ.1.1 and XBB, in a very elderly population. J Infect Public Health 2023; 16:1064-1072. [PMID: 37196370 DOI: 10.1016/j.jiph.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/19/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Omicron variants with immune evasion have emerged, and they continue to mutate rapidly, raising concerns about the weakening of vaccine efficacy, and the very elderly populations are vulnerable to Coronavirus Disease 2019 (COVID-19). Therefore, to investigate the effect of multiple doses of mRNA vaccine for the newly emerged variants on these populations, cross-neutralizing antibody titers were examined against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants, including BQ.1.1 and XBB. METHODS Blood samples were taken from residents at four long-term care facilities in Hyogo prefecture, Japan (median age, 91 years), after 3rd (n = 67) and 4th (n = 48) mRNA vaccinations, from April to October 2022. A live virus microneutralization assay was performed to determine the neutralizing antibody titers in participants' sera. RESULTS After 3rd vaccination, cross-neutralizing antibody prevalence against conventional (D614G) virus, Delta, Omicron BA.2, BA.5, BA.2.75, BQ.1.1, and XBB were 100%, 97%, 81%, 51%, 67%, 4%, and 21%, respectively. After 4th vaccination, the antibody positivity rates increased to 100%, 100%, 98%, 79%, 92%, 31%, and 52%, respectively. The 4th vaccination significantly increased cross-neutralizing antibody titers against all tested variants. CONCLUSION The positivity rates for BQ.1.1 and XBB increased after 4th vaccination, although the titer value was lower than those of BA.5 and BA.2.75. Considering the rapid mutation of viruses and the efficacy of vaccines, it may be necessary to create a system that can develop vaccines suitable for each epidemic in consideration of the epidemic of the virus.
Collapse
Affiliation(s)
- Silvia Sutandhio
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Koichi Furukawa
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Yukiya Kurahashi
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Maria Istiqomah Marini
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Gema Barlian Effendi
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Natsumi Hasegawa
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Hanako Ishimaru
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Mitsuhiro Nishimura
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Jun Arii
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Yasuko Mori
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan.
| |
Collapse
|
25
|
Outcome of Transplant Recipients Infected with Omicron BA.1 and BA.2: A Single-Center Retrospective Study in Saudi Arabia. J Epidemiol Glob Health 2023; 13:47-54. [PMID: 36626091 PMCID: PMC9830128 DOI: 10.1007/s44197-023-00084-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
The outcome of transplant recipients is variable depending on the study population, vaccination status and COVID-19 variants. Our aim was to study the impact of Omicron subvariants on the mortality of transplant recipients. We reviewed the results of SARS-CoV-2 whole genome sequence of random isolates collected from 29 December 2021 until 17 May 2022 in King Faisal Specialist Hospital and Research center, Jeddah (KFSHRC-J), Saudi Arabia performed as hospital genomic surveillance program for COVID-19 variants. We included 25 transplant patients infected with confirmed Omicron variants.17 (68%) and 8 (32%) patients had Omicron BA.1 and BA.2, respectively. 12 (68%) patients had renal transplants. Only 36% of patients received three doses of COVID-19 vaccines. 23 (92%) patients required hospitalization. 20 (80%) patients survived and 6 (25%) required intensive care unit (ICU) admission. Among ICU patients, 66.7% were more than 50 years, 50% had two to three comorbidities and 5 out of 6 (83%) died. The mortality of transplant patients infected with Omicron variants in our cohort was higher than other centers as a limited number of patients received booster vaccines. Optimizing booster vaccination is the most efficient method to improve the mortality of COVID-19 in transplant recipients recognizing the inefficacy of monoclonal antibodies in the presence of SARS-CoV-2 emerging variants. We did not show a difference in mortality in transplant patients infected with Omicron BA.1 and BA.2 knowing the limitation of our sample size.
Collapse
|
26
|
Intragenomic rearrangements involving 5'-untranslated region segments in SARS-CoV-2, other betacoronaviruses, and alphacoronaviruses. Virol J 2023; 20:36. [PMID: 36829234 PMCID: PMC9957694 DOI: 10.1186/s12985-023-01998-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Variation of the betacoronavirus SARS-CoV-2 has been the bane of COVID-19 control. Documented variation includes point mutations, deletions, insertions, and recombination among closely or distantly related coronaviruses. Here, we describe yet another aspect of genome variation by beta- and alphacoronaviruses that was first documented in an infectious isolate of the betacoronavirus SARS-CoV-2, obtained from 3 patients in Hong Kong that had a 5'-untranslated region segment at the end of the ORF6 gene that in its new location translated into an ORF6 protein with a predicted modified carboxyl terminus. While comparing the amino acid sequences of translated ORF8 genes in the GenBank database, we found a subsegment of the same 5'-UTR-derived amino acid sequence modifying the distal end of ORF8 of an isolate from the United States and decided to carry out a systematic search. METHODS Using the nucleotide and in the case of SARS-CoV-2 also the translated amino acid sequence in three reading frames of the genomic termini of coronaviruses as query sequences, we searched for 5'-UTR sequences in regions other than the 5'-UTR in SARS-CoV-2 and reference strains of alpha-, beta-, gamma-, and delta-coronaviruses. RESULTS We here report numerous genomic insertions of 5'-untranslated region sequences into coding regions of SARS-CoV-2, other betacoronaviruses, and alphacoronaviruses, but not delta- or gammacoronaviruses. To our knowledge this is the first systematic description of such insertions. In many cases, these insertions would change viral protein sequences and further foster genomic flexibility and viral adaptability through insertion of transcription regulatory sequences in novel positions within the genome. Among human Embecorivus betacoronaviruses, for instance, from 65% to all of the surveyed sequences in publicly available databases contain inserted 5'-UTR sequences. CONCLUSION The intragenomic rearrangements involving 5'-untranslated region sequences described here, which in several cases affect highly conserved genes with a low propensity for recombination, may underlie the generation of variants homotypic with those of concern or interest and with potentially differing pathogenic profiles. Intragenomic rearrangements thus add to our appreciation of how variants of SARS-CoV-2 and other beta- and alphacoronaviruses may arise.
Collapse
|
27
|
Brown B, Ojha V, Fricke I, Al-Sheboul SA, Imarogbe C, Gravier T, Green M, Peterson L, Koutsaroff IP, Demir A, Andrieu J, Leow CY, Leow CH. Innate and Adaptive Immunity during SARS-CoV-2 Infection: Biomolecular Cellular Markers and Mechanisms. Vaccines (Basel) 2023; 11:408. [PMID: 36851285 PMCID: PMC9962967 DOI: 10.3390/vaccines11020408] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/16/2023] Open
Abstract
The coronavirus 2019 (COVID-19) pandemic was caused by a positive sense single-stranded RNA (ssRNA) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, other human coronaviruses (hCoVs) exist. Historical pandemics include smallpox and influenza, with efficacious therapeutics utilized to reduce overall disease burden through effectively targeting a competent host immune system response. The immune system is composed of primary/secondary lymphoid structures with initially eight types of immune cell types, and many other subtypes, traversing cell membranes utilizing cell signaling cascades that contribute towards clearance of pathogenic proteins. Other proteins discussed include cluster of differentiation (CD) markers, major histocompatibility complexes (MHC), pleiotropic interleukins (IL), and chemokines (CXC). The historical concepts of host immunity are the innate and adaptive immune systems. The adaptive immune system is represented by T cells, B cells, and antibodies. The innate immune system is represented by macrophages, neutrophils, dendritic cells, and the complement system. Other viruses can affect and regulate cell cycle progression for example, in cancers that include human papillomavirus (HPV: cervical carcinoma), Epstein-Barr virus (EBV: lymphoma), Hepatitis B and C (HB/HC: hepatocellular carcinoma) and human T cell Leukemia Virus-1 (T cell leukemia). Bacterial infections also increase the risk of developing cancer (e.g., Helicobacter pylori). Viral and bacterial factors can cause both morbidity and mortality alongside being transmitted within clinical and community settings through affecting a host immune response. Therefore, it is appropriate to contextualize advances in single cell sequencing in conjunction with other laboratory techniques allowing insights into immune cell characterization. These developments offer improved clarity and understanding that overlap with autoimmune conditions that could be affected by innate B cells (B1+ or marginal zone cells) or adaptive T cell responses to SARS-CoV-2 infection and other pathologies. Thus, this review starts with an introduction into host respiratory infection before examining invaluable cellular messenger proteins and then individual immune cell markers.
Collapse
Affiliation(s)
| | | | - Ingo Fricke
- Independent Immunologist and Researcher, 311995 Lamspringe, Germany
| | - Suhaila A Al-Sheboul
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
- Department of Medical Microbiology, International School of Medicine, Medipol University-Istanbul, Istanbul 34810, Turkey
| | | | - Tanya Gravier
- Independent Researcher, MPH, San Francisco, CA 94131, USA
| | | | | | | | - Ayça Demir
- Faculty of Medicine, Afyonkarahisar University, Istanbul 03030, Turkey
| | - Jonatane Andrieu
- Faculté de Médecine, Aix–Marseille University, 13005 Marseille, France
| | - Chiuan Yee Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM, Penang 11800, Malaysia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine, (INFORMM), Universiti Sains Malaysia, USM, Penang 11800, Malaysia
| |
Collapse
|
28
|
Xu Z, Wei D, Zeng Q, Zhang H, Sun Y, Demongeot J. More or less deadly? A mathematical model that predicts SARS-CoV-2 evolutionary direction. Comput Biol Med 2023; 153:106510. [PMID: 36630829 PMCID: PMC9816089 DOI: 10.1016/j.compbiomed.2022.106510] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/18/2022] [Accepted: 12/31/2022] [Indexed: 01/09/2023]
Abstract
SARS-CoV-2 has caused tremendous deaths globally. It is of great value to predict the evolutionary direction of SARS-CoV-2. In this paper, we proposed a novel mathematical model that could predict the evolutionary trend of SARS-CoV-2. We focus on the mutational effects on viral assembly capacity. A robust coarse-grained mathematical model is constructed to simulate the virus dynamics in the host body. Both virulence and transmissibility can be quantified in this model. A delicate equilibrium point that optimizes the transmissibility can be numerically obtained. Based on this model, the virulence of SARS-CoV-2 might further decrease, accompanied by an enhancement of transmissibility. However, this trend is not continuous; its virulence will not disappear but remains at a relatively stable range. A virus assembly model which simulates the virus packing process is also proposed. It can be explained why a few mutations would lead to a significant divergence in clinical performance, both in the overall particle formation quantity and virulence. This research provides a novel mathematical attempt to elucidate the evolutionary driving force in RNA virus evolution.
Collapse
Affiliation(s)
- Zhaobin Xu
- Department of Life Science, Dezhou University, Dezhou, 253023, China.
| | - Dongqing Wei
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Qiangcheng Zeng
- Department of Life Science, Dezhou University, Dezhou, 253023, China
| | - Hongmei Zhang
- Department of Life Science, Dezhou University, Dezhou, 253023, China
| | - Yinghui Sun
- Department of Life Science, Dezhou University, Dezhou, 253023, China
| | - Jacques Demongeot
- Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical, Faculty of Medicine, University Grenoble Alpes (UGA), 38700, La Tronche, France.
| |
Collapse
|
29
|
Veneziano C, Marascio N, De Marco C, Quaresima B, Biamonte F, Trecarichi EM, Santamaria G, Quirino A, Torella D, Quattrone A, Matera G, Torti C, De Filippo C, Costanzo FS, Viglietto G. The Spread of SARS-CoV-2 Omicron Variant in CALABRIA: A Spatio-Temporal Report of Viral Genome Evolution. Viruses 2023; 15:408. [PMID: 36851622 PMCID: PMC9963258 DOI: 10.3390/v15020408] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
We investigated the evolution of SARS-CoV-2 spread in Calabria, Southern Italy, in 2022. A total of 272 RNA isolates from nasopharyngeal swabs of individuals infected with SARS-CoV-2 were sequenced by whole genome sequencing (N = 172) and/or Sanger sequencing (N = 100). Analysis of diffusion of Omicron variants in Calabria revealed the prevalence of 10 different sub-lineages (recombinant BA.1/BA.2, BA.1, BA.1.1, BA.2, BA.2.9, BA.2.10, BA.2.12.1, BA.4, BA.5, BE.1). We observed that Omicron spread in Calabria presented a similar trend as in Italy, with some notable exceptions: BA.1 disappeared in April in Calabria but not in the rest of Italy; recombinant BA.1/BA.2 showed higher frequency in Calabria (13%) than in the rest of Italy (0.02%); BA.2.9, BA.4 and BA.5 emerged in Calabria later than in other Italian regions. In addition, Calabria Omicron presented 16 non-canonical mutations in the S protein and 151 non-canonical mutations in non-structural proteins. Most non-canonical mutations in the S protein occurred mainly in BA.5 whereas non-canonical mutations in non-structural or accessory proteins (ORF1ab, ORF3a, ORF8 and N) were identified in BA.2 and BA.5 sub-lineages. In conclusion, the data reported here underscore the importance of monitoring the entire SARS-CoV-2 genome.
Collapse
Affiliation(s)
- Claudia Veneziano
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
- Interdepartmental Center of Services (CIS), Molecular Genomics and Pathology, “Magna Græcia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Nadia Marascio
- Department of Health Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Carmela De Marco
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
- Interdepartmental Center of Services (CIS), Molecular Genomics and Pathology, “Magna Græcia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Barbara Quaresima
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
- Interdepartmental Center of Services (CIS), Molecular Genomics and Pathology, “Magna Græcia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Flavia Biamonte
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
- Interdepartmental Center of Services (CIS), Molecular Genomics and Pathology, “Magna Græcia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Enrico Maria Trecarichi
- Department of Medical and Surgical Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
- “Mater Domini” University Hospital of Catanzaro, 88100 Catanzaro, Italy
| | - Gianluca Santamaria
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Angela Quirino
- Department of Health Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
- “Mater Domini” University Hospital of Catanzaro, 88100 Catanzaro, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
- “Mater Domini” University Hospital of Catanzaro, 88100 Catanzaro, Italy
| | - Aldo Quattrone
- Neuroscience Research Center, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Giovanni Matera
- Department of Health Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
- “Mater Domini” University Hospital of Catanzaro, 88100 Catanzaro, Italy
| | - Carlo Torti
- Department of Medical and Surgical Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
- “Mater Domini” University Hospital of Catanzaro, 88100 Catanzaro, Italy
| | | | - Francesco Saverio Costanzo
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
- Interdepartmental Center of Services (CIS), Molecular Genomics and Pathology, “Magna Græcia” University of Catanzaro, 88100 Catanzaro, Italy
- “Mater Domini” University Hospital of Catanzaro, 88100 Catanzaro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
- “Mater Domini” University Hospital of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
30
|
Althobaity Y, Tildesley MJ. Modelling the impact of non-pharmaceutical interventions on the spread of COVID-19 in Saudi Arabia. Sci Rep 2023; 13:843. [PMID: 36646733 PMCID: PMC9842221 DOI: 10.1038/s41598-022-26468-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/15/2022] [Indexed: 01/18/2023] Open
Abstract
Countries around the world have implemented a series of interventions to contain the pandemic of coronavirus disease (COVID-19), and significant lessons can be drawn from the study of the full transmission dynamics of the disease caused by-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-in the Eastern, Madinah, Makkah, and Riyadh regions of Saudi Arabia, where robust non-pharmaceutical interventions effectively suppressed the local outbreak of this disease. On the basis of 333732 laboratory-confirmed cases, we used mathematical modelling to reconstruct the complete spectrum dynamics of COVID-19 in Saudi Arabia between 2 March and 25 September 2020 over 5 periods characterised by events and interventions. Our model account for asymptomatic and presymptomatic infectiousness, time-varying ascertainable infection rate, and transmission rates. Our results indicate that non-pharmaceutical interventions were effective in containing the epidemic, with reproduction numbers decreasing on average to 0.29 (0.19-0.66) in the Eastern, Madinah, Makkah, and Riyadh region. The chance of resurgence after the lifting of all interventions after 30 consecutive days with no symptomatic cases is also examined and emphasizes the danger presented by largely hidden infections while switching control strategies. These findings have major significance for evaluating methods for maintaining monitoring and interventions to eventually reduce outbreaks of COVID-19 in Saudi Arabia in the future.
Collapse
Affiliation(s)
- Yehya Althobaity
- The Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, UK.
- Department of Mathematics, Taif University, Taif, Kingdom of Saudi Arabia.
| | - Michael J Tildesley
- The Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, UK
| |
Collapse
|
31
|
Zsichla L, Müller V. Risk Factors of Severe COVID-19: A Review of Host, Viral and Environmental Factors. Viruses 2023; 15:175. [PMID: 36680215 PMCID: PMC9863423 DOI: 10.3390/v15010175] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The clinical course and outcome of COVID-19 are highly variable, ranging from asymptomatic infections to severe disease and death. Understanding the risk factors of severe COVID-19 is relevant both in the clinical setting and at the epidemiological level. Here, we provide an overview of host, viral and environmental factors that have been shown or (in some cases) hypothesized to be associated with severe clinical outcomes. The factors considered in detail include the age and frailty, genetic polymorphisms, biological sex (and pregnancy), co- and superinfections, non-communicable comorbidities, immunological history, microbiota, and lifestyle of the patient; viral genetic variation and infecting dose; socioeconomic factors; and air pollution. For each category, we compile (sometimes conflicting) evidence for the association of the factor with COVID-19 outcomes (including the strength of the effect) and outline possible action mechanisms. We also discuss the complex interactions between the various risk factors.
Collapse
Affiliation(s)
- Levente Zsichla
- Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
- National Laboratory for Health Security, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Viktor Müller
- Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
- National Laboratory for Health Security, Eötvös Loránd University, 1117 Budapest, Hungary
| |
Collapse
|
32
|
Chavda VP, Bezbaruah R, Deka K, Nongrang L, Kalita T. The Delta and Omicron Variants of SARS-CoV-2: What We Know So Far. Vaccines (Basel) 2022; 10:1926. [PMID: 36423021 PMCID: PMC9698608 DOI: 10.3390/vaccines10111926] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 07/30/2023] Open
Abstract
The world has not yet completely overcome the fear of the havoc brought by SARS-CoV-2. The virus has undergone several mutations since its initial appearance in China in December 2019. Several variations (i.e., B.1.616.1 (Kappa variant), B.1.617.2 (Delta variant), B.1.617.3, and BA.2.75 (Omicron variant)) have emerged throughout the pandemic, altering the virus's capacity to spread, risk profile, and even symptoms. Humanity faces a serious threat as long as the virus keeps adapting and changing its fundamental function to evade the immune system. The Delta variant has two escape alterations, E484Q and L452R, as well as other mutations; the most notable of these is P681R, which is expected to boost infectivity, whereas the Omicron has about 60 mutations with certain deletions and insertions. The Delta variant is 40-60% more contagious in comparison to the Alpha variant. Additionally, the AY.1 lineage, also known as the "Delta plus" variant, surfaced as a result of a mutation in the Delta variant, which was one of the causes of the life-threatening second wave of coronavirus disease 2019 (COVID-19). Nevertheless, the recent Omicron variants represent a reminder that the COVID-19 epidemic is far from ending. The wave has sparked a fervor of investigation on why the variant initially appeared to propagate so much more rapidly than the other three variants of concerns (VOCs), whether it is more threatening in those other ways, and how its type of mutations, which induce minor changes in its proteins, can wreck trouble. This review sheds light on the pathogenicity, mutations, treatments, and impact on the vaccine efficacy of the Delta and Omicron variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad 380008, Gujarat, India
| | - Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Kangkan Deka
- NETES Institute of Pharmaceutical Science, Mirza, Guwahati 781125, Assam, India
| | - Lawandashisha Nongrang
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Tutumoni Kalita
- Girijananda Chowdhury Institute of Pharmaceutical Science, Azara, Guwahati 781017, Assam, India
| |
Collapse
|
33
|
Delshad M, Sanaei MJ, Pourbagheri-Sigaroodi A, Bashash D. Host genetic diversity and genetic variations of SARS-CoV-2 in COVID-19 pathogenesis and the effectiveness of vaccination. Int Immunopharmacol 2022; 111:109128. [PMID: 35963158 PMCID: PMC9359488 DOI: 10.1016/j.intimp.2022.109128] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/15/2022] [Accepted: 08/03/2022] [Indexed: 12/14/2022]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), responsible for the outbreak of coronavirus disease 2019 (COVID-19), has shown a vast range of clinical manifestations from asymptomatic to life-threatening symptoms. To figure out the cause of this heterogeneity, studies demonstrated the trace of genetic diversities whether in the hosts or the virus itself. With this regard, this review provides a comprehensive overview of how host genetic such as those related to the entry of the virus, the immune-related genes, gender-related genes, disease-related genes, and also host epigenetic could influence the severity of COVID-19. Besides, the mutations in the genome of SARS-CoV-2 __leading to emerging of new variants__ per se affect the affinity of the virus to the host cells and enhance the immune escape capacity. The current review discusses these variants and also the latest data about vaccination effectiveness facing the most important variants.
Collapse
Affiliation(s)
- Mahda Delshad
- Department of Laboratory Sciences, School of Allied Medical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Laine L, Skön M, Väisänen E, Julkunen I, Österlund P. SARS-CoV-2 variants Alpha, Beta, Delta and Omicron show a slower host cell interferon response compared to an early pandemic variant. Front Immunol 2022; 13:1016108. [PMID: 36248817 PMCID: PMC9561549 DOI: 10.3389/fimmu.2022.1016108] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/15/2022] [Indexed: 11/15/2022] Open
Abstract
Since the start of the pandemic at the end of 2019, arising mutations in SARS-CoV-2 have improved its transmission and ability to circumvent the immunity induced by vaccination and previous COVID-19 infection. Studies on the effects of SARS-CoV-2 genomic mutations on replication and innate immunity will give us valuable insight into the evolution of the virus which can aid in further development of vaccines and new treatment modalities. Here we systematically analyzed the kinetics of virus replication, innate immune activation, and host cell antiviral response patterns in Alpha, Beta, Delta, Kappa, Omicron and two early pandemic SARS-CoV-2 variant-infected human lung epithelial Calu-3 cells. We observed overall comparable replication patterns for these variants with modest variations. Particularly, the sublineages of Omicron BA.1, BA.2 and a recombinant sublineage, XJ, all showed attenuated replication in Calu-3 cells compared to Alpha and Delta. Furthermore, there was relatively weak activation of primary innate immune signaling pathways, however, all variants produced enough interferons to induce the activation of STAT2 and production of interferon stimulated genes (ISGs). While interferon mRNA expression and STAT2 activation correlated with cellular viral RNA levels, ISG production did not. Although clear cut effects of specific SARS-CoV-2 genomic mutations could not be concluded, the variants of concern, including Omicron, showed a lower replication efficiency and a slower interferon response compared to an early pandemic variant in the study.
Collapse
Affiliation(s)
- Larissa Laine
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
- *Correspondence: Larissa Laine,
| | - Marika Skön
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Elina Väisänen
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
- Infection and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Ilkka Julkunen
- Infection and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Pamela Österlund
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
35
|
Konyak BM, Sharma M, Kharia S, Pandey RP, Chang CM. A Systematic Review on the Emergence of Omicron Variant and Recent Advancement in Therapies. Vaccines (Basel) 2022; 10:1468. [PMID: 36146546 PMCID: PMC9503441 DOI: 10.3390/vaccines10091468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 01/18/2023] Open
Abstract
With the ongoing COVID-19 pandemic, the emergence of the novel Omicron variant in November 2021 has created chaos around the world. Despite mass vaccination, Omicron has spread rapidly, raising concerns around the globe. The Omicron variant has a vast array of mutations, as compared to another variant of concern, with a total of 50 mutations, 30 of which are present on its spike protein alone. These mutations have led to immune escape and more transmissibility compared to other variants, including the Delta variant. A cluster of mutations (H655Y, N679K, and P681H) present in the Omicron spike protein could aid in transmission. Currently, no virus-specific data are available to predict the efficacy of the anti-viral and mAbs drugs. However, two monoclonal antibody drugs, Sotrovimab and Evusheld, are authorized for emergency use in COVID-19 patients. This virus is not fading away soon. The easiest solution and least expensive measure to fight against this pandemic are to follow the appropriate COVID-19 protocols. There is a need to strengthen the level of research for the development of potential vaccines and anti-viral drugs. It is also important to monitor and expand the genomic surveillance to keep track of the emergence of new variants, thus avoiding the spread of new diseases worldwide. This article highlights the emergence of the new SARS-CoV-2 variant of concern, Omicron (B.1.1.529), and the vast number of mutations in its protein. In addition, recent advancements in drugs approved by FDA to treat COVID patients have been listed and focused in this paper.
Collapse
Affiliation(s)
- Beyau M. Konyak
- Integrated Molecular Diagnostic and Research Laboratory (BSL-2), District Hospital Tuensang, Tuensang 798612, Nagaland, India
| | - Mohan Sharma
- Integrated Molecular Diagnostic and Research Laboratory (BSL-2), District Hospital Tuensang, Tuensang 798612, Nagaland, India
| | - Shabnam Kharia
- Department of Life Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Ramendra Pati Pandey
- Centre for Drug Design Discovery and Development (C4D), Department of Biotechnology & Microbiology SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131029, Haryana, India
| | - Chung-Ming Chang
- Master & Ph.D. Program in Biotechnology Industry, Division of Biotechnology, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan
| |
Collapse
|
36
|
Hossain A, Akter S, Rashid AA, Khair S, Alam ASMRU. Unique mutations in SARS-CoV-2 Omicron subvariants' non-spike proteins: Potential impacts on viral pathogenesis and host immune evasion. Microb Pathog 2022; 170:105699. [PMID: 35944840 PMCID: PMC9356572 DOI: 10.1016/j.micpath.2022.105699] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 12/20/2022]
Abstract
SARS-CoV-2 is the causative agent behind the ongoing COVID-19 pandemic. This virus is a cumulative outcome of mutations, leading to frequent emergence of new variants and their subvariants. Some of them are a matter of high concern, while others are variants of interest for studying the mutational effect. The major five variants of concern (VOCs) are Alpha (B.1.1.7), Beta (B.1.315), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529.*/BA.*). Omicron itself has >100 subvariants at present, among which BA.1 (21K), BA.2 (21L), BA.4 (22A), BA.5 (22B), and BA.2.12.1 (22C) are the dominant ones. Undoubtedly, these variants and sometimes their progeny subvariants have significant differences in their spike region that impart them the unique properties they harbor. But alongside, the mutations in their non-spike regions could also be responsible elements behind their characteristics, such as replication time, virulence, survival, host immune evasion, and such. There exists a probability that these mutations of non-spike proteins may also impart epistatic effects that are yet to be brought to light. The focus of this review encompasses the non-spike mutations of Omicron, especially in its widely circulating subvariants (BA.1, BA.2, BA.4, BA.5, and BA.2.12.1). The mutations such as in NSP3, NSP6, NSP13, M protein, ORF7b, and ORF9b are mentioned few of all, which might have led to the varying properties, including growth advantages, higher transmission rate, lower infectivity, and most importantly better host immune evasion through natural killer cell inactivation, autophagosome-lysosome fusion prevention, host protein synthesis disruption, and so on. This aspect of Omicron subvariants has not yet been explored. Further study of alteration of expression or interaction profile of these non-spike mutations bearing proteins, if present, can add a great deal of knowledge to the current understanding of the viral properties and thus effective prevention strategies.
Collapse
Affiliation(s)
- Anamica Hossain
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Shammi Akter
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Alfi Anjum Rashid
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Sabik Khair
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - A S M Rubayet Ul Alam
- Department of Microbiology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| |
Collapse
|
37
|
Dandachi I, Aljabr W. Path to Normal Life Post-COVID-19, the Saudi Arabian Case. J Infect Public Health 2022; 15:892-893. [PMID: 35843153 PMCID: PMC9247230 DOI: 10.1016/j.jiph.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/15/2022] [Accepted: 06/26/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Iman Dandachi
- Research Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Waleed Aljabr
- Research Center, King Fahad Medical City, Riyadh, Saudi Arabia.
| |
Collapse
|
38
|
Sun C, Xie C, Bu GL, Zhong LY, Zeng MS. Molecular characteristics, immune evasion, and impact of SARS-CoV-2 variants. Signal Transduct Target Ther 2022; 7:202. [PMID: 35764603 PMCID: PMC9240077 DOI: 10.1038/s41392-022-01039-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/16/2022] [Accepted: 05/22/2022] [Indexed: 01/18/2023] Open
Abstract
The persistent COVID-19 pandemic since 2020 has brought an enormous public health burden to the global society and is accompanied by various evolution of the virus genome. The consistently emerging SARS-CoV-2 variants harboring critical mutations impact the molecular characteristics of viral proteins and display heterogeneous behaviors in immune evasion, transmissibility, and the clinical manifestation during infection, which differ each strain and endow them with distinguished features during populational spread. Several SARS-CoV-2 variants, identified as Variants of Concern (VOC) by the World Health Organization, challenged global efforts on COVID-19 control due to the rapid worldwide spread and enhanced immune evasion from current antibodies and vaccines. Moreover, the recent Omicron variant even exacerbated the global anxiety in the continuous pandemic. Its significant evasion from current medical treatment and disease control even highlights the necessity of combinatory investigation of the mutational pattern and influence of the mutations on viral dynamics against populational immunity, which would greatly facilitate drug and vaccine development and benefit the global public health policymaking. Hence in this review, we summarized the molecular characteristics, immune evasion, and impacts of the SARS-CoV-2 variants and focused on the parallel comparison of different variants in mutational profile, transmissibility and tropism alteration, treatment effectiveness, and clinical manifestations, in order to provide a comprehensive landscape for SARS-CoV-2 variant research.
Collapse
Affiliation(s)
- Cong Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Chu Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Guo-Long Bu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Lan-Yi Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, 510060, Guangzhou, China. .,Guangdong-Hong Kong Joint Laboratory for RNA Medicine, 510060, Guangzhou, China.
| |
Collapse
|
39
|
Alkhamis MA, Fountain-Jones NM, Khajah MM, Alghounaim M, Al-Sabah SK. Comparative Phylodynamics Reveals the Evolutionary History of SARS-CoV-2 Emerging Variants in the Arabian Peninsula. Virus Evol 2022; 8:veac040. [PMID: 35677574 PMCID: PMC9129158 DOI: 10.1093/ve/veac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 11/18/2022] Open
Abstract
Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to be responsible for an unprecedented worldwide public health and economic catastrophe. Accurate understanding and comparison of global and regional evolutionary epidemiology of novel SARS-CoV-2 variants are critical to guide current and future interventions. Here, we utilized a Bayesian phylodynamic pipeline to trace and compare the evolutionary dynamics, spatiotemporal origins, and spread of five variants (Alpha, Beta, Delta, Kappa, and Eta) across the Arabian Peninsula. We found variant-specific signatures of evolution and spread that are likely linked to air travel and disease control interventions in the region. Alpha, Beta, and Delta variants went through sequential periods of growth and decline, whereas we inferred inconclusive population growth patterns for the Kappa and Eta variants due to their sporadic introductions in the region. Non-pharmaceutical interventions imposed between mid-2020 and early 2021 likely played a role in reducing the epidemic progression of the Beta and the Alpha variants. In comparison, the combination of the non-pharmaceutical interventions and the rapid rollout of vaccination might have shaped Delta variant dynamics. We found that the Alpha and Beta variants were frequently introduced into the Arab peninsula between mid-2020 and early 2021 from Europe and Africa, respectively, whereas the Delta variant was frequently introduced between early 2021 and mid-2021 from East Asia. For these three variants, we also revealed significant and intense dispersal routes between the Arab region and Africa, Europe, Asia, and Oceania. In contrast, the restricted spread and stable effective population size of the Kappa and the Eta variants suggest that they no longer need to be targeted in genomic surveillance activities in the region. In contrast, the evolutionary characteristics of the Alpha, Beta, and Delta variants confirm the dominance of these variants in the recent outbreaks. Our study highlights the urgent need to establish regional molecular surveillance programs to ensure effective decision making related to the allocation of intervention activities targeted toward the most relevant variants.
Collapse
Affiliation(s)
- Moh A Alkhamis
- Department of Epidemiology and Biostatistics, Faculty of Public Health, Health Sciences Centre, Kuwait University, Kuwait City, Kuwait
| | | | - Mohammad M Khajah
- Systems and Software development Department, Kuwait Institute for Scientific Research, Kuwait
| | - Mohammad Alghounaim
- Departement of pediatrics, Amiri Hospital, Ministry of Health, Kuwait
- Jaber Al-Ahmad Al-Sabah Hospital, Ministry of Health, Kuwait
| | - Salman K Al-Sabah
- Jaber Al-Ahmad Al-Sabah Hospital, Ministry of Health, Kuwait
- Department of Surgery, Faculty of Medicine, Health Sciences Center, Kuwait University, Kuwait
| |
Collapse
|
40
|
Zhao H, Nguyen A, Wu D, Li Y, Hassan SA, Chen J, Shroff H, Piszczek G, Schuck P. Plasticity in structure and assembly of SARS-CoV-2 nucleocapsid protein. PNAS NEXUS 2022; 1:pgac049. [PMID: 35783502 PMCID: PMC9235412 DOI: 10.1093/pnasnexus/pgac049] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023]
Abstract
Worldwide SARS-CoV-2 sequencing efforts track emerging mutations in its spike protein, as well as characteristic mutations in other viral proteins. Besides their epidemiological importance, the observed SARS-CoV-2 sequences present an ensemble of viable protein variants, and thereby a source of information on viral protein structure and function. Charting the mutational landscape of the nucleocapsid (N) protein that facilitates viral assembly, we observe variability exceeding that of the spike protein, with more than 86% of residues that can be substituted, on average by three to four different amino acids. However, mutations exhibit an uneven distribution that tracks known structural features but also reveals highly protected stretches of unknown function. One of these conserved regions is in the central disordered linker proximal to the N-G215C mutation that has become dominant in the Delta variant, outcompeting G215 variants without further spike or N-protein substitutions. Structural models suggest that the G215C mutation stabilizes conserved transient helices in the disordered linker serving as protein-protein interaction interfaces. Comparing Delta variant N-protein to its ancestral version in biophysical experiments, we find a significantly more compact and less disordered structure. N-G215C exhibits substantially stronger self-association, shifting the unliganded protein from a dimeric to a tetrameric oligomeric state, which leads to enhanced coassembly with nucleic acids. This suggests that the sequence variability of N-protein is mirrored by high plasticity of N-protein biophysical properties, which we hypothesize can be exploited by SARS-CoV-2 to achieve greater efficiency of viral assembly, and thereby enhanced infectivity.
Collapse
Affiliation(s)
- Huaying Zhao
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ai Nguyen
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Di Wu
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sergio A Hassan
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jiji Chen
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hari Shroff
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Grzegorz Piszczek
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter Schuck
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
41
|
Aloufi BH, Snoussi M, Sulieman AME. Antiviral Efficacy of Selected Natural Phytochemicals against SARS-CoV-2 Spike Glycoprotein Using Structure-Based Drug Designing. Molecules 2022; 27:2401. [PMID: 35458599 PMCID: PMC9025634 DOI: 10.3390/molecules27082401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
Abstract
SARS-CoV-2 is a highly virulent coronavirus that first surfaced in late 2019 and has since created a pandemic of the acute respiratory sickness known as "coronavirus disease 2019" (COVID-19), posing a threat to human health and public safety. S-RBD is a coronaviral protein that is essential for a coronavirus (CoV) to bind and penetrate into host cells. As a result, it has become a popular pharmacological target. The goal of this study was to find potential candidates for anti-coronavirus disease 2019 (COVID-19) drugs by targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S-RBD with novel bioactive compounds and molecular interaction studies of 15,000 phytochemicals belonging to different flavonoid subgroups. A spike protein crystal structure attached to the ACE2 structure was obtained from the PDB database. A library of 15,000 phytochemicals was made by collecting compounds from different databases, such as the Zinc-database, PubChem-database, and MPD3-database. This library was docked against a receptor binding domain of a spike glycoprotein through the Molecular Operating Environment (MOE). The top drug candidates Phylloflavan, Milk thistle, Ilexin B and Isosilybin B, after virtual screening, were selected on the basis of the least binding score. Phylloflavan ranked as the top compound because of its least binding affinity score of -14.09 kcal/mol. In silico studies showed that all those compounds showed good activity and could be used as an immunological response with no bioavailability issues. Absorption, distribution, metabolism, excretion and a toxicological analysis were conducted through SwissADME. Stability and effectiveness of the docked complexes were elucidated by performing the 100 ns molecular dynamic simulation through the Desmond package.
Collapse
Affiliation(s)
- Bandar Hamad Aloufi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (B.H.A.); (A.M.E.S.)
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (B.H.A.); (A.M.E.S.)
- Laboratory of Genetics, Biodiversity and Valorisation of Bioressources, High Institute of Biotechnology, University of Monastir, Monastir 5000, Tunisia
| | - Abdel Moneim E. Sulieman
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (B.H.A.); (A.M.E.S.)
| |
Collapse
|
42
|
Zhao H, Nguyen A, Wu D, Li Y, Hassan SA, Chen J, Shroff H, Piszczek G, Schuck P. Plasticity in structure and assembly of SARS-CoV-2 nucleocapsid protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.02.08.479556. [PMID: 35169797 PMCID: PMC8845419 DOI: 10.1101/2022.02.08.479556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Worldwide SARS-CoV-2 sequencing efforts track emerging mutations in its spike protein, as well as characteristic mutations in other viral proteins. Besides their epidemiological importance, the observed SARS-CoV-2 sequences present an ensemble of viable protein variants, and thereby a source of information on viral protein structure and function. Charting the mutational landscape of the nucleocapsid (N) protein that facilitates viral assembly, we observe variability exceeding that of the spike protein, with more than 86% of residues that can be substituted, on average by 3-4 different amino acids. However, mutations exhibit an uneven distribution that tracks known structural features but also reveals highly protected stretches of unknown function. One of these conserved regions is in the central disordered linker proximal to the N-G215C mutation that has become dominant in the Delta variant, outcompeting G215 variants without further spike or N-protein substitutions. Structural models suggest that the G215C mutation stabilizes conserved transient helices in the disordered linker serving as protein-protein interaction interfaces. Comparing Delta variant N-protein to its ancestral version in biophysical experiments, we find a significantly more compact and less disordered structure. N-G215C exhibits substantially stronger self-association, shifting the unliganded protein from a dimeric to a tetrameric oligomeric state, which leads to enhanced co-assembly with nucleic acids. This suggests that the sequence variability of N-protein is mirrored by high plasticity of N-protein biophysical properties, which we hypothesize can be exploited by SARS-CoV-2 to achieve greater efficiency of viral assembly, and thereby enhanced infectivity.
Collapse
Affiliation(s)
- Huaying Zhao
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ai Nguyen
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Di Wu
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sergio A. Hassan
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jiji Chen
- Advanced Imaging and Microscopy Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hari Shroff
- Advanced Imaging and Microscopy Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Grzegorz Piszczek
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter Schuck
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|