1
|
Zhao C, Yang L, Henriques JCG, Ferri-Cortés M, Catarina G, Pignedoli CA, Ma J, Feng X, Ruffieux P, Fernández-Rossier J, Fasel R. Spin excitations in nanographene-based antiferromagnetic spin-1/2 Heisenberg chains. NATURE MATERIALS 2025; 24:722-727. [PMID: 40087538 PMCID: PMC12048352 DOI: 10.1038/s41563-025-02166-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/31/2025] [Indexed: 03/17/2025]
Abstract
Antiferromagnetic Heisenberg chains exhibit two distinct types of excitation spectrum: gapped for integer-spin chains and gapless for half-integer-spin chains. However, in finite-length half-integer-spin chains, quantization induces a gap, requiring precise control over sufficiently long chains to study its evolution. Here we create length-controlled spin-1/2 Heisenberg chains by covalently linking Olympicenes-Olympic-ring-shaped magnetic nanographenes. With large exchange interactions, tunable lengths and negligible magnetic anisotropy, this system is ideal for investigating length-dependent spin excitations, probed via inelastic electron tunnelling spectroscopy. We observe a power-law decay of the lowest excitation energy with length L, following a 1/L dependence in the large-L regime, consistent with theory. For L = 50, a V-shaped excitation continuum confirms a gapless behaviour in the thermodynamic limit. Additionally, low-bias current maps reveal the standing wave of a single spinon in odd-numbered chains. Our findings provide evidence for the realization of a one-dimensional analogue of a gapless spin liquid within an artificial graphene lattice.
Collapse
Affiliation(s)
- Chenxiao Zhao
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland.
| | - Lin Yang
- Faculty of Chemistry and Food Chemistry, and Center for Advancing Electronics Dresden, Technical University of Dresden, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Halle, Germany
| | - João C G Henriques
- International Iberian Nanotechnology Laboratory, Braga, Portugal
- Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Mar Ferri-Cortés
- Departamento de Física Aplicada, Universidad de Alicante, San Vicente del Raspeig, Spain
| | - Gonçalo Catarina
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Carlo A Pignedoli
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Ji Ma
- Max Planck Institute of Microstructure Physics, Halle, Germany
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xinliang Feng
- Faculty of Chemistry and Food Chemistry, and Center for Advancing Electronics Dresden, Technical University of Dresden, Dresden, Germany.
- Max Planck Institute of Microstructure Physics, Halle, Germany.
| | - Pascal Ruffieux
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland.
| | | | - Roman Fasel
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland.
- University of Bern, Bern, Switzerland.
| |
Collapse
|
2
|
Pérez‐Elvira E, Lozano M, Huang Q, Ma J, Gallardo A, Barragán A, Lauwaet K, Gallego JM, Miranda R, Jelínek P, Écija D, Soler‐Polo D, Feng X, Urgel JI. Reactivity and Magnetic Coupling of Triangulene Dimers Linked via para-Biphenyl Units. Angew Chem Int Ed Engl 2025; 64:e202501874. [PMID: 39968668 PMCID: PMC12015394 DOI: 10.1002/anie.202501874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 02/20/2025]
Abstract
Triangulene and its homologues are promising building blocks for high-spin low-dimensional networks with long-range magnetic order. Despite the recent progress in the synthesis and characterization of coupled triangulenes, key parameters such as the number of organic linking units or their dihedral angles remain scarce, making further studies crucial for an essential understanding of their implications. Here, we investigate the synthesis and reactivity of two triangulene dimers linked by two (Dimer 1) or one (Dimer 2) para-biphenyl units, respectively, on a metal surface in an ultra-high vacuum environment. First-principles calculations and model Hamiltonians reveal how spin excitation and radical character depend on the rotation of the para-biphenyl units. Comprehensive scanning tunneling microscopy (STM) in combination with density functional theory (DFT) calculations confirm the successful formation of Dimer 1 on Au(111). Non-contact atomic force microscopy (nc-AFM) measurements resolve the twisted conformation of the linking para-biphenyl units for Dimer 1. On the contrary, the inherent flexibility of Dimer 2 induces the planarization of the para-biphenyl, resulting in the spontaneous formation of two additional five-membered rings per dimer connected by a single C-C bond (Dimers 2'). Furthermore, scanning tunneling spectroscopy (STS) measurements confirm the antiferromagnetic (S=0) coupling of the observed dimers, underscoring the critical influence of dihedral angles and structural flexibility of the linking units in π-electron magnetic nanostructures.
Collapse
Affiliation(s)
| | - Marco Lozano
- Institute of Physics of the Czech Academy of ScienceCZ-16253PrahaCzech Republic
| | - Qiang Huang
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01069DresdenGermany
| | - Ji Ma
- College of Materials Science and Optoelectronic Technology & Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Science100049BeijingP. R. China
- Max Planck Institute of Microstructure PhysicsWeinberg 206120HalleGermany
| | - Aurelio Gallardo
- IMDEA NanoscienceC/ Faraday 9, Campus de Cantoblanco28049MadridSpain
| | - Ana Barragán
- IMDEA NanoscienceC/ Faraday 9, Campus de Cantoblanco28049MadridSpain
| | - Koen Lauwaet
- IMDEA NanoscienceC/ Faraday 9, Campus de Cantoblanco28049MadridSpain
| | - José M. Gallego
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSICCantoblanco28049MadridSpain
| | - Rodolfo Miranda
- IMDEA NanoscienceC/ Faraday 9, Campus de Cantoblanco28049MadridSpain
| | - Pavel Jelínek
- Institute of Physics of the Czech Academy of ScienceCZ-16253PrahaCzech Republic
- Regional Centre of Advanced Technologies and MaterialsPalacký University Olomouc771 46OlomoucCzech Republic
| | - David Écija
- IMDEA NanoscienceC/ Faraday 9, Campus de Cantoblanco28049MadridSpain
- Unidad de Nanomateriales avanzadosImdea Nanoscience, Unidad asociada al CSIC por el ICMM28049MadridSpain
| | - Diego Soler‐Polo
- Institute of Physics of the Czech Academy of ScienceCZ-16253PrahaCzech Republic
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01069DresdenGermany
- Max Planck Institute of Microstructure PhysicsWeinberg 206120HalleGermany
| | - José I. Urgel
- IMDEA NanoscienceC/ Faraday 9, Campus de Cantoblanco28049MadridSpain
- Unidad de Nanomateriales avanzadosImdea Nanoscience, Unidad asociada al CSIC por el ICMM28049MadridSpain
| |
Collapse
|
3
|
Zhu X, Jiang Y, Wang Z, Huang Y, Luo Z, Yan K, Wang S, Yu P. Collective Magnetism of Spin Coronoid via On-Surface Synthesis. J Am Chem Soc 2025; 147:10045-10051. [PMID: 40099343 DOI: 10.1021/jacs.4c13998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Polyradicals obtained from open-shell coronoids hold promise for applications in spintronics and quantum technologies due to the strong interactions between spins in fully fused cyclic systems. Coronoid synthesis has long been considered difficult due to the cyclization of nanographene. It becomes an immense challenge to synthesize open-shell coronoids since radicals appear only when the macrocycle size exceeds a critical value. Here we present an open-shell coronoid with six radicals achieved through an on-surface synthesis. This spin coronoid displays a collective spin state arising from both the nearest-neighbor exchange interaction and the next-nearest-neighbor exchange interaction of six unpaired π electrons along the conjugation pathways. The characterization of the spin excitation from the ground state to the excited state was carried out by using inelastic electron tunneling spectroscopy. Additionally, we show that the spin coronoid can be utilized as a nanoscale platform to achieve short antiferromagnetic spin-1/2 Heisenberg chains through tip manipulation. Our findings present a design strategy for creating coronoids with polyradicals, which could provide inspiration for fabrication of open-shell coronoid or cyclic spintronic systems.
Collapse
Affiliation(s)
- Xujie Zhu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yashi Jiang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhou Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yicheng Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhengqiang Luo
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - KaKing Yan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shiyong Wang
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ping Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
4
|
Paschke F, Ortiz R, Mishra S, Vilas-Varela M, Albrecht F, Peña D, Melle-Franco M, Gross L. A Route toward the On-Surface Synthesis of Organic Ferromagnetic Quantum Spin Chains. J Am Chem Soc 2025; 147:7859-7867. [PMID: 39967246 PMCID: PMC11887423 DOI: 10.1021/jacs.4c18123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/20/2025]
Abstract
Engineering sublattice imbalance is an intuitive way to induce high-spin ground states in bipartite polycyclic conjugated hydrocarbons (PCHs). Such molecules can be employed as building blocks of quantum spin chains, which are outstanding platforms to study fundamental models in quantum magnetism. This is exemplified by recent reports on the bottom-up synthesis of antiferromagnetic spin chains that provided insights into paradigmatic quantum phenomena such as fractionalization. In contrast to antiferromagnetism, demonstration of ferromagnetic coupling between PCHs has been scarce. Previous attempts in this direction were limited by the formation of nonbenzenoid rings leading to spin quenching or the use of spacer motifs that weaken the magnitude of ferromagnetic exchange. Here, we demonstrate the on-surface synthesis of short ferromagnetic spin chains based on dibenzotriangulene, a triplet PCH. Our synthetic strategy centers on the concept of achieving a direct (without spacer motifs) majority-minority sublattice coupling between adjacent molecules. This leads to a global sublattice imbalance in spin chains scaling with the chain length and therefore a ferromagnetic ground state with a strong intermolecular ferromagnetic exchange. Through scanning probe measurements and quantum chemical calculations, we analyze the electronic and magnetic properties of ferromagnetic dimers and trimers of dibenzotriangulene and confirm their quintet and septet ground states, respectively, with an intermolecular ferromagnetic exchange of 7 meV. Furthermore, we elucidate the role of sublattice coupling on magnetism through complementary experiments on antiferromagnetic dibenzotriangulene dimers with majority-majority and minority-minority sublattice couplings. We expect our study to provide impetus for the design of organic ferromagnetic materials.
Collapse
Affiliation(s)
- Fabian Paschke
- IBM Research
Europe – Zurich,, 8803 Rüschlikon, Switzerland
| | - Ricardo Ortiz
- CICECO -
Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Manuel Vilas-Varela
- Center for
Research in Biological Chemistry and Molecular Materials (CiQUS),
and Department of Organic Chemistry, University
of Santiago de Compostela, 15702 Santiago de Compostela, Spain
| | | | - Diego Peña
- Center for
Research in Biological Chemistry and Molecular Materials (CiQUS),
and Department of Organic Chemistry, University
of Santiago de Compostela, 15702 Santiago de Compostela, Spain
- Oportunius,
Galician Innovation Agency (GAIN), 15702 Santiago de Compostela, Spain
| | - Manuel Melle-Franco
- CICECO -
Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Leo Gross
- IBM Research
Europe – Zurich,, 8803 Rüschlikon, Switzerland
| |
Collapse
|
5
|
Xuan D, Wang Y, Zhang X. Electrically coherent manipulation of individual atomic and molecular spins on surface. Phys Chem Chem Phys 2025. [PMID: 40018819 DOI: 10.1039/d5cp00069f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
The development of quantum information technology demands precise engineering and control of quantum states at the single-atom level. Recent advances in electron spin resonance combined scanning tunneling microscopy (ESR-STM) have enabled quantum coherent control of individual atomic and molecular spins on surfaces, marking a significant advance in quantum nanoscience and technology. This review summarized the latest developments in electrically coherent manipulation of surface-based quantum systems, focusing on single atomic and molecular spin manipulation, and multi-spin system dynamics. Special attention is given to recent achievements in universal coherent control, dynamical decoupling and realization of multi-qubit gates, demonstrating the growing potential of surface spin systems as a platform for quantum information processing.
Collapse
Affiliation(s)
- Dalong Xuan
- Spin-X Institute, School of Microelectronics, South China University of Technology, Guangzhou 511442, China.
| | - Yu Wang
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore.
| | - Xue Zhang
- Spin-X Institute, School of Microelectronics, South China University of Technology, Guangzhou 511442, China.
- State Key Laboratory of Luminescent Materials and Devices, Center for Electron Microscopy, South China University of Technology, Guangzhou 511442, China
| |
Collapse
|
6
|
Yuan Z, Zhang XY, Jiang Y, Qian X, Wang Y, Liu Y, Liu L, Liu X, Guan D, Li Y, Zheng H, Liu C, Jia J, Qin M, Liu PN, Li DY, Wang S. Fractional Spinon Quasiparticles in Open-Shell Triangulene Spin-1/2 Chains. J Am Chem Soc 2025; 147:5004-5013. [PMID: 39874540 DOI: 10.1021/jacs.4c14712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
The emergence of spinon quasiparticles, which carry spin but lack charge, is a hallmark of collective quantum phenomena in low-dimensional quantum spin systems. While the existence of spinons has been demonstrated through scattering spectroscopy in ensemble samples, real-space imaging of these quasiparticles within individual spin chains has remained elusive. In this study, we construct individual Heisenberg antiferromagnetic spin-1/2 chains using open-shell [2]triangulene molecules as building blocks. Each [2]triangulene unit, owing to its sublattice imbalance, hosts a net spin-1/2 in accordance with Lieb's theorem, and these spins are antiferromagnetically coupled within covalent chains with a coupling strength of J = 45 meV. Through scanning tunneling microscopy and spectroscopy, we probe the spin states, excitation gaps, and their spatial excitation weights within covalent spin chains of varying lengths with atomic precision. Our investigation reveals that the excitation gap decreases as the chain length increases, extrapolating to zero for long chains, consistent with Haldane's gapless prediction. Moreover, inelastic tunneling spectroscopy reveals an m-shaped energy dispersion characteristic of confined spinon quasiparticles in a one-dimensional quantum box. These findings establish a promising strategy for exploring the unique properties of excitation quasiparticles and their broad implications for quantum information.
Collapse
Affiliation(s)
- Zhangyu Yuan
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), TD Lee Institute, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xin-Yu Zhang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Yashi Jiang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), TD Lee Institute, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiangjian Qian
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), TD Lee Institute, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ying Wang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Yufeng Liu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), TD Lee Institute, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Liang Liu
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 201210, China
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Hefei National Laboratory, Hefei 230088, China
| | - Xiaoxue Liu
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 201210, China
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Hefei National Laboratory, Hefei 230088, China
| | - Dandan Guan
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 201210, China
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Hefei National Laboratory, Hefei 230088, China
| | - Yaoyi Li
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 201210, China
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Hefei National Laboratory, Hefei 230088, China
| | - Hao Zheng
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 201210, China
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Hefei National Laboratory, Hefei 230088, China
| | - Canhua Liu
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 201210, China
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Hefei National Laboratory, Hefei 230088, China
| | - Jinfeng Jia
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 201210, China
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Hefei National Laboratory, Hefei 230088, China
| | - Mingpu Qin
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), TD Lee Institute, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Hefei National Laboratory, Hefei 230088, China
| | - Pei-Nian Liu
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Deng-Yuan Li
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Shiyong Wang
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 201210, China
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
7
|
Turco E, Wu F, Catarina G, Krane N, Ma J, Fasel R, Feng X, Ruffieux P. Magnetic Excitations in Ferromagnetically Coupled Spin-1 Nanographenes. Angew Chem Int Ed Engl 2024; 63:e202412353. [PMID: 39298142 DOI: 10.1002/anie.202412353] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Indexed: 11/07/2024]
Abstract
In the pursuit of high-spin building blocks for the formation of covalently bonded 1D or 2D materials with controlled magnetic interactions, π ${\pi }$ -electron magnetism offers an ideal framework to engineer ferromagnetic interactions between nanographenes. As a first step in this direction, we explore the spin properties of ferromagnetically coupled triangulenes-triangular nanographenes with spinS = 1 ${S = 1}$ . By combining in-solution synthesis of rationally designed molecular precursors with on-surface synthesis, we successfully achieve covalently bondedS = 2 ${S = 2}$ triangulene dimers andS = 3 ${S = 3}$ trimers on Au(111). Starting with the triangulene dimer, we meticulously characterize its low-energy magnetic excitations using inelastic electron tunneling spectroscopy (IETS). IETS reveals conductance steps corresponding to a quintet-to-triplet excitation, and a zero-bias peak resulting from higher-order spin-spin scattering of the five-fold degenerate ferromagnetic ground state. The Heisenberg model captures the key parameters of inter-triangulene ferromagnetic exchange, and its successful extension to the largerS = 3 ${S = 3}$ system validates the model's accuracy. We anticipate that incorporating ferromagnetically coupled building blocks into the repertoire of magnetic nanographenes will unlock new possibilities for designing carbon nanomaterials with complex magnetic ground states.
Collapse
Affiliation(s)
- Elia Turco
- Empa - Swiss Federal Laboratories for Materials Science and Technology nanotech@surfaces Laboratory, 8600, Dübendorf, Switzerland
| | - Fupeng Wu
- Max Planck Institute of Microstructure Physics Weinberg 2, 06120 Halle, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Gonçalo Catarina
- Empa - Swiss Federal Laboratories for Materials Science and Technology nanotech@surfaces Laboratory, 8600, Dübendorf, Switzerland
| | - Nils Krane
- Empa - Swiss Federal Laboratories for Materials Science and Technology nanotech@surfaces Laboratory, 8600, Dübendorf, Switzerland
| | - Ji Ma
- Max Planck Institute of Microstructure Physics Weinberg 2, 06120 Halle, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Roman Fasel
- Empa - Swiss Federal Laboratories for Materials Science and Technology nanotech@surfaces Laboratory, 8600, Dübendorf, Switzerland
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012, Bern, Switzerland
| | - Xinliang Feng
- Max Planck Institute of Microstructure Physics Weinberg 2, 06120 Halle, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Pascal Ruffieux
- Empa - Swiss Federal Laboratories for Materials Science and Technology nanotech@surfaces Laboratory, 8600, Dübendorf, Switzerland
| |
Collapse
|
8
|
Zhang Y, Fu B, Li N, Lu J, Cai J. Advancements in π-Magnetism and Precision Engineering of Carbon-Based Nanostructures. Chemistry 2024; 30:e202402765. [PMID: 39302066 DOI: 10.1002/chem.202402765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/03/2024] [Accepted: 09/20/2024] [Indexed: 09/22/2024]
Abstract
The emergence of π-magnetism in low-dimensional carbon-based nanostructures, such as nanographenes (NGs), has captured significant attention due to their unique properties and potential applications in spintronics and quantum technologies. Recent advancements in on-surface synthesis under ultra-high vacuum conditions have enabled the atomically precise engineering of these nanostructures, effectively overcoming the challenges posed by their inherent strong chemical reactivity. This review highlights the essential concepts and synthesis methods used in studying NGs. It also outlines the remarkable progress made in understanding and controlling their magnetic properties. Advanced characterization techniques, such as scanning tunneling microscopy (STM) and non-contact atomic force microscopy (nc-AFM), have been instrumental in visualizing and manipulating these nanostructures, which highlighting their critical role in the field. The review underscores the versatility of carbon-based π-magnetic materials and their potential for integration into next-generation electronic devices. It also outlines future research directions aimed at optimizing their synthesis and exploring applications in cutting-edge technologies.
Collapse
Affiliation(s)
- Yi Zhang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming, 650093, China
- Southwest United Graduate School, Kunming, Yunnan, 650093, China
| | - Boyu Fu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming, 650093, China
| | - Nianqiang Li
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming, 650093, China
| | - Jianchen Lu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming, 650093, China
| | - Jinming Cai
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming, 650093, China
- Southwest United Graduate School, Kunming, Yunnan, 650093, China
| |
Collapse
|
9
|
Zhao C, Catarina G, Zhang JJ, Henriques JCG, Yang L, Ma J, Feng X, Gröning O, Ruffieux P, Fernández-Rossier J, Fasel R. Tunable topological phases in nanographene-based spin-1/2 alternating-exchange Heisenberg chains. NATURE NANOTECHNOLOGY 2024; 19:1789-1795. [PMID: 39468357 DOI: 10.1038/s41565-024-01805-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/06/2024] [Indexed: 10/30/2024]
Abstract
Unlocking the potential of topological order in many-body spin systems has been a key goal in quantum materials research. Despite extensive efforts, the quest for a versatile platform enabling site-selective spin manipulation, essential for tuning and probing diverse topological phases, has persisted. Here we utilize on-surface synthesis to construct spin-1/2 alternating-exchange Heisenberg chains by covalently linking Clar's goblets-nanographenes each hosting two antiferromagnetically coupled spins. Using scanning tunnelling microscopy, we exert atomic-scale control over chain lengths, parities and exchange-coupling terminations, and probe their magnetic response via inelastic tunnelling spectroscopy. Our investigation confirms the gapped nature of bulk excitations in the chains, known as triplons. Their dispersion relation is extracted from the spatial variation of tunnelling spectral amplitudes. Depending on the parity and termination of chains, we observe varying numbers of in-gap spin-1/2 edge excitations, reflecting the degeneracy of distinct topological ground states in the thermodynamic limit. By monitoring interactions between these edge spins, we identify the exponential decay of spin correlations. Our findings present a phase-controlled many-body platform, opening avenues toward spin-based quantum devices.
Collapse
Affiliation(s)
- Chenxiao Zhao
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Gonçalo Catarina
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Jin-Jiang Zhang
- Faculty of Chemistry and Food Chemistry, and Center for Advancing Electronics Dresden, Technical University of Dresden, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Halle, Germany
| | - João C G Henriques
- International Iberian Nanotechnology Laboratory, Braga, Portugal
- Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Lin Yang
- Faculty of Chemistry and Food Chemistry, and Center for Advancing Electronics Dresden, Technical University of Dresden, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Halle, Germany
| | - Ji Ma
- Faculty of Chemistry and Food Chemistry, and Center for Advancing Electronics Dresden, Technical University of Dresden, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Halle, Germany
| | - Xinliang Feng
- Faculty of Chemistry and Food Chemistry, and Center for Advancing Electronics Dresden, Technical University of Dresden, Dresden, Germany.
- Max Planck Institute of Microstructure Physics, Halle, Germany.
| | - Oliver Gröning
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Pascal Ruffieux
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland.
| | | | - Roman Fasel
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
- University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Catarina G, Turco E, Krane N, Bommert M, Ortega-Guerrero A, Gröning O, Ruffieux P, Fasel R, Pignedoli CA. Conformational Tuning of Magnetic Interactions in Coupled Nanographenes. NANO LETTERS 2024; 24:12536-12544. [PMID: 39348224 DOI: 10.1021/acs.nanolett.4c03518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Phenalenyl (C13H9) is an open-shell spin-1/2 nanographene. Using scanning tunneling microscopy (STM) inelastic electron tunneling spectroscopy (IETS), covalently bonded phenalenyl dimers have been shown to feature conductance steps associated with singlet-triplet excitations of a spin-1/2 dimer with antiferromagnetic exchange. Here, we address the possibility of tuning the magnitude of the exchange interactions by varying the dihedral angle between the two molecules within a dimer. Theoretical methods ranging from density functional theory calculations to many-body model Hamiltonians solved within different levels of approximation are used to explain STM-IETS measurements of phenalenyl dimers on a hexagonal boron nitride (h-BN)/Rh(111) surface, which exhibit signatures of twisting. By means of first-principles calculations, we also propose strategies to induce sizable twist angles in surface-adsorbed phenalenyl dimers via functional groups, including a photoswitchable scheme. This work paves the way toward tuning magnetic couplings in carbon-based spin chains and two-dimensional lattices.
Collapse
Affiliation(s)
- Gonçalo Catarina
- nanotech@surfaces Laboratory, Empa─Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Elia Turco
- nanotech@surfaces Laboratory, Empa─Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Nils Krane
- nanotech@surfaces Laboratory, Empa─Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Max Bommert
- nanotech@surfaces Laboratory, Empa─Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Andres Ortega-Guerrero
- nanotech@surfaces Laboratory, Empa─Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Oliver Gröning
- nanotech@surfaces Laboratory, Empa─Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Pascal Ruffieux
- nanotech@surfaces Laboratory, Empa─Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Roman Fasel
- nanotech@surfaces Laboratory, Empa─Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Carlo A Pignedoli
- nanotech@surfaces Laboratory, Empa─Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| |
Collapse
|
11
|
Jacobse PH, Sarker M, Saxena A, Zahl P, Wang Z, Berger E, Aluru NR, Sinitskii A, Crommie MF. Tunable Magnetic Coupling in Graphene Nanoribbon Quantum Dots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400473. [PMID: 38412424 DOI: 10.1002/smll.202400473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Indexed: 02/29/2024]
Abstract
Carbon-based quantum dots (QDs) enable flexible manipulation of electronic behavior at the nanoscale, but controlling their magnetic properties requires atomically precise structural control. While magnetism is observed in organic molecules and graphene nanoribbons (GNRs), GNR precursors enabling bottom-up fabrication of QDs with various spin ground states have not yet been reported. Here the development of a new GNR precursor that results in magnetic QD structures embedded in semiconducting GNRs is reported. Inserting one such molecule into the GNR backbone and graphitizing it results in a QD region hosting one unpaired electron. QDs composed of two precursor molecules exhibit nonmagnetic, antiferromagnetic, or antiferromagnetic ground states, depending on the structural details that determine the coupling behavior of the spins originating from each molecule. The synthesis of these QDs and the emergence of localized states are demonstrated through high-resolution atomic force microscopy (HR-AFM), scanning tunneling microscopy (STM) imaging, and spectroscopy, and the relationship between QD atomic structure and magnetic properties is uncovered. GNR QDs provide a useful platform for controlling the spin-degree of freedom in carbon-based nanostructures.
Collapse
Affiliation(s)
- Peter H Jacobse
- Department of Physics, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Mamun Sarker
- Department of Chemistry, University of Nebraska, Lincoln, NE, 68588, USA
- Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Anshul Saxena
- Walker Department of Mechanical Engineering, University of Texas, Austin, TX, 78712, USA
- Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Percy Zahl
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Ziyi Wang
- Department of Physics, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Kavli Energy NanoSciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Emma Berger
- Department of Physics, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Narayana R Aluru
- Walker Department of Mechanical Engineering, University of Texas, Austin, TX, 78712, USA
- Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Alexander Sinitskii
- Department of Chemistry, University of Nebraska, Lincoln, NE, 68588, USA
- Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Michael F Crommie
- Department of Physics, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Kavli Energy NanoSciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
12
|
Daugherty M, Jacobse PH, Jiang J, Jornet-Somoza J, Dorit R, Wang Z, Lu J, McCurdy R, Tang W, Rubio A, Louie SG, Crommie MF, Fischer FR. Regioselective On-Surface Synthesis of [3]Triangulene Graphene Nanoribbons. J Am Chem Soc 2024; 146:15879-15886. [PMID: 38813680 PMCID: PMC11177251 DOI: 10.1021/jacs.4c02386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/01/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
The integration of low-energy states into bottom-up engineered graphene nanoribbons (GNRs) is a robust strategy for realizing materials with tailored electronic band structure for nanoelectronics. Low-energy zero-modes (ZMs) can be introduced into nanographenes (NGs) by creating an imbalance between the two sublattices of graphene. This phenomenon is exemplified by the family of [n]triangulenes (n ∈ N ). Here, we demonstrate the synthesis of [3]triangulene-GNRs, a regioregular one-dimensional (1D) chain of [3]triangulenes linked by five-membered rings. Hybridization between ZMs on adjacent [3]triangulenes leads to the emergence of a narrow band gap, Eg,exp ∼ 0.7 eV, and topological end states that are experimentally verified using scanning tunneling spectroscopy. Tight-binding and first-principles density functional theory calculations within the local density approximation corroborate our experimental observations. Our synthetic design takes advantage of a selective on-surface head-to-tail coupling of monomer building blocks enabling the regioselective synthesis of [3]triangulene-GNRs. Detailed ab initio theory provides insights into the mechanism of on-surface radical polymerization, revealing the pivotal role of Au-C bond formation/breakage in driving selectivity.
Collapse
Affiliation(s)
- Michael
C. Daugherty
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Peter H. Jacobse
- Department
of Physics, University of California, Berkeley, California 94720, United States
| | - Jingwei Jiang
- Department
of Physics, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Joaquim Jornet-Somoza
- Nano-Bio
Spectroscopy Group and ETSF, Universidad
del País Vasco UPV/EHU, Donostia E20018, Spain
- Max
Planck Institute for the Structure and Dynamics of Matter, Hamburg 22761, Germany
| | - Reis Dorit
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Ziyi Wang
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Kavli
Energy NanoSciences Institute at the University of California Berkeley
and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jiaming Lu
- Department
of Physics, University of California, Berkeley, California 94720, United States
| | - Ryan McCurdy
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Weichen Tang
- Department
of Physics, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Angel Rubio
- Nano-Bio
Spectroscopy Group and ETSF, Universidad
del País Vasco UPV/EHU, Donostia E20018, Spain
- Max
Planck Institute for the Structure and Dynamics of Matter, Hamburg 22761, Germany
- Center for
Computational Quantum Physics (CCQ), The
Flatiron Institute, New York, New York 10010, United States
| | - Steven G. Louie
- Department
of Physics, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Michael F. Crommie
- Department
of Physics, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Kavli
Energy NanoSciences Institute at the University of California Berkeley
and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Felix R. Fischer
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Kavli
Energy NanoSciences Institute at the University of California Berkeley
and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Bakar
Institute of Digital Materials for the Planet, Division of Computing,
Data Science, and Society, University of
California, Berkeley, California 94720, United States
| |
Collapse
|
13
|
Xu S, Zhang Y, Zang C, Liu J, Jin W, Lefkidis G, Hübner W, Li C. Unlocking Ultrafast Spin Transfer in Single-Magnetic-Center-Decorated Triangulene Systems. J Phys Chem Lett 2024; 15:3929-3937. [PMID: 38568181 DOI: 10.1021/acs.jpclett.4c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Triangulene, as a typical open-shell graphene fragment, has attracted widespread attention for nanospintronics, promising to serve as building blocks in spin-logic units. Here, using ab initio calculations, we systematically study the laser-induced ultrafast spin-dynamic processes on triangulene nanoflakes, decorated with a transition-metal atom. The results reveal a competition between the induced magnetic center and the carbon edge of the triangulene, resulting in the coexistence of dual spin-density-distribution patterns on such single-magnetic-center systems, thus opening up possibilities of complex spin-dynamic scenarios beyond the spin flip. Interestingly, no matter what direction the spin points to, it is possible to achieve reversible spin-transfer processes using the same laser pulse. Increasing the pool of elementary processes to contain not only spin-direction-dependent but also spin-direction-independent scenarios allows for more versatile spin-logic operations, including classical handling of information and quantum computing. In the present work, we suggest downscaling nanospintronic devices by integrating triangulene-based nanostructures.
Collapse
Affiliation(s)
- Shuai Xu
- Department of Engineering Mechanics, Northwestern Polytechnical University, Xi'an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Yiming Zhang
- Department of Engineering Mechanics, Northwestern Polytechnical University, Xi'an 710072, China
- School of Science, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Congfei Zang
- Department of Engineering Mechanics, Northwestern Polytechnical University, Xi'an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Jing Liu
- Institute of Theoretical Chemistry, Ulm University, 89081 Ulm, Germany
| | - Wei Jin
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Georgios Lefkidis
- Department of Engineering Mechanics, Northwestern Polytechnical University, Xi'an 710072, China
- Department of Physics, RPTU Kaiserslautern-Landau, P.O. Box 3049, 67653 Kaiserslautern, Germany
| | - Wolfgang Hübner
- Department of Physics, RPTU Kaiserslautern-Landau, P.O. Box 3049, 67653 Kaiserslautern, Germany
| | - Chun Li
- Department of Engineering Mechanics, Northwestern Polytechnical University, Xi'an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| |
Collapse
|
14
|
Zhu X, Li K, Liu J, Wang Z, Ding Z, Su Y, Yang B, Yan K, Li G, Yu P. Topological Structure Realized in Cove-Edged Graphene Nanoribbons via Incorporation of Periodic Pentagon Rings. J Am Chem Soc 2024; 146:7152-7158. [PMID: 38421279 DOI: 10.1021/jacs.4c00270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Cove-edged zigzag graphene nanoribbons are predicted to show metallic, topological, or trivial semiconducting band structures, which are precisely determined by their cove offset positions at both edges as well as the ribbon width. However, due to the challenge of introducing coves into zigzag-edged graphene nanoribbons, only a few cove-edged graphene nanoribbons with trivial semiconducting bandgaps have been realized experimentally. Here, we report that the topological band structure can be realized in cove-edged graphene nanoribbons by embedding periodic pentagon rings on the cove edges through on-surface synthesis. Upon noncontact atomic force microscopy and scanning tunneling spectroscopy measurements, the chemical and electronic structures of cove-edged graphene nanoribbons with periodic pentagon rings have been characterized for different lengths. Combined with theoretical calculations, we find that upon inducing periodic pentagon rings the cove-edged graphene nanoribbons exhibit nontrivial topological structures. Our results provide insights for the design and understanding of the topological character in cove-edged graphene nanoribbons.
Collapse
Affiliation(s)
- Xujie Zhu
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Kezhen Li
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Jian Liu
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Zhou Wang
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Zhihao Ding
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Yunlong Su
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Bo Yang
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - KaKing Yan
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Gang Li
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
- ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, 201210 Shanghai, China
| | - Ping Yu
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| |
Collapse
|
15
|
Fang T, Zhang T, Hu T, Wang Z. Atomic-Limit Mott Insulator in [4]Triangulene Frameworks. NANO LETTERS 2024; 24:3059-3066. [PMID: 38426713 DOI: 10.1021/acs.nanolett.3c04675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Triangulene, one unique class of zigzag-edged triangular graphene molecules, has attracted tremendous research interest. In this work, as an ultimate phase of the Mott insulator, we present the realization of the atomic-limit Mott insulator in experimentally synthesized [4]triangulene frameworks ([4]-TGFs) from first-principles calculations. The frontier molecular orbitals of the nonmagnetic [4]triangulene consist of three coupled corner modes. After the isolated [4]triangulene is assembled into [4]-TGF, one special enantiomorphic flat band is created through the coupling of these corner modes, which is identified to be a second-order topological insulator with half-filled topological corner states at the Fermi level. Moreover, [4]-TGF prefers an antiferromagnetic ground state under Hubbard interactions, which further splits these metallic zero-energy states into an atomic-limit Mott insulator with spin-polarized corners. Since the fractional filling of topological corner states is a smoking-gun signature of higher-order topology, our results demonstrate a universal approach to explore the atomic-limit Mott insulators in higher-order topological materials.
Collapse
Affiliation(s)
- Tiancheng Fang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Tingfeng Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Tianyi Hu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Zhengfei Wang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, People's Republic of China
| |
Collapse
|
16
|
Piquero-Zulaica I, Corral-Rascón E, Diaz de Cerio X, Riss A, Yang B, Garcia-Lekue A, Kher-Elden MA, Abd El-Fattah ZM, Nobusue S, Kojima T, Seufert K, Sakaguchi H, Auwärter W, Barth JV. Deceptive orbital confinement at edges and pores of carbon-based 1D and 2D nanoarchitectures. Nat Commun 2024; 15:1062. [PMID: 38316774 PMCID: PMC10844643 DOI: 10.1038/s41467-024-45138-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
The electronic structure defines the properties of graphene-based nanomaterials. Scanning tunneling microscopy/spectroscopy (STM/STS) experiments on graphene nanoribbons (GNRs), nanographenes, and nanoporous graphene (NPG) often determine an apparent electronic orbital confinement into the edges and nanopores, leading to dubious interpretations such as image potential states or super-atom molecular orbitals. We show that these measurements are subject to a wave function decay into the vacuum that masks the undisturbed electronic orbital shape. We use Au(111)-supported semiconducting gulf-type GNRs and NPGs as model systems fostering frontier orbitals that appear confined along the edges and nanopores in STS measurements. DFT calculations confirm that these states originate from valence and conduction bands. The deceptive electronic orbital confinement observed is caused by a loss of Fourier components, corresponding to states of high momentum. This effect can be generalized to other 1D and 2D carbon-based nanoarchitectures and is important for their use in catalysis and sensing applications.
Collapse
Affiliation(s)
- Ignacio Piquero-Zulaica
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Straße 1, D-85748, Garching, Germany.
| | - Eduardo Corral-Rascón
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Straße 1, D-85748, Garching, Germany
| | - Xabier Diaz de Cerio
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018, Donostia-San Sebastian, Spain
| | - Alexander Riss
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Straße 1, D-85748, Garching, Germany.
| | - Biao Yang
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Straße 1, D-85748, Garching, Germany
| | - Aran Garcia-Lekue
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018, Donostia-San Sebastian, Spain.
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain.
| | - Mohammad A Kher-Elden
- Physics Department, Faculty of Science, Al-Azhar University, Nasr City, E-11884, Cairo, Egypt
| | - Zakaria M Abd El-Fattah
- Physics Department, Faculty of Science, Al-Azhar University, Nasr City, E-11884, Cairo, Egypt
| | - Shunpei Nobusue
- Institute of Advanced Energy, Kyoto University, Uji, 611-0011, Kyoto, Japan
| | - Takahiro Kojima
- Institute of Advanced Energy, Kyoto University, Uji, 611-0011, Kyoto, Japan
| | - Knud Seufert
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Straße 1, D-85748, Garching, Germany
| | - Hiroshi Sakaguchi
- Institute of Advanced Energy, Kyoto University, Uji, 611-0011, Kyoto, Japan.
| | - Willi Auwärter
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Straße 1, D-85748, Garching, Germany
| | - Johannes V Barth
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Straße 1, D-85748, Garching, Germany
| |
Collapse
|
17
|
Zhao C, Huang Q, Valenta L, Eimre K, Yang L, Yakutovich AV, Xu W, Ma J, Feng X, Juríček M, Fasel R, Ruffieux P, Pignedoli CA. Tailoring Magnetism of Graphene Nanoflakes via Tip-Controlled Dehydrogenation. PHYSICAL REVIEW LETTERS 2024; 132:046201. [PMID: 38335341 DOI: 10.1103/physrevlett.132.046201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/14/2023] [Accepted: 12/15/2023] [Indexed: 02/12/2024]
Abstract
Atomically precise graphene nanoflakes called nanographenes have emerged as a promising platform to realize carbon magnetism. Their ground state spin configuration can be anticipated by Ovchinnikov-Lieb rules based on the mismatch of π electrons from two sublattices. While rational geometrical design achieves specific spin configurations, further direct control over the π electrons offers a desirable extension for efficient spin manipulations and potential quantum device operations. To this end, we apply a site-specific dehydrogenation using a scanning tunneling microscope tip to nanographenes deposited on a Au(111) substrate, which shows the capability of precisely tailoring the underlying π-electron system and therefore efficiently manipulating their magnetism. Through first-principles calculations and tight-binding mean-field-Hubbard modeling, we demonstrate that the dehydrogenation-induced Au-C bond formation along with the resulting hybridization between frontier π orbitals and Au substrate states effectively eliminate the unpaired π electron. Our results establish an efficient technique for controlling the magnetism of nanographenes.
Collapse
Affiliation(s)
- Chenxiao Zhao
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Qiang Huang
- Faculty of Chemistry and Food Chemistry, and Center for Advancing Electronics Dresden, Technical University of Dresden, Dresden 01062, Germany
| | - Leoš Valenta
- Department of Chemistry, University of Zurich, Zurich 8057, Switzerland
| | - Kristjan Eimre
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Lin Yang
- Faculty of Chemistry and Food Chemistry, and Center for Advancing Electronics Dresden, Technical University of Dresden, Dresden 01062, Germany
| | - Aliaksandr V Yakutovich
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Wangwei Xu
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern 3012, Switzerland
| | - Ji Ma
- Faculty of Chemistry and Food Chemistry, and Center for Advancing Electronics Dresden, Technical University of Dresden, Dresden 01062, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle 06120, Germany
| | - Xinliang Feng
- Faculty of Chemistry and Food Chemistry, and Center for Advancing Electronics Dresden, Technical University of Dresden, Dresden 01062, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle 06120, Germany
| | - Michal Juríček
- Department of Chemistry, University of Zurich, Zurich 8057, Switzerland
| | - Roman Fasel
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern 3012, Switzerland
| | - Pascal Ruffieux
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Carlo A Pignedoli
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| |
Collapse
|
18
|
Calupitan JP, Berdonces-Layunta A, Aguilar-Galindo F, Vilas-Varela M, Peña D, Casanova D, Corso M, de Oteyza DG, Wang T. Emergence of π-Magnetism in Fused Aza-Triangulenes: Symmetry and Charge Transfer Effects. NANO LETTERS 2023; 23:9832-9840. [PMID: 37870305 PMCID: PMC10722538 DOI: 10.1021/acs.nanolett.3c02586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
On-surface synthesis has paved the way toward the fabrication and characterization of conjugated carbon-based molecular materials that exhibit π-magnetism such as triangulenes. Aza-triangulene, a nitrogen-substituted derivative, was recently shown to display rich on-surface chemistry, offering an ideal platform to investigate structure-property relations regarding spin-selective charge transfer and magnetic fingerprints. Herein, we study electronic changes upon fusion of single molecules into larger dimeric derivatives. We show that the closed-shell structure of aza-triangulene on Ag(111) leads to closed-shell dimers covalently coupled through sterically accessible carbon atoms. Meanwhile, its open-shell structure on Au(111) leads to coupling via atoms displaying a high spin density, resulting in symmetric or asymmetric products. Interestingly, whereas all dimers on Au(111) exhibit similar charge transfer properties, only asymmetric ones show magnetic fingerprints due to spin-selective charge transfer. These results expose clear relationships among molecular symmetry, charge transfer, and spin states of π-conjugated carbon-based nanostructures.
Collapse
Affiliation(s)
- Jan Patrick Calupitan
- Centro
de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, 20018 San Sebastián, Spain
- Donostia
International Physics Center, 20018 San Sebastián, Spain
| | - Alejandro Berdonces-Layunta
- Centro
de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, 20018 San Sebastián, Spain
- Donostia
International Physics Center, 20018 San Sebastián, Spain
| | - Fernando Aguilar-Galindo
- Departamento
de Química, Universidad Autónoma
de Madrid, 28049 Madrid, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Manuel Vilas-Varela
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS) and Departamento de Química
Orgánica, Universidade de Santiago
de Compostela, 15782 Santiago de Compostela, Spain
| | - Diego Peña
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS) and Departamento de Química
Orgánica, Universidade de Santiago
de Compostela, 15782 Santiago de Compostela, Spain
| | - David Casanova
- Donostia
International Physics Center, 20018 San Sebastián, Spain
- Ikerbasque, Basque Foundation
for Science, 48009 Bilbao, Spain
| | - Martina Corso
- Centro
de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, 20018 San Sebastián, Spain
- Donostia
International Physics Center, 20018 San Sebastián, Spain
| | - Dimas G. de Oteyza
- Centro
de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, 20018 San Sebastián, Spain
- Donostia
International Physics Center, 20018 San Sebastián, Spain
- Nanomaterials
and Nanotechnology Research Center (CINN), CSIC-UNIOVI-PA, 33940 El Entrego, Spain
| | - Tao Wang
- Centro
de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, 20018 San Sebastián, Spain
- Donostia
International Physics Center, 20018 San Sebastián, Spain
| |
Collapse
|
19
|
Krane N, Turco E, Bernhardt A, Jacob D, Gandus G, Passerone D, Luisier M, Juríček M, Fasel R, Fernández-Rossier J, Ruffieux P. Exchange Interactions and Intermolecular Hybridization in a Spin- 1/ 2 Nanographene Dimer. NANO LETTERS 2023; 23:9353-9359. [PMID: 37819646 DOI: 10.1021/acs.nanolett.3c02633] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Phenalenyl is a radical nanographene with a triangular shape hosting an unpaired electron with spin S = 1/2. The open-shell nature of the phenalenyl is expected to be retained in covalently bonded networks. As a first step, we report synthesis of the phenalenyl dimer by combining in-solution synthesis and on-surface activation and its characterization on Au(111) and on a NaCl decoupling layer by means of inelastic electron tunneling spectroscopy (IETS). IETS shows inelastic steps that are identified as singlet-triplet excitation arising from interphenalenyl exchange. Spin excitation energies with and without the NaCl decoupling layer are 48 and 41 meV, respectively, indicating significant renormalization due to exchange with Au(111) electrons. Furthermore, third-neighbor hopping-induced interphenalenyl hybridization is fundamental to explaining the position-dependent bias asymmetry of the inelastic steps and activation of kinetic interphenalenyl exchange. Our results pave the way for bottom-up synthesis of S = 1/2 spin-lattices with large exchange interactions.
Collapse
Affiliation(s)
- N Krane
- nanotech@surfaces Laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600 Dübendorf, Switzerland
| | - E Turco
- nanotech@surfaces Laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600 Dübendorf, Switzerland
| | - A Bernhardt
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - D Jacob
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Universidad del País Vasco UPV/EHU, Av. Tolosa 72, E-20018 San Sebastián, Spain
- Basque Foundation for Science, IKERBASQUE, Plaza Euskadi 5, E-48009 Bilbao, Spain
| | - G Gandus
- Integrated Systems Laboratory, ETH Zürich, Gloriastrasse 35, 8092 Zürich, Switzerland
| | - D Passerone
- nanotech@surfaces Laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600 Dübendorf, Switzerland
| | - M Luisier
- Integrated Systems Laboratory, ETH Zürich, Gloriastrasse 35, 8092 Zürich, Switzerland
| | - M Juríček
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - R Fasel
- nanotech@surfaces Laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600 Dübendorf, Switzerland
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - J Fernández-Rossier
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - P Ruffieux
- nanotech@surfaces Laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600 Dübendorf, Switzerland
| |
Collapse
|
20
|
Lawrence J, He Y, Wei H, Su J, Song S, Wania Rodrigues A, Miravet D, Hawrylak P, Zhao J, Wu J, Lu J. Topological Design and Synthesis of High-Spin Aza-triangulenes without Jahn-Teller Distortions. ACS NANO 2023; 17:20237-20245. [PMID: 37791737 DOI: 10.1021/acsnano.3c05974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The atomic doping of open-shell nanographenes enables precise tuning of their electronic and magnetic states, which is crucial for their promising potential applications in optoelectronics and spintronics. Among this intriguing class of molecules, triangulenes stand out with their size-dependent electronic properties and spin states, which can also be influenced by the presence of dopant atoms and functional groups. However, the occurrence of Jahn-Teller distortions in such systems can have a crucial impact on their total spin and requires further theoretical and experimental investigation. In this study, we examine the nitrogen-doped aza-triangulene series via a combination of density functional theory and on-surface synthesis. We identify a general trend in the calculated spin states of aza-[n]triangulenes of various sizes, separating them into two symmetry classes, one of which features molecules that are predicted to undergo Jahn-Teller distortions that reduce their symmetry and thus their total spin. We link this behavior to the location of the central nitrogen atom relative to the two underlying carbon sublattices of the molecules. Consequently, our findings reveal that neutral centrally doped aza-triangulenes have one less radical than their undoped counterparts, irrespective of their predicted symmetry. We follow this by demonstrating the on-surface synthesis of π-extended aza-[5]triangulene, a large member of the higher symmetry class without Jahn-Teller distortions, via a simple one-step annealing process on Cu(111) and Au(111). Using scanning probe microscopy and spectroscopy combined with theoretical calculations, we prove that the molecule is positively charged on the Au(111) substrate, with a high-spin quintet state of S = 2, the same total spin as undoped neutral [5]triangulene. Our study uncovers the correlation between the dopant position and the radical nature of high-spin nanographenes, providing a strategy for the design and development of these nanographenes for various applications.
Collapse
Affiliation(s)
- James Lawrence
- Department of Chemistry, National University of Singapore, 117543 Singapore
| | - Yuanyuan He
- College of Material and Textile Engineering, Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing 314001, Zhejiang, People's Republic of China
| | - Haipeng Wei
- Department of Chemistry, National University of Singapore, 117543 Singapore
| | - Jie Su
- Department of Chemistry, National University of Singapore, 117543 Singapore
| | - Shaotang Song
- Department of Chemistry, National University of Singapore, 117543 Singapore
| | | | - Daniel Miravet
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Pawel Hawrylak
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- Institute for Functional Intelligent Materials, National University of Singapore, 117544 Singapore
| | - Jianwei Zhao
- College of Material and Textile Engineering, Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing 314001, Zhejiang, People's Republic of China
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 117543 Singapore
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, 117543 Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, 117544 Singapore
| |
Collapse
|
21
|
Vilas-Varela M, Romero-Lara F, Vegliante A, Calupitan JP, Martínez A, Meyer L, Uriarte-Amiano U, Friedrich N, Wang D, Schulz F, Koval NE, Sandoval-Salinas ME, Casanova D, Corso M, Artacho E, Peña D, Pascual JI. On-Surface Synthesis and Characterization of a High-Spin Aza-[5]-Triangulene. Angew Chem Int Ed Engl 2023; 62:e202307884. [PMID: 37604782 DOI: 10.1002/anie.202307884] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
Triangulenes are a class of open-shell triangular graphene flakes with total spin increasing with their size. In the last years, on-surface-synthesis strategies have permitted fabricating and engineering triangulenes of various sizes and structures with atomic precision. However, direct proof of the increasing total spin with their size remains elusive. In this work, we report the combined in-solution and on-surface synthesis of a large nitrogen-doped triangulene (aza-[5]-triangulene) on a Au(111) surface, and the detection of its high-spin ground state. Bond-resolved scanning tunneling microscopy images uncovered radical states distributed along the zigzag edges, which were detected as weak zero-bias resonances in scanning tunneling spectra. These spectral features reveal the partial Kondo screening of a high-spin state. Through a combination of several simulation tools, we find that the observed distribution of radical states is explained by a quintet ground state (S=2), instead of the quartet state (S=3/2) expected for the neutral species. This confirms that electron transfer to the metal substrate raises the spin of the ground state. We further provide a qualitative description of the change of (anti)aromaticity introduced by N-substitution, and its role in the charge stabilization on a surface, resulting in an S=2 aza-triangulene on Au(111).
Collapse
Affiliation(s)
- Manuel Vilas-Varela
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782-, Santiago de Compostela, Spain
| | | | | | - Jan Patrick Calupitan
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, 20018, Donostia-San Sebastián, Spain
- Donostia International Physics Center (DIPC), 20018, Donostia-San Sebastián, Spain
| | - Adrián Martínez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782-, Santiago de Compostela, Spain
| | - Lorenz Meyer
- CIC nanoGUNE-BRTA, 20018, Donostia-San Sebastián, Spain
| | | | | | - Dongfei Wang
- CIC nanoGUNE-BRTA, 20018, Donostia-San Sebastián, Spain
| | - Fabian Schulz
- CIC nanoGUNE-BRTA, 20018, Donostia-San Sebastián, Spain
| | | | | | - David Casanova
- Donostia International Physics Center (DIPC), 20018, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Martina Corso
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, 20018, Donostia-San Sebastián, Spain
| | - Emilio Artacho
- CIC nanoGUNE-BRTA, 20018, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009, Bilbao, Spain
- Theory of Condensed Matter, Cavendish Laboratory, University of Cambridge, J. J. Thomson Ave., Cambridge, CB3 0HE, UK
| | - Diego Peña
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782-, Santiago de Compostela, Spain
| | - José Ignacio Pascual
- CIC nanoGUNE-BRTA, 20018, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009, Bilbao, Spain
| |
Collapse
|
22
|
Wu F, Barragán A, Gallardo A, Yang L, Biswas K, Écija D, Mendieta-Moreno JI, Urgel JI, Ma J, Feng X. Structural Expansion of Cyclohepta[def]fluorene towards Azulene-Embedded Non-Benzenoid Nanographenes. Chemistry 2023; 29:e202301739. [PMID: 37339368 DOI: 10.1002/chem.202301739] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023]
Abstract
Non-benzenoid non-alternant nanographenes (NGs) have attracted increasing attention on account of their distinct electronic and structural features in comparison to their isomeric benzenoid counterparts. In this work, we present a series of unprecedented azulene-embedded NGs on Au(111) during the attempted synthesis of cyclohepta[def]fluorene-based high-spin non-Kekulé structure. Comprehensive scanning tunneling microscopy (STM) and non-contact atomic force microscopy (nc-AFM) evidence the structures and conformations of these unexpected products. The dynamics of the precursor bearing 9-(2,6-dimethylphenyl)anthracene and dihydro-dibenzo-cyclohepta[def]fluorene units and its reaction products on the surface are analyzed by density functional theory (DFT) and molecular dynamics (MD) simulations. Our study sheds light on the fundamental understanding of precursor design for the fabrication of π-extended non-benzenoid NGs on a metal surface.
Collapse
Affiliation(s)
- Fupeng Wu
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
- Center for Advancing Electronics Dresden (cfaed) &, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Ana Barragán
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Aurelio Gallardo
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Lin Yang
- Center for Advancing Electronics Dresden (cfaed) &, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Kalyan Biswas
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - David Écija
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Jesús I Mendieta-Moreno
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - José I Urgel
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Ji Ma
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
- Center for Advancing Electronics Dresden (cfaed) &, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Xinliang Feng
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
- Center for Advancing Electronics Dresden (cfaed) &, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| |
Collapse
|
23
|
Yu H, Heine T. Magnetic Coupling Control in Triangulene Dimers. J Am Chem Soc 2023; 145:19303-19311. [PMID: 37610306 PMCID: PMC10485925 DOI: 10.1021/jacs.3c05178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Indexed: 08/24/2023]
Abstract
Metal-free magnetism remains an enigmatic field, offering prospects for unconventional magnetic and electronic devices. In the pursuit of such magnetism, triangulenes, endowed with inherent spin polarization, are promising candidates to serve as monomers to construct extended structures. However, controlling and enhancing the magnetic interactions between the monomers persist as a significant challenge in molecular spintronics, as so far only weak antiferromagnetic coupling through the linkage has been realized, hindering their room temperature utilization. Herein, we investigate 24 triangulene dimers using first-principles calculations and demonstrate their tunable magnetic coupling (J), achieving unprecedented strong J values of up to -144 meV in a non-Kekulé dimer. We further establish a positive correlation between bandgap, electronic coupling, and antiferromagnetic interaction, thereby providing molecular-level insights into enhancing magnetic interactions. By twisting the molecular fragments, we demonstrate an effective and feasible approach to control both the sign and strength of J by tuning the balance between potential and kinetic exchanges. We discover that J can be substantially boosted at planar configurations up to -198 meV. We realize ferromagnetic coupling in nitrogen-doped triangulene dimers at both planar and largely twisted configurations, representing the first example of ferromagnetic triangulene dimers that cannot be predicted by the Ovchinnikov rule. This work thus provides a practical strategy for augmenting magnetic coupling and open up new avenues for metal-free ferromagnetism.
Collapse
Affiliation(s)
- Hongde Yu
- Faculty
of Chemistry and Food Chemistry, Technische
Universität Dresden, Bergstraße 66c, 01062 Dresden, Germany
| | - Thomas Heine
- Faculty
of Chemistry and Food Chemistry, Technische
Universität Dresden, Bergstraße 66c, 01062 Dresden, Germany
- Institute
of Resource Ecology, Helmholtz Zentrum Dresden-Rossendorf, Permoserstraße 15, 04318 Leipzig, Germany
- Department
of Chemistry, Yonsei University, Seodaemun-gu, Seoul 120-749, Republic of Korea
| |
Collapse
|
24
|
Du Q, Su X, Liu Y, Jiang Y, Li C, Yan K, Ortiz R, Frederiksen T, Wang S, Yu P. Orbital-symmetry effects on magnetic exchange in open-shell nanographenes. Nat Commun 2023; 14:4802. [PMID: 37558678 PMCID: PMC10412602 DOI: 10.1038/s41467-023-40542-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 08/01/2023] [Indexed: 08/11/2023] Open
Abstract
Open-shell nanographenes appear as promising candidates for future applications in spintronics and quantum technologies. A critical aspect to realize this potential is to design and control the magnetic exchange. Here, we reveal the effects of frontier orbital symmetries on the magnetic coupling in diradical nanographenes through scanning probe microscope measurements and different levels of theoretical calculations. In these open-shell nanographenes, the exchange energy exhibits a remarkable variation between 20 and 160 meV. Theoretical calculations reveal that frontier orbital symmetries play a key role in affecting the magnetic coupling on such a large scale. Moreover, a triradical nanographene is demonstrated for investigating the magnetic interaction among three unpaired electrons with unequal magnetic exchange, in agreement with Heisenberg spin model calculations. Our results provide insights into both theoretical design and experimental realization of nanographene materials with different exchange interactions through tuning the orbital symmetry, potentially useful for realizing magnetically operable graphene-based nanomaterials.
Collapse
Affiliation(s)
- Qingyang Du
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Xuelei Su
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Yufeng Liu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yashi Jiang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Can Li
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - KaKing Yan
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Ricardo Ortiz
- Donostia International Physics Center (DIPC) - UPV/EHU, 20018, San Sebastián, Spain.
| | - Thomas Frederiksen
- Donostia International Physics Center (DIPC) - UPV/EHU, 20018, San Sebastián, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Spain.
| | - Shiyong Wang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Ping Yu
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| |
Collapse
|
25
|
Turco E, Bernhardt A, Krane N, Valenta L, Fasel R, Juríček M, Ruffieux P. Observation of the Magnetic Ground State of the Two Smallest Triangular Nanographenes. JACS AU 2023; 3:1358-1364. [PMID: 37234116 PMCID: PMC10207087 DOI: 10.1021/jacsau.2c00666] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 05/27/2023]
Abstract
Fusion of three benzene rings in a triangular fashion gives rise to the smallest open-shell graphene fragment, the phenalenyl radical, whose π-extension leads to an entire family of non-Kekulé triangular nanographenes with high-spin ground states. Here, we report the first synthesis of unsubstituted phenalenyl on a Au(111) surface, which is achieved by combining in-solution synthesis of the hydro-precursor and on-surface activation by atomic manipulation, using the tip of a scanning tunneling microscope. Single-molecule structural and electronic characterizations confirm its open-shell S = 1/2 ground state that gives rise to Kondo screening on the Au(111) surface. In addition, we compare the phenalenyl's electronic properties with those of triangulene, the second homologue in the series, whose S = 1 ground state induces an underscreened Kondo effect. Our results set a new lower size limit in the on-surface synthesis of magnetic nanographenes that can serve as building blocks for the realization of new exotic quantum phases of matter.
Collapse
Affiliation(s)
- Elia Turco
- nanotech@surfaces
Laboratory, Empa−Swiss Federal Laboratories
for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Annika Bernhardt
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Nils Krane
- nanotech@surfaces
Laboratory, Empa−Swiss Federal Laboratories
for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Leoš Valenta
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Roman Fasel
- nanotech@surfaces
Laboratory, Empa−Swiss Federal Laboratories
for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Michal Juríček
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Pascal Ruffieux
- nanotech@surfaces
Laboratory, Empa−Swiss Federal Laboratories
for Materials Science and Technology, 8600 Dübendorf, Switzerland
| |
Collapse
|
26
|
Wang T, Angulo-Portugal P, Berdonces-Layunta A, Jancarik A, Gourdon A, Holec J, Kumar M, Soler D, Jelinek P, Casanova D, Corso M, de Oteyza DG, Calupitan JP. Tuning the Diradical Character of Pentacene Derivatives via Non-Benzenoid Coupling Motifs. J Am Chem Soc 2023; 145:10333-10341. [PMID: 37099608 PMCID: PMC10176464 DOI: 10.1021/jacs.3c02027] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Indexed: 04/27/2023]
Abstract
The development of functional organic molecules requires structures of increasing size and complexity, which are typically obtained by the covalent coupling of smaller building blocks. Herein, with the aid of high-resolution scanning tunneling microscopy/spectroscopy and density functional theory, the coupling of a sterically demanded pentacene derivative on Au(111) into fused dimers connected by non-benzenoid rings was studied. The diradical character of the products was tuned according to the coupling section. In particular, the antiaromaticity of cyclobutadiene as the coupling motif and its position within the structure play a decisive role in shifting the natural orbital occupancies toward a stronger diradical electronic character. Understanding these structure-property relations is desirable not only for fundamental reasons but also for designing new complex and functional molecular structures.
Collapse
Affiliation(s)
- Tao Wang
- Donostia
International Physics Center, 20018 San Sebastián, Spain
- Centro
de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, 20018 San Sebastián, Spain
| | | | - Alejandro Berdonces-Layunta
- Donostia
International Physics Center, 20018 San Sebastián, Spain
- Centro
de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, 20018 San Sebastián, Spain
| | - Andrej Jancarik
- Univ.
Bordeaux, CNRS, Centre de Recherche Paul Pascal, CRPP, UMR 5031, 33600 Pessac, France
| | - André Gourdon
- CEMES-CNRS, 29 Rue J. Marvig, 31055 Toulouse, France
| | - Jan Holec
- CEMES-CNRS, 29 Rue J. Marvig, 31055 Toulouse, France
| | - Manish Kumar
- Institute
of Physics of the Czech Academy of Sciences, Cukrovarnicka 10, 162 00 Praha, Czech
Republic
| | - Diego Soler
- Institute
of Physics of the Czech Academy of Sciences, Cukrovarnicka 10, 162 00 Praha, Czech
Republic
| | - Pavel Jelinek
- Institute
of Physics of the Czech Academy of Sciences, Cukrovarnicka 10, 162 00 Praha, Czech
Republic
| | - David Casanova
- Donostia
International Physics Center, 20018 San Sebastián, Spain
- Ikerbasque,
Basque Foundation for Science, 48009 Bilbao, Spain
| | - Martina Corso
- Donostia
International Physics Center, 20018 San Sebastián, Spain
- Centro
de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, 20018 San Sebastián, Spain
| | - Dimas G. de Oteyza
- Donostia
International Physics Center, 20018 San Sebastián, Spain
- Nanomaterials
and Nanotechnology Research Center (CINN), CSIC-UNIOVI-PA, 33940 El Entrego, Spain
| | - Jan Patrick Calupitan
- Donostia
International Physics Center, 20018 San Sebastián, Spain
- Centro
de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, 20018 San Sebastián, Spain
| |
Collapse
|
27
|
Wang K, Geng T, Xu H. The synthesis of triazine‐based conjugated microporous polymers via nucleophilic substitution reactions for fluorescence sensing to
o
‐nitrophenol. J Appl Polym Sci 2023. [DOI: 10.1002/app.53707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Kang Wang
- Anhui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical Engineering Anqing Normal University Anqing China
| | - Tong‐Mou Geng
- Anhui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical Engineering Anqing Normal University Anqing China
| | - Heng Xu
- Anhui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical Engineering Anqing Normal University Anqing China
| |
Collapse
|
28
|
Ni X, Huang H, Brédas JL. Organic Higher-Order Topological Insulators: Heterotriangulene-Based Covalent Organic Frameworks. J Am Chem Soc 2022; 144:22778-22786. [PMID: 36469524 DOI: 10.1021/jacs.2c11229] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ability to design and control the chemical characteristics of covalent organic frameworks (COFs) offers a new avenue for the development of functional materials, especially with respect to topological properties. Based on density functional theory calculations, by varying the core units through the choice of bridging groups [O, C═O, CH2, or C(CH3)2] and the linker units [acetylene, diacetylene, or benzene], we have designed heterotriangulene-based COFs that are predicted to be two-dimensional higher-order topological insulators (TIs). The higher-order TI characteristics of these COFs are identified via their topological invariants and the presence of in-gap topological corner modes and gapped edge states. The frontier molecular orbital energies of the building moieties play an important role in determining the size of the higher-order TI gap, which we find to be highly dependent on linker units. We also examined the deposition of the COFs on a boron nitride substrate to assess the feasibility of experimental observation of a higher-order TI phase in the organic layer. This work thus provides new insights into heterotriangulene-based COFs and guidance for the exploration of purely organic topological materials.
Collapse
Affiliation(s)
- Xiaojuan Ni
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona85721-0088, United States
| | - Huaqing Huang
- School of Physics, Peking University, Beijing100871, China.,Collaborative Innovation Center of Quantum Matter, Beijing100871, China
| | - Jean-Luc Brédas
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona85721-0088, United States
| |
Collapse
|