1
|
Li X, Zhao S, Xie J, Li M, Tong S, Ma J, Yang R, Zhao Q, Zhang J, Xu A. Targeting the NF-κB p65-MMP28 axis: Wogonoside as a novel therapeutic agent for attenuating podocyte injury in diabetic nephropathy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156406. [PMID: 39862792 DOI: 10.1016/j.phymed.2025.156406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/08/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Although recent progress provides mechanistic insights into diabetic nephropathy (DN), effective treatments remain scarce. DN, characterized by proteinuria and a progressive decline in renal function, primarily arises from podocyte injury, which impairs the glomerular filtration barrier. Wogonoside, a bioactive compound from the traditional Chinese herb Scutellaria baicalensis, has not been explored for its role in DN. PURPOSE This study aimed to investigate the therapeutic effects of wogonoside on podocyte injury in DN and its molecular mechanisms. METHODS The effects of wogonoside were examined using HFD/STZ-induced DN mouse models and high glucose (HG)-induced MPC-5 cells. Oxidative stress and inflammation markers were analyzed via Western blot and RT-qPCR. Wogonoside targets were identified through DARTS-MS and validated by SPR, molecular docking, alanine scanning, and CETSA. RNA-Seq analysis was employed to identify downstream targets, and the p65-MMP28 axis was explored through p65 knockdown and overexpression studies. The regulatory effect of p65 on Mmp28 was confirmed through dual-luciferase reporter assays and ChIP-qPCR. RESULTS Wogonoside treatment significantly reduced oxidative stress and inflammation in vivo and in vitro. Mechanistic studies identified p65 as a direct target of wogonoside, with SPR confirming a strong binding affinity (KD = 25.05 μM). Molecular docking and alanine scanning identified LYS221 as a critical binding site, which was further supported by CETSA using the p65 K221A mutant. RNA-Seq analysis revealed Mmp28 as a downstream effector of p65 involved in HG-induced podocyte injury. Functional studies demonstrated that wogonoside's protective effects on antioxidant and inflammatory pathways are mediated via the p65-MMP28 axis. Dual-luciferase reporter assays revealed that p65 regulates Mmp28 transcription, and ChIP-qPCR confirmed its direct promoter binding. CONCLUSIONS This study highlights wogonoside as a promising candidate for the treatment of podocyte injury in DN by targeting the NF-κB p65-MMP28 signaling axis. These findings provide novel insights into wogonoside's therapeutic potential and its molecular mechanisms, paving the way for its further development as a DN intervention.
Collapse
Affiliation(s)
- Xiandeng Li
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Shuyan Zhao
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jing Xie
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Mi Li
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Shuangmei Tong
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jing Ma
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Rui Yang
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Qinjian Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Jian Zhang
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ajing Xu
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
2
|
Tian Y, Liu X, Lu Q, Li J, Wang T, Tian M, Ding Y, Li J. Bmal1 knockout aggravates Porphyromonas gingivalis-induced periodontitis by activating the NF-κB pathway. J Appl Oral Sci 2025; 33:e20240388. [PMID: 40008712 PMCID: PMC11869942 DOI: 10.1590/1678-7757-2024-0388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/03/2024] [Accepted: 01/08/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Circadian rhythm disorders and NF-κB are closely linked and can exacerbate periodontitis. However, the mechanisms via which circadian rhythm-related genes influence periodontitis are not yet fully understood. OBJECTIVE We investigated the effect of brain and muscle Arnt-like protein-1 (BMAL1) on the NF-κB pathway and downstream inflammatory factors on periodontitis. In this study, Bmal1 homozygous knockout and periodontitis mouse models were established. METHODOLOGY Bone marrow-derived macrophages (BMDMs) from Bmal1-/- mice were cultured and stimulated with lipopolysaccharides. Bone resorption was detected using micro-computed tomography and histological analyses. Gene and cytokine expression was assessed using quantitative reverse-transcription PCR and ELISA. The nuclear translocation of p65 was detected using immunofluorescence. RESULTS Our findings indicate that Bmal1 knockout exacerbates periodontitis severity in mice by activating the NF-κB signaling pathway with increased nuclear translocation of p65 (p<0.05), as well as increased expression of Il-1b, Il-6, and Tnfα (p<0.01), along with decreased Nr1d1 expression (p<0.05) in BMDMs under inflammation. CONCLUSION The results highlight the protective role of Bmal1 in periodontitis and suggest its potential link to the circadian clock's influence on the disease.
Collapse
Affiliation(s)
- Ye Tian
- Sichuan University, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Geriatric Stomatology, Chengdu, China
| | - Xinran Liu
- Sichuan University, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Qiuyu Lu
- Sichuan University, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Jiaxin Li
- Sichuan University, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Tianqi Wang
- Sichuan University, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Mei Tian
- Sichuan University, West China Healthcare Hospital of Sichuan University, Chengdu, China
| | - Yan Ding
- Sichuan University, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Jinle Li
- Sichuan University, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of General Clinic, Chengdu, China
| |
Collapse
|
3
|
Zariņa KZ, Pilmane M, Pētersons A. Immunomodulatory Tissue Factors in the Gallbladder Walls of Pediatric Patients with Chronic Calculous Cholecystitis. CHILDREN (BASEL, SWITZERLAND) 2025; 12:205. [PMID: 40003307 PMCID: PMC11854828 DOI: 10.3390/children12020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND The rising rates of gallstones and cholecystectomy in pediatric populations underscore the increasing concern regarding chronic cholecystitis. However, the morphopathogenesis of pediatric calculous cholecystitis is still not well understood. This study aimed to determine the expression and distribution of immunomodulatory factors interleukin-12 (IL-12), interleukin-13 (IL-13), interleukin-1β (IL-1β), sonic hedgehog protein (SHH), nuclear factor NF-kappa-B p65 subunit (NFkBp65), and heat shock protein 60 (HSP60) in the gallbladder walls of pediatric patients with chronic calculous cholecystitis. METHODS In total, 11 gallbladder samples were collected from pediatric patients with calculous cholecystitis during cholecystectomy, while 5 healthy gallbladder samples served as controls. IL-12, IL-13, IL-1β, SHH, NFkBp65, and HSP60 were detected by immunohistochemistry. The number of positive structures in gallbladder wall epithelium, vasculature, and inflammatory infiltrate was assessed semi-quantitatively by microscopy. A Mann-Whitney U test and Spearman's rank-order correlation coefficient were calculated. RESULTS Statistically significant differences were observed between patient and control samples in the expression of IL-1β, SHH, and NFkBp65 in the epithelium, as well as in the expression of IL-12, SHH, and HSP60 in the blood vessels. The expression of IL-1β was stronger in the epithelium of controls, while other markers were more prominent in patient samples. CONCLUSIONS An increased number of NFkBp65, IL-12, and HSP60 positive cells in patient gallbladder tissue suggests a significant role of these tissue factors in driving immune modulation and sustaining the inflammation in pediatric chronic calculous cholecystitis. The noticeable expression of SHH in patient gallbladder tissue indicates its part in tissue regeneration and repair processes, as well as in modulating inflammation and vascular responses in calculous cholecystitis. The significant positive correlations between the factors studied highlight the importance of their coordinated interaction and intricate crosstalk in the morphopathogenesis of calculous cholecystitis.
Collapse
Affiliation(s)
- Kaiva Zīle Zariņa
- Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda Boulevard 9, LV-1010 Riga, Latvia
| | - Māra Pilmane
- Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda Boulevard 9, LV-1010 Riga, Latvia
| | - Aigars Pētersons
- Department of Pediatric Surgery, Riga Stradins University, Dzirciema Street 16, LV-1007 Riga, Latvia
| |
Collapse
|
4
|
Liu J, Chen S, Zhang Z, Song X, Hou Z, Wang Z, Liu T, Yang L, Liu Y, Luo Z. The oxidized hyaluronic acid hydrogels containing paeoniflorin microspheres regulates the polarization of M1/M2 macrophages to promote wound healing. Int J Biol Macromol 2024; 282:137107. [PMID: 39515704 DOI: 10.1016/j.ijbiomac.2024.137107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Controlling excessive inflammation of acute wound is an effective means to shorten the healing time. Therefore, targeted control of the inflammatory response of the wound is a promising therapeutic strategy. In this study, paeoniflorin (Pae) was encapsulated in microspheres and combined with oxidized hyaluronic acid hydrogels to prepare the hydrogel loaded with Pae microspheres (Pae-MPs@OHA) to promote the healing of acute wounds in rats. The results demonstrated that the particle size of the Pae-MPs was 6.84 ± 0.51 μm, and the positive charge was 26.87 ± 1.51 mV. The uniform spherical structure of the Pae-MPs was observed by TEM. The Pae-MPs@OHA can maintain colloidal state in the range of 0.1-3.16 Hz. FTIR suggested that Pae could be effectively wrapped in MPs, and SEM indicated that the Pae-MPs@OHA had a uniform network pore structure. The Pae-MPs@OHA can realize the sustained release of Pae for 96 h. Biocompatibility experiments showed that the Pae-MPs@OHA hydrogels were safe and available. The Pae-MPs@OHA hydrogels can accelerate wound healing in rats. HE and masson staining suggested that the Pae-MPs@OHA could reduce inflammatory cell infiltration, promote re-epithelialization and collagen formation. The Pae-MPs@OHA could decrease the number of M1 and increase the number of M2 in macrophages, thus regulating the release of inflammatory factor TNF-α and IL-1β. The results of molecular docking and western blot results also confirmed that the Pae-MPs@OHA could reduce the expression of NF-κB, pNF-κB, NLRP3, ASC and pro-caspase-1. These findings suggest that the Pae-MPs@OHA has great potential for application in the treatment of inflammatory wound.
Collapse
Affiliation(s)
- Jiarui Liu
- Shuren International College, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China
| | - Siqi Chen
- School of Public Health, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China
| | - Zijing Zhang
- Graduate School, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China
| | - Xitong Song
- Graduate School, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China
| | - Zhiquan Hou
- Graduate School, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China
| | - Ziyi Wang
- Graduate School, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China
| | - Tao Liu
- University of Michigan, Ann Arbor, School of Pharmacy, Integrated Pharmaceutical Sciences, 428 Church St, Ann Arbor, MI 48109, United States of America
| | - Liqun Yang
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yunen Liu
- Shuren International College, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China.
| | - Zhonghua Luo
- Shuren International College, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China.
| |
Collapse
|
5
|
Zhang Y, Kandwal S, Fayne D, Stevenson NJ. MERS-CoV-nsp5 expression in human epithelial BEAS 2b cells attenuates type I interferon production by inhibiting IRF3 nuclear translocation. Cell Mol Life Sci 2024; 81:433. [PMID: 39395053 PMCID: PMC11470912 DOI: 10.1007/s00018-024-05458-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/14/2024]
Abstract
Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is an enveloped, positive-sense RNA virus that emerged in 2012, causing sporadic cases and localized outbreaks of severe respiratory illness with high fatality rates. A characteristic feature of the immune response to MERS-CoV infection is low type I IFN induction, despite its importance in viral clearance. The non-structural proteins (nsps) of other coronaviruses have been shown to block IFN production. However, the role of nsp5 from MERS-CoV in IFN induction of human respiratory cells is unclear. In this study, we elucidated the role of MERS-CoV-nsp5, the viral main protease, in modulating the host's antiviral responses in human bronchial epithelial BEAS 2b cells. We found that overexpression of MERS-CoV-nsp5 had a dose-dependent inhibitory effect on IFN-β promoter activation and cytokine production induced by HMW-poly(I:C). It also suppressed IFN-β promoter activation triggered by overexpression of key components in the RIG-I-like receptor (RLR) pathway, including RIG-I, MAVS, IKK-ε and IRF3. Moreover, the overexpression of MERS-CoV-nsp5 did not impair expression or phosphorylation of IRF3, but suppressed the nuclear translocation of IRF3. Further investigation revealed that MERS-CoV-nsp5 specifically interacted with IRF3. Using docking and molecular dynamic (MD) simulations, we also found that amino acids on MERS-CoV-nsp5, IRF3, and KPNA4 may participate in protein-protein interactions. Additionally, we uncovered protein conformations that mask the nuclear localization signal (NLS) regions of IRF3 and KPNA4 when interacting with MERS-CoV-nsp5, suggesting a mechanism by which this viral protein blocks IRF3 nuclear translocation. Of note, the IFN-β expression was restored after administration of protease inhibitors targeting nsp5, indicating this suppression of IFN-β production was dependent on the enzyme activity of nsp5. Collectively, our findings elucidate a mechanism by which MERS-CoV-nsp5 disrupts the host's innate antiviral immunity and thus provides insights into viral pathogenesis.
Collapse
Affiliation(s)
- Y Zhang
- Viral Immunology Group, Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - S Kandwal
- Molecular Design Group, School of Chemical Sciences, Dublin City University, Glasnevin, Ireland
- Molecular Design Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590, Ireland
- DCU Life Sciences Institute, Dublin City University, Dublin, Ireland
| | - D Fayne
- Molecular Design Group, School of Chemical Sciences, Dublin City University, Glasnevin, Ireland
- DCU Life Sciences Institute, Dublin City University, Dublin, Ireland
| | - N J Stevenson
- Viral Immunology Group, Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
6
|
Hara H, Chida J, Batchuluun B, Takahashi E, Kido H, Sakaguchi S. Protective role of cytosolic prion protein against virus infection in prion-infected cells. J Virol 2024; 98:e0126224. [PMID: 39194237 PMCID: PMC11406989 DOI: 10.1128/jvi.01262-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Production of the amyloidogenic prion protein, PrPSc, which forms infectious protein aggregates, or prions, is a key pathogenic event in prion diseases. Functional prion-like protein aggregations, such as the mitochondrial adaptor protein MAVS and the inflammasome component protein ASC, have been identified to play a protective role in viral infections in mammalian cells. In this study, to investigate if PrPSc could play a functional role against external stimuli, we infected prion-infected cells with a neurotropic influenza A virus strain, IAV/WSN. We found that prion-infected cells were highly resistant to IAV/WSN infection. In these cells, NF-κB nuclear translocation was disturbed; therefore, mitochondrial superoxide dismutase (mtSOD) expression was suppressed, and mitochondrial reactive oxygen species (mtROS) was increased. The elevated mtROS subsequently activated NLRP3 inflammasomes, leading to the suppression of IAV/WSN-induced necroptosis. We also found that prion-infected cells accumulated a portion of PrP molecules in the cytosol, and that the N-terminal potential nuclear translocation signal of PrP impeded NF-κB nuclear translocation. These results suggest that PrPSc might play a functional role in protection against viral infections by stimulating the NLRP3 inflammasome-dependent antivirus mechanism through the cytosolic PrP-mediated disturbance of NF-κB nuclear translocation, which leads to suppression of mtSOD expression and consequently upregulation of the NLRP3 inflammasome activator mtROS. IMPORTANCE Cytosolic PrP has been detected in prion-infected cells and suggested to be involved in the neurotoxicity of prions. Here, we also detected cytosolic PrP in prion-infected cells. We further found that the nuclear translocation of NF-κB was disturbed in prion-infected cells and that the N-terminal potential nuclear translocation signal of PrP expressed in the cytosol disturbed the nuclear translocation of NF-κB. Thus, the N-terminal nuclear translocation signal of cytosolic PrP might play a role in prion neurotoxicity. Prion-like protein aggregates in other protein misfolding disorders, including Alzheimer's disease were reported to play a protective role against various environmental stimuli. We here showed that prion-infected cells were partially resistant to IAV/WSN infection due to the cytosolic PrP-mediated disturbance of the nuclear translocation of NF-κB, which consequently activated NLRP3 inflammasomes after IAV/WSN infection. It is thus possible that prions could also play a protective role in viral infections.
Collapse
Affiliation(s)
- Hideyuki Hara
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
- Core Research Facility, Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
| | - Junji Chida
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| | - Batzaya Batchuluun
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| | - Etsuhisa Takahashi
- Division of Enzyme Chemistry, The Institute for Enzyme Research, Tokushima University (KOSOKEN), Tokushima, Japan
| | - Hiroshi Kido
- Division of Enzyme Chemistry, The Institute for Enzyme Research, Tokushima University (KOSOKEN), Tokushima, Japan
| | - Suehiro Sakaguchi
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| |
Collapse
|
7
|
McKenzie M, Lian GY, Pennel KA, Quinn JA, Jamieson NB, Edwards J. NFκB signalling in colorectal cancer: Examining the central dogma of IKKα and IKKβ signalling. Heliyon 2024; 10:e32904. [PMID: 38975078 PMCID: PMC11226910 DOI: 10.1016/j.heliyon.2024.e32904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/20/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
The NFκB pathway, known as the central regulator of inflammation, has a well-established role in colorectal cancer (CRC) initiation, progression, and therapy resistance. Due to the pathway's overarching roles in CRC, there have been efforts to characterise NFκB family members and target the pathway for therapeutic intervention. Initial research illustrated that the canonical NFκB pathway, driven by central kinase IKKβ, was a promising target for drug intervention. However, dose limiting toxicities and specificity concerns have resulted in failure of IKKβ inhibitors in clinical trials. The field has turned to look at targeting the less dominant kinase, IKKα, which along with NFκB inducing kinase (NIK), drives the lesser researched non-canonical NFκB pathway. However prognostic studies of the non-canonical pathway have produced conflicting results. There is emerging evidence that IKKα is involved in other signalling pathways, which lie outside of canonical and non-canonical NFκB signalling. Evidence suggests that some of these alternative pathways involve a truncated form of IKKα, and this may drive poor cancer-specific survival in CRC. This review aims to explore the multiple components of NFκB signalling, highlighting that NIK may be the central kinase for non-canonical NFκB signalling, and that IKKα is involved in novel pathways which promote CRC.
Collapse
Affiliation(s)
- Molly McKenzie
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Guang-Yu Lian
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Kathryn A.F. Pennel
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Jean A. Quinn
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Nigel B. Jamieson
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Joanne Edwards
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| |
Collapse
|
8
|
Xue H, Zhou H, Lou Q, Yuan P, Feng Z, Qiao L, Zhang J, Xie H, Shen Y, Ma Q, Wang S, Zhang B, Ye H, Cheng J, Sun X, Shi P. Urolithin B reduces cartilage degeneration and alleviates osteoarthritis by inhibiting inflammation. Food Funct 2024; 15:3552-3565. [PMID: 38465899 DOI: 10.1039/d3fo03793b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Osteoarthritis is the most prevalent degenerative joint disease reported worldwide. Conventional treatment strategies mainly focus on medication and involve surgical joint replacement. The use of these therapies is limited by gastrointestinal complications and the lifespan of joint prostheses. Hence, safe and efficacious drugs are urgently needed to impede the osteoarthritis progression. Urolithin B, a metabolite of ellagic acid in the gut, exhibits anti-inflammatory and antioxidant properties; however, its role in osteoarthritis remains unclear. In this study, we demonstrated that urolithin B efficiently inhibits the inflammatory factor-induced production of matrix metalloproteinases (MMP3 and MMP13) in vitro and upregulates the expression of type II collagen and aggrecan. Urolithin B alleviates cartilage erosion and osteophyte formation induced by anterior cruciate ligament transections. Moreover, urolithin B inhibits the activation of the NF-κB pathway by reducing the phosphorylation of Iκb-α and the nuclear translocation of P65. In summary, urolithin B significantly inhibits inflammation and alleviates osteoarthritis. Hence, urolithin B can be considered a potential agent suitable for the effective treatment of osteoarthritis in the future.
Collapse
Affiliation(s)
- Hong Xue
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Hongyu Zhou
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Qiliang Lou
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Putao Yuan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Zhenhua Feng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Li Qiao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Jiateng Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Hongwei Xie
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Yang Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Qingliang Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Shiyu Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Boya Zhang
- Department of Dermatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huali Ye
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Jiao Cheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Xuewu Sun
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Peihua Shi
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|
9
|
Peng Y, Yang Z, Sun H, Li J, Lan X, Liu S. Nanomaterials in Medicine: Understanding Cellular Uptake, Localization, and Retention for Enhanced Disease Diagnosis and Therapy. Aging Dis 2024; 16:AD.2024.0206-1. [PMID: 38421835 PMCID: PMC11745437 DOI: 10.14336/ad.2024.0206-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Nanomaterials (NMs) have emerged as promising tools for disease diagnosis and therapy due to their unique physicochemical properties. To maximize the effectiveness and design of NMs-based medical applications, it is essential to comprehend the complex mechanisms of cellular uptake, subcellular localization, and cellular retention. This review illuminates the various pathways that NMs take to get from the extracellular environment to certain intracellular compartments by investigating the various mechanisms that underlie their interaction with cells. The cellular uptake of NMs involves complex interactions with cell membranes, encompassing endocytosis, phagocytosis, and other active transport mechanisms. Unique uptake patterns across cell types highlight the necessity for customized NMs designs. After internalization, NMs move through a variety of intracellular routes that affect where they are located subcellularly. Understanding these pathways is pivotal for enhancing the targeted delivery of therapeutic agents and imaging probes. Furthermore, the cellular retention of NMs plays a critical role in sustained therapeutic efficacy and long-term imaging capabilities. Factors influencing cellular retention include nanoparticle size, surface chemistry, and the cellular microenvironment. Strategies for prolonging cellular retention are discussed, including surface modifications and encapsulation techniques. In conclusion, a comprehensive understanding of the mechanisms governing cellular uptake, subcellular localization, and cellular retention of NMs is essential for advancing their application in disease diagnosis and therapy. This review provides insights into the intricate interplay between NMs and biological systems, offering a foundation for the rational design of next-generation nanomedicines.
Collapse
Affiliation(s)
- Yue Peng
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhengshuang Yang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Hui Sun
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinling Li
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiuwan Lan
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Sijia Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
10
|
Ventura C, Banerjee A, Zacharopoulou M, Itzhaki LS, Bahar I. Tandem-repeat proteins conformational mechanics are optimized to facilitate functional interactions and complexations. Curr Opin Struct Biol 2024; 84:102744. [PMID: 38134536 DOI: 10.1016/j.sbi.2023.102744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/30/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023]
Abstract
The architectures of tandem-repeat proteins are distinct from those of globular proteins. Individual modules, each comprising small structural motifs of 20-40 residues, are arrayed in a quasi one-dimensional fashion to form striking, elongated, horseshoe-like, and superhelical architectures, stabilized solely by short-range interaction. The spring-like shapes of repeat arrays point to elastic modes of action, and these proteins function as adapter molecules or 'hubs,' propagating signals within multi-subunit assemblies in diverse biological contexts. This flexibility is apparent in the dramatic variability observed in the structures of tandem-repeat proteins in different complexes. Here, using computational analysis, we demonstrate the striking ability of just one or a few global motions to recapitulate these structures. These findings show how the mechanics of repeat arrays are robustly enabled by their unique architecture. Thus, the repeating architecture has been optimized by evolution to favor functional modes of motions. The global motions enabling functional transitions can be fully visualized at http://bahargroup.org/tr_web.
Collapse
Affiliation(s)
- Carlos Ventura
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, 11794, USA; Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Anupam Banerjee
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Maria Zacharopoulou
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK. https://twitter.com/maria_zach_
| | - Laura S Itzhaki
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK.
| | - Ivet Bahar
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, 11794, USA; Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
11
|
Pattnaik S, Murmu S, Prasad Rath B, Singh MK, Kumar S, Mohanty C. In silico screening of phytoconstituents as potential anti-inflammatory agents targeting NF-κB p65: an approach to promote burn wound healing. J Biomol Struct Dyn 2024:1-29. [PMID: 38287503 DOI: 10.1080/07391102.2024.2306199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 01/10/2024] [Indexed: 01/31/2024]
Abstract
Chronic burn wounds are frequently characterised by a prolonged and dysregulated inflammatory phase that is mediated by over-activation of NF-κB p65. Synthetic wound healing drugs used for treatment of inflammation are primarily associated with several shortcomings which reduce their therapeutic index. In this scenario, phytoconstituents that exhibit multifaceted biological activities including anti-inflammatory effects have emerged as a promising therapeutic alternative. However, identification and isolation of phytoconstituents from medicinal herbs is a cumbersome method that is linked to profound uncertainty. Hence, present study aimed to identify prospective phytoconstituents as inhibitors of RHD of NF-κB p65 by utilizing in silico approach. Virtual screening of 2821 phytoconstituents was performed against protein model. Out of 2821 phytoconstituents, 162 phytoconstituents displayed a higher binding affinity (≤ -8.0 kcal/mol). These 162 phytoconstituents were subjected to ADMET predictions, and 15 of them were found to satisfy Lipinski's rule of five and showed favorable pharmacokinetic properties. Among these 15 phytoconstituents, 5 phytoconstituents with high docking scores i.e. silibinin, bismurrayaquinone A, withafastuosin B, yuccagenin, (+)-catechin 3-gallate were selected for molecular dynamics (MD) simulation analysis. Results of MD simulation indicated that withafastuosin B, (+)-catechin 3-gallate and yuccagenin produced a compact and stable complex with protein without significant variations in conformation. Relative binding energy analysis of best hit molecules indicate that withafastuosin B, and (+)-catechin 3-gallate exhibit high binding affinity with target protein among other lead molecules. Findings of study suggest that these phytoconstituents could serve as promising anti-inflammatory agents for treatment of burn wounds by inhibiting the RHD of NF-κB p65.
Collapse
Affiliation(s)
- Saswati Pattnaik
- School of Applied Sciences, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha, India
| | - Sneha Murmu
- ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi, India
| | - Bibhu Prasad Rath
- School of Applied Sciences, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha, India
| | - Mahender Kumar Singh
- Data Science Laboratory, National Brain Research Centre, Gurgaon, Haryana, India
| | - Sunil Kumar
- ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi, India
| | - Chandana Mohanty
- School of Applied Sciences, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha, India
| |
Collapse
|
12
|
Wu S, Guo W, Chen L, Lin X, Tang M, Lin C, Guo H, Zhang T, Gao Y. Downregulation of Gadd45β alleviates osteoarthritis by repressing lipopolysaccharide-induced fibroblast-like synoviocyte inflammation, proliferation and migration. Int Immunopharmacol 2024; 126:111202. [PMID: 37988908 DOI: 10.1016/j.intimp.2023.111202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023]
Abstract
OBJECTIVE Gadd45β have a regulatory role in cellular inflammation, proliferation and migration. However, the role of Gadd45β in synovial inflammation in osteoarthritis (OA) remains to be explored. This study aimed to ascertain whether Gadd45β is involved in OA synovial inflammation. METHODS The rat model was induced by sodium iodoacetate and the cellular model was constructed with lipopolysaccharide (LPS)-induced fibroblast-like synoviocytes (FLSs). siRNA was applied to interfere with the expression of intracellular Gadd45β. Real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting were used to detect the expression of Gadd45β mRNA and protein. The inflammation, proliferation, and migration of OA-FLSs were detected by enzyme-linked immunosorbent assay, cell scratch assay, 5-ethynyl-2'-deoxyuridine assay, etc. The effect of downregulation of Gadd45β on the nuclear factor-κB (NF-κB) pathway was investigated. RESULTS Expression of Gadd45β in OA rat synovial tissues and OA-FLSs was increased, and LPS treatment promoted cell proliferation and enhanced cell migration. Gadd45β interference inhibited the inflammation, proliferation and migration of cells induced by LPS. LPS promoted P65 expression in the nucleus and activated the NF-κB signaling pathway, whereas si-Gadd45β reversed this situation. CONCLUSIONS si-Gadd45β inhibited the inflammatory response, proliferation and migration of FLSs, and activation of the NF-κB signaling pathway, which could delay the progression of OA. Hence, it may become a potential therapeutic target for OA.
Collapse
Affiliation(s)
- Suyu Wu
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, Fujian, China
| | - Wenwen Guo
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, Fujian, China
| | - Ling Chen
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, Fujian, China
| | - Xinxin Lin
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, Fujian, China; Department of Pathology, Fuzhou Second Hospital, Fuzhou 350007, Fujian, China
| | - Minjie Tang
- Department of Laboratory Medicine, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian, China
| | - Cheng Lin
- The School of Health, Fujian Medical University, Fuzhou 350122, Fujian, China
| | - Hanzhi Guo
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, Fujian, China
| | - Tianwen Zhang
- Fujian Fishery Resources Monitoring Center, Fuzhou 350003, Fujian, China
| | - Yao Gao
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, Fujian, China; Key Laboratory of Clinical Laboratory Technology for Precision Medicine (Fujian Medical University), Fujian Province University, Fuzhou 350004, Fujian, China.
| |
Collapse
|
13
|
Vogel OA, Forwood JK, Leung DW, Amarasinghe GK, Basler CF. Viral Targeting of Importin Alpha-Mediated Nuclear Import to Block Innate Immunity. Cells 2023; 13:71. [PMID: 38201275 PMCID: PMC10778312 DOI: 10.3390/cells13010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Cellular nucleocytoplasmic trafficking is mediated by the importin family of nuclear transport proteins. The well-characterized importin alpha (IMPA) and importin beta (IMPB) nuclear import pathway plays a crucial role in the innate immune response to viral infection by mediating the nuclear import of transcription factors such as IRF3, NFκB, and STAT1. The nuclear transport of these transcription factors ultimately leads to the upregulation of a wide range of antiviral genes, including IFN and IFN-stimulated genes (ISGs). To replicate efficiently in cells, viruses have developed mechanisms to block these signaling pathways. One strategy to evade host innate immune responses involves blocking the nuclear import of host antiviral transcription factors. By binding IMPA proteins, these viral proteins prevent the nuclear transport of key transcription factors and suppress the induction of antiviral gene expression. In this review, we describe examples of proteins encoded by viruses from several different families that utilize such a competitive inhibition strategy to suppress the induction of antiviral gene expression.
Collapse
Affiliation(s)
- Olivia A. Vogel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Jade K. Forwood
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia;
| | - Daisy W. Leung
- Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA;
| | - Gaya K. Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA;
| | - Christopher F. Basler
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| |
Collapse
|
14
|
Murata T, Tago K, Miyata K, Moriwaki Y, Misawa H, Kobata K, Nakazawa Y, Tamura H, Funakoshi-Tago M. Suppression of Neuroinflammation by Coffee Component Pyrocatechol via Inhibition of NF-κB in Microglia. Int J Mol Sci 2023; 25:316. [PMID: 38203488 PMCID: PMC10778612 DOI: 10.3390/ijms25010316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
According to numerous studies, it has been epidemiologically suggested that habitual coffee intake seems to prevent the onset of neurodegenerative diseases. In this study, we hypothesized that coffee consumption suppresses neuroinflammation, which is closely related to the development of neurodegenerative diseases. Using microglial BV-2 cells, we first found that the inflammatory responses induced by lipopolysaccharide (LPS) stimulation was diminished by both coffee and decaffeinated coffee through the inhibition of an inflammation-related transcription factor, nuclear factor-κB (NF-κB). Pyrocatechol, a component of roasted coffee produced by the thermal decomposition of chlorogenic acid, also exhibited anti-inflammatory activity by inhibiting the LPS-induced activation of NF-κB. Finally, in an inflammation model using mice injected with LPS into the cerebrum, we observed that intake of pyrocatechol as well as coffee decoctions drastically suppressed the accumulation of microglia and the expression of interleukin-6 (IL-6), tumor necrosis factor α (TNFα), CCL2, and CXCL1 in the inflammatory brain. These observations strongly encourage us to hypothesize that the anti-inflammatory activity of pyrocatechol as well as coffee decoction would be useful for the suppression of neurodegeneration and the prevention of the onsets of Alzheimer's (AD) and Perkinson's diseases (PD).
Collapse
Affiliation(s)
- Taisuke Murata
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku 105-8512, Tokyo, Japan; (T.M.); (Y.N.); (H.T.)
| | - Kenji Tago
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-Machi, Maebashi 371-8514, Gunma, Japan;
| | - Kota Miyata
- Division of Pharmacology, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku 105-8512, Tokyo, Japan; (K.M.); (Y.M.); (H.M.)
| | - Yasuhiro Moriwaki
- Division of Pharmacology, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku 105-8512, Tokyo, Japan; (K.M.); (Y.M.); (H.M.)
| | - Hidemi Misawa
- Division of Pharmacology, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku 105-8512, Tokyo, Japan; (K.M.); (Y.M.); (H.M.)
| | - Kenji Kobata
- Department of Pharmaceutical Science, Josai University, 1-1 Keyakidai, Sakado 350-0295, Saitama, Japan;
| | - Yosuke Nakazawa
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku 105-8512, Tokyo, Japan; (T.M.); (Y.N.); (H.T.)
| | - Hiroomi Tamura
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku 105-8512, Tokyo, Japan; (T.M.); (Y.N.); (H.T.)
| | - Megumi Funakoshi-Tago
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku 105-8512, Tokyo, Japan; (T.M.); (Y.N.); (H.T.)
| |
Collapse
|
15
|
Subramaniyan V, Lubau NSA, Mukerjee N, Kumarasamy V. Alcohol-induced liver injury in signalling pathways and curcumin's therapeutic potential. Toxicol Rep 2023; 11:355-367. [PMID: 37868808 PMCID: PMC10585641 DOI: 10.1016/j.toxrep.2023.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023] Open
Abstract
Confronting the profound public health concern of alcohol-induced liver damage calls for inventive therapeutic measures. The social, economic, and clinical ramifications are extensive and demand a comprehensive understanding. This thorough examination uncovers the complex relationship between alcohol intake and liver damage, with a special emphasis on the pivotal roles of the Toll-like receptor 4 (TLR4)/NF-κB p65 and CYP2E1/ROS/Nrf2 signalling networks. Different alcohol consumption patterns, determined by a myriad of factors, have significant implications for liver health, leading to a spectrum of adverse effects. The TLR4/NF-κB p65 pathway, a principal regulator of inflammation and immune responses, significantly contributes to various disease states when its balance is disrupted. Notably, the TLR4/MD-2-TNF-α pathway has been linked to non-alcohol related liver disease, while NF-κB activation is associated with alcohol-induced liver disease (ALD). The p65 subunit of NF-κB, primarily responsible for the release of inflammatory cytokines, hastens the progression of ALD. Breakthrough insights suggest that curcumin, a robust antioxidant and anti-inflammatory compound sourced from turmeric, effectively disrupts the TLR4/NF-κB p65 pathway. This heralds a new approach to managing alcohol-induced liver damage. Initial clinical trials support curcumin's therapeutic potential, highlighting its ability to substantially reduce liver enzyme levels. The narrative surrounding alcohol-related liver injury is gradually becoming more intricate, intertwining complex signalling networks such as TLR4/NF-κB p65 and CYP2E1/ROS/Nrf2. The protective role of curcumin against alcohol-related liver damage marks the dawn of new treatment possibilities. However, the full realisation of this promising therapeutic potential necessitates rigorous future research to definitively understand these complex mechanisms and establish curcumin's effectiveness and safety in managing alcohol-related liver disorders.
Collapse
Affiliation(s)
- Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 600077, India
| | - Natasha Sura Anak Lubau
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary Collage, Kolkata, West Bengal 700118, India
- Department of Health Sciences, Novel Global Community and Educational Foundation, Australia
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Lei M, Liu H, Tan X, Chen C, Lou H, Zhou M, Li J, Wu W, Pan W. Design, Synthesis, anti-inflammatory activity Evaluation, preliminary exploration of the Mechanism, molecule Docking, and structure-activity relationship analysis of batatasin III analogs. Bioorg Med Chem Lett 2023; 96:129527. [PMID: 37852423 DOI: 10.1016/j.bmcl.2023.129527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/18/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
Most clinical drugs used to treat inflammation have serious gastrointestinal, renal, and cardiovascular side effects during long-term treatment. The development of new anti-inflammatory agents from natural products and their derivatives is a powerful approach to overcome these adverse effects. Batatasin III, a bibenzyl natural product, has been found to have anti-inflammatory activity. Compared with other anti-inflammatory agents, batatasin III has a simple and unique structure. Therefore, batatasin III and its analogs might have the potential to treat inflammation with only mild adverse effects as a new type of anti-inflammatory agent. Herein, we synthesized 26 batatasin III analogs and evaluated the anti-inflammatory activity in vitro. Analog 21 significantly inhibited (p < 0.01) nitric oxide production with an IC50 value of 12.95 μM. Western blot analysis further revealed that 21 reduced iNOS, phosphorylated p65, and β-catenin expression in a concentration-dependent manner. These results indicated that 21 could be a potential lead compound for developing a drug candidate for ulcerative colitis. Molecular docking analysis showed that p65 might be a potential target of 21 for the treatment of inflammatory disease. In addition, we analyzed the structure-activity relationship of the analogs, which provides a basis for future structural modifications.
Collapse
Affiliation(s)
- Mingcai Lei
- College of Pharmacy, Guizhou University, Guiyang 550014, China
| | - Hanfei Liu
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Xin Tan
- College of Pharmacy, Guizhou Medical University, Guiyang 550014, China
| | - Chao Chen
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China; Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550014, China
| | - Huayong Lou
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Mei Zhou
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Jinyu Li
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Wei Wu
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China.
| | - Weidong Pan
- College of Pharmacy, Guizhou University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China.
| |
Collapse
|
17
|
Yang Y, Guo L, Chen L, Gong B, Jia D, Sun Q. Nuclear transport proteins: structure, function, and disease relevance. Signal Transduct Target Ther 2023; 8:425. [PMID: 37945593 PMCID: PMC10636164 DOI: 10.1038/s41392-023-01649-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 11/12/2023] Open
Abstract
Proper subcellular localization is crucial for the functioning of biomacromolecules, including proteins and RNAs. Nuclear transport is a fundamental cellular process that regulates the localization of many macromolecules within the nuclear or cytoplasmic compartments. In humans, approximately 60 proteins are involved in nuclear transport, including nucleoporins that form membrane-embedded nuclear pore complexes, karyopherins that transport cargoes through these complexes, and Ran system proteins that ensure directed and rapid transport. Many of these nuclear transport proteins play additional and essential roles in mitosis, biomolecular condensation, and gene transcription. Dysregulation of nuclear transport is linked to major human diseases such as cancer, neurodegenerative diseases, and viral infections. Selinexor (KPT-330), an inhibitor targeting the nuclear export factor XPO1 (also known as CRM1), was approved in 2019 to treat two types of blood cancers, and dozens of clinical trials of are ongoing. This review summarizes approximately three decades of research data in this field but focuses on the structure and function of individual nuclear transport proteins from recent studies, providing a cutting-edge and holistic view on the role of nuclear transport proteins in health and disease. In-depth knowledge of this rapidly evolving field has the potential to bring new insights into fundamental biology, pathogenic mechanisms, and therapeutic approaches.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lu Guo
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lin Chen
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Gong
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China.
| | - Qingxiang Sun
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu, China.
| |
Collapse
|
18
|
Ba W, Xu W, Deng Z, Zhang B, Zheng L, Li H. The Antioxidant and Anti-Inflammatory Effects of the Main Carotenoids from Tomatoes via Nrf2 and NF-κB Signaling Pathways. Nutrients 2023; 15:4652. [PMID: 37960305 PMCID: PMC10650085 DOI: 10.3390/nu15214652] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Oxidative stress and inflammation are crucial factors in the development of cardiovascular diseases. In previous research, the oxidative stress and inflammation models have frequently been explored independently. In the current study, we investigated the antioxidant and anti-inflammatory effects of tomato extract and its two main carotenoids (lutein and lycopene) with various concentrations using a rat cardiomyocyte model of co-existing oxidative stress and persistent chronic inflammation. It was discovered that the antioxidant effects of 0.5-5 μM lutein, 0.5-5 μM lycopene, and 50-200 μg/mL tomato extract increased in a dose-dependent manner. However, the pro-oxidation effects emerged by measuring the antioxidant-related indices, including the levels of ROS, SOD, and GPX in H9c2 cells as concentrations exceeded those mentioned above. The anti-inflammatory effects of lutein, lycopene, and tomato extract were simultaneously strengthened with higher concentrations, potentially due to the suppression of the NF-κB signaling pathway. Furthermore, high concentrations of lutein, lycopene, and tomato extract potentially regulated Nrf2/HO-1 and NF-κB signaling pathways dependent on TGF-1β and IL-10 to demonstrate high concentrations of pro-oxidation and anti-inflammation effects. Our findings indicate that the dose-effect regulatory mechanisms of antioxidant and anti-inflammatory properties among lutein, lycopene, and tomato extract will be advantageous in developing more effective therapeutic strategies to prevent cardiovascular diseases.
Collapse
Affiliation(s)
- Wenxiu Ba
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330031, China; (W.B.); (W.X.); (Z.D.); (B.Z.); (L.Z.)
| | - Wenzhen Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330031, China; (W.B.); (W.X.); (Z.D.); (B.Z.); (L.Z.)
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330031, China; (W.B.); (W.X.); (Z.D.); (B.Z.); (L.Z.)
| | - Bing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330031, China; (W.B.); (W.X.); (Z.D.); (B.Z.); (L.Z.)
| | - Liufeng Zheng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330031, China; (W.B.); (W.X.); (Z.D.); (B.Z.); (L.Z.)
| | - Hongyan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330031, China; (W.B.); (W.X.); (Z.D.); (B.Z.); (L.Z.)
- International Institute of Food Innovation, Nanchang University, Nanchang 330051, China
| |
Collapse
|
19
|
Ke D, Zhang Z, Liu J, Chen P, Dai Y, Sun X, Chu Y, Li L. RIPK1 and RIPK3 inhibitors: potential weapons against inflammation to treat diabetic complications. Front Immunol 2023; 14:1274654. [PMID: 37954576 PMCID: PMC10639174 DOI: 10.3389/fimmu.2023.1274654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/05/2023] [Indexed: 11/14/2023] Open
Abstract
Diabetes mellitus is a metabolic disease that is characterized by chronic hyperglycemia due to a variety of etiological factors. Long-term metabolic stress induces harmful inflammation leading to chronic complications, mainly diabetic ophthalmopathy, diabetic cardiovascular complications and diabetic nephropathy. With diabetes complications being one of the leading causes of disability and death, the use of anti-inflammatories in combination therapy for diabetes is increasing. There has been increasing interest in targeting significant regulators of the inflammatory pathway, notably receptor-interacting serine/threonine-kinase-1 (RIPK1) and receptor-interacting serine/threonine-kinase-3 (RIPK3), as drug targets for managing inflammation in treating diabetes complications. In this review, we aim to provide an up-to-date summary of current research on the mechanism of action and drug development of RIPK1 and RIPK3, which are pivotal in chronic inflammation and immunity, in relation to diabetic complications which may be benefit for explicating the potential of selective RIPK1 and RIPK3 inhibitors as anti-inflammatory therapeutic agents for diabetic complications.
Collapse
Affiliation(s)
- Dan Ke
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
| | - Zhen Zhang
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
- School of First Clinical Medical College, Mudanjiang Medical University, Mudanjiang, China
| | - Jieting Liu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
| | - Peijian Chen
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
| | - Yucen Dai
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
| | - Xinhai Sun
- Department of Thoracic Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Yanhui Chu
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
| | - Luxin Li
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
20
|
Hasegawa Y, Asada S. DNA-dependent protein kinase catalytic subunit binds to the transactivation domain 1 of NF-κB p65. Biochem Biophys Rep 2023; 35:101538. [PMID: 37674974 PMCID: PMC10477060 DOI: 10.1016/j.bbrep.2023.101538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023] Open
Abstract
Nuclear factor-kappa B (NF-κB) is a transcriptional factor that binds to the ∼10-base-pair κB motif on target genes and acts as an inflammatory regulator. Since dysregulation of NF-κB is thought to be related to various diseases, it would be very important to elucidate its post-translational modifications and binding partners in detail and to deeply understand mechanisms of the NF-κB dysregulation. NF-κB p65 is known to interact with the basic transcription factor TFIID subunit hTAFII31/TAF9 through the ФXXФФ (Ф, hydrophobic amino acid; X, any amino acid) motif in a similar fashion to p53. MDM2 is known to inhibit p53 from binding to hTAFII31/TAF9 by masking p53's ФXXФФ motif. Here, as can be rationalized from this observation, we searched for novel nuclear proteins that interact with the transactivation domain 1 (TA1) of NF-κB p65 containing a ФXXФФ motif. We prepared a GST-tagged polypeptide, GST-p65532-550, from Phe532-Ser550 of the TA1 domain and found various U937 cell nuclear proteins that bound to GST-p65532-550. The largest bound protein the size of ∼400 kDa was subjected to mass spectrometric analysis and found to be DNA-dependent protein kinase catalytic subunit (DNA-PKcs). An immunoprecipitation experiment with an antibody against p65 and nuclear extracts from TNF-α-treated A549 cells suggested that NF-κB p65 indeed binds to DNA-PKcs in human cells. Furthermore, binding assays with a series of His-tagged DNA-PKcs fragments suggested that DNA-PKcs can bind to NF-κB p65 through the interaction of the TA1 domain with the region 541-750 in the N-HEAT domain or the region 2485-2576 in the M-HEAT domain.
Collapse
Affiliation(s)
- Yuta Hasegawa
- Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Higashijima 265-1, Akiha-ku, Niigata, Niigata, 956-8603, Japan
| | - Shinichi Asada
- Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Higashijima 265-1, Akiha-ku, Niigata, Niigata, 956-8603, Japan
| |
Collapse
|
21
|
Jantarawong S, Swangphon P, Lauterbach N, Panichayupakaranant P, Pengjam Y. Modified Curcuminoid-Rich Extract Liposomal CRE-SDInhibits Osteoclastogenesis via the Canonical NF-κB Signaling Pathway. Pharmaceutics 2023; 15:2248. [PMID: 37765217 PMCID: PMC10537735 DOI: 10.3390/pharmaceutics15092248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Curcuminoids, namely curcumin, demethoxycurcumin, and bisdemethoxycurcumin, are the major active compounds found in Curcuma longa L. (turmeric). Although their suppressive effects on bone resorption have been demonstrated, their pharmacokinetic disadvantages remain a concern. Herein, we utilized solid dispersion of a curcuminoid-rich extract (CRE), comprising such curcuminoids, to prepare CRE-SD; subsequently, we performed liposome encapsulation of the CRE-SD to yield liposomal CRE-SD. In vitro release assessment revealed that a lower cumulative mass percentage of CRE-SD was released from liposomal CRE-SD than from CRE-SD samples. After culture of murine RANKL-stimulated RAW 264.7 macrophages, our in vitro examinations confirmed that liposomal CRE-SD may impede osteoclastogenesis by suppressing p65 and IκBα phosphorylation, together with nuclear translocation and transcriptional activity of phosphorylated p65. Blind docking simulations showed the high binding affinity between curcuminoids and the IκBα/p50/p65 protein complex, along with many intermolecular interactions, which corroborated our in vitro findings. Therefore, liposomal CRE-SD can inhibit osteoclastogenesis via the canonical NF-κB signaling pathway, suggesting its pharmacological potential for treating bone diseases with excessive osteoclastogenesis.
Collapse
Affiliation(s)
- Sompot Jantarawong
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Piyawut Swangphon
- Faculty of Medical Technology, Prince of Songkla University, Songkhla 90110, Thailand; (P.S.); (N.L.)
| | - Natda Lauterbach
- Faculty of Medical Technology, Prince of Songkla University, Songkhla 90110, Thailand; (P.S.); (N.L.)
| | - Pharkphoom Panichayupakaranant
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla 90110, Thailand;
- Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla 90110, Thailand
| | - Yutthana Pengjam
- Faculty of Medical Technology, Prince of Songkla University, Songkhla 90110, Thailand; (P.S.); (N.L.)
| |
Collapse
|
22
|
Chong ZX, Yong CY, Ong AHK, Yeap SK, Ho WY. Deciphering the roles of aryl hydrocarbon receptor (AHR) in regulating carcinogenesis. Toxicology 2023; 495:153596. [PMID: 37480978 DOI: 10.1016/j.tox.2023.153596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Aryl hydrocarbon receptor (AHR) is a ligand-dependent receptor that belongs to the superfamily of basic helix-loop-helix (bHLH) transcription factors. The activation of the canonical AHR signaling pathway is known to induce the expression of cytochrome P450 enzymes, facilitating the detoxification metabolism in the human body. Additionally, AHR could interact with various signaling pathways such as epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 3 (STAT3), hypoxia-inducible factor-1α (HIF-1α), nuclear factor ekappa B (NF-κβ), estrogen receptor (ER), and androgen receptor (AR) signaling pathways. Over the past 30 years, several studies have reported that various chemical, physical, or biological agents, such as tobacco, hydrocarbon compounds, industrial and agricultural chemical wastes, drugs, UV, viruses, and other toxins, could affect AHR expression or activity, promoting cancer development. Thus, it is valuable to overview how these factors regulate AHR-mediated carcinogenesis. Current findings have reported that many compounds could act as AHR ligands to drive the expressions of AHR-target genes, such as CYP1A1, CYP1B1, MMPs, and AXL, and other targets that exert a pro-proliferation or anti-apoptotic effect, like XIAP. Furthermore, some other physical and chemical agents, such as UV and 3-methylcholanthrene, could promote AHR signaling activities, increasing the signaling activities of a few oncogenic pathways, such as the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathways. Understanding how various factors regulate AHR-mediated carcinogenesis processes helps clinicians and scientists plan personalized therapeutic strategies to improve anti-cancer treatment efficacy. As many studies that have reported the roles of AHR in regulating carcinogenesis are preclinical or observational clinical studies that did not explore the detailed mechanisms of how different chemical, physical, or biological agents promote AHR-mediated carcinogenesis processes, future studies should focus on conducting large-scale and functional studies to unravel the underlying mechanism of how AHR interacts with different factors in regulating carcinogenesis processes.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia
| | - Chean Yeah Yong
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia
| | - Alan Han Kiat Ong
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000 Kajang, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia.
| | - Wan Yong Ho
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| |
Collapse
|
23
|
Yuan T, Tang H, Xu X, Shao J, Wu G, Cho YC, Ping Y, Liang G. Inflammation conditional genome editing mediated by the CRISPR-Cas9 system. iScience 2023; 26:106872. [PMID: 37260750 PMCID: PMC10227425 DOI: 10.1016/j.isci.2023.106872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/03/2023] [Accepted: 05/09/2023] [Indexed: 06/02/2023] Open
Abstract
The specificity of CRISPR-Cas9 in response to particular pathological stimuli remains largely unexplored. Hence, we designed an inflammation-inducible CRISPR-Cas9 system by grafting a sequence that binds with NF-κB to the CRISPR-Cas9 framework, termed NBS-CRISPR. The genetic scissor function of this developed genome-editing tool is activated on encountering an inflammatory attack and is inactivated or minimized in non-inflammation conditions. Furthermore, we employed this platform to reverse inflammatory conditions by targeting the MyD88 gene, a crucial player in the NF-κB signaling pathway, and achieved impressive therapeutic effects. Finally, during inflammation, P65 (RELA) can translocate to the nucleus from the cytoplasm. Herein, to avoid Cas9 leaky DNA cleavage activity i, we constructed an NBS-P65-CRISPR system expressing the Cas9-p65 fusion protein. Our inflammation inducible Cas9-mediated genome editing strategy provides new perspectives and avenues for pathological gene interrogation.
Collapse
Affiliation(s)
- Tingting Yuan
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, Korea
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Honglin Tang
- Department of Medical Oncology, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiaojie Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jingjing Shao
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Gaojun Wu
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Young-Chang Cho
- Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, Korea
| | - Yuan Ping
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Guang Liang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
24
|
Jang WY, Hwang JY, Cho JY. Ginsenosides from Panax ginseng as Key Modulators of NF-κB Signaling Are Powerful Anti-Inflammatory and Anticancer Agents. Int J Mol Sci 2023; 24:6119. [PMID: 37047092 PMCID: PMC10093821 DOI: 10.3390/ijms24076119] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Nuclear factor kappa B (NF-κB) signaling pathways progress inflammation and immune cell differentiation in the host immune response; however, the uncontrollable stimulation of NF-κB signaling is responsible for several inflammatory illnesses regardless of whether the conditions are acute or chronic. Innate immune cells, such as macrophages, microglia, and Kupffer cells, secrete pro-inflammatory cytokines, such as TNF-α, IL-6, and IL-1β, via the activation of NF-κB subunits, which may lead to the damage of normal cells, including neurons, cardiomyocytes, hepatocytes, and alveolar cells. This results in the occurrence of neurodegenerative disorders, cardiac infarction, or liver injury, which may eventually lead to systemic inflammation or cancer. Recently, ginsenosides from Panax ginseng, a historical herbal plant used in East Asia, have been used as possible options for curing inflammatory diseases. All of the ginsenosides tested target different steps of the NF-κB signaling pathway, ameliorating the symptoms of severe illnesses. Moreover, ginsenosides inhibit the NF-κB-mediated activation of cancer metastasis and immune resistance, significantly attenuating the expression of MMPs, Snail, Slug, TWIST1, and PD-L1. This review introduces current studies on the therapeutic efficacy of ginsenosides in alleviating NF-κB responses and emphasizes the critical role of ginsenosides in severe inflammatory diseases as well as cancers.
Collapse
Affiliation(s)
| | | | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
25
|
Goyal P, Malviya R. Advances in nuclei targeted delivery of nanoparticles for the management of cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188881. [PMID: 36965678 DOI: 10.1016/j.bbcan.2023.188881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/16/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023]
Abstract
A carrier is inserted into the appropriate organelles (nucleus) in successful medication transport, crucial to achieving very effective illness treatment. Cell-membrane targeting is the major focus of using nuclei to localize delivery. It has been demonstrated that high quantities of anticancer drugs can be injected directly into the nuclei of cancer cells, causing the cancer cells to die and increasing the effectiveness of chemotherapy. There are several effective ways to functionalize Nanoparticles (NPs), including changing their chemical makeup or attaching functional groups to their surface to increase their ability to target organelles. To cause tumor cells to apoptosis, released medicines must engage with molecular targets on particular organelles when their concentration is high enough. Targeted medication delivery studies will increasingly focus on organelle-specific delivery.
Collapse
Affiliation(s)
- Priyanshi Goyal
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
26
|
Muneshige K, Inahashi Y, Itakura M, Iwatsuki M, Hirose T, Inoue G, Takaso M, Sunazuka T, Ohashi Y, Ohta E, Uchida K. Jietacin Derivative Inhibits TNF-α-Mediated Inflammatory Cytokines Production via Suppression of the NF-κB Pathway in Synovial Cells. Pharmaceuticals (Basel) 2022; 16:ph16010005. [PMID: 36678502 PMCID: PMC9862604 DOI: 10.3390/ph16010005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Synovial inflammation plays a central role in joint destruction and pain in osteoarthritis (OA). The NF-κB pathway plays an important role in the inflammatory process and is activated in OA. A previous study reported that a jietacin derivative (JD), (Z)-2-(8-oxodec-9-yn-1-yl)-1-vinyldiazene 1-oxide, suppressed the nuclear translocation of NF-κB in a range of cancer cell lines. However, the effect of JD in synovial cells and the exact mechanism of JD as an NF-κB inhibitor remain to be determined. We investigated the effect of JD on TNF-α-induced inflammatory reaction in a synovial cell line, SW982 and human primary synovial fibroblasts (hPSFs). Additionally, we examined phosphorylated levels of p65 and p38 and expression of importin α3 and β1 using Western blotting. RNA-Seq analysis revealed that JD suppressed TNF-α-induced differential expression: among 204 genes significantly differentially expressed between vehicle and TNF-α-stimulated SW982 (183 upregulated and 21 downregulated) (FC ≥ 2, Q < 0.05), expression of 130 upregulated genes, including inflammatory cytokines (IL1A, IL1B, IL6, IL8) and chemokines (CCL2, CCL3, CCL5, CCL20, CXCL9, 10, 11), was decreased by JD treatment and that of 14 downregulated genes was increased. KEGG pathway analysis showed that DEGs were increased in the cytokine−cytokine receptor interaction, TNF signaling pathway, NF-κB signaling pathway, and rheumatoid arthritis. JD inhibited IL1B, IL6 and IL8 mRNA expression and IL-6 and IL-8 protein production in both SW982 and hPSFs. JD also suppressed p65 phosphorylation in both SW982 and hPSFs. In contrast, JD did not alter p38 phosphorylation. JD may inhibit TNF-α-mediated inflammatory cytokine production via suppression of p65 phosphorylation in both SW982 and hPSFs. Our results suggest that JD may have therapeutic potential for OA due to its anti-inflammatory action through selective suppression of the NF-κB pathway on synovial cells.
Collapse
Affiliation(s)
- Kyoko Muneshige
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara City 252-0374, Japan
| | - Yuki Inahashi
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Minato-ku, Shirokane, Tokyo 108-8641, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Minato-ku, Shirokane, Tokyo 108-8641, Japan
| | - Makoto Itakura
- Department of Biochemistry, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara City 252-0374, Japan
| | - Masato Iwatsuki
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Minato-ku, Shirokane, Tokyo 108-8641, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Minato-ku, Shirokane, Tokyo 108-8641, Japan
| | - Tomoyasu Hirose
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Minato-ku, Shirokane, Tokyo 108-8641, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Minato-ku, Shirokane, Tokyo 108-8641, Japan
| | - Gen Inoue
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara City 252-0374, Japan
| | - Masashi Takaso
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara City 252-0374, Japan
| | - Toshiaki Sunazuka
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Minato-ku, Shirokane, Tokyo 108-8641, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Minato-ku, Shirokane, Tokyo 108-8641, Japan
| | - Yoshihisa Ohashi
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara City 252-0374, Japan
| | - Etsuro Ohta
- Department of Immunology II, Kitasato University School of Allied Health Sciences, 1-15-1 Minami-ku, Kitasato, Sagamihara City 252-0375, Japan
| | - Kentaro Uchida
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara City 252-0374, Japan
- Shonan University of Medical Sciences Research Institute, Nishikubo 500, Chigasaki 253-0083, Japan
- Correspondence:
| |
Collapse
|
27
|
Wu J, Wang J, Lin Z, Liu C, Zhang Y, Zhang S, Zhou M, Zhao J, Liu H, Ma X. Clostridium butyricum alleviates weaned stress of piglets by improving intestinal immune function and gut microbiota. Food Chem 2022; 405:135014. [DOI: 10.1016/j.foodchem.2022.135014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/31/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
|
28
|
Regulating Phase Transition in Neurodegenerative Diseases by Nuclear Import Receptors. BIOLOGY 2022; 11:biology11071009. [PMID: 36101390 PMCID: PMC9311884 DOI: 10.3390/biology11071009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022]
Abstract
RNA-binding proteins (RBPs) with a low-complexity prion-like domain (PLD) can undergo aberrant phase transitions and have been implicated in neurodegenerative diseases such as ALS and FTD. Several nuclear RBPs mislocalize to cytoplasmic inclusions in disease conditions. Impairment in nucleocytoplasmic transport is another major event observed in ageing and in neurodegenerative disorders. Nuclear import receptors (NIRs) regulate the nucleocytoplasmic transport of different RBPs bearing a nuclear localization signal by restoring their nuclear localization. NIRs can also specifically dissolve or prevent the aggregation and liquid–liquid phase separation of wild-type or disease-linked mutant RBPs, due to their chaperoning activity. This review focuses on the LLPS of intrinsically disordered proteins and the role of NIRs in regulating LLPS in neurodegeneration. This review also discusses the implication of NIRs as therapeutic agents in neurogenerative diseases.
Collapse
|
29
|
Long X, Zhang X, Chen Q, Liu M, Xiang Y, Yang Y, Xiao Z, Huang J, Wang X, Liu C, Nan Y, Huang Q. Nucleus-Targeting Phototherapy Nanodrugs for High-Effective Anti-Cancer Treatment. Front Pharmacol 2022; 13:905375. [PMID: 35645841 PMCID: PMC9130747 DOI: 10.3389/fphar.2022.905375] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/19/2022] [Indexed: 12/30/2022] Open
Abstract
DNA is always one of the most important targets for cancer therapy due to its leading role in the proliferation of cancer cells. Phototherapy kills cancer cells by generating reactive oxygen species (ROS) and local hyperthermia under light. It has attracted extensive interest in the clinical treatment of tumors because of many advantages such as non-invasiveness, high patient compliance, and low toxicity and side effects. However, the short ROS diffusion distance and limited thermal diffusion rate make it difficult for phototherapy to damage DNA deep in the nucleus. Therefore, nucleus-targeting phototherapy that can destroy DNAs via in-situ generation of ROS and high temperature can be a very effective strategy to address this bottleneck. Recently, some emerging nucleus-targeting phototherapy nanodrugs have demonstrated extremely effective anticancer effects. However, reviews in the field are still rarely reported. Here, we comprehensively summarized recent advances in nucleus-targeting phototherapy in recent years. We classified nucleus-targeting phototherapy into three categories based on the characteristics of these nucleus-targeting strategies. The first category is the passive targeting strategy, which mainly targets the nucleus by adjusting the physicochemical characteristics of phototherapy nanomedicines. The second category is to mediate the phototherapy nanodrugs into the nucleus by modifying functional groups that actively target the nucleus. The third category is to assist nanodrugs enter into the nucleus in a light-controlled way. Finally, we provided our insights and prospects for nucleus-targeting phototherapy nanodrugs. This minireview provides unique insights and valuable clues in the design of phototherapy nanodrugs and other nucleus-targeting drugs.
Collapse
Affiliation(s)
- Xingyu Long
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xiaojie Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Min Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuting Xiang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yuqi Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zuoxiu Xiao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jia Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xiaoyuan Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Chong Liu
- Departments of Clinical Pharmacology and Pharmacy, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Institute of Clinical Pharmacology, Ministry of Education, Central South University, Changsha, China
| | - Yayun Nan
- Geriatric Medical Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|