1
|
Bustamante CM, Sidler D, Ruggenthaler M, Rubio Á. The relevance of degenerate states in chiral polaritonics. J Chem Phys 2024; 161:244101. [PMID: 39713996 DOI: 10.1063/5.0235935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/05/2024] [Indexed: 12/24/2024] Open
Abstract
In this work, we theoretically explore whether a parity-violating/chiral light-matter interaction is required to capture all relevant aspects of chiral polaritonics or if a parity-conserving/achiral theory is sufficient (e.g., long-wavelength/dipole approximation). This question is non-trivial to answer since achiral theories (Hamiltonians) still possess chiral solutions. To elucidate this fundamental theoretical question, a simple GaAs quantum ring model is coupled to an effective chiral mode of a single-handedness optical cavity in dipole approximation. The bare matter GaAs quantum ring possesses a non-degenerate ground state and a doubly degenerate first excited state. The chiral or achiral nature (superpositions) of the degenerate excited states remains undetermined for an isolated matter system. However, inside our parity-conserving description of a chiral cavity, we find that the dressed eigenstates automatically (ab initio) attain chiral character and become energetically discriminated based on the handedness of the cavity. In contrast, the non-degenerate bare matter state (ground state) does not show energetic discrimination inside a chiral cavity within a dipole approximation. Nevertheless, our results suggest that the handedness of the cavity can still be imprinted onto these states (e.g., angular momentum and chiral current densities). Overall, the above findings highlight the relevance of degenerate states in chiral polaritonics. In particular, because recent theoretical results for linearly polarized cavities indicate the formation of a frustrated and highly degenerate electronic ground state under collective strong coupling conditions, which, likewise, is expected to form in chiral polaritonics and, thus, could be prone to chiral symmetry breaking effects.
Collapse
Affiliation(s)
- Carlos M Bustamante
- Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Dominik Sidler
- Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
- Laboratory for Materials Simulations, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Michael Ruggenthaler
- Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Ángel Rubio
- Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
2
|
Padula D. Discriminating Clockwise and Counterclockwise Photoisomerization Paths in Achiral Photoswitches by Excited-State Electronic Circular Dichroism. J Phys Chem B 2024; 128:8303-8312. [PMID: 39171863 DOI: 10.1021/acs.jpcb.4c02384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Despite the numerous investigations of photoisomerization reactions from both the computational and experimental points of view, even in complex environments, to date there is no direct demonstration of the direction of rotation of the retinal chromophore, initiating the vision process in several organisms, occurring upon light irradiation. In the literature, many proposals have been formulated to shed light on the details of this process, most of which are extracted from semiclassical simulations. Although high hopes are held in the development of time-resolved X-ray spectroscopy, I argue in this work that simpler but less known techniques can be used to unravel the details of this fascinating photochemical process. In fact, chiroptical spectroscopy would unambiguously prove the direction of the rotatory motion of the chromophore during the photoisomerization process by probing excited state chirality, a piece of information that, so far, has been exclusively extracted from atomistic simulations. I demonstrate this statement by computing the expected chiroptical response along photoisomerization pathways for several models of the retinal chromophores that are found in nature bound to rhodopsins, including nuclear ensemble spectra from semiclassical dynamics simulations, that can be compared with time-resolved experiments.
Collapse
Affiliation(s)
- Daniele Padula
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, Siena 53100, Italy
| |
Collapse
|
3
|
Wanie V, Bloch E, Månsson EP, Colaizzi L, Ryabchuk S, Saraswathula K, Ordonez AF, Ayuso D, Smirnova O, Trabattoni A, Blanchet V, Ben Amor N, Heitz MC, Mairesse Y, Pons B, Calegari F. Capturing electron-driven chiral dynamics in UV-excited molecules. Nature 2024; 630:109-115. [PMID: 38778116 PMCID: PMC11153151 DOI: 10.1038/s41586-024-07415-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/11/2024] [Indexed: 05/25/2024]
Abstract
Chiral molecules, used in applications such as enantioselective photocatalysis1, circularly polarized light detection2 and emission3 and molecular switches4,5, exist in two geometrical configurations that are non-superimposable mirror images of each other. These so-called (R) and (S) enantiomers exhibit different physical and chemical properties when interacting with other chiral entities. Attosecond technology might enable influence over such interactions, given that it can probe and even direct electron motion within molecules on the intrinsic electronic timescale6 and thereby control reactivity7-9. Electron currents in photoexcited chiral molecules have indeed been predicted to enable enantiosensitive molecular orientation10, but electron-driven chiral dynamics in neutral molecules have not yet been demonstrated owing to the lack of ultrashort, non-ionizing and perturbative light pulses. Here we use time-resolved photoelectron circular dichroism (TR-PECD)11-15 with an unprecedented temporal resolution of 2.9 fs to map the coherent electronic motion initiated by ultraviolet (UV) excitation of neutral chiral molecules. We find that electronic beatings between Rydberg states lead to periodic modulations of the chiroptical response on the few-femtosecond timescale, showing a sign inversion in less than 10 fs. Calculations validate this and also confirm that the combination of the photoinduced chiral current with a circularly polarized probe pulse realizes an enantioselective filter of molecular orientations following photoionization. We anticipate that our approach will enable further investigations of ultrafast electron dynamics in chiral systems and reveal a route towards enantiosensitive charge-directed reactivity.
Collapse
Affiliation(s)
- Vincent Wanie
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
| | - Etienne Bloch
- Université de Bordeaux - CNRS - CEA, CELIA, UMR5107, Talence, France
| | - Erik P Månsson
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Lorenzo Colaizzi
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Physics Department, Universität Hamburg, Hamburg, Germany
- Department of Physics, Politecnico di Milano, Milano, Italy
| | - Sergey Ryabchuk
- Physics Department, Universität Hamburg, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Hamburg, Germany
| | - Krishna Saraswathula
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Physics Department, Universität Hamburg, Hamburg, Germany
| | - Andres F Ordonez
- Department of Physics, Imperial College London, London, UK
- School of Physical and Chemical Sciences, Queen Mary University of London, London, UK
| | - David Ayuso
- Department of Physics, Imperial College London, London, UK
- Max-Born-Institut, Berlin, Germany
- School of Physical and Chemical Sciences, Queen Mary University of London, London, UK
| | - Olga Smirnova
- Max-Born-Institut, Berlin, Germany
- Technische Universität Berlin, Berlin, Germany
| | - Andrea Trabattoni
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Institute of Quantum Optics, Leibniz Universität Hannover, Hannover, Germany
| | - Valérie Blanchet
- Université de Bordeaux - CNRS - CEA, CELIA, UMR5107, Talence, France
| | - Nadia Ben Amor
- CNRS, UPS, LCPQ (Laboratoire de Chimie et Physique Quantiques), FeRMI, Toulouse, France
| | - Marie-Catherine Heitz
- CNRS, UPS, LCPQ (Laboratoire de Chimie et Physique Quantiques), FeRMI, Toulouse, France
| | - Yann Mairesse
- Université de Bordeaux - CNRS - CEA, CELIA, UMR5107, Talence, France
| | - Bernard Pons
- Université de Bordeaux - CNRS - CEA, CELIA, UMR5107, Talence, France.
| | - Francesca Calegari
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
- Physics Department, Universität Hamburg, Hamburg, Germany.
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Hamburg, Germany.
| |
Collapse
|
4
|
Hao Y, Han R, Li S, Liu L, Fang WH. A Complete Unveiling of the Mechanism and Chirality in Photoisomerization of Arylazopyrazole 3pzH: Combined Electronic Structure Calculations and AIMS Dynamic Simulations. J Phys Chem A 2024; 128:528-538. [PMID: 38215031 DOI: 10.1021/acs.jpca.3c03477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
The arylazopyrazole 3pzH as a novel photoswitch exhibits quantitative switching and high thermal stability. In this work, combined electronic structure calculations and ab initio multiple spawning (AIMS) dynamic simulations were performed to systemically investigate the cis ↔ trans photoisomerization mechanism and the chiral preference after photoexcitation of 3pzH to the first excited singlet state (S1). Unlike most of the azoheteroarene photoswitches reported previously, many twisted and T-shaped cis isomers were found to be stable for 3pzH in the S0 state, owing to the moderate interaction between the hydrogen atom and π electrons of the aromatic ring. Two twisted cis isomers with different chirality ((M)-Z1 and (P)-Z1), the most stable T-shaped cis isomer ((T)-Z2), and the most stable planar trans isomer (E2) were selected as the initial structures to carry out the AIMS nonadiabatic dynamic simulations. Following excitation to the S1 state, all of the cis isomers decayed to conical intersection (CI) regions via the same bicycle pedal mechanism, while the evolution of the trans isomers to their CI regions was achieved via rotation around the N═N bond. More importantly, chiral preferences were found for the twisted cis isomers in the S1 state through the AIMS dynamic simulations due to the steric effect and static electronic repulsion. Notably, chirality was also observed in S1 isomerization starting from the planar E2 isomer because of the dynamic effect. After the nonadiabatic transition to the S0 state, the bicycle pedal mechanism was found to play a crucial role in cis ↔ trans photoisomerization. The simulated photoisomerization productivities were generally consistent with past experimental observations. Our calculations not only uncover the underlying reason for the excellent photoswitching properties of 3pzH but also enrich the knowledge of photoisomerization for azoheteroarene photoswitches, which will surely benefit their rational design.
Collapse
Affiliation(s)
- Yuxia Hao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ruinong Han
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Shuai Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lihong Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
5
|
Savchenko EV, Kostjukov VV. 4a,4b-Dihydrophenanthrene → cis-stilbene photoconversion: TD-DFT/DFT study. J Mol Model 2024; 30:24. [PMID: 38183494 DOI: 10.1007/s00894-023-05824-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024]
Abstract
CONTEXT DHP → CS photoconversion was analyzed in terms of electron density redistribution for the first time. The following explanation for the non-recovery of the C4a-C4b bond upon CS relaxation is proposed: during this process, the Coulomb repulsion energy between these pairs of atoms increases by almost one and a half times, and their bonding by an electron at LUMO is insufficient to recover the C4a-C4b bond. According to calculations, upon CS relaxation, the linker connecting the benzene rings undergoes significant structural changes. In this case, the distance between the C4a and C4b atoms increases from 3.00 Å to 3.28 Å. Calculations showed that the C4a-C4b vibration of the DHP bond has a very low intensity. Therefore, thermal motion does not contribute to the rupture of this bond. METHODS All calculations were performed using the Gaussian16 software package at the B3LYP/6-311 + + G(d,p)/IEFPCM theory level. B3LYP was the only hybrid functional supported by Gaussian16, which ensured the cleavage of the C4a-C4b bond of DHP while optimizing its S1 excited state. A quantitative description of the redistribution of electron density in the studied conformers was carried out using the analysis of the NPA of atomic charges. Cyclohexane was used as an implicitly specified non-polar solvent. Visualization of molecular orbitals, and electron densities, as well as plotting of calculated IR spectra, were performed using the Gaussview6 software package.
Collapse
Affiliation(s)
- Elizaveta V Savchenko
- Sevastopol State University, Universitetskaya Str., 33, Sevastopol, 299053, Crimea, Ukraine
| | - Victor V Kostjukov
- Sevastopol State University, Universitetskaya Str., 33, Sevastopol, 299053, Crimea, Ukraine.
| |
Collapse
|
6
|
Lu Y, Chow MK, Sun J, Tao D, Jin Q, Ren Y, Wang WX, He Y. Identification of Transformation Products of Organic UV Filters by Photooxidation and Their Differential Estrogenicity Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17110-17122. [PMID: 37851929 DOI: 10.1021/acs.est.3c05015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Organic ultraviolet filters (OUVFs) are extensively released into aquatic environments, where they undergo complex phototransformation. However, there is little knowledge regarding their transformation products (TPs) and associated endocrine disruption potentials. In the present study, we characterized the chemical and toxicological profiles of TPs for two common OUVFs, oxybenzone (BP3) and ethylhexyl methoxycinnamate (EHMC), by photooxidation under environmentally relevant conditions. It is hypothesized that TPs of the tested OUVFs will show varied estrogenicity at different reaction times. High-resolution liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) identified 17 TPs of 7 m/z for BP-3 and 13 TPs of 8 m/z for EHMC at confidence levels ≤2. Five novel TPs of 2 m/z were reported for the first time with structure-diagnostic MS/MS spectra. Estrogenicity assessment using the MCF-7-luc cell line showed discrepant estrogenic activities exhibited by OUVF-TPs over time. Specifically, BP3-TPs exhibited significantly greater estrogenicity than the parent at several reaction times, whereas EHMC-TPs displayed fluctuating estrogenicity with a declining trend. Correlation analysis coupled with molecular docking simulations further suggested several TPs of BP3 as potential endocrine disruptive compounds. These findings underscore the necessity of considering mixtures during chemical testing and risk assessment and highlight the potentially greater risks associated with post-transformation cocktails.
Collapse
Affiliation(s)
- Yichun Lu
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Man Kwan Chow
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jiaji Sun
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Danyang Tao
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Qianqian Jin
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Yuhe He
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
7
|
Zhu H, Fan L, Wang K, Liu H, Zhang J, Yan S. Progress in the Synthesis and Application of Tellurium Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2057. [PMID: 37513066 PMCID: PMC10384241 DOI: 10.3390/nano13142057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023]
Abstract
In recent decades, low-dimensional nanodevices have shown great potential to extend Moore's Law. The n-type semiconductors already have several candidate materials for semiconductors with high carrier transport and device performance, but the development of their p-type counterparts remains a challenge. As a p-type narrow bandgap semiconductor, tellurium nanostructure has outstanding electrical properties, controllable bandgap, and good environmental stability. With the addition of methods for synthesizing various emerging tellurium nanostructures with controllable size, shape, and structure, tellurium nanomaterials show great application prospects in next-generation electronics and optoelectronic devices. For tellurium-based nanomaterials, scanning electron microscopy and transmission electron microscopy are the main characterization methods for their morphology. In this paper, the controllable synthesis methods of different tellurium nanostructures are reviewed, and the latest progress in the application of tellurium nanostructures is summarized. The applications of tellurium nanostructures in electronics and optoelectronics, including field-effect transistors, photodetectors, and sensors, are highlighted. Finally, the future challenges, opportunities, and development directions of tellurium nanomaterials are prospected.
Collapse
Affiliation(s)
- Hongliang Zhu
- School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Li Fan
- School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Kaili Wang
- School of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Hao Liu
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jiawei Zhang
- School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Shancheng Yan
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
8
|
Tikhonov DS, Blech A, Leibscher M, Greenman L, Schnell M, Koch CP. Pump-probe spectroscopy of chiral vibrational dynamics. SCIENCE ADVANCES 2022; 8:eade0311. [PMID: 36475788 PMCID: PMC9728962 DOI: 10.1126/sciadv.ade0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/25/2022] [Indexed: 06/17/2023]
Abstract
A planar molecule may become chiral upon excitation of an out-of-plane vibration, changing its handedness during half a vibrational period. When exciting such a vibration in an ensemble of randomly oriented molecules with an infrared laser, half of the molecules will undergo the vibration phase-shifted by π compared to the other half, and no net chiral signal is observed. This symmetry can be broken by exciting the vibrational motion with a Raman transition in the presence of a static electric field. Subsequent ionization of the vibrating molecules by an extreme ultraviolet pulse probes the time-dependent net handedness via the photoelectron circular dichroism. Our proposal for pump-probe spectroscopy of molecular chirality, based on quantum-chemical theory and discussed for the example of the carbonyl chlorofluoride molecule, is feasible with current experimental technology.
Collapse
Affiliation(s)
- Denis S. Tikhonov
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Institute of Physical Chemistry, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 1, 24118 Kiel, Germany
| | - Alexander Blech
- Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Monika Leibscher
- Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Loren Greenman
- Department of Physics, Kansas State University, 116 Cardwell Hall, 1228 N. 17th St., Manhattan, KS 66506-2601, USA
| | - Melanie Schnell
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Institute of Physical Chemistry, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 1, 24118 Kiel, Germany
| | - Christiane P. Koch
- Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
9
|
Hrivnák T, Medveď M, Bartkowiak W, Zaleśny R. Hyperpolarizabilities of Push-Pull Chromophores in Solution: Interplay between Electronic and Vibrational Contributions. Molecules 2022; 27:8738. [PMID: 36557870 PMCID: PMC9783928 DOI: 10.3390/molecules27248738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
Contemporary design of new organic non-linear optical (NLO) materials relies to a large extent on the understanding of molecular and electronic structure-property relationships revealed during the years by available computational approaches. The progress in theory-hand-in-hand with experiment-has enabled us to identify and analyze various physical aspects affecting the NLO responses, such as the environmental effects, molecular vibrations, frequency dispersion, and system dynamics. Although it is nowadays possible to reliably address these effects separately, the studies analyzing their mutual interplay are still very limited. Here, we employ density functional theory (DFT) methods in combination with an implicit solvent model to examine the solvent effects on the electronic and harmonic as well as anharmonic vibrational contributions to the static first hyperpolarizability of a series of push-pull α,ω-diphenylpolyene oligomers, which were experimentally shown to exhibit notable second-order NLO responses. We demonstrate that the magnitudes of both vibrational and electronic contributions being comparable in the gas phase significantly increase in solvents, and the enhancement can be, in some cases, as large as three- or even four-fold. The electrical and mechanical anharmonic contributions are not negligible but cancel each other out to a large extent. The computed dynamic solute NLO properties of the studied systems are shown to be in a fair agreement with those derived from experimentally measured electric-field-induced second-harmonic generation (EFISHG) signals. Our results substantiate the necessity to consider concomitantly both solvation and vibrational effects in modeling static NLO properties of solvated systems.
Collapse
Affiliation(s)
- Tomáš Hrivnák
- Department of Molecular Simulations of Polymers, Polymer Institute, Slovak Academy of Sciences, SK-845 41 Bratislava, Slovakia
| | - Miroslav Medveď
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, SK-974 00 Banská Bystrica, Slovakia
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University Olomouc, 783 71 Olomouc, Czech Republic
| | - Wojciech Bartkowiak
- Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, PL-50370 Wrocław, Poland
| | - Robert Zaleśny
- Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, PL-50370 Wrocław, Poland
| |
Collapse
|
10
|
Imato K, Sasaki A, Ishii A, Hino T, Kaneda N, Ohira K, Imae I, Ooyama Y. Sterically Hindered Stiff-Stilbene Photoswitch Offers Large Motions, 90% Two-Way Photoisomerization, and High Thermal Stability. J Org Chem 2022; 87:15762-15770. [PMID: 36378160 DOI: 10.1021/acs.joc.2c01566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Molecular photoswitches have been widely used as molecular machines in various fields due to the small structures and simple motions generated in reversible isomerization. However, common photoswitches, as represented by azobenzene (AB), cannot combine both large motions and high thermal stability, which are critically important for some practical applications in addition to high photoisomerization yields. Here, we focus on a promising photoswitch, stiff stilbene (SS), and its derivative, sterically hindered SS (HSS). The detailed investigation of their performance with a comparison to AB demonstrated that HSS is an outstanding photoswitch offering larger motions than AB and SS, ca. 90% photoisomerization in both E-to-Z and Z-to-E directions, and significantly high thermal stability with a half-life of ca. 1000 years at room temperature. The superior performance of HSS promises its use in various applications, even where previous photoswitches have troubles and are unavailable.
Collapse
Affiliation(s)
- Keiichi Imato
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| | - Ayane Sasaki
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| | - Akira Ishii
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| | - Taichi Hino
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| | - Naoki Kaneda
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| | - Kazuki Ohira
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| | - Ichiro Imae
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| | - Yousuke Ooyama
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| |
Collapse
|