1
|
Guo Y, Li C, Tan M, Chen Y, Zhu S, Zhi C, Zhu J. Dynamic Changes in Antibodies and Proteome in Breast Milk of Mothers Infected with Wild-Type SARS-CoV-2 and Omicron: A Longitudinal Study. Nutrients 2025; 17:1396. [PMID: 40284260 PMCID: PMC12030011 DOI: 10.3390/nu17081396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/13/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Breast milk confers essential passive immunity to infants, particularly during viral pandemics. This study investigates dynamic changes in SARS-CoV-2-specific antibodies and proteome in the breast milk of mothers infected with either the wild-type or Omicron variants, addressing gaps in longitudinal dynamics and conserved or variant-specific immune responses. Methods: A prospective cohort of 22 lactating mothers infected with Omicron variant (December 2022-January 2023) was analyzed alongside a published dataset of wild-type-infected mothers (January-May 2020). Breast milk samples were collected at eight time points (1, 4, 7, 14, 21, 28, 35, 42 days post-infection) from the Omicron cohort for ELISA quantification of SARS-CoV-2-specific IgA, IgG, and IgM. Proteomic analysis was conducted for both cohorts. Results: Macronutrient composition remained stable throughout the post-infection period. SARS-CoV-2-specific IgA and IgG demonstrated biphasic kinetics, rapidly rising by day 14 (IgA: 0.03 to 0.13 ng/mL; IgG: 0.91 to 37.00 ng/mL) and plateauing through day 42. In contrast, IgM levels remained unchanged. Proteomic profiling identified 135 proteins associated with IgA/IgG dynamics, including variant-specific and conserved proteins. Conclusions: Breast milk maintains nutritional integrity while mounting robust immune responses during SARS-CoV-2 infection. These findings underscore breastfeeding as a safe and protective practice during COVID-19.
Collapse
Affiliation(s)
- Yaqiong Guo
- Institute of Biotechnology and Health, Beijing Academy of Science and Technology, Beijing 100094, China; (Y.G.); (C.L.); (Y.C.); (S.Z.); (C.Z.)
| | - Cheng Li
- Institute of Biotechnology and Health, Beijing Academy of Science and Technology, Beijing 100094, China; (Y.G.); (C.L.); (Y.C.); (S.Z.); (C.Z.)
| | - Minjie Tan
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China;
| | - Yuexiao Chen
- Institute of Biotechnology and Health, Beijing Academy of Science and Technology, Beijing 100094, China; (Y.G.); (C.L.); (Y.C.); (S.Z.); (C.Z.)
| | - Shuai Zhu
- Institute of Biotechnology and Health, Beijing Academy of Science and Technology, Beijing 100094, China; (Y.G.); (C.L.); (Y.C.); (S.Z.); (C.Z.)
| | - Cheng Zhi
- Institute of Biotechnology and Health, Beijing Academy of Science and Technology, Beijing 100094, China; (Y.G.); (C.L.); (Y.C.); (S.Z.); (C.Z.)
| | - Jing Zhu
- Institute of Biotechnology and Health, Beijing Academy of Science and Technology, Beijing 100094, China; (Y.G.); (C.L.); (Y.C.); (S.Z.); (C.Z.)
| |
Collapse
|
2
|
Moench TR, Botta L, Farrer B, Lickliter JD, Kang H, Park Y, Kim C, Hoke M, Brennan M, McSweeney MD, Richardson Z, Whelan JB, Cho JM, Lee SY, Faurot F, Hutchins J, Lai SK. A randomized, double-blind, Phase 1, single- and multiple-dose placebo-controlled study of the safety and pharmacokinetics of IN-006, an inhaled antibody treatment for COVID-19 in healthy volunteers. EBioMedicine 2025; 113:105582. [PMID: 39923743 PMCID: PMC11849668 DOI: 10.1016/j.ebiom.2025.105582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/23/2024] [Accepted: 01/18/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Although COVID-19 is predominantly a respiratory tract infection, current antibody treatments are administered by systemic dosing. We hypothesize that inhaled delivery of a monoclonal antibody may be a more effective and convenient route. We investigated the safety, tolerability, and pharmacokinetics of IN-006, a reformulation of regdanvimab for nebulized delivery by a handheld nebulizer. METHODS A Phase 1 study was conducted in healthy volunteers aged 18-55 a Phase 1 unit in Melbourne, Australia (ACTRN12621001235897). Study staff and participants were blinded to treatment assignment, except for pharmacy staff preparing the study drug. The ratio of active:placebo randomization to each cohort was set at 3:1. The primary outcomes were safety and tolerability. Exploratory outcomes were pharmacokinetics of IN-006 in nasal fluid and serum. FINDINGS Twenty-three participants were enrolled and randomized across two single dose and one multiple dose cohorts (30 mg or 90 mg single nebulized dose, or seven daily 90 mg doses). There were no serious adverse events. All enrolled participants completed the study without treatment interruption or discontinuation. All treatment-emergent adverse events were transient, non-dose dependent, and graded mild to moderate in severity. Nebulization was well-tolerated and completed in an average of 6 min. Geometric mean nasal fluid concentrations of IN-006 in the multiple dose cohort were 739.8 μg/mL at 30 min after dosing and 1.2 μg/mL at 22 h. Geometric mean serum levels in the multiple dose cohort peaked at 0.51 μg/mL 3 days after the final dose. INTERPRETATION IN-006 was well-tolerated and achieved concentrations in the respiratory tract orders of magnitude above the IC50 range typical of antiviral mAbs. These data support further development of nebulized delivery of antiviral mAbs for respiratory infectious disease. FUNDING This work was funded by the U.S. Army Medical Research and Development Command (W81XWH-15-9-0001) and regdanvimab was provided by Celltrion, Inc.
Collapse
MESH Headings
- Humans
- Adult
- Male
- Female
- Middle Aged
- Administration, Inhalation
- COVID-19 Drug Treatment
- Healthy Volunteers
- Double-Blind Method
- SARS-CoV-2
- Young Adult
- Adolescent
- COVID-19
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/pharmacokinetics
- Antibodies, Monoclonal/adverse effects
Collapse
Affiliation(s)
- Thomas R Moench
- Inhalon Biopharma, Inc., 5151 McCrimmon Parkway, Suite 220, Research Triangle Park, Morrisville, NC, 27560, USA.
| | - Lakshmi Botta
- Inhalon Biopharma, Inc., 5151 McCrimmon Parkway, Suite 220, Research Triangle Park, Morrisville, NC, 27560, USA
| | - Brian Farrer
- Inhalon Biopharma, Inc., 5151 McCrimmon Parkway, Suite 220, Research Triangle Park, Morrisville, NC, 27560, USA
| | - Jason D Lickliter
- Nucleus Network Pty Ltd, Level 5 Burnet Tower, 89 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Hyunah Kang
- Biotechnology Research Institute, Celltrion Inc, Incheon, 22014, Republic of Korea
| | - Yoona Park
- Biotechnology Research Institute, Celltrion Inc, Incheon, 22014, Republic of Korea
| | - Cheolmin Kim
- Biotechnology Research Institute, Celltrion Inc, Incheon, 22014, Republic of Korea
| | - Marshall Hoke
- Inhalon Biopharma, Inc., 5151 McCrimmon Parkway, Suite 220, Research Triangle Park, Morrisville, NC, 27560, USA
| | - Miles Brennan
- Inhalon Biopharma, Inc., 5151 McCrimmon Parkway, Suite 220, Research Triangle Park, Morrisville, NC, 27560, USA
| | - Morgan D McSweeney
- Inhalon Biopharma, Inc., 5151 McCrimmon Parkway, Suite 220, Research Triangle Park, Morrisville, NC, 27560, USA
| | - Zachary Richardson
- Inhalon Biopharma, Inc., 5151 McCrimmon Parkway, Suite 220, Research Triangle Park, Morrisville, NC, 27560, USA
| | - John B Whelan
- Inhalon Biopharma, Inc., 5151 McCrimmon Parkway, Suite 220, Research Triangle Park, Morrisville, NC, 27560, USA
| | - Jong Moon Cho
- Biotechnology Research Institute, Celltrion Inc, Incheon, 22014, Republic of Korea
| | - Soo Young Lee
- Biotechnology Research Institute, Celltrion Inc, Incheon, 22014, Republic of Korea
| | - Frances Faurot
- Inhalon Biopharma, Inc., 5151 McCrimmon Parkway, Suite 220, Research Triangle Park, Morrisville, NC, 27560, USA
| | - Jeff Hutchins
- Inhalon Biopharma, Inc., 5151 McCrimmon Parkway, Suite 220, Research Triangle Park, Morrisville, NC, 27560, USA
| | - Samuel K Lai
- Inhalon Biopharma, Inc., 5151 McCrimmon Parkway, Suite 220, Research Triangle Park, Morrisville, NC, 27560, USA; Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 125 Mason Farm Rd, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
3
|
Hippee CE, Durnell LA, Kaufman JW, Murray E, Singh BK, Sinn PL. Epithelial-to-mesenchymal transition and live cell extrusion contribute to measles virus release from human airway epithelia. J Virol 2025; 99:e0122024. [PMID: 39791903 PMCID: PMC11852777 DOI: 10.1128/jvi.01220-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025] Open
Abstract
Measles virus (MeV) is a highly contagious respiratory virus transmitted via aerosols. To understand how MeV exits the airways of an infected host, we use unpassaged primary cultures of human airway epithelial cells (HAE). MeV typically remains cell-associated in HAE and forms foci of infection, termed infectious centers, by directly spreading cell-to-cell. We previously described the phenomenon in which infectious centers detach en masse from HAE and remain viable. Here, we investigate the mechanism of this cellular detachment. Via immunostaining, we observed loss of tight junction and cell adhesion proteins within infectious centers. These morphological changes indicate activation of epithelial-to-mesenchymal transition (EMT). EMT can contribute to wound healing in respiratory epithelia by mobilizing nearby cells. Inhibiting TGF-β, and thus EMT, reduced infectious center detachment. Compared with uninfected cells, MeV-infected cells also expressed increased levels of sphingosine kinase 1 (SK1), a regulator of live cell extrusion. Live cell extrusion encourages cells to detach from respiratory epithelia by contracting the actomyosin of neighboring cells. Inhibition or induction of live cell extrusion impacted infectious center detachment rates. Thus, these two related pathways contributed to infectious center detachment in HAE. Detached infectious centers contained high titers of virus that may be protected from the environment, allowing the virus to live on surfaces longer and infect more hosts.IMPORTANCEMeasles virus (MeV) is an extremely contagious respiratory pathogen that continues to cause large, disruptive outbreaks each year. Here, we examine mechanisms of detachment of MeV-infected cells. MeV spreads cell-to-cell in human airway epithelial cells (HAE) to form groups of infected cells, termed "infectious centers". We reported that infectious centers ultimately detach from HAE as a unit, carrying high titers of virus. Viral particles within cells may be more protected from environmental conditions, such as ultraviolet radiation and desiccation. We identified two host pathways, epithelial-to-mesenchymal transition and live cell extrusion, that contribute to infectious center detachment. Perturbing these pathways altered the kinetics of infectious center detachment. These pathways influence one another and contribute to epithelial wound healing, suggesting that infectious center detachment may be a usurped consequence of the host's response to infection that benefits MeV by increasing its transmissibility between hosts.
Collapse
Affiliation(s)
- Camilla E. Hippee
- Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Lorellin A. Durnell
- Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Justin W. Kaufman
- Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Eileen Murray
- Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Brajesh K. Singh
- Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Patrick L. Sinn
- Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
- Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
4
|
Balistreri G. Nasal Mucociliary Epithelial Cell Culture Models for Studying Viral Infections. Methods Mol Biol 2025; 2890:237-252. [PMID: 39890731 DOI: 10.1007/978-1-0716-4326-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
Respiratory nasal or lung epithelial cells serve as a valuable in vitro model for studying respiratory viral infections due to their physiological relevance and ability to recapitulate key aspects of the nasal or lung mucosa. In this chapter, we discuss the use of primary nasal epithelial cell cultures in studying viral infections, including their advantages, production methods, quality control, and identifiable disadvantages. Different methods for quantifying infection are presented with a special emphasis on how to adapt automated imaging methods and image analysis tools to the pseudostratified nasal epithelial cell models where cells are grown at the air-liquid interphase.
Collapse
Affiliation(s)
- Giuseppe Balistreri
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
5
|
Jimenez-Campos AG, Maestas LI, Velappan N, Beck B, Ye C, Wernsing K, Mata-Solis Y, Bruno WJ, Bussmann SC, Bradfute S, Baca JT, Rininsland FH. A cell-based Papain-like Protease (PLpro) activity assay for rapid detection of active SARS-CoV-2 infections and antivirals. PLoS One 2024; 19:e0309305. [PMID: 39724215 DOI: 10.1371/journal.pone.0309305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/09/2024] [Indexed: 12/28/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants are a continuous threat to human life. An urgent need remains for simple and fast tests that reliably detect active infections with SARS-CoV-2 and its variants in the early stage of infection. Here we introduce a simple and rapid activity-based diagnostic (ABDx) test that identifies SARS-CoV-2 infections by measuring the activity of a viral enzyme, Papain-Like protease (PLpro). The test system consists of a peptide that fluoresces when cleaved by SARS PLpro that is active in crude, unprocessed lysates from human tongue scrapes and saliva. Test results are obtained in 30 minutes or less using widely available fluorescence plate readers, or a battery-operated portable instrument for on-site testing. Proof-of-concept was obtained in a study on clinical specimens collected from patients with COVID-19 like symptoms who tested positive (n = 10) or negative (n = 10) with LIAT RT-PCR using nasal mid turbinate swabs. When saliva from these patients was tested with in-house endpoint RT-PCR, 17 were positive and only 5 specimens were negative, of which 2 became positive when tested 5 days later. PLpro activity correlated in 17 of these cases (3 out of 3 negatives and 14 out of 16 positives, with one invalid specimen). Despite the small number of samples, the agreement was significant (p value = 0.01). Two false negatives were detected, one from a sample with a late Ct value of 35 in diagnostic RT-PCR, indicating that an active infection was no longer present. The PLpro assay is easily scalable and expected to detect all viable SARS-CoV-2 variants, making it attractive as a screening and surveillance tool. Additionally, we show feasibility of the platform as a new homogeneous phenotypic assay for rapid screening of SARS-CoV-2 antiviral drugs and neutralizing antibodies.
Collapse
Affiliation(s)
- Anahi G Jimenez-Campos
- University of New Mexico Health Sciences Center, Department of Emergency Medicine, Albuquerque, New Mexico, United States of America
| | - Lucas I Maestas
- University of New Mexico Health Sciences Center, Department of Emergency Medicine, Albuquerque, New Mexico, United States of America
| | - Nileena Velappan
- Los Alamos National Laboratory, Los Alamos, NM, United States of America
| | - Brian Beck
- MicroBiologics, St. Cloud, MN, United States of America
| | - Chunyan Ye
- Health Science Center, Center for Global Health and Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, United States of America
| | | | | | | | - Silas C Bussmann
- University of New Mexico Health Sciences Center, Department of Emergency Medicine, Albuquerque, New Mexico, United States of America
| | - Steven Bradfute
- Health Science Center, Center for Global Health and Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Justin T Baca
- University of New Mexico Health Sciences Center, Department of Emergency Medicine, Albuquerque, New Mexico, United States of America
| | | |
Collapse
|
6
|
Wu H, Fujioka Y, Sakaguchi S, Suzuki Y, Nakano T. Electron Tomography as a Tool to Study SARS-CoV-2 Morphology. Int J Mol Sci 2024; 25:11762. [PMID: 39519314 PMCID: PMC11547116 DOI: 10.3390/ijms252111762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel betacoronavirus, is the causative agent of COVID-19, which has caused economic and social disruption worldwide. To date, many drugs and vaccines have been developed for the treatment and prevention of COVID-19 and have effectively controlled the global epidemic of SARS-CoV-2. However, SARS-CoV-2 is highly mutable, leading to the emergence of new variants that may counteract current therapeutic measures. Electron microscopy (EM) is a valuable technique for obtaining ultrastructural information about the intracellular process of virus replication. In particular, EM allows us to visualize the morphological and subcellular changes during virion formation, which would provide a promising avenue for the development of antiviral agents effective against new SARS-CoV-2 variants. In this review, we present our recent findings using transmission electron microscopy (TEM) combined with electron tomography (ET) to reveal the morphologically distinct types of SARS-CoV-2 particles, demonstrating that TEM and ET are valuable tools for visually understanding the maturation status of SARS-CoV-2 in infected cells. This review also discusses the application of EM analysis to the evaluation of genetically engineered RNA viruses.
Collapse
Affiliation(s)
- Hong Wu
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka 565-0871, Japan; (Y.F.); (S.S.); (T.N.)
| | | | | | - Youichi Suzuki
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka 565-0871, Japan; (Y.F.); (S.S.); (T.N.)
| | | |
Collapse
|
7
|
Do TL, Tachibana K, Yamamoto N, Ando K, Isoda T, Kihara T. Interaction of SARS-CoV-2 Spike protein with ACE2 induces cortical actin modulation, including dephosphorylation of ERM proteins and reduction of cortical stiffness. Hum Cell 2024; 38:3. [PMID: 39436480 DOI: 10.1007/s13577-024-01142-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/30/2024] [Indexed: 10/23/2024]
Abstract
Cell surface cortical actin is a regulatory target for viral infection. We aimed to investigate the effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on host cell cortical stiffness, an indicator of cortical actin structure. The receptor-binding domain (RBD) of SARS-CoV-2 Spike (S) protein induced a reduction in cortical stiffness in ACE2-expressing cells. The interaction of RBD with ACE2 caused the inactivation of Ezrin/Radixin/Moesin (ERM) proteins. We further investigated the effects of the RBD of SARS-CoV-2 Omicron variants, BA.1 and BA.5. These RBDs influenced cortical stiffness depending on their affinity for ACE2. Our study provides the first evidence that the interaction of the SARS-CoV-2 S protein with ACE2 induces mechanobiological signals and attenuates the cortical actin.
Collapse
Affiliation(s)
- Thi Ly Do
- Department of Life and Environment Engineering, Faculty of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Kouichi Tachibana
- Division of Hematology and Oncology, Department of Internal Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Norio Yamamoto
- Department of Microbiology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Kiyoshi Ando
- Division of Hematology and Oncology, Department of Internal Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Takaaki Isoda
- Department of Life and Environment Engineering, Faculty of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Takanori Kihara
- Department of Life and Environment Engineering, Faculty of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu, Fukuoka, 808-0135, Japan.
| |
Collapse
|
8
|
Wesselman HM, Arceri L, Nguyen TK, Lara CM, Wingert RA. Genetic mechanisms of multiciliated cell development: from fate choice to differentiation in zebrafish and other models. FEBS J 2024; 291:4159-4192. [PMID: 37997009 DOI: 10.1111/febs.17012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/17/2023] [Accepted: 11/21/2023] [Indexed: 11/25/2023]
Abstract
Multiciliated cells (MCCS) form bundles of cilia and their activities are essential for the proper development and physiology of many organ systems. Not surprisingly, defects in MCCs have profound consequences and are associated with numerous disease states. Here, we discuss the current understanding of MCC formation, with a special focus on the genetic and molecular mechanisms of MCC fate choice and differentiation. Furthermore, we cast a spotlight on the use of zebrafish to study MCC ontogeny and several recent advances made in understanding MCCs using this vertebrate model to delineate mechanisms of MCC emergence in the developing kidney.
Collapse
Affiliation(s)
| | - Liana Arceri
- Department of Biological Sciences, University of Notre Dame, IN, USA
| | - Thanh Khoa Nguyen
- Department of Biological Sciences, University of Notre Dame, IN, USA
| | - Caroline M Lara
- Department of Biological Sciences, University of Notre Dame, IN, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, University of Notre Dame, IN, USA
| |
Collapse
|
9
|
Eisenreich W, Leberfing J, Rudel T, Heesemann J, Goebel W. Interactions of SARS-CoV-2 with Human Target Cells-A Metabolic View. Int J Mol Sci 2024; 25:9977. [PMID: 39337465 PMCID: PMC11432161 DOI: 10.3390/ijms25189977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Viruses are obligate intracellular parasites, and they exploit the cellular pathways and resources of their respective host cells to survive and successfully multiply. The strategies of viruses concerning how to take advantage of the metabolic capabilities of host cells for their own replication can vary considerably. The most common metabolic alterations triggered by viruses affect the central carbon metabolism of infected host cells, in particular glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle. The upregulation of these processes is aimed to increase the supply of nucleotides, amino acids, and lipids since these metabolic products are crucial for efficient viral proliferation. In detail, however, this manipulation may affect multiple sites and regulatory mechanisms of host-cell metabolism, depending not only on the specific viruses but also on the type of infected host cells. In this review, we report metabolic situations and reprogramming in different human host cells, tissues, and organs that are favorable for acute and persistent SARS-CoV-2 infection. This knowledge may be fundamental for the development of host-directed therapies.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Structural Membrane Biochemistry, Bavarian NMR Center (BNMRZ), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany;
| | - Julian Leberfing
- Structural Membrane Biochemistry, Bavarian NMR Center (BNMRZ), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany;
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, 97074 Würzburg, Germany;
| | - Jürgen Heesemann
- Max von Pettenkofer Institute, Ludwig Maximilian University of Munich, 80336 München, Germany; (J.H.); (W.G.)
| | - Werner Goebel
- Max von Pettenkofer Institute, Ludwig Maximilian University of Munich, 80336 München, Germany; (J.H.); (W.G.)
| |
Collapse
|
10
|
Venit T, Blavier J, Maseko SB, Shu S, Espada L, Breunig C, Holthoff HP, Desbordes SC, Lohse M, Esposito G, Twizere JC, Percipalle P. Nanobody against SARS-CoV-2 non-structural protein Nsp9 inhibits viral replication in human airway epithelia. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102304. [PMID: 39281707 PMCID: PMC11401216 DOI: 10.1016/j.omtn.2024.102304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 08/12/2024] [Indexed: 09/18/2024]
Abstract
Nanobodies are emerging as critical tools for drug design. Several have been recently created to serve as inhibitors of severe acute respiratory syndrome coronavirus s (SARS-CoV-2) entry in the host cell by targeting surface-exposed spike protein. Here we have established a pipeline that instead targets highly conserved viral proteins made only after viral entry into the host cell when the SARS-CoV-2 RNA-based genome is translated. As proof of principle, we designed nanobodies against the SARS-CoV-2 non-structural protein (Nsp)9, which is required for viral genome replication. One of these anti-Nsp9 nanobodies, 2NSP23, previously characterized using immunoassays and nuclear magnetic resonance spectroscopy for epitope mapping, was expressed and found to block SARS-CoV-2 replication specifically. We next encapsulated 2NSP23 nanobody into lipid nanoparticles (LNPs) as mRNA. We show that this nanobody, hereby referred to as LNP-mRNA-2NSP23, is internalized and translated in cells and suppresses multiple SARS-CoV-2 variants, as seen by qPCR and RNA deep sequencing. These results are corroborated in three-dimensional reconstituted human epithelium kept at air-liquid interface to mimic the outer surface of lung tissue. These observations indicate that LNP-mRNA-2NSP23 is internalized and, after translation, it inhibits viral replication by targeting Nsp9 in living cells. We speculate that LNP-mRNA-2NSP23 may be translated into an innovative strategy to generate novel antiviral drugs highly efficient across coronaviruses.
Collapse
Affiliation(s)
- Tomas Venit
- Division of Science and Mathematics, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Jeremy Blavier
- Laboratory of Viral Interactomes, Unit of Molecular Biology of Diseases, GIGA Institute, University of Liege, Liège, Belgium
| | - Sibusiso B Maseko
- Laboratory of Viral Interactomes, Unit of Molecular Biology of Diseases, GIGA Institute, University of Liege, Liège, Belgium
| | - Sam Shu
- Division of Science and Mathematics, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Lilia Espada
- ISAR Bioscience GmbH, Semmelweisstrasse 5, 82152 Planegg, Germany
| | | | | | | | - Martin Lohse
- ISAR Bioscience GmbH, Semmelweisstrasse 5, 82152 Planegg, Germany
| | - Gennaro Esposito
- Division of Science and Mathematics, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Istituto Nazionale Biostrutture e Biosistemi (INBB), Roma, Italy
| | - Jean-Claude Twizere
- Division of Science and Mathematics, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Laboratory of Viral Interactomes, Unit of Molecular Biology of Diseases, GIGA Institute, University of Liege, Liège, Belgium
| | - Piergiorgio Percipalle
- Division of Science and Mathematics, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
11
|
Wu H, Fujioka Y, Sakaguchi S, Suzuki Y, Nakano T. Morphological analysis for two types of viral particles in vacuoles of SARS-CoV-2-infected cells. Med Mol Morphol 2024; 57:124-135. [PMID: 38393367 DOI: 10.1007/s00795-024-00381-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/17/2024] [Indexed: 02/25/2024]
Abstract
In this study, we analyzed the morphological structure of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in human cells. We identified the two types of viral particles present within the vacuoles of infected cells. Using transmission electron microscopy, we observed that SARS-CoV-2 particles exhibited both low- and high-electron-density structures, which was further confirmed through three-dimensional reconstruction using electron tomography. The budding of these particles was exclusively observed within these vacuoles. Intriguingly, viral particles with low-electron-density structures were confined to vacuoles, whereas those with high-electron-density structures were found in vacuoles and on the cell membrane surface of infected cells. Notably, high-electron-density particles found within vacuoles exhibited the same morphology as those outside the infected cells. This observation suggests that the two types of viral particles identified in this study had different maturation status. Our findings provide valuable insights into the molecular details of SARS-CoV-2 particles, contributing to our understanding of the virus.
Collapse
Affiliation(s)
- Hong Wu
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan.
| | - Yoshihiko Fujioka
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
| | - Shoichi Sakaguchi
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
| | - Youichi Suzuki
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
| | - Takashi Nakano
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
| |
Collapse
|
12
|
Zhang J, Rissmann M, Kuiken T, Haagmans BL. Comparative Pathogenesis of Severe Acute Respiratory Syndrome Coronaviruses. ANNUAL REVIEW OF PATHOLOGY 2024; 19:423-451. [PMID: 37832946 DOI: 10.1146/annurev-pathol-052620-121224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Over the last two decades the world has witnessed the global spread of two genetically related highly pathogenic coronaviruses, severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. However, the impact of these outbreaks differed significantly with respect to the hospitalizations and fatalities seen worldwide. While many studies have been performed recently on SARS-CoV-2, a comparative pathogenesis analysis with SARS-CoV may further provide critical insights into the mechanisms of disease that drive coronavirus-induced respiratory disease. In this review, we comprehensively describe clinical and experimental observations related to transmission and pathogenesis of SARS-CoV-2 in comparison with SARS-CoV, focusing on human, animal, and in vitro studies. By deciphering the similarities and disparities of SARS-CoV and SARS-CoV-2, in terms of transmission and pathogenesis mechanisms, we offer insights into the divergent characteristics of these two viruses. This information may also be relevant to assessing potential novel introductions of genetically related highly pathogenic coronaviruses.
Collapse
Affiliation(s)
- Jingshu Zhang
- Viroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands;
| | - Melanie Rissmann
- Viroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands;
| | - Thijs Kuiken
- Viroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands;
| | - Bart L Haagmans
- Viroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands;
| |
Collapse
|
13
|
Caldas LA, Carneiro FA, Augusto I, Corrêa IA, da Costa LJ, Miranda K, Tanuri A, de Souza W. SARS-CoV-2 egress from Vero cells: a morphological approach. Histochem Cell Biol 2024; 161:59-67. [PMID: 37736815 DOI: 10.1007/s00418-023-02239-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 09/23/2023]
Abstract
Despite being extensively studied because of the current coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) interactions with mammalian cells are still poorly understood. Furthermore, little is known about this coronavirus cycle within the host cells, particularly the steps that lead to viral egress. This study aimed to shed light on the morphological features of SARS-CoV-2 egress by utilizing transmission and high-resolution scanning electron microscopy, along with serial electron tomography, to describe the route of nascent virions towards the extracellular medium. Electron microscopy revealed that the clusters of viruses in the paracellular space did not seem to result from collective virus release. Instead, virus accumulation was observed on incurved areas of the cell surface, with egress primarily occurring through individual vesicles. Additionally, our findings showed that the emission of long membrane projections, which could facilitate virus surfing in Vero cells infected with SARS-CoV-2, was also observed in non-infected cultures, suggesting that these are constitutive events in this cell lineage.
Collapse
Affiliation(s)
- Lucio Ayres Caldas
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Prédio CCS, Bloco C, Subsolo, Cidade Universitária, Rio de Janeiro, RJ, CEP:21941902, Brazil.
- Núcleo Multidisciplinar de Pesquisas em Biologia - NUMPEX-BIO, Campus Duque de Caxias Geraldo Cidade, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Duque de Caxias, RJ, Brazil.
| | - Fabiana Avila Carneiro
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Prédio CCS, Bloco C, Subsolo, Cidade Universitária, Rio de Janeiro, RJ, CEP:21941902, Brazil
- Núcleo Multidisciplinar de Pesquisas em Biologia - NUMPEX-BIO, Campus Duque de Caxias Geraldo Cidade, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Duque de Caxias, RJ, Brazil
| | - Ingrid Augusto
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Prédio CCS, Bloco C, Subsolo, Cidade Universitária, Rio de Janeiro, RJ, CEP:21941902, Brazil
| | - Isadora Alonso Corrêa
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Virologia Molecular, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana Jesus da Costa
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Virologia Molecular, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kildare Miranda
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Prédio CCS, Bloco C, Subsolo, Cidade Universitária, Rio de Janeiro, RJ, CEP:21941902, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem (INBEB) and Centro Nacional de Biologia Estutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amilcar Tanuri
- Laboratório de Virologia Molecular, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Prédio CCS, Bloco C, Subsolo, Cidade Universitária, Rio de Janeiro, RJ, CEP:21941902, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem (INBEB) and Centro Nacional de Biologia Estutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Tamai M, Taba S, Mise T, Yamashita M, Ishikawa H, Shintake T. Effect of Ethanol Vapor Inhalation Treatment on Lethal Respiratory Viral Infection With Influenza A. J Infect Dis 2023; 228:1720-1729. [PMID: 37101418 PMCID: PMC10733743 DOI: 10.1093/infdis/jiad089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/12/2023] [Accepted: 04/03/2023] [Indexed: 04/28/2023] Open
Abstract
Ethanol (EtOH) effectively inactivates enveloped viruses in vitro, including influenza and severe acute respiratory syndrome coronavirus 2. Inhaled EtOH vapor may inhibit viral infection in mammalian respiratory tracts, but this has not yet been demonstrated. Here we report that unexpectedly low EtOH concentrations in solution, approximately 20% (vol/vol), rapidly inactivate influenza A virus (IAV) at mammalian body temperature and are not toxic to lung epithelial cells on apical exposure. Furthermore, brief exposure to 20% (vol/vol) EtOH decreases progeny virus production in IAV-infected cells. Using an EtOH vapor exposure system that is expected to expose murine respiratory tracts to 20% (vol/vol) EtOH solution by gas-liquid equilibrium, we demonstrate that brief EtOH vapor inhalation twice a day protects mice from lethal IAV respiratory infection by reducing viruses in the lungs without harmful side effects. Our data suggest that EtOH vapor inhalation may provide a versatile therapy against various respiratory viral infectious diseases.
Collapse
Affiliation(s)
- Miho Tamai
- Immune Signal Unit, Okinawa Institute of Science and Technology, Tancha 1919-1, Onna-son, Okinawa 904-0495, Japan
| | - Seita Taba
- Quantum Wave Microscopy Unit, Okinawa Institute of Science and Technology, Tancha 1919-1, Onna-son, Okinawa 904-0495, Japan
| | - Takeshi Mise
- Quantum Wave Microscopy Unit, Okinawa Institute of Science and Technology, Tancha 1919-1, Onna-son, Okinawa 904-0495, Japan
| | - Masao Yamashita
- Quantum Wave Microscopy Unit, Okinawa Institute of Science and Technology, Tancha 1919-1, Onna-son, Okinawa 904-0495, Japan
| | - Hiroki Ishikawa
- Immune Signal Unit, Okinawa Institute of Science and Technology, Tancha 1919-1, Onna-son, Okinawa 904-0495, Japan
| | - Tsumoru Shintake
- Quantum Wave Microscopy Unit, Okinawa Institute of Science and Technology, Tancha 1919-1, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
15
|
Stewart H, Palmulli R, Johansen KH, McGovern N, Shehata OM, Carnell GW, Jackson HK, Lee JS, Brown JC, Burgoyne T, Heeney JL, Okkenhaug K, Firth AE, Peden AA, Edgar JR. Tetherin antagonism by SARS-CoV-2 ORF3a and spike protein enhances virus release. EMBO Rep 2023; 24:e57224. [PMID: 37818801 PMCID: PMC10702813 DOI: 10.15252/embr.202357224] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/23/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023] Open
Abstract
The antiviral restriction factor, tetherin, blocks the release of several different families of enveloped viruses, including the Coronaviridae. Tetherin is an interferon-induced protein that forms parallel homodimers between the host cell and viral particles, linking viruses to the surface of infected cells and inhibiting their release. We demonstrate that SARS-CoV-2 infection causes tetherin downregulation and that tetherin depletion from cells enhances SARS-CoV-2 viral titres. We investigate the potential viral proteins involved in abrogating tetherin function and find that SARS-CoV-2 ORF3a reduces tetherin localisation within biosynthetic organelles where Coronaviruses bud, and increases tetherin localisation to late endocytic organelles via reduced retrograde recycling. We also find that expression of Spike protein causes a reduction in cellular tetherin levels. Our results confirm that tetherin acts as a host restriction factor for SARS-CoV-2 and highlight the multiple distinct mechanisms by which SARS-CoV-2 subverts tetherin function.
Collapse
Affiliation(s)
- Hazel Stewart
- Department of PathologyUniversity of CambridgeCambridgeUK
| | | | - Kristoffer H Johansen
- Department of PathologyUniversity of CambridgeCambridgeUK
- Laboratory of Immune Systems Biology, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMDUSA
| | - Naomi McGovern
- Department of PathologyUniversity of CambridgeCambridgeUK
| | - Ola M Shehata
- Department of Biomedical ScienceUniversity of Sheffield, Firth CourtSheffieldUK
| | - George W Carnell
- Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
| | | | - Jin S Lee
- Department of PathologyUniversity of CambridgeCambridgeUK
| | | | - Thomas Burgoyne
- Royal Brompton HospitalGuy's and St Thomas' NHS Foundation TrustLondonUK
- UCL Institute of OphthalmologyUniversity College LondonLondonUK
| | | | | | - Andrew E Firth
- Department of PathologyUniversity of CambridgeCambridgeUK
| | - Andrew A Peden
- Department of Biomedical ScienceUniversity of Sheffield, Firth CourtSheffieldUK
| | - James R Edgar
- Department of PathologyUniversity of CambridgeCambridgeUK
| |
Collapse
|
16
|
Pezzotti G, Ohgitani E, Fujita Y, Imamura H, Pappone F, Grillo A, Nakashio M, Shin-Ya M, Adachi T, Yamamoto T, Kanamura N, Marin E, Zhu W, Inaba T, Tanino Y, Nukui Y, Higasa K, Yasukochi Y, Okuma K, Mazda O. Raman Fingerprints of SARS-CoV-2 Omicron Subvariants: Molecular Roots of Virological Characteristics and Evolutionary Directions. ACS Infect Dis 2023; 9:2226-2251. [PMID: 37850869 PMCID: PMC10644350 DOI: 10.1021/acsinfecdis.3c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Indexed: 10/19/2023]
Abstract
The latest RNA genomic mutation of SARS-CoV-2 virus, termed the Omicron variant, has generated a stream of highly contagious and antibody-resistant strains, which in turn led to classifying Omicron as a variant of concern. We systematically collected Raman spectra from six Omicron subvariants available in Japan (i.e., BA.1.18, BA.2, BA.4, BA.5, XE, and BA.2.75) and applied machine-learning algorithms to decrypt their structural characteristics at the molecular scale. Unique Raman fingerprints of sulfur-containing amino acid rotamers, RNA purines and pyrimidines, tyrosine phenol ring configurations, and secondary protein structures clearly differentiated the six Omicron subvariants. These spectral characteristics, which were linked to infectiousness, transmissibility, and propensity for immune evasion, revealed evolutionary motifs to be compared with the outputs of genomic studies. The availability of a Raman "metabolomic snapshot", which was then translated into a barcode to enable a prompt subvariant identification, opened the way to rationalize in real-time SARS-CoV-2 activity and variability. As a proof of concept, we applied the Raman barcode procedure to a nasal swab sample retrieved from a SARS-CoV-2 patient and identified its Omicron subvariant by coupling a commercially available magnetic bead technology with our newly developed Raman analyses.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic
Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
- Department
of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
- Department
of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
- Department
of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, 160-0023 Tokyo, Japan
- Department
of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
- Department
of Molecular Science and Nanosystems, Ca’
Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Eriko Ohgitani
- Department
of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| | - Yuki Fujita
- Ceramic
Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Hayata Imamura
- Ceramic
Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
- Department
of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Francesco Pappone
- Department
of Mathematical Science, Politecnico di
Torino, Corso Duca degli
Abruzzi 24, 10129 Torino, Italy
| | - Alfio Grillo
- Department
of Mathematical Science, Politecnico di
Torino, Corso Duca degli
Abruzzi 24, 10129 Torino, Italy
| | - Maiko Nakashio
- Department
of Infection Control & Laboratory Medicine, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| | - Masaharu Shin-Ya
- Department
of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| | - Tetsuya Adachi
- Department
of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
- Department
of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
- Department
of Microbiology, Kansai Medical University,
School of Medicine, 2-5-1
Shinmachi, Hirakata 573-1010, Osaka Prefecture, Japan
| | - Toshiro Yamamoto
- Department
of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Narisato Kanamura
- Department
of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Elia Marin
- Ceramic
Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
- Department
of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Wenliang Zhu
- Ceramic
Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Tohru Inaba
- Department
of Infection Control & Laboratory Medicine, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| | - Yoko Tanino
- Department of Clinical Laboratory, University
Hospital, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| | - Yoko Nukui
- Department of Clinical Laboratory, University
Hospital, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| | - Koichiro Higasa
- Genome Analysis, Institute of Biomedical
Science, Kansai Medical University, 2-3-1 Shin-machi, Hirakata, Osaka 573-1191, Japan
| | - Yoshiki Yasukochi
- Genome Analysis, Institute of Biomedical
Science, Kansai Medical University, 2-3-1 Shin-machi, Hirakata, Osaka 573-1191, Japan
| | - Kazu Okuma
- Department
of Microbiology, Kansai Medical University,
School of Medicine, 2-5-1
Shinmachi, Hirakata 573-1010, Osaka Prefecture, Japan
| | - Osam Mazda
- Department
of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| |
Collapse
|
17
|
Yang CF, Liao CC, Hsu HW, Liang JJ, Chang CS, Ko HY, Chang RH, Tang WC, Chang MH, Wang IH, Lin YL. Human ACE2 protein is a molecular switch controlling the mode of SARS-CoV-2 transmission. J Biomed Sci 2023; 30:87. [PMID: 37828601 PMCID: PMC10571257 DOI: 10.1186/s12929-023-00980-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Human angiotensin-converting enzyme 2 (hACE2) is the receptor mediating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. hACE2 expression is low in the lungs and is upregulated after SARS-CoV-2 infection. How such a hACE2-limited pulmonary environment supports efficient virus transmission and how dynamic hACE2 expression affects SARS-CoV-2 infection are unclear. METHODS We generated stable cell lines with different expression levels of hACE2 to evaluate how the hACE2 expression level can affect SARS-CoV-2 transmission. RESULTS We demonstrated that the hACE2 expression level controls the mode of SARS-CoV-2 transmission. The hACE2-limited cells have an advantage for SARS-CoV-2 shedding, which leads to cell-free transmission. By contrast, enhanced hACE2 expression facilitates the SARS-CoV-2 cell-to-cell transmission. Furthermore, this cell-to-cell transmission is likely facilitated by hACE2-containing vesicles, which accommodate numerous SARS-CoV-2 virions and transport them to neighboring cells through intercellular extensions. CONCLUSIONS This hACE2-mediated switch between cell-free and cell-to-cell transmission routes provides SARS-CoV-2 with advantages for either viral spread or evasion of humoral immunity, thereby contributing to the COVID-19 pandemic and pathogenesis.
Collapse
Affiliation(s)
- Chao-Fu Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan.
| | - Chun-Che Liao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Hung-Wei Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Jian-Jong Liang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Chih-Shin Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Hui-Ying Ko
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Rue-Hsin Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Wei-Chun Tang
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Ming-Hao Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - I-Hsuan Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan.
| | - Yi-Ling Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan.
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
18
|
Nguyen H, Nguyen HL, Lan PD, Thai NQ, Sikora M, Li MS. Interaction of SARS-CoV-2 with host cells and antibodies: experiment and simulation. Chem Soc Rev 2023; 52:6497-6553. [PMID: 37650302 DOI: 10.1039/d1cs01170g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the devastating global COVID-19 pandemic announced by WHO in March 2020. Through unprecedented scientific effort, several vaccines, drugs and antibodies have been developed, saving millions of lives, but the fight against COVID-19 continues as immune escape variants of concern such as Delta and Omicron emerge. To develop more effective treatments and to elucidate the side effects caused by vaccines and therapeutic agents, a deeper understanding of the molecular interactions of SARS-CoV-2 with them and human cells is required. With special interest in computational approaches, we will focus on the structure of SARS-CoV-2 and the interaction of its spike protein with human angiotensin-converting enzyme-2 (ACE2) as a prime entry point of the virus into host cells. In addition, other possible viral receptors will be considered. The fusion of viral and human membranes and the interaction of the spike protein with antibodies and nanobodies will be discussed, as well as the effect of SARS-CoV-2 on protein synthesis in host cells.
Collapse
Affiliation(s)
- Hung Nguyen
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| | - Hoang Linh Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- Faculty of Environmental and Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Pham Dang Lan
- Life Science Lab, Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, 729110 Ho Chi Minh City, Vietnam
- Faculty of Physics and Engineering Physics, VNUHCM-University of Science, 227, Nguyen Van Cu Street, District 5, 749000 Ho Chi Minh City, Vietnam
| | - Nguyen Quoc Thai
- Dong Thap University, 783 Pham Huu Lau Street, Ward 6, Cao Lanh City, Dong Thap, Vietnam
| | - Mateusz Sikora
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| |
Collapse
|
19
|
Mironov AA, Savin MA, Beznoussenko GV. COVID-19 Biogenesis and Intracellular Transport. Int J Mol Sci 2023; 24:ijms24054523. [PMID: 36901955 PMCID: PMC10002980 DOI: 10.3390/ijms24054523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
SARS-CoV-2 is responsible for the COVID-19 pandemic. The structure of SARS-CoV-2 and most of its proteins of have been deciphered. SARS-CoV-2 enters cells through the endocytic pathway and perforates the endosomes' membranes, and its (+) RNA appears in the cytosol. Then, SARS-CoV-2 starts to use the protein machines of host cells and their membranes for its biogenesis. SARS-CoV-2 generates a replication organelle in the reticulo-vesicular network of the zippered endoplasmic reticulum and double membrane vesicles. Then, viral proteins start to oligomerize and are subjected to budding within the ER exit sites, and its virions are passed through the Golgi complex, where the proteins are subjected to glycosylation and appear in post-Golgi carriers. After their fusion with the plasma membrane, glycosylated virions are secreted into the lumen of airways or (seemingly rarely) into the space between epithelial cells. This review focuses on the biology of SARS-CoV-2's interactions with cells and its transport within cells. Our analysis revealed a significant number of unclear points related to intracellular transport in SARS-CoV-2-infected cells.
Collapse
Affiliation(s)
- Alexander A. Mironov
- Department of Cell Biology, IFOM ETS—The AIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milan, Italy
- Correspondence:
| | - Maksim A. Savin
- The Department for Welding Production and Technology of Constructional Materials, Perm National Research Polytechnic University, Komsomolsky Prospekt, 29, 614990 Perm, Russia
| | - Galina V. Beznoussenko
- Department of Cell Biology, IFOM ETS—The AIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milan, Italy
| |
Collapse
|
20
|
Overduin M, Bhat RK, Kervin TA. SARS-CoV-2 Omicron Subvariants Balance Host Cell Membrane, Receptor, and Antibody Docking via an Overlapping Target Site. Viruses 2023; 15:v15020447. [PMID: 36851661 PMCID: PMC9967007 DOI: 10.3390/v15020447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are emerging rapidly and offer surfaces that are optimized for recognition of host cell membranes while also evading antibodies arising from vaccinations and previous infections. Host cell infection is a multi-step process in which spike heads engage lipid bilayers and one or more angiotensin-converting enzyme 2 (ACE-2) receptors. Here, the membrane binding surfaces of Omicron subvariants are compared using cryo-electron microscopy (cEM) structures of spike trimers from BA.2, BA.2.12.1, BA.2.13, BA.2.75, BA.3, BA.4, and BA.5 viruses. Despite significant differences around mutated sites, they all maintain strong membrane binding propensities that first appeared in BA.1. Both their closed and open states retain elevated membrane docking capacities, although the presence of more closed than open states diminishes opportunities to bind receptors while enhancing membrane engagement. The electrostatic dipoles are generally conserved. However, the BA.2.75 spike dipole is compromised, and its ACE-2 affinity is increased, and BA.3 exhibits the opposite pattern. We propose that balancing the functional imperatives of a stable, readily cleavable spike that engages both lipid bilayers and receptors while avoiding host defenses underlies betacoronavirus evolution. This provides predictive criteria for rationalizing future pandemic waves and COVID-19 transmissibility while illuminating critical sites and strategies for simultaneously combating multiple variants.
Collapse
|
21
|
Stocker N, Radzikowska U, Wawrzyniak P, Tan G, Huang M, Ding M, Akdis CA, Sokolowska M. Regulation of angiotensin-converting enzyme 2 isoforms by type 2 inflammation and viral infection in human airway epithelium. Mucosal Immunol 2023; 16:5-16. [PMID: 36642382 PMCID: PMC9836991 DOI: 10.1016/j.mucimm.2022.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/06/2022] [Indexed: 01/15/2023]
Abstract
SARS-CoV-2 enters human cells through its main receptor, angiotensin-converting enzyme 2 (ACE2), which constitutes a limiting factor of infection. Recent findings demonstrating novel ACE2 isoforms implicate that this receptor is regulated in a more complex way than previously anticipated. However, it remains unknown how various inflammatory conditions influence the abundance of these ACE2 variants. Hence, we studied expression of ACE2 messenger RNA (mRNA) and protein isoforms, together with its glycosylation and spatial localization in primary human airway epithelium upon allergic inflammation and viral infection. We found that interleukin-13, the main type 2 cytokine, decreased expression of long ACE2 mRNA and reduced glycosylation of full-length ACE2 protein via alteration of N-linked glycosylation process, limiting its availability on the apical side of ciliated cells. House dust mite allergen did not affect the expression of ACE2. Rhinovirus infection increased short ACE2 mRNA, but it did not influence its protein expression. In addition, by screening other SARS-CoV-2 related host molecules, we found that interleukin-13 and rhinovirus significantly regulated mRNA, but not protein of transmembrane serine protease 2 and neuropilin 1. Regulation of ACE2 and other host proteins was comparable in healthy and asthmatic epithelium, underlining the lack of intrinsic differences but dependence on the inflammatory milieu in the airways.
Collapse
Affiliation(s)
- Nino Stocker
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Paulina Wawrzyniak
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Department of Gastroenterology and Hepatology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Ge Tan
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Mengting Huang
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Mei Ding
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.
| |
Collapse
|
22
|
Chee J, Chern B, Loh WS, Mullol J, Wang DY. Pathophysiology of SARS-CoV-2 Infection of Nasal Respiratory and Olfactory Epithelia and Its Clinical Impact. Curr Allergy Asthma Rep 2023; 23:121-131. [PMID: 36598732 PMCID: PMC9811886 DOI: 10.1007/s11882-022-01059-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW While the predominant cause for morbidity and mortality with SARS-CoV-2 infection is the lower respiratory tract manifestations of the disease, the effects of SARS-CoV-2 infection on the sinonasal tract have also come to the forefront especially with the increased recognition of olfactory symptom. This review presents a comprehensive summary of the mechanisms of action of the SARS-CoV-2 virus, sinonasal pathophysiology of COVID-19, and the correlation with the clinical and epidemiological impact on olfactory dysfunction. RECENT FINDINGS ACE2 and TMPRSS2 receptors are key players in the mechanism of infection of SARS-CoV-2. They are present within both the nasal respiratory as well as olfactory epithelia. There are however differences in susceptibility between different groups of individuals, as well as between the different SARS-CoV-2 variants. The sinonasal cavity is an important route for SARS-CoV-2 infection. While the mechanism of infection of SARS-CoV-2 in nasal respiratory and olfactory epithelia is similar, there exist small but significant differences in the susceptibility of these epithelia and consequently clinical manifestations of the disease. Understanding the differences and nuances in sinonasal pathophysiology in COVID-19 would allow the clinician to predict and counsel patients suffering from COVID-19. Future research into molecular pathways and cytokine responses at different stages of infection and different variants of SARS-CoV-2 would evaluate the individual clinical phenotype, prognosis, and possibly response to vaccines and therapeutics.
Collapse
Affiliation(s)
- Jeremy Chee
- grid.410759.e0000 0004 0451 6143Department of Otolaryngology - Head & Neck Surgery, National University Health System, 1E Kent Ridge Road, Singapore, 119228 Singapore
| | - Beverlyn Chern
- grid.410759.e0000 0004 0451 6143Department of Otolaryngology - Head & Neck Surgery, National University Health System, 1E Kent Ridge Road, Singapore, 119228 Singapore
| | - Woei Shyang Loh
- grid.410759.e0000 0004 0451 6143Department of Otolaryngology - Head & Neck Surgery, National University Health System, 1E Kent Ridge Road, Singapore, 119228 Singapore ,grid.4280.e0000 0001 2180 6431Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Joaquim Mullol
- grid.10403.360000000091771775Rhinology Unit & Smell Clinic, Department of Otorhinolaryngology, Hospital Clinic Barcelona, Universitat de Barcelona, IDIBAPS, CIBERES, Barcelona, Catalonia Spain
| | - De Yun Wang
- Department of Otolaryngology - Head & Neck Surgery, National University Health System, 1E Kent Ridge Road, Singapore, 119228, Singapore. .,Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
23
|
Pires De Souza GA, Le Bideau M, Boschi C, Wurtz N, Colson P, Aherfi S, Devaux C, La Scola B. Choosing a cellular model to study SARS-CoV-2. Front Cell Infect Microbiol 2022; 12:1003608. [PMID: 36339347 PMCID: PMC9634005 DOI: 10.3389/fcimb.2022.1003608] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/03/2022] [Indexed: 08/04/2023] Open
Abstract
As new pathogens emerge, new challenges must be faced. This is no different in infectious disease research, where identifying the best tools available in laboratories to conduct an investigation can, at least initially, be particularly complicated. However, in the context of an emerging virus, such as SARS-CoV-2, which was recently detected in China and has become a global threat to healthcare systems, developing models of infection and pathogenesis is urgently required. Cell-based approaches are crucial to understanding coronavirus infection biology, growth kinetics, and tropism. Usually, laboratory cell lines are the first line in experimental models to study viral pathogenicity and perform assays aimed at screening antiviral compounds which are efficient at blocking the replication of emerging viruses, saving time and resources, reducing the use of experimental animals. However, determining the ideal cell type can be challenging, especially when several researchers have to adapt their studies to specific requirements. This review strives to guide scientists who are venturing into studying SARS-CoV-2 and help them choose the right cellular models. It revisits basic concepts of virology and presents the currently available in vitro models, their advantages and disadvantages, and the known consequences of each choice.
Collapse
Affiliation(s)
- Gabriel Augusto Pires De Souza
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Marion Le Bideau
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Céline Boschi
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Nathalie Wurtz
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Philippe Colson
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Sarah Aherfi
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Christian Devaux
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Department of Biological Sciences (INSB), Centre National de la Recherche Scientifique, Marseille, France
| | - Bernard La Scola
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| |
Collapse
|
24
|
Overduin M, Kervin TA, Tran A. Progressive membrane-binding mechanism of SARS-CoV-2 variant spike proteins. iScience 2022; 25:104722. [PMID: 35813872 PMCID: PMC9251956 DOI: 10.1016/j.isci.2022.104722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/15/2022] [Accepted: 06/28/2022] [Indexed: 12/09/2022] Open
Abstract
Membrane recognition by viral spike proteins is critical for infection. Here we show the host cell membrane-binding surfaces of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike variants Alpha, Beta, Gamma, Delta, Epsilon, Kappa, and Omicron as well as SARS-CoV-1 and pangolin and bat relatives. They show increases in membrane binding propensities over time, with all spike head mutations in variants, and particularly BA.1, impacting the protein's affinity to cell membranes. Comparison of hundreds of structures yields a progressive model of membrane docking in which spike protein trimers shift from initial perpendicular stances to increasingly tilted positions that draw viral particles alongside host cell membranes before optionally engaging angiotensin-converting enzyme 2 (ACE2) receptors. This culminates in the assembly of the symmetric fusion apparatus, with enhanced membrane interactions of variants explaining their unique cell fusion capacities and COVID-19 disease transmission rates.
Collapse
Affiliation(s)
- Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Troy A. Kervin
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Anh Tran
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
25
|
Chen Y, Wang X, Shi H, Zou P. Montelukast Inhibits HCoV-OC43 Infection as a Viral Inactivator. Viruses 2022; 14:v14050861. [PMID: 35632604 PMCID: PMC9143845 DOI: 10.3390/v14050861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023] Open
Abstract
Coronaviruses (CoVs) consist of a large group of RNA viruses causing various diseases in humans and in lots of animals. Human coronavirus (HCoV) OC43, the prototype of beta-coronavirus discovered in the 1960s, has been circulating in humans for long time, and infection with other emerging strains of beta-coronavirus (SARS-CoV, SARS-CoV-2, and MERS-CoV) can lead to severe illness and death. In this study, we found that montelukast, a leukotriene receptor antagonist, potently inhibited the infection of HCoV-OC43 in distinct cells in a dose- and time- dependent manner. Additionally, the results showed that montelukast induced release of HCoV-OC43 genomic RNA by disrupting the integrity of the viral lipid membrane, and irreversibly inhibited viral infection. Considering the similarity among HCoV-OC43, MERS-CoV, and SARS-CoV-2, it suggests that montelukast may be a potential candidate for the treatment of human beta-coronavirus infection.
Collapse
Affiliation(s)
| | | | | | - Peng Zou
- Correspondence: ; Tel.: +86-21-3799-0333 (ext. 5273)
| |
Collapse
|