1
|
Chen LN, Zhou H, Xi K, Cheng S, Liu Y, Fu Y, Ma X, Xu P, Ji SY, Wang WW, Shen DD, Zhang H, Shen Q, Chai R, Zhang M, Yang L, Han F, Mao C, Cai X, Zhang Y. Proton perception and activation of a proton-sensing GPCR. Mol Cell 2025; 85:1640-1657.e8. [PMID: 40215960 DOI: 10.1016/j.molcel.2025.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/22/2025] [Accepted: 02/28/2025] [Indexed: 04/20/2025]
Abstract
Maintaining pH at cellular, tissular, and systemic levels is essential for human health. Proton-sensing GPCRs regulate physiological and pathological processes by sensing the extracellular acidity. However, the molecular mechanism of proton sensing and activation of these receptors remains elusive. Here, we present cryoelectron microscopy (cryo-EM) structures of human GPR4, a prototypical proton-sensing GPCR, in its inactive and active states. Our studies reveal that three extracellular histidine residues are crucial for proton sensing of human GPR4. The binding of protons induces substantial conformational changes in GPR4's ECLs, particularly in ECL2, which transforms from a helix-loop to a β-turn-β configuration. This transformation leads to the rearrangements of H-bond network and hydrophobic packing, relayed by non-canonical motifs to accommodate G proteins. Furthermore, the antagonist NE52-QQ57 hinders human GPR4 activation by preventing hydrophobic stacking rearrangement. Our findings provide a molecular framework for understanding the activation mechanism of a human proton-sensing GPCR, aiding future drug discovery.
Collapse
Affiliation(s)
- Li-Nan Chen
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hui Zhou
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Kun Xi
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shizhuo Cheng
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yongfeng Liu
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yifan Fu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiangyu Ma
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China; State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Ping Xu
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China; Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Su-Yu Ji
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wei-Wei Wang
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Dan-Dan Shen
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Huibing Zhang
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qingya Shen
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Min Zhang
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
| | - Lin Yang
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Chunyou Mao
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China; Center for Structural Pharmacology and Therapeutics Development, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou 310016, China; Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou 310016, China.
| | - Yan Zhang
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
2
|
Imamura T, Kelz MB. Alluring Potential to Accelerate Emergence and Ameliorate Opioid-induced Respiratory Depression without Antagonizing Analgesia: Danavorexton Enters the Anesthetic Landscape. Anesthesiology 2025; 142:589-592. [PMID: 40067034 DOI: 10.1097/aln.0000000000005389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Affiliation(s)
- Toshihiro Imamura
- Department of Medicine, Division of Sleep Medicine, Department of Anesthesiology and Critical Care, Chronobiology and Sleep Institute, and Center for Neuroscience of Unconsciousness and Reanimation Research Alliance, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania; Division of Pulmonary and Sleep Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Max B Kelz
- Department of Anesthesiology and Critical Care, Chronobiology and Sleep Institute, Center for Neuroscience of Unconsciousness and Reanimation Research Alliance, and Mahoney Institute of Neuroscience University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
3
|
Ramou I, Janvier S, Druwé S, Sys C, Dekeyzer L, Claes P, Pardon E, Menet C, Steyaert J. Expression and purification of an activated orexin receptor 1- G-protein complex. Protein Expr Purif 2025; 228:106660. [PMID: 39761735 DOI: 10.1016/j.pep.2025.106660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/28/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Orexin receptors constitute a family of class A G-protein coupled receptors. There are two subtypes of orexin receptors, namely OX1R and OX2R. OX1R and OX2R are widely distributed in the central nervous system and are the targets for the peptide neurotransmitters orexin-A and orexin-B. Orexins are involved in a plethora of key physiological functions such as regulation of the sleep/wake cycle, feeding behavior, energy homeostasis, and cognition. Dysfunction of the orexin system has been linked to various pathological conditions, such as narcolepsy, insomnia, obesity, addiction, cognitive impairment, and depression. The active state structure of OX2R has been elucidated, while the active state structure of OX1R remains unresolved. Here, we describe a method for the expression and purification of an activated OX1R bound to its native peptide ligand, orexin-A, in complex with a Dominant Negative Gsq protein and Nb35. The proteins were expressed in Hi5 insect cells and subsequently purified via two consecutive affinity chromatography steps, followed by a final polishing Size Exclusion Chromatography step. This study could stimulate further research into the activation mechanisms of OX1R and the structural determination of its active state structure.
Collapse
Affiliation(s)
- Ioanna Ramou
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, Belgium
| | - Steven Janvier
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, Belgium
| | | | | | | | | | - Els Pardon
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, Belgium
| | | | - Jan Steyaert
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, Belgium.
| |
Collapse
|
4
|
Izawa S, Fusca D, Jiang H, Heilinger C, Hausen AC, Wunderlich FT, Steuernagel L, Kloppenburg P, Brüning JC. Orexin/hypocretin receptor 2 signaling in MCH neurons regulates REM sleep and insulin sensitivity. Cell Rep 2025; 44:115277. [PMID: 39946231 DOI: 10.1016/j.celrep.2025.115277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/05/2024] [Accepted: 01/16/2025] [Indexed: 02/28/2025] Open
Abstract
Orexin/hypocretin receptor type 2 (Ox2R), which is widely expressed in the brain, receives orexin signals and modulates sleep and metabolism. Ox2R selective agonists are currently under clinical trials for narcolepsy treatment. Here, we focused on Ox2R expression and function in melanin-concentrating hormone (MCH) neurons, which have opposite roles to orexin neurons in sleep and metabolism regulation. Ox2R-expressing MCH neurons showed heterogeneity of RNA expression, and orexin B application in brain slices induced both excitatory and inhibitory responses in distinct MCH neuron populations. Ox2R inactivation in MCH neurons reduced transitions from non-rapid eye movement (NREM) to REM sleep and impaired insulin sensitivity with excessive feeding after a fasting period in female mice. In conclusion, Ox2R mediates excitatory and inhibitory responses in MCH neuron sub-populations in vivo, which regulate sleep and metabolism in female mice.
Collapse
Affiliation(s)
- Shuntaro Izawa
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Debora Fusca
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Institute of Zoology, Department of Biology, University of Cologne, Cologne, Germany
| | - Hong Jiang
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany; Department of Neurobiology, School of Basic Medical Sciences, Neuroscience Research Institute, Peking University, No. 38, Xueyuan Rd., Haidian District, Beijing 100191, China
| | - Christian Heilinger
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - A Christine Hausen
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - F Thomas Wunderlich
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Lukas Steuernagel
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Peter Kloppenburg
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Institute of Zoology, Department of Biology, University of Cologne, Cologne, Germany
| | - Jens C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany; National Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
5
|
Kukkonen JP, Jacobson LH, Hoyer D, Rinne MK, Borgland SL. International Union of Basic and Clinical Pharmacology CXIV: Orexin Receptor Function, Nomenclature and Pharmacology. Pharmacol Rev 2024; 76:625-688. [PMID: 38902035 DOI: 10.1124/pharmrev.123.000953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
The orexin system consists of the peptide transmitters orexin-A and -B and the G protein-coupled orexin receptors OX1 and OX2 Orexin receptors are capable of coupling to all four families of heterotrimeric G proteins, and there are also other complex features of the orexin receptor signaling. The system was discovered 25 years ago and was immediately identified as a central regulator of sleep and wakefulness; this is exemplified by the symptomatology of the disorder narcolepsy with cataplexy, in which orexinergic neurons degenerate. Subsequent translation of these findings into drug discovery and development has resulted to date in three clinically used orexin receptor antagonists to treat insomnia. In addition to sleep and wakefulness, the orexin system appears to be a central player at least in addiction and reward, and has a role in depression, anxiety and pain gating. Additional antagonists and agonists are in development to treat, for instance, insomnia, narcolepsy with or without cataplexy and other disorders with excessive daytime sleepiness, depression with insomnia, anxiety, schizophrenia, as well as eating and substance use disorders. The orexin system has thus proved an important regulator of numerous neural functions and a valuable drug target. Orexin prepro-peptide and orexin receptors are also expressed outside the central nervous system, but their potential physiological roles there remain unknown. SIGNIFICANCE STATEMENT: The orexin system was discovered 25 years ago and immediately emerged as an essential sleep-wakefulness regulator. This discovery has tremendously increased the understanding of these processes and has thus far resulted in the market approval of three orexin receptor antagonists, which promote more physiological aspects of sleep than previous hypnotics. Further, orexin receptor agonists and antagonists with different pharmacodynamic properties are in development since research has revealed additional potential therapeutic indications. Orexin receptor signaling is complex and may represent novel features.
Collapse
Affiliation(s)
- Jyrki P Kukkonen
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Laura H Jacobson
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Daniel Hoyer
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Maiju K Rinne
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Stephanie L Borgland
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| |
Collapse
|
6
|
Yokoi S, Suno R, Mitsutake A. Structural and Computational Insights into Dynamics and Intermediate States of Orexin 2 Receptor Signaling. J Phys Chem B 2024; 128:6082-6096. [PMID: 38722794 DOI: 10.1021/acs.jpcb.4c00730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Orexin 2 receptor (OX2R) is a G protein-coupled receptor (GPCR) whose activation is crucial to regulation of the sleep-wake cycle. Recently, inactive and active state structures were determined from X-ray crystallography and cryo-electron microscopy single particle analysis, and the activation mechanisms have been discussed based on these static data. GPCRs have multiscale intermediate states during activation, and insights into these dynamics and intermediate states may aid the precise control of intracellular signaling by ligands in drug discovery. Molecular dynamics (MD) simulations are used to investigate dynamics induced in response to thermal perturbations, such as structural fluctuations of main and side chains. In this study, we proposed collective motions of the TM domain during activation by performing 30 independent microsecond-scale MD simulations for various OX2R systems and applying relaxation mode analysis. The analysis results suggested that TM3 had a vertical structural movement relative to the membrane surface during activation. In addition, we extracted three characteristic amino acid residues on TM3, i.e., Q1343.32, V1423.40, and R1523.50, which exhibited large conformational fluctuations. We quantitatively evaluated the changes in their equilibrium during activation in relation to the movement of TM3. We also discuss the regulation of ligand binding recognition and intracellular signal selectivity by changes in the equilibrium of Q1343.32 and R1523.50, respectively, according to MD simulations and GPCR database. Additionally, the OX2R-Gi signaling complex is stabilized in the conformation resembling a non-canonical (NC) state, which was previously proposed as an intermediate state during activation of neurotensin 1 receptor. Insights into the dynamics and intermediate states during activation gained from this study may be useful for developing biased agonists for OX2R.
Collapse
Affiliation(s)
- Shun Yokoi
- Department of Physics, School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Ryoji Suno
- Department of Medical Chemistry, Kansai Medical University, 2-5-1 Shin-Machi, Hirakata, Osaka 573-1010, Japan
| | - Ayori Mitsutake
- Department of Physics, School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
7
|
Dubey P, Fang Y, Tukei KL, Kuila S, Liu X, Sahota A, Frolova AI, Reinl EL, Malik M, England SK, Imoukhuede PI. Understanding the effects of oxytocin receptor variants on OXT-OXT receptor binding: A mathematical model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582600. [PMID: 38559157 PMCID: PMC10979843 DOI: 10.1101/2024.02.28.582600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Approximately half of U.S. women giving birth annually receive Pitocin, the synthetic form of oxytocin (OXT), yet its effective dose can vary significantly. This variability presents safety concerns due to unpredictable responses, which may lead to adverse outcomes for both mother and baby. To address the need for improved dosing, we developed a data-driven mathematical model to predict OXT receptor (OXTR) binding. Our study focuses on five prevalent OXTR variants (V45L, P108A, L206V, V281M, and E339K) and their impact on OXT-OXTR binding dynamics in two distinct cell types: human embryonic kidney cells (HEK293T), commonly used in experimental systems, and human myometrial smooth muscle cells, containing endogenous OXTR. We parameterized the model with cell-specific OXTR surface localization measurements. To strengthen the robustness of our study, we conducted a comprehensive meta-analysis of OXT- OXTR binding, enabling parameterization of our model with cell-specific OXT-OXTR binding kinetics (myometrial OXT-OXTR K d = 1.6 nM, kon = 6.8 × 10 5 M -1 min -1 , and koff = 0.0011 min -1 ). Our meta-analysis revealed significant homogeneity in OXT-OXTR affinity across experiments and species with a K d = 0.52 - 9.32 nM and mean K d = 1.48 ± 0.36 nM. Our model achieves several valuable insights into designing dosage strategies. First, we predicted that the OXTR complex reaches maximum occupancy at 10 nM OXT in myometrial cells and at 1 µM in HEK293T cells. This information is pivotal for guiding experimental design and data interpretation when working with these distinct cell types, emphasizing the need to consider effects for specific cell types when choosing OXTR-transfected cell lines. Second, our model recapitulated the significant effects of genetic variants for both experimental and physiologically relevant systems, with V281M and E339K substantially compromising OXT-OXTR binding capacity. These findings suggest the need for personalized oxytocin dosing based on individual genetic profiles to enhance therapeutic efficacy and reduce risks, especially in the context of labor and delivery. Third, we demonstrated the potential for rescuing the attenuated cell response observed in V281M and E339K variants by increasing the OXT dosage at specific, early time points. Cellular responses to OXT, including Ca 2+ release, manifest within minutes. Our model indicates that providing V281M- and E339K-expressing cells with doubled OXT dose during the initial minute of binding can elevate OXT-OXTR complex formation to levels comparable to wild-type OXTR. In summary, our study provides a computational framework for precision oxytocin dosing strategies, paving the way for personalized medicine.
Collapse
|
8
|
Imamura K, Akagi KI, Miyanoiri Y, Tsujimoto H, Hirokawa T, Ashida H, Murakami K, Inoue A, Suno R, Ikegami T, Sekiyama N, Iwata S, Kobayashi T, Tochio H. Interaction modes of human orexin 2 receptor with selective and nonselective antagonists studied by NMR spectroscopy. Structure 2024; 32:352-361.e5. [PMID: 38194963 DOI: 10.1016/j.str.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/17/2023] [Accepted: 12/13/2023] [Indexed: 01/11/2024]
Abstract
Orexin neuropeptides have many physiological roles in the sleep-wake cycle, feeding behavior, reward demands, and stress responses by activating cognitive receptors, the orexin receptors (OX1R and OX2R), distributed in the brain. There are only subtle differences between OX1R and OX2R in the orthosteric site, which has hindered the rational development of subtype-selective antagonists. In this study, we utilized solution-state NMR to capture the structural plasticity of OX2R labeled with 13CH3-ε-methionine in complex with antagonists. Mutations in the orthosteric site allosterically affected the intracellular tip of TM6. Ligand exchange experiments with the subtype-selective EMPA and the nonselective suvorexant identified three methionine residues that were substantially perturbed. The NMR spectra suggested that the suvorexant-bound state exhibited more structural plasticity than the EMPA-bound state, which has not been foreseen from the close similarity of their crystal structures, providing insights into dynamic features to be considered in understanding the ligand recognition mode.
Collapse
Affiliation(s)
- Kayo Imamura
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Ken-Ichi Akagi
- Section of Laboratory Equipment, National Institute of Biomedical Innovation, Health, and Nutrition, Osaka 567-0085, Japan
| | - Yohei Miyanoiri
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hirokazu Tsujimoto
- Department of Cell Biology and Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Takatsugu Hirokawa
- Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Transborder Medical Research Center, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Hideo Ashida
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kaori Murakami
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Ryoji Suno
- Department of Medical Chemistry, Kansai Medical University, Hirakata 573-1010, Japan
| | - Takahisa Ikegami
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa 230-0045, Japan
| | - Naotaka Sekiyama
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - So Iwata
- Department of Cell Biology and Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Takuya Kobayashi
- Department of Medical Chemistry, Kansai Medical University, Hirakata 573-1010, Japan
| | - Hidehito Tochio
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
9
|
Wang W, Ranjan A, Zhang W, Liang Q, MacMillan KS, Chapman K, Wang X, Chandrasekaran P, Williams NS, Rosenbaum DM, De Brabander JK. Novel orexin receptor agonists based on arene- or pyridine-fused 1,3-dihydro-2H-imidazole-2-imines. Bioorg Med Chem Lett 2024; 99:129624. [PMID: 38272190 DOI: 10.1016/j.bmcl.2024.129624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/15/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
A structurally novel class of benzo- or pyrido-fused 1,3-dihydro-2H-imidazole-2-imines was designed and evaluated in an inositol phosphate accumulation assay for Gq signaling to measure agonistic activation of the orexin receptor type 2 (OX2R). These compounds were synthesized in 4-9 steps overall from readily available starting materials. Analogs that contain a stereogenic methyl or cyclopropyl substituent at the benzylic center, and a correctly configured alkyl ether, alkoxyalkyl ether, cyanoalkyl ether, or α-hydroxyacetamido substituted homobenzylic sidechain were identified as the most potent activators of OX2R coupled Gq signaling. Our results also indicate that agonistic activity was stereospecific at both the benzylic and homobenzylic stereogenic centra. We identified methoxyethoxy-substituted pyrido-fused dihydroimidazolimine analog 63c containing a stereogenic benzylic methyl group was the most potent agonist, registering a respectable EC50 of 339 nM and a maximal response (Emax) of 96 % in this assay. In vivo pharmacokinetic analysis indicated good brain exposure for several analogs. Our combined results provide important information towards a structurally novel class of orexin receptor agonists distinct from current chemotypes.
Collapse
Affiliation(s)
- Wentian Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9038, USA
| | - Alok Ranjan
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9038, USA
| | - Wei Zhang
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9038, USA
| | - Qiren Liang
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9038, USA
| | - Karen S MacMillan
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9038, USA
| | - Karen Chapman
- Department of Biophysics, University of Texas Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390-9041, USA
| | - Xiaoyu Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9038, USA
| | - Preethi Chandrasekaran
- Department of Biophysics, University of Texas Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390-9041, USA
| | - Noelle S Williams
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9038, USA
| | - Daniel M Rosenbaum
- Department of Biophysics, University of Texas Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390-9041, USA.
| | - Jef K De Brabander
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9038, USA.
| |
Collapse
|
10
|
Bonifazi A, Del Bello F, Giorgioni G, Piergentili A, Saab E, Botticelli L, Cifani C, Micioni Di Bonaventura E, Micioni Di Bonaventura MV, Quaglia W. Targeting orexin receptors: Recent advances in the development of subtype selective or dual ligands for the treatment of neuropsychiatric disorders. Med Res Rev 2023; 43:1607-1667. [PMID: 37036052 DOI: 10.1002/med.21959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/08/2023] [Accepted: 03/28/2023] [Indexed: 04/11/2023]
Abstract
Orexin-A and orexin-B, also named hypocretin-1 and hypocretin-2, are two hypothalamic neuropeptides highly conserved across mammalian species. Their effects are mediated by two distinct G protein-coupled receptors, namely orexin receptor type 1 (OX1-R) and type 2 (OX2-R), which share 64% amino acid identity. Given the wide expression of OX-Rs in different central nervous system and peripheral areas and the several pathophysiological functions in which they are involved, including sleep-wake cycle regulation (mainly mediated by OX2-R), emotion, panic-like behaviors, anxiety/stress, food intake, and energy homeostasis (mainly mediated by OX1-R), both subtypes represent targets of interest for many structure-activity relationship (SAR) campaigns carried out by pharmaceutical companies and academies. However, before 2017 the research was predominantly directed towards dual-orexin ligands, and limited chemotypes were investigated. Analytical characterizations, including resolved structures for both OX1-R and OX2-R in complex with agonists and antagonists, have improved the understanding of the molecular basis of receptor recognition and are assets for medicinal chemists in the design of subtype-selective ligands. This review is focused on the medicinal chemistry aspects of small molecules acting as dual or subtype selective OX1-R/OX2-R agonists and antagonists belonging to different chemotypes and developed in the last years, including radiolabeled OX-R ligands for molecular imaging. Moreover, the pharmacological effects of the most studied ligands in different neuropsychiatric diseases, such as sleep, mood, substance use, and eating disorders, as well as pain, have been discussed. Poly-pharmacology applications and multitarget ligands have also been considered.
Collapse
Affiliation(s)
- Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States
| | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | - Gianfabio Giorgioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | | | - Elizabeth Saab
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States
| | - Luca Botticelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | | | | | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| |
Collapse
|
11
|
Saitoh T, Sakurai T. The Present and Future of Synthetic Orexin Receptor Agonists. Peptides 2023:171051. [PMID: 37422012 DOI: 10.1016/j.peptides.2023.171051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/16/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023]
Abstract
The neuropeptide orexin/hypocretin plays a crucial role in various physiological processes, including the regulation of sleep/wakefulness, appetite, emotion and the reward system. Dysregulation of orexin signaling has been implicated in hypersomnia, especially in narcolepsy, which is a chronic neurological disorder characterized by excessive daytime sleepiness (EDS), sudden loss of muscle tone while awake (cataplexy), sleep paralysis, and hallucinations. Small-molecule orexin receptor agonists have emerged as promising therapeutics for these disorders, and significant progress has been made in this field in the past decade. This review summarizes recent advances in the design and synthesis of orexin receptor agonists, with a focus on peptidic and small-molecule OX2R-selective, dual, and OX1R-selective agonists. The review discusses the key structural features and pharmacological properties of these agonists, as well as their potential therapeutic applications. DATA AVAILABILITY: No data was used for the research described in the article.
Collapse
Affiliation(s)
- Tsuyoshi Saitoh
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Takeshi Sakurai
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
12
|
Abad VC. Pharmacological options for narcolepsy: are they the way forward? Expert Rev Neurother 2023; 23:819-834. [PMID: 37585269 DOI: 10.1080/14737175.2023.2249234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023]
Abstract
INTRODUCTION Narcolepsy is an under-recognized, rare neurologic disorder of hypersomnolence that is associated with increased mortality and medical and psychiatric co-morbidities. Narcolepsy exerts a substantial economic burden on patients and society. There is currently no cure, and life-long symptomatic therapy is needed. Available drugs do not modify the disease course. AREAS COVERED This manuscript provides an overview of narcolepsy symptoms, diagnosis, pathophysiology, current pharmacotherapies, and emerging treatments. Gaps and unresolved issues in diagnosis and management of narcolepsy are discussed to answer whether pharmacological options are the way forward. EXPERT OPINION Diagnostic criteria for narcolepsy (ICSD-3) need revision and greater clarity. Improved recognition of cataplexy and other symptoms through educational outreach, new biomarkers, improved test scoring through artificial intelligence algorithms, and use of machine learning may facilitate earlier diagnosis and treatment. Pharmacological options need improved symptomatic therapy in addition to targeted therapies that address the loss of hypocretin signaling. Optimal narcolepsy care also needs a better understanding of the pathophysiology, recognition of the different phenotypes in narcolepsy, identification of at-risk individuals and early recognition of symptoms, better diagnostic tools, and a database for research and disease monitoring of treatment, side-effects, and comorbidities.
Collapse
Affiliation(s)
- Vivien C Abad
- Division of Sleep Medicine, Department of Psychiatry and Behavioral Sciences Stanford University, Redwood, CA, USA
| |
Collapse
|
13
|
Kukkonen JP. The G protein preference of orexin receptors is currently an unresolved issue. Nat Commun 2023; 14:3162. [PMID: 37264034 PMCID: PMC10235037 DOI: 10.1038/s41467-023-38764-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 05/15/2023] [Indexed: 06/03/2023] Open
Affiliation(s)
- Jyrki P Kukkonen
- Department of Pharmacology, Institute of Biomedicine, Faculty of Medicine, University of Helsinki, POB 63, FI-00014, Helsinki, Finland.
| |
Collapse
|
14
|
Yin J, Kang Y, McGrath AP, Chapman K, Sjodt M, Kimura E, Okabe A, Koike T, Miyanohana Y, Shimizu Y, Rallabandi R, Lian P, Bai X, Flinspach M, De Brabander JK, Rosenbaum DM. Reply to: The G protein preference of orexin receptors is currently an unresolved issue. Nat Commun 2023; 14:3163. [PMID: 37264001 DOI: 10.1038/s41467-023-38765-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/15/2023] [Indexed: 06/03/2023] Open
Affiliation(s)
- Jie Yin
- Department of Biophysics, The University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390, USA
- Chinese Institute for Brain Research, No. 26 Science Park Road, Zhongguancun Life Science Park, Changping District, Beijing, China
| | - Yanyong Kang
- Takeda Development Center Americas, Inc., 9625 Towne Centre Drive, San Diego, CA, 92121, USA
| | - Aaron P McGrath
- Takeda Development Center Americas, Inc., 9625 Towne Centre Drive, San Diego, CA, 92121, USA
| | - Karen Chapman
- Department of Biophysics, The University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390, USA
| | - Megan Sjodt
- Takeda Development Center Americas, Inc., 9625 Towne Centre Drive, San Diego, CA, 92121, USA
| | - Eiji Kimura
- Takeda Pharmaceutical Company Ltd., 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Atsutoshi Okabe
- Takeda Pharmaceutical Company Ltd., 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Tatsuki Koike
- Takeda Pharmaceutical Company Ltd., 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Yuhei Miyanohana
- Takeda Pharmaceutical Company Ltd., 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Yuji Shimizu
- Takeda Pharmaceutical Company Ltd., 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Rameshu Rallabandi
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Peng Lian
- BioHPC at the Lyda Hill Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xiaochen Bai
- Department of Biophysics, The University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390, USA
| | - Mack Flinspach
- Takeda Development Center Americas, Inc., 9625 Towne Centre Drive, San Diego, CA, 92121, USA.
| | - Jef K De Brabander
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Daniel M Rosenbaum
- Department of Biophysics, The University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390, USA.
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
15
|
Kumari P, Inoue A, Chapman K, Lian P, Rosenbaum DM. Molecular mechanism of fatty acid activation of FFAR1. Proc Natl Acad Sci U S A 2023; 120:e2219569120. [PMID: 37216523 PMCID: PMC10235965 DOI: 10.1073/pnas.2219569120] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/03/2023] [Indexed: 05/24/2023] Open
Abstract
FFAR1 is a G-protein-coupled receptor (GPCR) that responds to circulating free fatty acids to enhance glucose-stimulated insulin secretion and release of incretin hormones. Due to the glucose-lowering effect of FFAR1 activation, potent agonists for this receptor have been developed for the treatment of diabetes. Previous structural and biochemical studies of FFAR1 showed multiple sites of ligand binding to the inactive state but left the mechanism of fatty acid interaction and receptor activation unknown. We used cryo-electron microscopy to elucidate structures of activated FFAR1 bound to a Gq mimetic, which were induced either by the endogenous FFA ligand docosahexaenoic acid or γ-linolenic acid and the agonist drug TAK-875. Our data identify the orthosteric pocket for fatty acids and show how both endogenous hormones and synthetic agonists induce changes in helical packing along the outside of the receptor that propagate to exposure of the G-protein-coupling site. These structures show how FFAR1 functions without the highly conserved "DRY" and "NPXXY" motifs of class A GPCRs and also illustrate how the orthosteric site of a receptor can be bypassed by membrane-embedded drugs to confer full activation of G protein signaling.
Collapse
Affiliation(s)
- Punita Kumari
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Asuka Inoue
- Department of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Karen Chapman
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Peng Lian
- BioHPC at the Lyda Hill Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Daniel M. Rosenbaum
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
16
|
Amezawa M, Yamamoto N, Nagumo Y, Kutsumura N, Ishikawa Y, Yanagisawa M, Nagase H, Saitoh T. Design and synthesis of novel orexin 2 receptor agonists with a 1,3,5‑trioxazatriquinane skeleton. Bioorg Med Chem Lett 2023; 82:129151. [PMID: 36690040 DOI: 10.1016/j.bmcl.2023.129151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
A novel series of 1,3,5‑trioxazatriquinane with multiple effective residues (TriMER) derivatives with amino-methylene side chains was designed and synthesized based on the docking-simulation results between orexin receptors (OXRs) and TriMER-type OXR antagonists. In vitro screening against orexin receptors identified six TriMER derivatives with a cis side-chain configuration, and, among these, 20d and 28d showed full agonist activity against OX2R at a concentration of 10 µM. To determine the absolute stereochemistry of these hit compounds, we also conducted the first asymmetric synthesis of a 1,3,5‑trioxazatriquinane skeleton using a Katsuki-Sharpless asymmetric epoxidation as the key reaction and obtained a set of the individual stereoisomers. After evaluating their activity, (+)-20d (EC50 = 3.87 μM for OX2R) and (+)-28d (EC50 = 1.62 μM for OX2R) were determined as eutomers for OX2R agonist activity. Our results provide a new class of skeleton consisting of an (R)-1,3,5‑trioxazatriquinane core with flexible methylene linkers and hydrophobic substituents at the terminals of the side chains via carbamates/sulfonamides as OX2R agonists.
Collapse
Affiliation(s)
- Mao Amezawa
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Naoshi Yamamoto
- International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yasuyuki Nagumo
- International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Noriki Kutsumura
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan; International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yukiko Ishikawa
- International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; R&D Center for Frontiers of Mirai in Policy and Technology (F-MIRAI), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, US
| | - Hiroshi Nagase
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan; International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| | - Tsuyoshi Saitoh
- International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
17
|
Molecular basis for anti-insomnia drug design from structure of lemborexant-bound orexin 2 receptor. Structure 2022; 30:1582-1589.e4. [DOI: 10.1016/j.str.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/24/2022] [Accepted: 10/28/2022] [Indexed: 11/23/2022]
|
18
|
Precocious puberty in narcolepsy type 1: Orexin loss and/or neuroinflammation, which is to blame? Sleep Med Rev 2022; 65:101683. [PMID: 36096986 DOI: 10.1016/j.smrv.2022.101683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 10/14/2022]
Abstract
Narcolepsy type 1 (NT1) is a rare neurological sleep disorder triggered by postnatal loss of the orexin/hypocretin neuropeptides. Overweight/obesity and precocious puberty are highly prevalent comorbidities of NT1, with a close temporal correlation with disease onset, suggesting a common origin. However, the underlying mechanisms remain unknown and merit further investigation. The main question we address in this review is whether the occurrence of precocious puberty in NT1 is due to the lack of orexin/hypocretin or rather to a wider hypothalamic dysfunction in the context of neuroinflammation, which is likely to accompany the disease given its autoimmune origins. Our analysis suggests that the suspected generalized neuroinflammation of the hypothalamus in NT1 would tend to delay puberty rather than hastening it. In contrast, that the brutal loss of orexin/hypocretin would favor an early reactivation of gonadotropin-releasing hormone (GnRH) secretion during the prepubertal period in vulnerable children, leading to early puberty onset. Orexin/hypocretin replacement could thus be envisaged as a potential treatment for precocious puberty in NT1. Additionally, we put forward an alternative hypothesis regarding the concomitant occurrence of sleepiness, weight gain and early puberty in NT1.
Collapse
|