1
|
Lin MZ, Li M, Zhang H, Li WX, Li Z, Wang LZ, Chen C, Li XL, Fan HJ, Jiang GB, Song K. Overcoming chemoresistance in acute myeloid leukemia via co-delivery of siGLUT1 and hydroxycamptothecin using hyaluronic acid-conjugated nanocarriers. Int J Biol Macromol 2025; 308:142492. [PMID: 40147647 DOI: 10.1016/j.ijbiomac.2025.142492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 03/08/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Multi-drug resistance (MDR) presents a major challenge in the treatment of acute myeloid leukemia (AML). Combining chemotherapy and gene therapy offers a promising strategy to improve drug sensitivity in resistant AML cells. However, designing an effective delivery system for co-administration of multiple agents while maintaining biosafety remains challenging. In this study, we developed a biocompatible co-delivery system that incorporates hydroxycamptothecin (HCPT) and glucose transporter 1 (GLUT1) small interfering RNA (siRNA). HCPT was loaded onto gold nanoparticles through crystallization, ensuring drug stability and safety. The branched configuration of self-branched chitosan contributed to improved gene delivery efficiency. The hyaluronic acid-conjugated nanocarrier specifically targeted CD44 receptors expressed on AML cells, while the pH-sensitive properties of self-branched chitosan promoted localized drug and gene release. This system effectively delivered the therapeutic agents to tumor sites, improving cellular uptake and synergistically inhibiting DNA synthesis by downregulating glycolysis and P-glycoprotein expression in leukemic cells. Both in vitro and in vivo experiments demonstrated strong antitumor efficacy and excellent biosafety. This co-delivery system offers a promising strategy for overcoming drug resistance in AML and holds potential for clinical translation.
Collapse
MESH Headings
- Hyaluronic Acid/chemistry
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Humans
- Drug Resistance, Neoplasm/drug effects
- Animals
- Camptothecin/analogs & derivatives
- Camptothecin/pharmacology
- Camptothecin/chemistry
- Camptothecin/administration & dosage
- Mice
- RNA, Small Interfering/genetics
- RNA, Small Interfering/administration & dosage
- Drug Carriers/chemistry
- Cell Line, Tumor
- Nanoparticles/chemistry
Collapse
Affiliation(s)
- Min-Zhao Lin
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Min Li
- Department of Pharmy, The First Affiliated Hospital of Jishou University, Jishou, Hunan 416000, China
| | - Hongyan Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Wei-Xiong Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Zenglin Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Ling-Zhi Wang
- Department of Pharmy, The First Affiliated Hospital of Jishou University, Jishou, Hunan 416000, China
| | - Chao Chen
- Department of Pharmy, The First Affiliated Hospital of Jishou University, Jishou, Hunan 416000, China
| | - Xiao-Lan Li
- Department of Hematology, The First Affiliated Hospital of Jishou University, Jishou, Hunan 416000, China
| | - Hong-Jie Fan
- Department of Hematology, The First Affiliated Hospital of Jishou University, Jishou, Hunan 416000, China
| | - Gang-Biao Jiang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Kui Song
- Department of Hematology, The First Affiliated Hospital of Jishou University, Jishou, Hunan 416000, China.
| |
Collapse
|
2
|
Richards CJ, Wierenga AT, Brouwers-Vos AZ, Kyrloglou E, Dillingh LS, Mulder PP, Palasantzas G, Schuringa JJ, Roos WH. Elastic properties of leukemic cells linked to maturation stage and integrin activation. iScience 2025; 28:112150. [PMID: 40201128 PMCID: PMC11978321 DOI: 10.1016/j.isci.2025.112150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/06/2025] [Accepted: 02/27/2025] [Indexed: 04/10/2025] Open
Abstract
Acute myeloid leukemia (AML) remains challenging to cure. In addition to mutations that alter cell functioning, biophysical properties are modulated by external cues. In particular, membrane proteins that interact with the bone marrow niche can induce cellular changes. Here, we develop an atomic force microscopy (AFM) approach to measure non-adherent AML cell mechanical properties. The Young's modulus of the AML cell line, THP-1, increased in response to retronectin, whereas knock-out of the adhesion protein ITGB1 resulted in no response to retronectin. Confocal microscopy revealed different actin cytoskeleton morphologies for wild-type and ITGB1 knock-out cells exposed to retronectin. These results indicate that ITGB1 mediates stimuli-induced cellular mechanoresponses through cytoskeletal changes. We next used AFM to investigate the elastic properties of primary AML cells and found that more committed cells had lower Young's moduli than immature AMLs. Overall, this provides a platform for investigating the molecular mechanisms involved in leukemic cell mechanoresponse.
Collapse
Affiliation(s)
- Ceri J. Richards
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, 9747 AG Groningen, the Netherlands
| | - Albertus T.J. Wierenga
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Annet Z. Brouwers-Vos
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Emmanouil Kyrloglou
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Laura S. Dillingh
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, 9747 AG Groningen, the Netherlands
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
- Nanostructure Materials and Interfaces, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Patty P.M.F.A. Mulder
- Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Georgios Palasantzas
- Nanostructure Materials and Interfaces, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Jan Jacob Schuringa
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Wouter H. Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, 9747 AG Groningen, the Netherlands
| |
Collapse
|
3
|
Hagen JT, Montgomery MM, Aruleba RT, Chrest BR, Krassovskaia P, Green TD, Pacheco EA, Kassai M, Zeczycki TN, Schmidt CA, Bhowmick D, Tan SF, Feith DJ, Chalfant CE, Loughran TP, Liles D, Minden MD, Schimmer AD, Shakil MS, McBride MJ, Cabot MC, McClung JM, Fisher-Wellman KH. Acute myeloid leukemia mitochondria hydrolyze ATP to support oxidative metabolism and resist chemotherapy. SCIENCE ADVANCES 2025; 11:eadu5511. [PMID: 40203117 PMCID: PMC11980858 DOI: 10.1126/sciadv.adu5511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/05/2025] [Indexed: 04/11/2025]
Abstract
OxPhos inhibitors have struggled to show a clinical benefit because of their inability to distinguish healthy from cancerous mitochondria. Herein, we describe an actionable bioenergetic mechanism unique to acute myeloid leukemia (AML) mitochondria. Unlike healthy cells that couple respiration to ATP synthesis, AML mitochondria support inner-membrane polarization by consuming ATP. Matrix ATP consumption allows cells to survive bioenergetic stress. Thus, we hypothesized AML cells may resist chemotherapy-induced cell death by reversing the ATP synthase reaction. In support, BCL-2 inhibition with venetoclax abolished OxPhos flux without affecting mitochondrial polarization. In surviving AML cells, sustained mitochondrial polarization depended on matrix ATP consumption. Mitochondrial ATP consumption was further enhanced in AML cells made refractory to venetoclax, consequential to down-regulations in the endogenous F1-ATPase inhibitor ATP5IF1. Knockdown of ATP5IF1 conferred venetoclax resistance, while ATP5IF1 overexpression impaired F1-ATPase activity and heightened sensitivity to venetoclax. These data identify matrix ATP consumption as a cancer cell-intrinsic bioenergetic vulnerability actionable in the context of BCL-2 targeted chemotherapy.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Adenosine Triphosphate/metabolism
- Mitochondria/metabolism
- Mitochondria/drug effects
- Drug Resistance, Neoplasm
- Oxidative Phosphorylation/drug effects
- Cell Line, Tumor
- Sulfonamides/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Mitochondrial Proton-Translocating ATPases/metabolism
- Antineoplastic Agents/pharmacology
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Energy Metabolism/drug effects
Collapse
Affiliation(s)
- James T. Hagen
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| | - McLane M. Montgomery
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
- Department of Cancer Biology, Atrium Health Wake Forest Baptist Comprehensive Cancer, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Raphael T. Aruleba
- Department of Cancer Biology, Atrium Health Wake Forest Baptist Comprehensive Cancer, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Brett R. Chrest
- Department of Cancer Biology, Atrium Health Wake Forest Baptist Comprehensive Cancer, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Polina Krassovskaia
- Department of Cancer Biology, Atrium Health Wake Forest Baptist Comprehensive Cancer, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Thomas D. Green
- Department of Cancer Biology, Atrium Health Wake Forest Baptist Comprehensive Cancer, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Emely A. Pacheco
- Department of Cancer Biology, Atrium Health Wake Forest Baptist Comprehensive Cancer, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Miki Kassai
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| | - Tonya N. Zeczycki
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Cameron A. Schmidt
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Debajit Bhowmick
- Brody School of Medicine at East Carolina University, Flow Cytometry Core, Greenville, NC, USA
| | - Su-Fern Tan
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, USA
- University of Virginia Cancer Center, Charlottesville, VA, USA
| | - David J. Feith
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, USA
- University of Virginia Cancer Center, Charlottesville, VA, USA
| | - Charles E. Chalfant
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, USA
- University of Virginia Cancer Center, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
- Research Service, Richmond Veterans Administration Medical Center, Richmond, VA, USA
| | - Thomas P. Loughran
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, USA
- University of Virginia Cancer Center, Charlottesville, VA, USA
| | - Darla Liles
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Mark D. Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Aaron D. Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Md Salman Shakil
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
- Rutgers Cancer Institute, Rutgers University, New Brunswick, NJ, USA
| | - Matthew J. McBride
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
- Rutgers Cancer Institute, Rutgers University, New Brunswick, NJ, USA
| | - Myles C. Cabot
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Joseph M. McClung
- Section of Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Kelsey H. Fisher-Wellman
- Department of Cancer Biology, Atrium Health Wake Forest Baptist Comprehensive Cancer, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
4
|
Park SJ, Cerella C, Kang JM, Byun J, Kum D, Orlikova-Boyer B, Lorant A, Schnekenburger M, Al-Mourabit A, Christov C, Lee J, Han BW, Diederich M. Tetrahydrobenzimidazole TMQ0153 targets OPA1 and restores drug sensitivity in AML via ROS-induced mitochondrial metabolic reprogramming. J Exp Clin Cancer Res 2025; 44:114. [PMID: 40197337 PMCID: PMC11974110 DOI: 10.1186/s13046-025-03372-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/20/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a highly aggressive cancer with a 5-year survival rate of less than 35%. It is characterized by significant drug resistance and abnormal energy metabolism. Mitochondrial dynamics and metabolism are crucial for AML cell survival. Mitochondrial fusion protein optic atrophy (OPA)1 is upregulated in AML patients with adverse mutations and correlates with poor prognosis. METHOD This study investigated targeting OPA1 with TMQ0153, a tetrahydrobenzimidazole derivative, to disrupt mitochondrial metabolism and dynamics as a novel therapeutic approach to overcome treatment resistance. Effects of TMQ0153 treatment on OPA1 and mitofusin (MFN)2 protein levels, mitochondrial morphology, and function in AML cells. In this study, we examined reactive oxygen species (ROS) production, oxidative phosphorylation (OXPHOS) inhibition, mitochondrial membrane potential (MMP) depolarization, and apoptosis. Additionally, metabolic profiling was conducted to analyze changes in metabolic pathways. RESULTS TMQ0153 treatment significantly reduced OPA1 and mitofusin (MFN)2 protein levels and disrupted the mitochondrial morphology and function in AML cells. This increases ROS production and inhibits OXPHOS, MMP depolarization, and caspase-dependent apoptosis. Metabolic reprogramming was observed, shifting from mitochondrial respiration to glycolysis and impaired respiratory chain activity. Profiling revealed reduced overall metabolism along with changes in the glutathione (GSH)/oxidized glutathione (GSSG) and NAD⁺/NADH redox ratios. TMQ0153 treatment reduces tumor volume and weight in MV4-11 xenografts in vivo. Combination therapies with TMQ0153 and other AML drugs significantly reduced the leukemic burden and prolonged survival in NOD scid gamma (NSG) mice xenografted with U937-luc and MOLM-14-luc cells. CONCLUSION TMQ0153 targets mitochondrial dynamics by inhibiting OPA1, inducing metabolic reprogramming, and triggering apoptosis in AML cells. It enhances the efficacy of existing AML therapies and provides a promising combination treatment approach that exploits mitochondrial vulnerability and metabolic reprogramming to improve treatment outcomes in AML.
Collapse
MESH Headings
- Humans
- GTP Phosphohydrolases/metabolism
- GTP Phosphohydrolases/antagonists & inhibitors
- GTP Phosphohydrolases/genetics
- Reactive Oxygen Species/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Animals
- Mice
- Benzimidazoles/pharmacology
- Mitochondria/metabolism
- Mitochondria/drug effects
- Xenograft Model Antitumor Assays
- Cell Line, Tumor
- Apoptosis/drug effects
- Oxidative Phosphorylation/drug effects
- Drug Resistance, Neoplasm/drug effects
- Membrane Potential, Mitochondrial/drug effects
- Metabolic Reprogramming
Collapse
Affiliation(s)
- Su Jung Park
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Claudia Cerella
- Laboratoire de Biologie Moléculaire du Cancer, BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
- Present address: Department of Cancer Research, Luxembourg Institute of Health (LIH), BAM Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
| | - Jin Mo Kang
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jinyoung Byun
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - David Kum
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Barbora Orlikova-Boyer
- Laboratoire de Biologie Moléculaire du Cancer, BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
- Present address: Department of Cancer Research, Luxembourg Institute of Health (LIH), BAM Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
| | - Anne Lorant
- Laboratoire de Biologie Moléculaire du Cancer, BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
- Present address: Luxembourg Centre for Systems Biomedicine, Bioinformatics Core, Roudeneck, 1, Boulevard du Jazz, Esch-sur-Alzette, L-4370, Luxembourg
| | - Michael Schnekenburger
- Laboratoire de Biologie Moléculaire du Cancer, BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
- Present address: Department of Cancer Research, Luxembourg Institute of Health (LIH), BAM Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
| | - Ali Al-Mourabit
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, Gif-Sur-Yvette, 91190, France
| | - Christo Christov
- Service d'Histologie, Faculté de Médicine, Université de Lorraine, and INSERM U1256 NGERE, 54000, Nancy, France
| | - Juyong Lee
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, College of Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Marc Diederich
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
5
|
Dai P, Ma Z, Xie K, Li Y, Zhang Y, Li C, Sun Y, Gu YC, Xia Q, Zhang W. Discovery of Novel Pyrazole/Thiazole Derivatives Containing Cyano/Thiocyanato Groups as Fungicide Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6231-6240. [PMID: 40029986 DOI: 10.1021/acs.jafc.4c09156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2025]
Abstract
The introduction of groups with high drug activity is an effective strategy for discovering novel succinate dehydrogenase inhibitor (SDHI) fungicides, providing insights for the future design of SDHI fungicides with higher efficacy and resistance. In this study, we designed and synthesized a series of novel pyrazole/thiazole derivatives containing cyano/thiocyanato groups and evaluated them for antifungal activity. Some of the designed compounds exhibited promising antifungal activities against tested fungi, among them, compounds B31 and B35 displayed excellent in vitro activity against Rhizoctonia solani with EC50 values of 1.83 and 1.08 μg/mL, which were in close proximity to the commercial fungicide boscalid (EC50 = 0.87 μg/mL). For Altemaria solani, compound B35 (11.14 μg/mL) showed good antifungal activity against Altemaria solani with EC50 values below boscalid (15.31 μg/mL). SAR studies further reveal that induced and conjugated interactions between B35 and the target receptor facilitate an electron transport process, contributing to its antifungal activity. In preliminary mechanistic studies, compound B35 induced the mycelium and cells of Rhizoctonia solani showed irregular abnormal state under SEM and TEM observation and caused the production and accumulation of ROS. Molecular docking results and SDH enzyme assays indicate that compound B35 has the potential to be an effective SDHI fungicide.
Collapse
Affiliation(s)
- Peng Dai
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zihua Ma
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaili Xie
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yufei Li
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujie Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chenxiao Li
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yafang Sun
- College of Economics and Management, Huaibei Institute of Technology, Anhui 235000, China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell RG42 6EY, U.K
| | - Qing Xia
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Weihua Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Wise AD, TenBarge EG, Mendonça JDC, Mennen EC, McDaniel SR, Reber CP, Holder BE, Bunch ML, Belevska E, Marshall MG, Vaccaro NM, Blakely CR, Wellawa DH, Ferris J, Sheldon JR, Bieber JD, Johnson JG, Burcham LR, Monteith AJ. Mitochondria sense bacterial lactate and drive release of neutrophil extracellular traps. Cell Host Microbe 2025; 33:341-357.e9. [PMID: 40020664 PMCID: PMC11955204 DOI: 10.1016/j.chom.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/06/2024] [Accepted: 02/05/2025] [Indexed: 03/03/2025]
Abstract
Neutrophils induce oxidative stress, creating a harsh phagosomal environment. However, Staphylococcus aureus can survive these conditions, requiring neutrophils to deploy mechanisms that sense bacterial persistence. We find that staphylococcal lactate is a metabolic danger signal that triggers neutrophil extracellular trap release (NETosis). Neutrophils coordinate mitochondria in proximity to S. aureus-containing phagosomes, allowing transfer of staphylococcal lactate to mitochondria where it is rapidly converted into pyruvate and causes mitochondrial reactive oxygen species, a precursor to NETosis. Similar results were observed in response to phylogenetically distinct bacteria, implicating lactate accumulation as a broad signal triggering NETosis. Furthermore, patients with systemic lupus erythematosus (SLE) are more susceptible to bacterial infections. We find that SLE neutrophils cannot sense bacterial lactate impairing their capacity to undergo NETosis upon S. aureus infection but initiate aberrant NETosis triggered by apoptotic debris. Thus, neutrophils adapt mitochondria as sensory organelles that detect bacterial metabolic activity and dictate downstream antibacterial processes.
Collapse
Affiliation(s)
- Ashley D Wise
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Eden G TenBarge
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | | | - Ellie C Mennen
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Sarah R McDaniel
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Callista P Reber
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Bailey E Holder
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Madison L Bunch
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA; Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Eva Belevska
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | | | - Nicole M Vaccaro
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | | | - Dinesh H Wellawa
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada; Vaccine and Infectious Disease Organization, Saskatoon, SK, Canada
| | - Jennifer Ferris
- Division of Rheumatology, University of Tennessee Medical Center, Knoxville, TN, USA
| | - Jessica R Sheldon
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada; Vaccine and Infectious Disease Organization, Saskatoon, SK, Canada
| | - Jeffry D Bieber
- Division of Rheumatology, University of Tennessee Medical Center, Knoxville, TN, USA
| | - Jeremiah G Johnson
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA; Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Lindsey R Burcham
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Andrew J Monteith
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA; Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
7
|
Erdem A, Kaye S, Caligiore F, Johanns M, Leguay F, Schuringa JJ, Ito K, Bommer G, van Gastel N. Lactate dehydrogenase A-coupled NAD + regeneration is critical for acute myeloid leukemia cell survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.03.641255. [PMID: 40093073 PMCID: PMC11908160 DOI: 10.1101/2025.03.03.641255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Background Enhanced glycolysis plays a pivotal role in fueling the aberrant proliferation, survival and therapy resistance of acute myeloid leukemia (AML) cells. Here, we aimed to elucidate the extent of glycolysis dependence in AML by focusing on the role of lactate dehydrogenase A (LDHA), a key glycolytic enzyme converting pyruvate to lactate coupled with the recycling of NAD+. Methods We compared the glycolytic activity of primary AML patient samples to protein levels of metabolic enzymes involved in central carbon metabolism including glycolysis, glutaminolysis and the tricarboxylic acid cycle. To evaluate the therapeutic potential of targeting glycolysis in AML, we treated AML primary patient samples and cell lines with pharmacological inhibitors of LDHA and monitored cell viability. Glycolytic activity and mitochondrial oxygen consumption were analyzed in AML patient samples and cell lines post-LDHA inhibition. Perturbations in global metabolite levels and redox balance upon LDHA inhibition in AML cells were determined by mass spectrometry, and ROS levels were measured by flow cytometry. Results Among metabolic enzymes, we found that LDHA protein levels had the strongest positive correlation with glycolysis in AML patient cells. Blocking LDHA activity resulted in a strong growth inhibition and cell death induction in AML cell lines and primary patient samples, while healthy hematopoietic stem and progenitor cells remained unaffected. Investigation of the underlying mechanisms showed that LDHA inhibition reduces glycolytic activity, lowers levels of glycolytic intermediates, decreases the cellular NAD+ pool, boosts OXPHOS activity and increases ROS levels. This increase in ROS levels was however not linked to the observed AML cell death. Instead, we found that LDHA is essential to maintain a correct NAD+/NADH ratio in AML cells. Continuous intracellular NAD+ supplementation via overexpression of water-forming NADH oxidase from Lactobacillus brevis in AML cells effectively increased viable cell counts and prevented cell death upon LDHA inhibition. Conclusions Collectively, our results demonstrate that AML cells critically depend on LDHA to maintain an adequate NAD+/NADH balance in support of their abnormal glycolytic activity and biosynthetic demands, which cannot be compensated for by other cellular NAD+ recycling systems. These findings also highlight LDHA inhibition as a promising metabolic strategy to eradicate leukemic cells.
Collapse
Affiliation(s)
- Ayşegül Erdem
- Cellular Metabolism and Microenvironment Laboratory, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Séléna Kaye
- Cellular Metabolism and Microenvironment Laboratory, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Francesco Caligiore
- Biochemistry and Metabolic Research Group, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Manuel Johanns
- Protein Phosphorylation Group, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Fleur Leguay
- Cellular Metabolism and Microenvironment Laboratory, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Jan Jacob Schuringa
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Departments of Oncology and Medicine, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY 10461, USA
| | - Guido Bommer
- Biochemistry and Metabolic Research Group, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Nick van Gastel
- Cellular Metabolism and Microenvironment Laboratory, de Duve Institute, UCLouvain, Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
8
|
Hagen JT, Montgomery MM, Aruleba RT, Chrest BR, Green TD, Kassai M, Zeczycki TN, Schmidt CA, Bhowmick D, Tan SF, Feith DJ, Chalfant CE, Loughran TP, Liles D, Minden MD, Schimmer AD, Cabot MC, Mclung JM, Fisher-Wellman KH. Acute myeloid leukemia mitochondria hydrolyze ATP to resist chemotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589110. [PMID: 38659944 PMCID: PMC11042215 DOI: 10.1101/2024.04.12.589110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Despite early optimism, therapeutics targeting oxidative phosphorylation (OxPhos) have faced clinical setbacks, stemming from their inability to distinguish healthy from cancerous mitochondria. Herein, we describe an actionable bioenergetic mechanism unique to cancerous mitochondria inside acute myeloid leukemia (AML) cells. Unlike healthy cells which couple respiration to the synthesis of ATP, AML mitochondria were discovered to support inner membrane polarization by consuming ATP. Because matrix ATP consumption allows cells to survive bioenergetic stress, we hypothesized that AML cells may resist cell death induced by OxPhos damaging chemotherapy by reversing the ATP synthase reaction. In support of this, targeted inhibition of BCL-2 with venetoclax abolished OxPhos flux without impacting mitochondrial membrane potential. In surviving AML cells, sustained polarization of the mitochondrial inner membrane was dependent on matrix ATP consumption. Mitochondrial ATP consumption was further enhanced in AML cells made refractory to venetoclax, consequential to downregulations in both the proton-pumping respiratory complexes, as well as the endogenous F1-ATPase inhibitor ATP5IF1. In treatment-naive AML, ATP5IF1 knockdown was sufficient to drive venetoclax resistance, while ATP5IF1 overexpression impaired F1-ATPase activity and heightened sensitivity to venetoclax. Collectively, our data identify matrix ATP consumption as a cancer-cell intrinsic bioenergetic vulnerability actionable in the context of mitochondrial damaging chemotherapy.
Collapse
Affiliation(s)
- James T Hagen
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Mclane M Montgomery
- Department of Cancer Biology, Atrium Health Wake Forest Baptist Comprehensive Cancer, Wake Forest University School of Medicine, Winston-Salem, NC
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Raphael T Aruleba
- Department of Cancer Biology, Atrium Health Wake Forest Baptist Comprehensive Cancer, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Brett R Chrest
- Department of Cancer Biology, Atrium Health Wake Forest Baptist Comprehensive Cancer, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Thomas D Green
- Department of Cancer Biology, Atrium Health Wake Forest Baptist Comprehensive Cancer, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Miki Kassai
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Tonya N Zeczycki
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Cameron A Schmidt
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
- Department of Biology, East Carolina University, Greenville, NC
| | - Debajit Bhowmick
- Flow Cytometry Core Facility, Brody School of Medicine at East Carolina University, Greenville, NC
| | - Su-Fern Tan
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA
- University of Virginia Cancer Center, Charlottesville, VA
| | - David J Feith
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA
- University of Virginia Cancer Center, Charlottesville, VA
| | - Charles E Chalfant
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA
- University of Virginia Cancer Center, Charlottesville, VA
- Department of Cell Biology, University of Virginia, Charlottesville, VA
- Research Service, Richmond Veterans Administration Medical Center, Richmond, VA
| | - Thomas P Loughran
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA
- University of Virginia Cancer Center, Charlottesville, VA
| | - Darla Liles
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Aaron D Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Myles C Cabot
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Joseph M Mclung
- Section of Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Kelsey H Fisher-Wellman
- Department of Cancer Biology, Atrium Health Wake Forest Baptist Comprehensive Cancer, Wake Forest University School of Medicine, Winston-Salem, NC
| |
Collapse
|
9
|
Yoo I, Ahn I, Lee J, Lee N. Extracellular flux assay (Seahorse assay): Diverse applications in metabolic research across biological disciplines. Mol Cells 2024; 47:100095. [PMID: 39032561 PMCID: PMC11374971 DOI: 10.1016/j.mocell.2024.100095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024] Open
Abstract
Metabolic networks are fundamental to cellular processes, driving energy production, biosynthesis, redox regulation, and cellular signaling. Recent advancements in metabolic research tools have provided unprecedented insights into cellular metabolism. Among these tools, the extracellular flux analyzer stands out for its real-time measurement of key metabolic parameters: glycolysis, mitochondrial respiration, and fatty acid oxidation, leading to its widespread use. This review provides a comprehensive summary of the basic principles and workflow of the extracellular flux assay (the Seahorse assay) and its diverse applications. We highlight the assay's versatility across various biological models, including cancer cells, immunocytes, Caenorhabditis elegans, tissues, isolated mitochondria, and three-dimensional structures such as organoids, and summarize key considerations for using extracellular flux assay in these models. Additionally, we discuss the limitations of the Seahorse assay and propose future directions for its development. This review aims to enhance the understanding of extracellular flux assay and its significance in biological studies.
Collapse
Affiliation(s)
- Inhwan Yoo
- Department of Microbiology and Biotechnology, Dankook University, Cheonan, Republic of Korea
| | - Ihyeon Ahn
- Department of Biomedical Science & Systems Biology, Dankook University, Cheonan, Republic of Korea
| | - Jihyeon Lee
- Department of Biomedical Science & Engineering, Dankook University, Cheonan, Republic of Korea
| | - Namgyu Lee
- Department of Biomedical Science & Systems Biology, Dankook University, Cheonan, Republic of Korea; Department of Biomedical Science & Engineering, Dankook University, Cheonan, Republic of Korea.
| |
Collapse
|
10
|
Yan W, Xie C, Sun S, Zheng Q, Wang J, Wang Z, Man CH, Wang H, Yang Y, Wang T, Shi L, Zhang S, Huang C, Xu S, Wang YP. SUCLG1 restricts POLRMT succinylation to enhance mitochondrial biogenesis and leukemia progression. EMBO J 2024; 43:2337-2367. [PMID: 38649537 PMCID: PMC11183053 DOI: 10.1038/s44318-024-00101-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
Mitochondria are cellular powerhouses that generate energy through the electron transport chain (ETC). The mitochondrial genome (mtDNA) encodes essential ETC proteins in a compartmentalized manner, however, the mechanism underlying metabolic regulation of mtDNA function remains unknown. Here, we report that expression of tricarboxylic acid cycle enzyme succinate-CoA ligase SUCLG1 strongly correlates with ETC genes across various TCGA cancer transcriptomes. Mechanistically, SUCLG1 restricts succinyl-CoA levels to suppress the succinylation of mitochondrial RNA polymerase (POLRMT). Lysine 622 succinylation disrupts the interaction of POLRMT with mtDNA and mitochondrial transcription factors. SUCLG1-mediated POLRMT hyposuccinylation maintains mtDNA transcription, mitochondrial biogenesis, and leukemia cell proliferation. Specifically, leukemia-promoting FMS-like tyrosine kinase 3 (FLT3) mutations modulate nuclear transcription and upregulate SUCLG1 expression to reduce succinyl-CoA and POLRMT succinylation, resulting in enhanced mitobiogenesis. In line, genetic depletion of POLRMT or SUCLG1 significantly delays disease progression in mouse and humanized leukemia models. Importantly, succinyl-CoA level and POLRMT succinylation are downregulated in FLT3-mutated clinical leukemia samples, linking enhanced mitobiogenesis to cancer progression. Together, SUCLG1 connects succinyl-CoA with POLRMT succinylation to modulate mitochondrial function and cancer development.
Collapse
Affiliation(s)
- Weiwei Yan
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Chengmei Xie
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Sijun Sun
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Quan Zheng
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jingyi Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Zihao Wang
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Cheuk-Him Man
- Division of Haematology, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Haiyan Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Yunfan Yang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 250012, Jinan, China
| | - Tianshi Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Leilei Shi
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Shengjie Zhang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China.
| | - Chen Huang
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China.
| | - Shuangnian Xu
- Department of Hematology, Southwest Hospital, Army Medical University, 400038, Chongqing, China.
| | - Yi-Ping Wang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China.
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, 200032, Shanghai, China.
| |
Collapse
|
11
|
Lu MJ, Busquets J, Impedovo V, Wilson CN, Chan HR, Chang YT, Matsui W, Tiziani S, Cambronne XA. SLC25A51 decouples the mitochondrial NAD +/NADH ratio to control proliferation of AML cells. Cell Metab 2024; 36:808-821.e6. [PMID: 38354740 PMCID: PMC10990793 DOI: 10.1016/j.cmet.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/30/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024]
Abstract
SLC25A51 selectively imports oxidized NAD+ into the mitochondrial matrix and is required for sustaining cell respiration. We observed elevated expression of SLC25A51 that correlated with poorer outcomes in patients with acute myeloid leukemia (AML), and we sought to determine the role SLC25A51 may serve in this disease. We found that lowering SLC25A51 levels led to increased apoptosis and prolonged survival in orthotopic xenograft models. Metabolic flux analyses indicated that depletion of SLC25A51 shunted flux away from mitochondrial oxidative pathways, notably without increased glycolytic flux. Depletion of SLC25A51 combined with 5-azacytidine treatment limits expansion of AML cells in vivo. Together, the data indicate that AML cells upregulate SLC25A51 to decouple mitochondrial NAD+/NADH for a proliferative advantage by supporting oxidative reactions from a variety of fuels. Thus, SLC25A51 represents a critical regulator that can be exploited by cancer cells and may be a vulnerability for refractory AML.
Collapse
Affiliation(s)
- Mu-Jie Lu
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Jonathan Busquets
- Department of Nutritional Sciences, College of Natural Sciences, University of Texas at Austin, Austin, TX, USA
| | - Valeria Impedovo
- Department of Nutritional Sciences, College of Natural Sciences, University of Texas at Austin, Austin, TX, USA
| | - Crystal N Wilson
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Hsin-Ru Chan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Yu-Tai Chang
- Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX, USA; LIVESTRONG Cancer Institutes, University of Texas at Austin, Austin, TX, USA
| | - William Matsui
- Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX, USA; LIVESTRONG Cancer Institutes, University of Texas at Austin, Austin, TX, USA
| | - Stefano Tiziani
- Department of Nutritional Sciences, College of Natural Sciences, University of Texas at Austin, Austin, TX, USA; Department of Pediatrics, Dell Medical School, University of Texas at Austin, Austin, TX, USA; Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX, USA; LIVESTRONG Cancer Institutes, University of Texas at Austin, Austin, TX, USA
| | - Xiaolu A Cambronne
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA; LIVESTRONG Cancer Institutes, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
12
|
Monteith AJ, Ramsey HE, Silver AJ, Brown D, Greenwood D, Smith BN, Wise AD, Liu J, Olmstead SD, Watke J, Arrate MP, Gorska AE, Fuller L, Locasale JW, Stubbs MC, Rathmell JC, Savona MR. Lactate Utilization Enables Metabolic Escape to Confer Resistance to BET Inhibition in Acute Myeloid Leukemia. Cancer Res 2024; 84:1101-1114. [PMID: 38285895 PMCID: PMC10984779 DOI: 10.1158/0008-5472.can-23-0291] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 08/08/2023] [Accepted: 01/24/2024] [Indexed: 01/31/2024]
Abstract
Impairing the BET family coactivator BRD4 with small-molecule inhibitors (BETi) showed encouraging preclinical activity in treating acute myeloid leukemia (AML). However, dose-limiting toxicities and limited clinical activity dampened the enthusiasm for BETi as a single agent. BETi resistance in AML myeloblasts was found to correlate with maintaining mitochondrial respiration, suggesting that identifying the metabolic pathway sustaining mitochondrial integrity could help develop approaches to improve BETi efficacy. Herein, we demonstrated that mitochondria-associated lactate dehydrogenase allows AML myeloblasts to utilize lactate as a metabolic bypass to fuel mitochondrial respiration and maintain cellular viability. Pharmacologically and genetically impairing lactate utilization rendered resistant myeloblasts susceptible to BET inhibition. Low-dose combinations of BETi and oxamate, a lactate dehydrogenase inhibitor, reduced in vivo expansion of BETi-resistant AML in cell line and patient-derived murine models. These results elucidate how AML myeloblasts metabolically adapt to BETi by consuming lactate and demonstrate that combining BETi with inhibitors of lactate utilization may be useful in AML treatment. SIGNIFICANCE Lactate utilization allows AML myeloblasts to maintain metabolic integrity and circumvent antileukemic therapy, which supports testing of lactate utilization inhibitors in clinical settings to overcome BET inhibitor resistance in AML. See related commentary by Boët and Sarry, p. 950.
Collapse
Affiliation(s)
- Andrew J. Monteith
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Cancer Biology Program, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Haley E. Ramsey
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Cancer Biology Program, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alexander J. Silver
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Cancer Biology Program, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Donovan Brown
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Dalton Greenwood
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Brianna N. Smith
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Cancer Biology Program, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ashley D. Wise
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Juan Liu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Sarah D. Olmstead
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jackson Watke
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Maria P. Arrate
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Agnieszka E. Gorska
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Londa Fuller
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jason W. Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | | | - Jeffrey C. Rathmell
- Cancer Biology Program, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael R. Savona
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Cancer Biology Program, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
13
|
Duan H, Pan C, Wu T, Peng J, Yang L. MT-TN mutations lead to progressive mitochondrial encephalopathy and promotes mitophagy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167043. [PMID: 38320662 DOI: 10.1016/j.bbadis.2024.167043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 02/08/2024]
Abstract
Mitochondrial encephalopathy is a neurological disorder caused by impaired mitochondrial function and energy production. One of the genetic causes of this condition is the mutation of MT-TN, a gene that encodes the mitochondrial transfer RNA (tRNA) for asparagine. MT-TN mutations affect the stability and structure of the tRNA, resulting in reduced protein synthesis and complex enzymatic deficiency of the mitochondrial respiratory chain. Our patient cohort manifests with epileptic encephalopathy, ataxia, hypotonia, and bilateral basal ganglia calcification, which differs from previously reported cases. MT-TN mutation deficiency leads to decreased basal and maximal oxygen consumption rates, disrupted spare respiratory capacity, declined mitochondrial membrane potential, and impaired ATP production. Moreover, MT-TN mutations promote mitophagy, a process of selective degradation of damaged mitochondria by autophagy. Excessive mitophagy further leads to mitochondrial biogensis as a compensatory mechanism. In this study, we provided evidence of pathogenicity for two MT-TN mutations, m.5688 T > C and m.G5691A, explored the molecular mechanisms, and summarized the clinical manifestations of MT-TN mutations. Our study expanded the genotype and phenotypic spectrum and provided new insight into mt-tRNA (Asn)-associated mitochondrial encephalopathy.
Collapse
Affiliation(s)
- Haolin Duan
- Department of Pediatrics, Clinical Research Center of Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Cunhui Pan
- Department of Pediatrics, Clinical Research Center of Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Tenghui Wu
- Department of Pediatrics, Clinical Research Center of Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jing Peng
- Department of Pediatrics, Clinical Research Center of Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China..
| | - Li Yang
- Department of Pediatrics, Clinical Research Center of Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China..
| |
Collapse
|
14
|
Zhang J, Luo C, Long H. Sirtuin 5 regulates acute myeloid leukemia cell viability and apoptosis by succinylation modification of glycine decarboxylase. Open Life Sci 2024; 19:20220832. [PMID: 38585637 PMCID: PMC10997144 DOI: 10.1515/biol-2022-0832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 04/09/2024] Open
Abstract
Acute myeloid leukemia (AML) is a blood system malignancy where sirtuin 5 (SIRT5) is abnormally expressed in AML cell lines. This study aimed to investigate the SIRT5 effects on the viability and apoptosis of AML cell lines. The mRNA and protein expression levels of succinylation regulatory enzyme in clinical samples and AML cell lines were detected by real-time quantitative polymerase chain reaction and western blotting while cell viability was measured using cell counting kit-8 assay. The apoptosis rate was assessed with flow cytometry. The interaction between SIRT5 and glycine decarboxylase (GLDC) was determined by co-immunoprecipitation and immunofluorescence staining techniques. Results indicated higher mRNA and protein expression levels of SIRT5 in clinical AML samples of AML than in normal subjects. Similarly, cell viability was inhibited, and apoptosis was promoted by downregulating SIRT5, in addition to inhibition of SIRT5-mediated GLDC succinylation. Moreover, rescue experiment results showed that GLDC reversed the effects of SIRT5 knockdown on cell viability and apoptosis. These results, in combination with SIRT5 and GLDC interactions, suggested that SIRT5 was involved in mediating AML development through GLDC succinylation. SIRT5 inhibits GLDC succinylation to promote viability and inhibit apoptosis of AML cells, suggesting that SIRT5 encourages the development of AML.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Hematology, The Second Affiliated Hospital of Guizhou Medical University, No. 3, Kangfu Road, Kaili, Guizhou, 556000, China
| | - Cheng Luo
- Department of Hematology, The Second Affiliated Hospital of Guizhou Medical University, No. 3, Kangfu Road, Kaili, Guizhou, 556000, China
| | - Haiying Long
- Department of Hematology, The Second Affiliated Hospital of Guizhou Medical University, No. 3, Kangfu Road, Kaili, Guizhou, 556000, China
| |
Collapse
|
15
|
Weinhäuser I, Pereira-Martins DA, Hilberink JR, Brouwers-Vos A, Rego EM, Huls G, Schuringa JJ. Thiostrepton induces cell death of acute myeloid leukemia blasts and the associated macrophage population. Haematologica 2024; 109:639-645. [PMID: 37646656 PMCID: PMC10828769 DOI: 10.3324/haematol.2023.283621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Affiliation(s)
- Isabel Weinhäuser
- Department of Experimental Hematology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands; Department of Internal Medicine, Medical School of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil; Center for Cell Based Therapy, University of São Paulo, Ribeirao Preto, Brazil; Authors contributed equally to this study
| | - Diego A Pereira-Martins
- Department of Experimental Hematology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands; Department of Internal Medicine, Medical School of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil; Center for Cell Based Therapy, University of São Paulo, Ribeirao Preto, Brazil; Authors contributed equally to this study
| | - Jacobien R Hilberink
- Department of Experimental Hematology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands; Authors contributed equally to this study
| | - Annet Brouwers-Vos
- Department of Experimental Hematology, University Medical Centre Groningen, University of Groningen, Groningen
| | - Eduardo M Rego
- Center for Cell Based Therapy, University of São Paulo, Ribeirao Preto
| | - Gerwin Huls
- Department of Experimental Hematology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands; Lead contact authors
| | - Jan Jacob Schuringa
- Department of Experimental Hematology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands; Lead contact authors.
| |
Collapse
|
16
|
Chen Y, Chen J, Zou Z, Xu L, Li J. Crosstalk between autophagy and metabolism: implications for cell survival in acute myeloid leukemia. Cell Death Discov 2024; 10:46. [PMID: 38267416 PMCID: PMC10808206 DOI: 10.1038/s41420-024-01823-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024] Open
Abstract
Acute myeloid leukemia (AML), a prevalent form of leukemia in adults, is often characterized by low response rates to chemotherapy, high recurrence rates, and unfavorable prognosis. A critical barrier in managing refractory or recurrent AML is the resistance to chemotherapy. Increasing evidence indicates that tumor cell metabolism plays a crucial role in AML progression, survival, metastasis, and treatment resistance. Autophagy, an essential regulator of cellular energy metabolism, is increasingly recognized for its role in the metabolic reprogramming of AML. Autophagy sustains leukemia cells during chemotherapy by not only providing energy but also facilitating rapid proliferation through the supply of essential components such as amino acids and nucleotides. Conversely, the metabolic state of AML cells can influence the activity of autophagy. Their mutual coordination helps maintain intrinsic cellular homeostasis, which is a significant contributor to chemotherapy resistance in leukemia cells. This review explores the recent advancements in understanding the interaction between autophagy and metabolism in AML cells, emphasizing their roles in cell survival and drug resistance. A comprehensive understanding of the interplay between autophagy and leukemia cell metabolism can shed light on leukemia cell survival strategies, particularly under adverse conditions such as chemotherapy. This insight may also pave the way for innovative targeted treatment strategies.
Collapse
Affiliation(s)
- Yongfeng Chen
- Department of Basic Medical Sciences, Medical College of Taizhou University, 318000, Taizhou, Zhejiang, China.
| | - Jia Chen
- School of Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Zhenyou Zou
- Brain Hospital of Guangxi Zhuang Autonomous Region, 542005, Liuzhou, Guangxi, China.
| | - Linglong Xu
- Department of Hematology, Taizhou Central Hospital (Taizhou University Hospital), 318000, Taizhou, Zhejiang, China
| | - Jing Li
- Department of Histology and Embryology, North Sichuan Medical College, 637000, Nanchong, Sichuan, China
| |
Collapse
|
17
|
Cunningham A, Oudejans LL, Geugien M, Pereira-Martins DA, Wierenga ATJ, Erdem A, Sternadt D, Huls G, Schuringa JJ. The nonessential amino acid cysteine is required to prevent ferroptosis in acute myeloid leukemia. Blood Adv 2024; 8:56-69. [PMID: 37906522 PMCID: PMC10784682 DOI: 10.1182/bloodadvances.2023010786] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT Cysteine is a nonessential amino acid required for protein synthesis, the generation of the antioxidant glutathione, and for synthesizing the nonproteinogenic amino acid taurine. Here, we highlight the broad sensitivity of leukemic stem and progenitor cells to cysteine depletion. By CRISPR/CRISPR-associated protein 9-mediated knockout of cystathionine-γ-lyase, the cystathionine-to-cysteine converting enzyme, and by metabolite supplementation studies upstream of cysteine, we functionally prove that cysteine is not synthesized from methionine in acute myeloid leukemia (AML) cells. Therefore, although perhaps nutritionally nonessential, cysteine must be imported for survival of these specific cell types. Depletion of cyst(e)ine increased reactive oxygen species (ROS) levels, and cell death was induced predominantly as a consequence of glutathione deprivation. nicotinamide adenine dinucleotide phosphate hydrogen oxidase inhibition strongly rescued viability after cysteine depletion, highlighting this as an important source of ROS in AML. ROS-induced cell death was mediated via ferroptosis, and inhibition of glutathione peroxidase 4 (GPX4), which functions in reducing lipid peroxides, was also highly toxic. We therefore propose that GPX4 is likely key in mediating the antioxidant activity of glutathione. In line, inhibition of the ROS scavenger thioredoxin reductase with auranofin also impaired cell viability, whereby we find that oxidative phosphorylation-driven AML subtypes, in particular, are highly dependent on thioredoxin-mediated protection against ferroptosis. Although inhibition of the cystine-glutamine antiporter by sulfasalazine was ineffective as a monotherapy, its combination with L-buthionine-sulfoximine (BSO) further improved AML ferroptosis induction. We propose the combination of either sulfasalazine or antioxidant machinery inhibitors along with ROS inducers such as BSO or chemotherapy for further preclinical testing.
Collapse
Affiliation(s)
- Alan Cunningham
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Lieve L. Oudejans
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marjan Geugien
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Diego Antonio Pereira-Martins
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Albertus T. J. Wierenga
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ayşegül Erdem
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Dominique Sternadt
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gerwin Huls
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan Jacob Schuringa
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
18
|
Daverio Z, Kolkman M, Perrier J, Brunet L, Bendridi N, Sanglar C, Berger MA, Panthu B, Rautureau GJP. Warburg-associated acidification represses lactic fermentation independently of lactate, contribution from real-time NMR on cell-free systems. Sci Rep 2023; 13:17733. [PMID: 37853114 PMCID: PMC10584866 DOI: 10.1038/s41598-023-44783-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023] Open
Abstract
Lactate accumulation and acidification in tumours are a cancer hallmark associated with the Warburg effect. Lactic acidosis correlates with cancer malignancy, and the benefit it offers to tumours has been the subject of numerous hypotheses. Strikingly, lactic acidosis enhances cancer cell survival to environmental glucose depletion by repressing high-rate glycolysis and lactic fermentation, and promoting an oxidative metabolism involving reactivated respiration. We used real-time NMR to evaluate how cytosolic lactate accumulation up to 40 mM and acidification up to pH 6.5 individually impact glucose consumption, lactate production and pyruvate evolution in isolated cytosols. We used a reductive cell-free system (CFS) to specifically study cytosolic metabolism independently of other Warburg-regulatory mechanisms found in the cell. We assessed the impact of lactate and acidification on the Warburg metabolism of cancer cytosols, and whether this effect extended to different cytosolic phenotypes of lactic fermentation and cancer. We observed that moderate acidification, independently of lactate concentration, drastically reduces the glucose consumption rate and halts lactate production in different lactic fermentation phenotypes. In parallel, for Warburg-type CFS lactate supplementation induces pyruvate accumulation at control pH, and can maintain a higher cytosolic pyruvate pool at low pH. Altogether, we demonstrate that intracellular acidification accounts for the direct repression of lactic fermentation by the Warburg-associated lactic acidosis.
Collapse
Affiliation(s)
- Zoé Daverio
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310, Pierre-Bénite, France
- Master de Biologie, École Normale Supérieure de Lyon, University of Lyon, Université Claude Bernard Lyon 1, 69342, Lyon Cedex 07, France
| | - Maxime Kolkman
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310, Pierre-Bénite, France
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246, University of Lyon, Université Claude Bernard Lyon 1, 69622, Lyon, France
| | - Johan Perrier
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310, Pierre-Bénite, France
| | - Lexane Brunet
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310, Pierre-Bénite, France
| | - Nadia Bendridi
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310, Pierre-Bénite, France
| | - Corinne Sanglar
- Institut des Sciences Analytiques, UMR5280 CNRS, University of Lyon, Université Claude Bernard Lyon 1, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Marie-Agnès Berger
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310, Pierre-Bénite, France
| | - Baptiste Panthu
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310, Pierre-Bénite, France.
| | - Gilles J P Rautureau
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246, University of Lyon, Université Claude Bernard Lyon 1, 69622, Lyon, France.
| |
Collapse
|
19
|
She X, Wu Q, Rao Z, Song D, Huang C, Feng S, Liu A, Liu L, Wan K, Li X, Yu C, Qiu C, Luo X, Hu J, Wang G, Xu F, Sun L. SETDB1 Methylates MCT1 Promoting Tumor Progression by Enhancing the Lactate Shuttle. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301871. [PMID: 37541664 PMCID: PMC10558670 DOI: 10.1002/advs.202301871] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/07/2023] [Indexed: 08/06/2023]
Abstract
MCT1 is a critical protein found in monocarboxylate transporters that plays a significant role in regulating the lactate shuttle. However, the post-transcriptional modifications that regulate MCT1 are not clearly identified. In this study, it is reported that SETDB1 interacts with MCT1, leading to its stabilization. These findings reveal a novel post-translational modification of MCT1, in which SETDB1 methylation occurs at K473 in vitro and in vivo. This methylation inhibits the interaction between MCT1 and Tollip, which blocks Tollip-mediated autophagic degradation of MCT1. Furthermore, MCT1 K473 tri-methylation promotes tumor glycolysis and M2-like polarization of tumor-associated macrophages in colorectal cancer (CRC), which enhances the lactate shuttle. In clinical studies, MCT1 K473 tri-methylation is found to be upregulated and positively correlated with tumor progression and overall survival in CRC. This discovery suggests that SETDB1-mediated tri-methylation at K473 is a vital regulatory mechanism for lactate shuttle and tumor progression. Additionally, MCT1 K473 methylation may be a potential prognostic biomarker and promising therapeutic target for CRC.
Collapse
Affiliation(s)
- Xiaowei She
- GI Cancer Research InstituteTongji HospitalHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Qi Wu
- GI Cancer Research InstituteTongji HospitalHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Zejun Rao
- GI Cancer Research InstituteTongji HospitalHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Da Song
- GI Cancer Research InstituteTongji HospitalHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Changsheng Huang
- GI Cancer Research InstituteTongji HospitalHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Shengjie Feng
- GI Cancer Research InstituteTongji HospitalHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Anyi Liu
- GI Cancer Research InstituteTongji HospitalHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Lang Liu
- GI Cancer Research InstituteTongji HospitalHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Kairui Wan
- GI Cancer Research InstituteTongji HospitalHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Xun Li
- GI Cancer Research InstituteTongji HospitalHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Chengxin Yu
- GI Cancer Research InstituteTongji HospitalHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Cheng Qiu
- GI Cancer Research InstituteTongji HospitalHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Xuelai Luo
- GI Cancer Research InstituteTongji HospitalHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Junbo Hu
- GI Cancer Research InstituteTongji HospitalHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Guihua Wang
- GI Cancer Research InstituteTongji HospitalHuazhong University of Science and TechnologyWuhan430030P. R. China
- Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseaseHuazhong University of Science and TechnologyWuhanHubei430030P. R. China
| | - Feng Xu
- GI Cancer Research InstituteTongji HospitalHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Li Sun
- Department of OncologyTongji HospitalHuazhong University of Science and TechnologyWuhan430030P. R. China
| |
Collapse
|
20
|
Feng L, Zhang PY, Gao W, Yu J, Robson SC. Targeting chemoresistance and mitochondria-dependent metabolic reprogramming in acute myeloid leukemia. Front Oncol 2023; 13:1244280. [PMID: 37746249 PMCID: PMC10513429 DOI: 10.3389/fonc.2023.1244280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Chemoresistance often complicates the management of cancer, as noted in the instance of acute myeloid leukemia (AML). Mitochondrial function is considered important for the viability of AML blasts and appears to also modulate chemoresistance. As mitochondrial metabolism is aberrant in AML, any distinct pathways could be directly targeted to impact both cell viability and chemoresistance. Therefore, identifying and targeting those precise rogue elements of mitochondrial metabolism could be a valid therapeutic strategy in leukemia. Here, we review the evidence for abnormalities in mitochondria metabolic processes in AML cells, that likely impact chemoresistance. We further address several therapeutic approaches targeting isocitrate dehydrogenase 2 (IDH2), CD39, nicotinamide phosphoribosyl transferase (NAMPT), electron transport chain (ETC) complex in AML and also consider the roles of mesenchymal stromal cells. We propose the term "mitotherapy" to collectively refer to such regimens that attempt to override mitochondria-mediated metabolic reprogramming, as used by cancer cells. Mounting evidence suggests that mitotherapy could provide a complementary strategy to overcome chemoresistance in liquid cancers, as well as in solid tumors.
Collapse
Affiliation(s)
- Lili Feng
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Philip Y. Zhang
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Wenda Gao
- Antagen Institute for Biomedical Research, Canton, MA, United States
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Simon C. Robson
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Department of Medicine, Division of Gastroenterology/Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
21
|
Chen Y, Zou Z, Găman MA, Xu L, Li J. NADPH oxidase mediated oxidative stress signaling in FLT3-ITD acute myeloid leukemia. Cell Death Discov 2023; 9:208. [PMID: 37391442 PMCID: PMC10313758 DOI: 10.1038/s41420-023-01528-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023] Open
Abstract
The internal tandem duplication of the juxtamembrane domain of the FMS-like tyrosine kinase 3 (FLT3-ITD) is the most common genetic change in acute myeloid leukemia (AML), and about 30% of all AMLs harbor a FLT3-ITD mutation. Even though FLT3 inhibitors have displayed encouraging effects in FLT3-ITD-mutated AML, the extent of the clinical response to these compounds is cut short due to the rapid development of drug resistance. Evidence has shown that FLT3-ITD triggered activation of oxidative stress signaling may exert a pivotal role in drug resistance. The downstream pathways of FLT3-ITD, including STAT5, PI3K/AKT, and RAS/MAPK, are considered to be major oxidative stress signaling pathways. These downstream pathways can inhibit apoptosis and promote proliferation and survival by regulating apoptosis-related genes and promoting the generation of reactive oxygen species (ROS) through NADPH oxidase (NOX) or other mechanisms. Appropriate levels of ROS may promote proliferation, but high levels of ROS can lead to oxidative damage to the DNA and increase genomic instability. In addition, post-translational modifications of FLT3-ITD and changes in its subcellular localization can affect downstream signaling which may also be one of the mechanisms leading to drug resistance. In this review, we summarized the research progress on NOX mediated oxidative stress signaling and its relationship with drug resistance in FLT3-ITD AML, and discuss the possible new targets in FLT3-ITD signal blocking to reverse drug resistance in FLT3-ITD-mutated AML.
Collapse
Affiliation(s)
- Yongfeng Chen
- Department of Basic Medical Sciences, Medical College of Taizhou University, Taizhou, Zhejiang, 318000, China.
| | - Zhenyou Zou
- Institute of Psychosis Prevention, Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, Guangxi, 542005, China.
| | - Mihnea-Alexandru Găman
- Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 050474, Bucharest, Romania.
- Department of Hematology, Centre of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, Bucharest, Romania.
| | - Linglong Xu
- Department of Hematology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, 318000, China
| | - Jing Li
- Department of Histology and Embryology, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| |
Collapse
|
22
|
Tirado HA, Balasundaram N, Laaouimir L, Erdem A, van Gastel N. Metabolic crosstalk between stromal and malignant cells in the bone marrow niche. Bone Rep 2023; 18:101669. [PMID: 36909665 PMCID: PMC9996235 DOI: 10.1016/j.bonr.2023.101669] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/03/2023] Open
Abstract
Bone marrow is the primary site of blood cell production in adults and serves as the source of osteoblasts and osteoclasts that maintain bone homeostasis. The medullary microenvironment is also involved in malignancy, providing a fertile soil for the growth of blood cancers or solid tumors metastasizing to bone. The cellular composition of the bone marrow is highly complex, consisting of hematopoietic stem and progenitor cells, maturing blood cells, skeletal stem cells, osteoblasts, mesenchymal stromal cells, adipocytes, endothelial cells, lymphatic endothelial cells, perivascular cells, and nerve cells. Intercellular communication at different levels is essential to ensure proper skeletal and hematopoietic tissue function, but it is altered when malignant cells colonize the bone marrow niche. While communication often involves soluble factors such as cytokines, chemokines, and growth factors, as well as their respective cell-surface receptors, cells can also communicate by exchanging metabolic information. In this review, we discuss the importance of metabolic crosstalk between different cells in the bone marrow microenvironment, particularly concerning the malignant setting.
Collapse
Affiliation(s)
- Hernán A Tirado
- Cellular Metabolism and Microenvironment Laboratory, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Nithya Balasundaram
- Cellular Metabolism and Microenvironment Laboratory, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Lotfi Laaouimir
- Cellular Metabolism and Microenvironment Laboratory, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Ayşegül Erdem
- Cellular Metabolism and Microenvironment Laboratory, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Nick van Gastel
- Cellular Metabolism and Microenvironment Laboratory, de Duve Institute, UCLouvain, Brussels, Belgium.,WELBIO Department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
23
|
Xiao Y, Hu B, Guo Y, Zhang D, Zhao Y, Chen Y, Li N, Yu L. Targeting Glutamine Metabolism as an Attractive Therapeutic Strategy for Acute Myeloid Leukemia. Curr Treat Options Oncol 2023:10.1007/s11864-023-01104-0. [PMID: 37249801 PMCID: PMC10356674 DOI: 10.1007/s11864-023-01104-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2023] [Indexed: 05/31/2023]
Abstract
OPINION STATEMENT Relapse after chemotherapy and hematopoietic stem cell transplantation leads to adverse prognosis for acute myeloid leukemia (AML) patients. As a "conditionally essential amino acid," glutamine contributes to the growth and proliferation of AML cells. Glutamine-target strategies as new treatment approaches have been widely explored in AML treatment to improve outcome. Glutamine-target strategies including depletion of systemic glutamine and application of glutamine uptake inhibitors, glutamine antagonists/analogues, and glutaminase inhibitors. Because glutamine metabolism involved in multiple pathways in cells and each pathway of glutamine metabolism has many regulatory factors, therefore, AML therapy targeting glutamine metabolism should focus on how to inhibit multiple metabolic pathways without affecting normal cells and host immune to achieve effective treatment for AML.
Collapse
Affiliation(s)
- Yan Xiao
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Bingbing Hu
- Reproductive Medicine Center, the Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yao Guo
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Dengyang Zhang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yuming Zhao
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yun Chen
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Na Li
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Liuting Yu
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China.
| |
Collapse
|
24
|
Weinhäuser I, Pereira-Martins DA, Almeida LY, Hilberink JR, Silveira DR, Quek L, Ortiz C, Araujo CL, Bianco TM, Lucena-Araujo A, Mota JM, Hogeling SM, Sternadt D, Visser N, Diepstra A, Ammatuna E, Huls G, Rego EM, Schuringa JJ. M2 macrophages drive leukemic transformation by imposing resistance to phagocytosis and improving mitochondrial metabolism. SCIENCE ADVANCES 2023; 9:eadf8522. [PMID: 37058562 PMCID: PMC11801312 DOI: 10.1126/sciadv.adf8522] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
It is increasingly becoming clear that cancers are a symbiosis of diverse cell types and tumor clones. Combined single-cell RNA sequencing, flow cytometry, and immunohistochemistry studies of the innate immune compartment in the bone marrow of patients with acute myeloid leukemia (AML) reveal a shift toward a tumor-supportive M2-polarized macrophage landscape with an altered transcriptional program, with enhanced fatty acid oxidation and NAD+ generation. Functionally, these AML-associated macrophages display decreased phagocytic activity and intra-bone marrow coinjection of M2 macrophages together with leukemic blasts strongly enhances in vivo transformation potential. A 2-day in vitro exposure to M2 macrophages results in the accumulation of CALRlow leukemic blast cells, which are now protected against phagocytosis. Moreover, M2-exposed "trained" leukemic blasts display increased mitochondrial metabolism, in part mediated via mitochondrial transfer. Our study provides insight into the mechanisms by which the immune landscape contributes to aggressive leukemia development and provides alternatives for targeting strategies aimed at the tumor microenvironment.
Collapse
Affiliation(s)
- Isabel Weinhäuser
- Department of Experimental Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
- Department of Internal Medicine, Medical School of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
- Center for Cell Based Therapy, University of São Paulo, Ribeirao Preto, Brazil
| | - Diego A. Pereira-Martins
- Department of Experimental Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
- Department of Internal Medicine, Medical School of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
- Center for Cell Based Therapy, University of São Paulo, Ribeirao Preto, Brazil
| | - Luciana Y. Almeida
- Department of Internal Medicine, Medical School of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Jacobien R. Hilberink
- Department of Experimental Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Douglas R. A. Silveira
- Myeloid Leukaemia Genomics and Biology Group, School of Cancer and Pharmaceutical Sciences, King’s College London, London, SE5 8AF, UK
| | - Lynn Quek
- Myeloid Leukaemia Genomics and Biology Group, School of Cancer and Pharmaceutical Sciences, King’s College London, London, SE5 8AF, UK
| | - Cesar Ortiz
- Department of Internal Medicine, Medical School of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
- Center for Cell Based Therapy, University of São Paulo, Ribeirao Preto, Brazil
| | - Cleide L. Araujo
- Department of Internal Medicine, Medical School of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Thiago M. Bianco
- Department of Internal Medicine, Medical School of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | | | - Jose Mauricio Mota
- Medical Oncology Service, Sao Paulo State Cancer Institute, University of Sao Paulo, Brazil
| | - Shanna M. Hogeling
- Department of Experimental Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Dominique Sternadt
- Department of Experimental Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Nienke Visser
- Department of Experimental Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Emanuele Ammatuna
- Department of Experimental Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Gerwin Huls
- Department of Experimental Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Eduardo M. Rego
- Center for Cell Based Therapy, University of São Paulo, Ribeirao Preto, Brazil
| | - Jan Jacob Schuringa
- Department of Experimental Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
25
|
How Warburg-Associated Lactic Acidosis Rewires Cancer Cell Energy Metabolism to Resist Glucose Deprivation. Cancers (Basel) 2023; 15:cancers15051417. [PMID: 36900208 PMCID: PMC10000466 DOI: 10.3390/cancers15051417] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Lactic acidosis, a hallmark of solid tumour microenvironment, originates from lactate hyperproduction and its co-secretion with protons by cancer cells displaying the Warburg effect. Long considered a side effect of cancer metabolism, lactic acidosis is now known to play a major role in tumour physiology, aggressiveness and treatment efficiency. Growing evidence shows that it promotes cancer cell resistance to glucose deprivation, a common feature of tumours. Here we review the current understanding of how extracellular lactate and acidosis, acting as a combination of enzymatic inhibitors, signal, and nutrient, switch cancer cell metabolism from the Warburg effect to an oxidative metabolic phenotype, which allows cancer cells to withstand glucose deprivation, and makes lactic acidosis a promising anticancer target. We also discuss how the evidence about lactic acidosis' effect could be integrated in the understanding of the whole-tumour metabolism and what perspectives it opens up for future research.
Collapse
|
26
|
Chaudhary S, Ganguly S, Palanichamy JK, Singh A, Pradhan D, Bakhshi R, Chopra A, Bakhshi S. Mitochondrial gene expression signature predicts prognosis of pediatric acute myeloid leukemia patients. Front Oncol 2023; 13:1109518. [PMID: 36845715 PMCID: PMC9947241 DOI: 10.3389/fonc.2023.1109518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/11/2023] [Indexed: 02/11/2023] Open
Abstract
INTRODUCTION Gene expression profile of mitochondrial-related genes is not well deciphered in pediatric acute myeloid leukaemia (AML). We aimed to identify mitochondria-related differentially expressed genes (DEGs) in pediatric AML with their prognostic significance. METHODS Children with de novo AML were included prospectively between July 2016-December 2019. Transcriptomic profiling was done for a subset of samples, stratified by mtDNA copy number. Top mitochondria-related DEGs were identified and validated by real-time PCR. A prognostic gene signature risk score was formulated using DEGs independently predictive of overall survival (OS) in multivariable analysis. Predictive ability of the risk score was estimated along with external validation in The Tumor Genome Atlas (TCGA) AML dataset. RESULTS In 143 children with AML, twenty mitochondria-related DEGs were selected for validation, of which 16 were found to be significantly dysregulated. Upregulation of SDHC (p<0.001), CLIC1 (p=0.013) and downregulation of SLC25A29 (p<0.001) were independently predictive of inferior OS, and included for developing prognostic risk score. The risk score model was independently predictive of survival over and above ELN risk categorization (Harrell's c-index: 0.675). High-risk patients (risk score above median) had significantly inferior OS (p<0.001) and event free survival (p<0.001); they were associated with poor-risk cytogenetics (p=0.021), ELN intermediate/poor risk group (p=0.016), absence of RUNX1-RUNX1T1 (p=0.027), and not attaining remission (p=0.016). On external validation, the risk score also predicted OS (p=0.019) in TCGA dataset. DISCUSSION We identified and validated mitochondria-related DEGs with prognostic impact in pediatric AML and also developed a novel 3-gene based externally validated gene signature predictive of survival.
Collapse
Affiliation(s)
- Shilpi Chaudhary
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Shuvadeep Ganguly
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Archna Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Dibyabhaba Pradhan
- Computational Genomics Centre, Indian Council of Medical Research (ICMR), New Delhi, India
| | - Radhika Bakhshi
- Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, Delhi, India
| | - Anita Chopra
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Sameer Bakhshi
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
27
|
Tong X, Zhou F. Integrated bioinformatic analysis of mitochondrial metabolism-related genes in acute myeloid leukemia. Front Immunol 2023; 14:1120670. [PMID: 37138869 PMCID: PMC10149950 DOI: 10.3389/fimmu.2023.1120670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Background Acute myeloid leukemia (AML) is a common hematologic malignancy characterized by poor prognoses and high recurrence rates. Mitochondrial metabolism has been increasingly recognized to be crucial in tumor progression and treatment resistance. The purpose of this study was to examined the role of mitochondrial metabolism in the immune regulation and prognosis of AML. Methods In this study, mutation status of 31 mitochondrial metabolism-related genes (MMRGs) in AML were analyzed. Based on the expression of 31 MMRGs, mitochondrial metabolism scores (MMs) were calculated by single sample gene set enrichment analysis. Differential analysis and weighted co-expression network analysis were performed to identify module MMRGs. Next, univariate Cox regression and the least absolute and selection operator regression were used to select prognosis-associated MMRGs. A prognosis model was then constructed using multivariate Cox regression to calculate risk score. We validated the expression of key MMRGs in clinical specimens using immunohistochemistry (IHC). Then differential analysis was performed to identify differentially expressed genes (DEGs) between high- and low-risk groups. Functional enrichment, interaction networks, drug sensitivity, immune microenvironment, and immunotherapy analyses were also performed to explore the characteristic of DEGs. Results Given the association of MMs with prognosis of AML patients, a prognosis model was constructed based on 5 MMRGs, which could accurately distinguish high-risk patients from low-risk patients in both training and validation datasets. IHC results showed that MMRGs were highly expressed in AML samples compared to normal samples. Additionally, the 38 DEGs were mainly related to mitochondrial metabolism, immune signaling, and multiple drug resistance pathways. In addition, high-risk patients with more immune-cell infiltration had higher Tumor Immune Dysfunction and Exclusion scores, indicating poor immunotherapy response. mRNA-drug interactions and drug sensitivity analyses were performed to explore potential druggable hub genes. Furthermore, we combined risk score with age and gender to construct a prognosis model, which could predict the prognosis of AML patients. Conclusion Our study provided a prognostic predictor for AML patients and revealed that mitochondrial metabolism is associated with immune regulation and drug resistant in AML, providing vital clues for immunotherapies.
Collapse
|
28
|
Mao H, Wen Y, Yu Y, Li H, Wang J, Sun B. Ignored role of polyphenol in boosting reactive oxygen species generation for polyphenol/chemodynamic combination therapy. Mater Today Bio 2022; 16:100436. [PMID: 36176720 PMCID: PMC9513774 DOI: 10.1016/j.mtbio.2022.100436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022]
Abstract
Chemodynamic therapy (CDT) is a promising tumor-specific treatment, but still suffering insufficient reactive oxygen species (ROS) levels due to its limited efficacy of Fenton/Fenton-like reaction. Polyphenol, as a natural reductant, has been applied to promote the efficacy of Fenton/Fenton-like reactions; however, its intrinsic pro-apoptosis effects was ignored. Herein, a novel CDT/polyphenol-combined strategy was designed, based on Avenanthramide C-loaded dendritic mesoporous silica (DMSN)-Au/Fe3O4 nanoplatforms with folic acid modification for tumor-site targeting. For the first time, we showed that the nanocomplex (DMSNAF-AVC-FA) induced ROS production in the cytoplasm via Au/Fe3O4-mediated Fenton reactions and externally damaged the mitochondrial membrane; simultaneously, the resultant increased mitochondrial membrane permeability can facilitate the migration of AVC into mitochondrial, targeting the DDX3 pathway and impairing the electron transport chain (ETC) complexes, which significantly boosted the endogenous ROS levels inside the mitochondrial. Under the elevated oxidative stress level via both intra- and extra-mitochondrial ROS production, the maximum mitochondrial membrane permeability was achieved by up-regulation of Bax/Bcl-2, and thereby led to massive release of Cytochrome C and maximum tumor cell apoptosis via Caspase-3 pathway. As a result, the as-designed strategy achieved synergistic cytotoxicity to 4T1 tumor cells with the cell apoptosis rate of 99.12% in vitro and the tumor growth inhibition rate of 63.3% in vivo, while very minor cytotoxicity to normal cells with cell viability of 95.4%. This work evidenced that natural bioactive compounds are powerful for synergistically boosting ROS level, providing new insight for accelerating the clinical conversion progress of CDT with minimal side effects. A novel CDT/polyphenol-combined nanoplatform, DMSNAF-AVC-FA was designed. DMSNAF-AVC-FA induced ROS production and externally damaged mitochondrial membrane. DMSNAF-AVC-FA facilitated AVC targeting the DDX3 pathway and impairing ETC complexes. DMSNAF-AVC-FA achieved synergistic antitumor efficacy both in vitro and in vivo.
Collapse
Affiliation(s)
- Huijia Mao
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048, China
| | - Yangyang Wen
- College of Chemistry and Materials Engineering, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048, China
| | - Yonghui Yu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048, China
| | - Hongyan Li
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048, China
| | - Baoguo Sun
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048, China
| |
Collapse
|
29
|
Dietary methionine starvation impairs acute myeloid leukemia progression. Blood 2022; 140:2037-2052. [PMID: 35984907 DOI: 10.1182/blood.2022017575] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/28/2022] [Indexed: 11/20/2022] Open
Abstract
Targeting altered tumor cell metabolism might provide an attractive opportunity for patients with acute myeloid leukemia (AML). An amino acid dropout screen on primary leukemic stem cells and progenitor populations revealed a number of amino acid dependencies, of which methionine was one of the strongest. By using various metabolite rescue experiments, nuclear magnetic resonance-based metabolite quantifications and 13C-tracing, polysomal profiling, and chromatin immunoprecipitation sequencing, we identified that methionine is used predominantly for protein translation and to provide methyl groups to histones via S-adenosylmethionine for epigenetic marking. H3K36me3 was consistently the most heavily impacted mark following loss of methionine. Methionine depletion also reduced total RNA levels, enhanced apoptosis, and induced a cell cycle block. Reactive oxygen species levels were not increased following methionine depletion, and replacement of methionine with glutathione or N-acetylcysteine could not rescue phenotypes, excluding a role for methionine in controlling redox balance control in AML. Although considered to be an essential amino acid, methionine can be recycled from homocysteine. We uncovered that this is primarily performed by the enzyme methionine synthase and only when methionine availability becomes limiting. In vivo, dietary methionine starvation was not only tolerated by mice, but also significantly delayed both cell line and patient-derived AML progression. Finally, we show that inhibition of the H3K36-specific methyltransferase SETD2 phenocopies much of the cytotoxic effects of methionine depletion, providing a more targeted therapeutic approach. In conclusion, we show that methionine depletion is a vulnerability in AML that can be exploited therapeutically, and we provide mechanistic insight into how cells metabolize and recycle methionine.
Collapse
|