1
|
Funabashi H, Inoue H, Shigematsu R, Imae I, Amemiya Y, Ishida T, Ikeda T, Hirota R, Kuroda A. Electrochemical manipulation of the insulin secretion from pancreatic beta cells directly cultured on a PEDOT:PSS electrode. Biosens Bioelectron 2025; 281:117453. [PMID: 40215889 DOI: 10.1016/j.bios.2025.117453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 05/04/2025]
Abstract
The development of cell-based devices using mammalian cells is becoming increasingly feasible. To remotely control such sophisticated devices, an interface between digital computer/internet networks and cellular/organ networks is essential. This study explores the electrochemical manipulation of insulin secretion-a regulatory hormone for the control of blood sugar levels-using pancreatic β cells as a model. iGL cells, expressing insulin fused with Gaussia Luciferase (INS-GLase), were directly cultured on a custom-made cell culture device coated with a transparent poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) electrode. Luminescence imaging was employed to evaluate insulin secretion in response to applied potentials. Results showed that insulin secretion could be induced by regulating membrane potential through an applied potential. The addition of nicardipine, an L-type voltage-dependent Ca2+ channel inhibitor, suppressed insulin secretion, suggesting the involvement of Ca2+ channels in this electrochemical system. Additionally, changes in membrane potential were directly visualized with the membrane potential-sensitive dye FluoVolt™, which confirmed both the forced depolarization and the forced restoration of the membrane potential to its non-excited state upon potential application to the electrode. The reported electrochemical technique, in which cells are directly cultured on an electrode, offers significant promise for designing advanced bio-hybrid systems that integrate cellular functions with digital networks.
Collapse
Affiliation(s)
- Hisakage Funabashi
- Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-8530, Japan.
| | - Hayate Inoue
- Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-8530, Japan
| | - Reiji Shigematsu
- Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-8530, Japan
| | - Ichiro Imae
- Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-8527, Japan
| | - Yoshiteru Amemiya
- Research Institute for Semiconductor Engineering, Hiroshima University, 1-4-2 Kagamiyama, Higashihiroshima Hiroshima, 739-8527, Japan
| | - Takenori Ishida
- Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-8530, Japan
| | - Takeshi Ikeda
- Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-8530, Japan; Research Institute for Semiconductor Engineering, Hiroshima University, 1-4-2 Kagamiyama, Higashihiroshima Hiroshima, 739-8527, Japan
| | - Ryuichi Hirota
- Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-8530, Japan
| | - Akio Kuroda
- Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-8530, Japan
| |
Collapse
|
2
|
Kang C, Li X, Yang X, Cheng X, Zhang D, Wei X. Voltage-gated potassium channels associated with head and neck cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189340. [PMID: 40318770 DOI: 10.1016/j.bbcan.2025.189340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
Head and neck cancer (HNC) is a common disease in otorhinolaryngology. Its prevalence is higher in men than in women and is mostly related to tobacco, alcohol and viral infections. Despite significant advances in the treatment of HNC in recent years, the mortality rate is still high and most patients are diagnosed at an advanced stage, and the prognosis for these patients is even worse. Earlier metastasis makes the treatment of HNC trickier. Therefore, actively seeking ways to treat HNC more effectively has been the goal of head and neck surgeons. Potassium (K+) channels are the most diverse ion channels found in all areas of life. Voltage-gated potassium (Kv) channels are the most important subfamily of K+ channels. Multiple Kv channels are associated with the development of HNC. This review focuses on several Kv channels associated with HNC.
Collapse
Affiliation(s)
- Chenglin Kang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China; Department of Otolaryngology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Xiaomei Li
- Department of Otolaryngology, Second People's Hospital of Gansu Province, Lanzhou, Gansu, China
| | - Xiaolong Yang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China; Department of Otolaryngology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Xiaoling Cheng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China; Department of Otolaryngology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Dengxiao Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China; Department of Otolaryngology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Xudong Wei
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China; Department of Otolaryngology, Gansu Provincial Hospital, Lanzhou, Gansu, China.
| |
Collapse
|
3
|
Brayer M, Zderic V, Jeremic A. Mechanosensitive Channels Mediate Pancreatic β Cells Reactive Oxygen Species Formation and Downregulation of Essential Genes During Therapeutic Ultrasound Treatment. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2025. [PMID: 40310296 DOI: 10.1002/jum.16712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/07/2025] [Accepted: 04/12/2025] [Indexed: 05/02/2025]
Abstract
OBJECTIVES Type 2 diabetes is partially caused by insufficient pancreatic β cell insulin secretion. Previous studies show therapeutic ultrasound (TUS) evokes insulin secretion from β cells as a potential treatment for type 2 diabetes; however, how β cells sense TUS and the broad effects of this treatment on cells remain unknown. Here, we identified mechanosensitive channels (MSC) expressed by β cells and TUS-mediated gene downregulation and reactive oxygen species (ROS) formation. METHODS For all experiments, 1 W/cm2 intensity and 800 kHz frequency TUS were continuously applied for 5 minutes with a 100% duty cycle. RNA and protein isolation of human pancreatic islets and the rat insulinoma INS 832/13 cell line were used for rtqPCR and western blot, respectively, to determine MSC expression. INS cells treated with MSC agonists and/or antagonists during TUS were visualized via fluorescent microscopy to track ROS formation. Using the same treatments, rtPCR analysis of INS insulin and IAPP encoding insulin and islet amyloid polypeptide (IAPP), respectively, was performed. TUS treatments were replicated in rats from which pancreatic sections were collected for immunohistochemistry analysis. RESULTS We found the expression of TRPV2, TRPV5, and piezo1 in human islets and INS cells. TUS increased ROS formation in INS cells compared to sham-treated controls (P < .0001); however, modulation of MSC mitigated this effect (P < .001). TUS decreased the expression of the genes insulin and IAPP in INS cells compared to sham-treated controls (P < .001 and P < .01, respectively); however, complete MSC inhibition reversed this effect (P < .01 and P < .05, respectively). In our rat model, pancreatic and duodenal homeobox 1 (PDX1) expression was decreased by TUS compared to sham-treated controls (*P < .05); however, TUS did not decrease insulin or IAPP levels (P > .05). CONCLUSION We report the expression of TRPV2, TRPV5, and piezo1 in human and rodent pancreatic β cells that are implicated in both TUS-mediated ROS formation and the downregulation of essential β cell genes.
Collapse
Affiliation(s)
- Mallory Brayer
- Department of Biological Science, The George Washington University, Washington, DC, USA
| | - Vesna Zderic
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - Aleksandar Jeremic
- Department of Biological Science, The George Washington University, Washington, DC, USA
| |
Collapse
|
4
|
Zheng Z, Nie A, Wu X, Chen S, Zhang L, Yang D, Shi Y, Xiong X, Guo J. Electromechanical Regulation Underlying Protein Nanoparticle-Induced Osmotic Pressure in Neurotoxic Edema. Int J Nanomedicine 2025; 20:4145-4163. [PMID: 40207308 PMCID: PMC11980935 DOI: 10.2147/ijn.s503181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
Purpose Osmotic imbalance is a critical driving force of cerebral edema. Protein nanoparticles (PNs) amplify intracellular osmotic effects by regulating membrane potential and homeostasis of water and multiple ions. This study has investigated how PNs control the neuronal swelling through electromechanical activity. Methods The fluorescence resonance energy transfer (FRET)-based Vimentin force probe was used to real-time monitor the osmotic tension in neurons. Patch clamp and the living cell 3D imaging system were applied to explore the relationship between cell electromechanical activity and cell volume in different cytotoxic cell models. Cytoplasmic PN amount measured by the NanoSight instrument, ion contents detected by the freezing point osmometer and ion imaging were performed to investigate the role of PNs in regulating cell swelling. Results We observed a close association between neuronal swelling and changes in osmotic tension and membrane potential. The tension effect of biological osmotic pressure (OP) relies on electromechanical cooperation induced by intracellular PN and Ca2+ levels. PNs increment results from cytoplasmic translocation of intracellular various proteins. Alterations in Ca2+ content are involved in the membrane potential transition between depolarization and hyperpolarization in a PN-dependent manner. Chemical signals-mediated sensitization of ion channels has an indispensable effect on PN-induced ion increments. Notably, aquaporin-mediated water influx recovers membrane potential and enhances osmotic tension controlling neuronal swelling. Conclusion Our findings indicate that PNs, Ca2+, and water are pivotal in electromechanical cooperation and provide insights into the biological OP mechanisms underlying neurotoxic edema.
Collapse
Affiliation(s)
- Zihui Zheng
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, 210023, People’s Republic of China
| | - Aobo Nie
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| | - Xiaojie Wu
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| | - Shi Chen
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| | - Lijun Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| | - Dongqing Yang
- Department of Public Health, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| | - Yuqing Shi
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| | - Xiyu Xiong
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| | - Jun Guo
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, 210023, People’s Republic of China
| |
Collapse
|
5
|
Qin M, Yi X, Duan Z, Chang B, Li T. Recent insights on the impact of SWELL1 on metabolic syndromes. Front Pharmacol 2025; 16:1552176. [PMID: 40191429 PMCID: PMC11968765 DOI: 10.3389/fphar.2025.1552176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
SWELL1 is a key component of the volume-regulated anion channel (VRAC) and participates in cell volume regulation as an ion channel plasma membrane protein. While early studies focused on its role in immune cell development and tumor progression, recent studies have revealed that SWELL1 plays an important role in metabolic diseases. Studies have shown that SWELL1 is extensively involved in physiological processes in peripheral metabolic tissues, including adipocyte hypertrophy, skeletal muscle volume regulation, insulin secretion, and hepatic lipid metabolism through interactions with the insulin signaling pathway. These functions play key roles in the pathogenesis of obesity, type 2 diabetes mellitus (T2DM), and non-alcoholic fatty liver disease (NAFLD), suggesting that SWELL1 may be a new target for the treatment of metabolic diseases. In this review, we focus on the structural and functional characteristics of SWELL1 to provide an in-depth explanation of its role in the development of metabolic syndrome, especially the regulation of the insulin signaling pathway, and provide a basis for the development of therapeutic strategies for metabolic diseases targeting SWELL1.
Collapse
Affiliation(s)
- Mianhong Qin
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Xuejie Yi
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Ziqiang Duan
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Bo Chang
- College of Sport Science, Zhuhai College of Science and Technology, Zhuhai, Guangdong, China
| | - Tao Li
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Niu W, Liu X, Deng B, Hong T, Wang C, Yan Y, Liu J, Jiang Y, Li J. Piezo1 deletion mitigates diabetic cardiomyopathy by maintaining mitochondrial dynamics via ERK/Drp1 pathway. Cardiovasc Diabetol 2025; 24:127. [PMID: 40114130 PMCID: PMC11927149 DOI: 10.1186/s12933-025-02625-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/03/2025] [Indexed: 03/22/2025] Open
Abstract
OBJECTIVE Increasing evidence highlights the critical role of Piezo1 in cardiovascular diseases, with its expression upregulated in diabetic heart. However, the involvement of Piezo1 in the pathogenesis of diabetic cardiomyopathy (DCM) remains unclear. This study aims to elucidate the regulatory role of Piezo1 in mitochondrial dynamics within the context of DCM and to investigate the underlying mechanisms. METHODS We constructed cardiac-specific knockout of Piezo1 (Piezo1∆Myh6) mice. Type 1 diabetes was induced using streptozotocin (STZ) injection while type 2 diabetes was established through a high-fat diet combined with STZ. Echocardiography assessed left ventricular function, histological evaluations used HE and Masson staining to examine cardiac pathology in Piezo1fl/fl controls, Piezo1∆Myh6 controls, Piezo1fl/fl diabetic and Piezo1∆Myh6 diabetic mice. Mitochondrial function including oxygen species level, mitochondrial morphology, and respiration rate were also assessed. RESULTS Our findings revealed that Piezo1 expression was upregulated in the myocardium of diabetic mice and in high-glucose-treated cells. Cardiac-specific knockout of Piezo1 improved cardiac dysfunction and ameliorated cardiac fibrosis in diabetic mice. Moreover, Piezo1 deficiency also attenuated mitochondrial impairment. Piezo1fl/fl diabetic mice exhibited increased calpain activity and excessive mitochondrial fission mediated by Drp1 and obvious reduced fusion; however, Piezo1 deficiency restored calpain levels and mitochondrial dysfunction. These observations were also corroborated in H9C2 cells and neonatal mouse cardiomyocytes. Cardiac-specific knockout of Piezo1 increased phosphorylation of Drp1 and ERK1/2 in vivo and in vitro. Piezo1 knockout or treatment with inhibitor improved mitochondrial function. CONCLUSIONS This study provides the first evidence that Piezo1 is elevated in DCM through the modulation of mitochondrial dynamics, which is reversed by Piezo1 deficiency. Thus, Piezo1 inhibition may provide a promising therapeutic strategy for the treatment of DCM.
Collapse
MESH Headings
- Animals
- Diabetic Cardiomyopathies/genetics
- Diabetic Cardiomyopathies/enzymology
- Diabetic Cardiomyopathies/pathology
- Diabetic Cardiomyopathies/prevention & control
- Diabetic Cardiomyopathies/physiopathology
- Diabetic Cardiomyopathies/etiology
- Mitochondrial Dynamics
- Dynamins/metabolism
- Mice, Knockout
- Mitochondria, Heart/enzymology
- Mitochondria, Heart/pathology
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/chemically induced
- Ion Channels/genetics
- Ion Channels/deficiency
- Ion Channels/metabolism
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/pathology
- Male
- Fibrosis
- Mice, Inbred C57BL
- Phosphorylation
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/enzymology
- Diabetes Mellitus, Type 1/complications
- Ventricular Function, Left
- Extracellular Signal-Regulated MAP Kinases/metabolism
- MAP Kinase Signaling System
- Rats
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/enzymology
- Diabetes Mellitus, Type 2/complications
- Mice
Collapse
Affiliation(s)
- Weipin Niu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
- Central Laboratory, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250014, China
| | - Xin Liu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
- Shandong Institute of Commerce and Technology, Jinan, 250103, China
| | - Bo Deng
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China
| | - Tianying Hong
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Cuifen Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Yameng Yan
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Jiali Liu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Yuehua Jiang
- Central Laboratory, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250014, China.
| | - Jing Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
7
|
Elek D, Tóth M, Sonkodi B, Ács P, Kovács GL, Tardi P, Melczer C. The Efficacy of Soleus Push-Up in Individuals with Prediabetes: A Pilot Study. Sports (Basel) 2025; 13:81. [PMID: 40137805 PMCID: PMC11946342 DOI: 10.3390/sports13030081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Hamilton and colleagues invented the soleus push-up exercise and showed that this exercise method was successful in reducing postprandial blood glucose levels in sedentary individuals. The objective of the current pilot study was to assess the efficacy of the soleus push-up in individuals with prediabetes and to evaluate the feasibility of incorporating this exercise method into their daily routine. METHODS Ten participants (mean age: 53.3 ± 2.7 years; four females, six males) with prediabetes were included in the study. Initially, participants underwent an oral glucose tolerance test (OGTT) while being sedentary to establish baseline postprandial blood glucose measurements. During a subsequent OGTT, participants concurrently performed the soleus push-up (SPU) exercise either with or without electromyographic (EMG) feedback. Blood glucose levels were measured at 15 min intervals over the two-hour duration of both OGTTs. RESULTS We observed that performing the SPU in a sitting position during the oral glucose tolerance test resulted in approximately a 32% reduction in postprandial glucose excursion compared to the sedentary baseline results. This effect was also present in the absence of EMG feedback. CONCLUSIONS Our findings suggest that this repetitive, prolonged contractile muscle activity can improve metabolic regulation in prediabetic individuals without the need for a laboratory setting. SPU may be a viable and effective exercise to support metabolic health in home or work environments. However, further validation is needed with a larger sample size.
Collapse
Affiliation(s)
- Dávid Elek
- Musculoskeletal Rehabilitation Department, Fejér County Szent György University Teaching Hospital Csákvár, 8083 Csákvár, Hungary
- Faculty of Health Sciences, Doctoral School of Health Sciences, University of Pécs, 7624 Pécs, Hungary
| | - Miklós Tóth
- Faculty of Health Sciences, Institute of Physiotherapy and Sport Science, University of Pécs, 7624 Pécs, Hungary
- Physical Activity Research Group, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
- Department of Health and Sports Medicine, Hungarian University of Sports Sciences, 1123 Budapest, Hungary
- Institute of Laboratory Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Balázs Sonkodi
- Faculty of Health Sciences, Institute of Physiotherapy and Sport Science, University of Pécs, 7624 Pécs, Hungary
- Physical Activity Research Group, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
- Department of Health and Sports Medicine, Hungarian University of Sports Sciences, 1123 Budapest, Hungary
- Department of Sports Medicine, Semmelweis University, 1122 Budapest, Hungary
| | - Pongrác Ács
- Faculty of Health Sciences, Institute of Physiotherapy and Sport Science, University of Pécs, 7624 Pécs, Hungary
- Physical Activity Research Group, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
| | - Gábor L. Kovács
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Molecular Medicine Research Group, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
| | - Péter Tardi
- Faculty of Health Sciences, Institute of Physiotherapy and Sport Science, University of Pécs, 7624 Pécs, Hungary
| | - Csaba Melczer
- Faculty of Health Sciences, Institute of Physiotherapy and Sport Science, University of Pécs, 7624 Pécs, Hungary
- Physical Activity Research Group, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
- Faculty of Health Sciences, Complex Sport Performance Diagnostic and Physiotherapy Research Institute, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
8
|
Sonkodi B. Delayed-Onset Muscle Soreness Begins with a Transient Neural Switch. Int J Mol Sci 2025; 26:2319. [PMID: 40076941 PMCID: PMC11901069 DOI: 10.3390/ijms26052319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Unaccustomed and/or strenuous eccentric contractions are known to cause delayed-onset muscle soreness. In spite of this fact, their exact cause and mechanism have been unknown for more than 120 years. The exploration of the diverse functionality of the Piezo2 ion channel, as the principal proprioceptive component, and its autonomously acquired channelopathy may bring light to this apparently simple but mysterious pain condition. Correspondingly, the neurocentric non-contact acute compression axonopathy theory of delayed-onset muscle soreness suggests two damage phases affecting two muscle compartments, including the intrafusal (within the muscle spindle) and the extrafusal (outside the muscle spindle) ones. The secondary damage phase in the extrafusal muscle space is relatively well explored. However, the suggested primary damage phase within the muscle spindle is far from being entirely known. The current manuscript describes how the proposed autonomously acquired Piezo2 channelopathy-induced primary damage could be the initiating transient neural switch in the unfolding of delayed-onset muscle soreness. This primary damage results in a transient proprioceptive neural switch and in a switch from quantum mechanical free energy-stimulated ultrafast proton-coupled signaling to rapid glutamate-based signaling along the muscle-brain axis. In addition, it induces a transient metabolic switch or, even more importantly, an energy generation switch in Type Ia proprioceptive terminals that eventually leads to a transient glutaminolysis deficit and mitochondrial deficiency, not to mention a force generation switch. In summary, the primary damage or switch is likely an inward unidirectional proton pathway reversal between Piezo2 and its auxiliary ligands, leading to acquired Piezo2 channelopathy.
Collapse
Affiliation(s)
- Balázs Sonkodi
- Department of Health Sciences and Sport Medicine, Hungarian University of Sports Science, 1123 Budapest, Hungary;
- Department of Sports Medicine, Semmelweis University, 1122 Budapest, Hungary
| |
Collapse
|
9
|
Tu JJ, Ye C, Teng XY, Zang YY, Sun XY, Chen S, Chen J, Shi YS. Osmosensor TMEM63B facilitates insulin secretion in pancreatic β-cells. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2833-3. [PMID: 39985646 DOI: 10.1007/s11427-024-2833-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/30/2024] [Indexed: 02/24/2025]
Abstract
Elevated glucose metabolism triggers two primary processes that lead to β-cell depolarization and insulin secretion: the closure of ATP-sensitive K+ channels via ATP-dependent mechanisms and the activation of mechanosensitive channels (MSCs) due to cell swelling. However, the identity of these MSCs remains unclear. In this study, we found that TMEM63B is a stretch-activated cation channel (SAC) crucial for regulating insulin secretion in response to elevated glucose levels. TMEM63B is abundantly expressed in β-cells, and its deletion impairs insulin secretion triggered by high glucose. High glucose levels typically increase Ca2+ influx and firing frequency in β-cells, a response largely eliminated when TMEM63B is deleted. Mechanistically, glucose metabolism induces cell swelling and activates TMEM63B, which, in turn, leads to β-cell depolarization and insulin secretion. In conclusion, our findings demonstrate that TMEM63B is an SAC essential for regulating insulin secretion in response to elevated glucose levels.
Collapse
Affiliation(s)
- Jing-Jing Tu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Guangdong Institute of Intelligence Science and Technology, Zhuhai, 519031, China
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School, Nanjing University, Nanjing, 210032, China
| | - Chang Ye
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School, Nanjing University, Nanjing, 210032, China
| | - Xiao-Yu Teng
- Guangdong Institute of Intelligence Science and Technology, Zhuhai, 519031, China
| | - Yan-Yu Zang
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School, Nanjing University, Nanjing, 210032, China
| | - Xiao-Ye Sun
- Department of Hepatology and Gastroenterology, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Shuai Chen
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School, Nanjing University, Nanjing, 210032, China.
| | - Jiang Chen
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Yun Stone Shi
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
- Guangdong Institute of Intelligence Science and Technology, Zhuhai, 519031, China.
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School, Nanjing University, Nanjing, 210032, China.
| |
Collapse
|
10
|
Han N, Yu N, Yu L. The mRNA Stability of PIEZO1, Regulated by Methyltransferase-Like 3 via N 6-Methylation of Adenosine Modification in a YT521-B Homology Domain Family 2-Dependent Manner, Facilitates the Progression of Diabetic Retinopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:265-280. [PMID: 39476953 DOI: 10.1016/j.ajpath.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/29/2024] [Accepted: 10/10/2024] [Indexed: 11/09/2024]
Abstract
Diabetic retinopathy (DR) is the major ocular complication of diabetes caused by chronic hyperglycemia, which leads to incurable blindness. Currently, the effectiveness of therapeutic interventions is limited. This study aimed to investigate the function of piezo-type mechanosensitive ion channel component 1 (PIEZO1) and its potential regulatory mechanism in DR progression. PIEZO1 expression was up-regulated in the retinal tissues of streptozotocin-induced diabetic mice and high-glucose (HG)-triggered Müller cells. Functionally, the knockdown of PIEZO1 improved the abnormal retinal function of diabetic mice and impeded inflammatory cytokine secretion and gliosis of Müller cells under HG conditions. Mechanistic investigations using RNA immunoprecipitation-real-time quantitative PCR, methylation RNA immunoprecipitation-real-time quantitative PCR, and luciferase reporter assays demonstrated that PIEZO1 was a downstream target of methyltransferase-like 3 (METTL3). METTL3-mediated N6-methyladenosine (m6A) modification within the coding sequence of PIEZO1 mRNA significantly shortened its half-life. In HG-stimulated cells, there was a negative regulatory relationship between PIEZO1 and YTH (YT521-B homology) domain family 2 (YTHDF2), a recognized m6A reader. The loss of YTHDF2 resulted in an extended half-life of PIEZO1 in cells with overexpression of METTL3, indicating that the effect of METTL3 on the mRNA stability of PIEZO1 was dependent on YTHDF2. Taken together, this study demonstrated the protective role of the PIEZO1 silencing in DR development, and that the degradation of PIEZO1 mRNA is accelerated by METTL3/YTHDF2-mediated m6A modification.
Collapse
Affiliation(s)
- Ning Han
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Na Yu
- Department of Blood Transfusion, The Second Hospital of Jilin University, Changchun, China
| | - Li Yu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
11
|
Xu Z, Xu S, Liu X, Cheng L, Liu X, Xie X, Zhou D, Wang D, Chen J, Deng X, Zhang L, He R, Li Y, Cheng M, Yang L, Hou X, Bai T. Deficiency of Epithelial PIEZO1 Alleviates Liver Steatosis Induced by High-Fat Diet in Mice. Int J Biol Sci 2025; 21:745-757. [PMID: 39781454 PMCID: PMC11705646 DOI: 10.7150/ijbs.102906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/11/2024] [Indexed: 01/12/2025] Open
Abstract
PIEZO1 has been found to play a vital role in regulating intestinal epithelial cells (IEC) function and maintaining intestinal barrier in recent years. Therefore, IEC PIEZO1 might exert a significant impact on liver metabolism through the gut-liver axis, but there is no research on this topic currently. Classic high-fat diet (HFD) model and mice with IEC-specific deficiency of PIEZO1 (Piezo1 ΔIEC) were used to explore the problem. IEC PIEZO1 deletion significantly alleviated liver steatosis, without change on glucose tolerance and energy expenditure. Fibroblast growth factor 15/19 (FGF15/19) was downregulated in IEC and portal vein of Piezo1 ΔIEC mice, which was associated with phenotypic change. After supplementary of exogenous FGF19, the effect of improving liver steatosis brought by PIEZO1 deletion was blocked. Notably, PIEZO1 depletion-induced FGF15 reduction was not dependent on classic bile acids (BAs) - farnesoid X receptor (FXR) pathway, but attributed to impaired retinol metabolism and lower content of retinoic acid (RA). Subsequently, addition of RA but not retinol benefited inducing FGF15 production in ileal organoid from Piezo1 ΔIEC mice. Altogether, IEC PIEZO1 represents a promising target for therapy of hepatic steatosis via the gut-liver axis.
Collapse
Affiliation(s)
- Zhiyue Xu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shu Xu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoming Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lan Cheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xinghuang Liu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaotian Xie
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dan Zhou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dongke Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jie Chen
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoling Deng
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lei Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ruohang He
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ying Li
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mengmeng Cheng
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tao Bai
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
12
|
Catalán V, Gómez-Ambrosi J, Ramírez B, Unamuno X, Becerril S, Rodríguez A, Baixauli J, Reina G, Sancho A, Silva C, Cienfuegos JA, Frühbeck G. Increased expression levels of PIEZO1 in visceral adipose tissue in obesity and type 2 diabetes are triggered by mechanical forces and are associated with inflammation. Mol Med 2024; 30:255. [PMID: 39707172 DOI: 10.1186/s10020-024-01008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/22/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND PIEZO1 has emerged as a mechanoreceptor linked with adipogenesis, adipose tissue (AT) inflammation and insulin resistance. We aimed to determine the impact of obesity and obesity-associated type 2 diabetes (T2D) as well as mechanical compression forces on the expression of PIEZO1 in visceral AT (VAT) and its relation with inflammation. METHODS Blood and VAT samples were obtained from 100 volunteers. Static compression studies in VAT explants were performed to study the PIEZO1 response. The effect of bariatric surgery on the expression of Piezo1 was assessed in a rat model of diet-induced obesity. RESULTS Obesity and obesity-associated T2D increased (P < 0.01) gene expression levels of PIEZO1 in VAT mainly due to adipocytes. SWELL1 and key markers of inflammation (NLRP3, NLRP6, IL1B, IL18 and IL8) were also upregulated in VAT in obesity and T2D being significantly associated (P < 0.01) with PIEZO1 levels. We further showed that the static compression of VAT explants promoted an upregulation of PIEZO1 (P < 0.01) and SWELL1 (P < 0.01) expression levels together with a strong increase in the expression and release of key inflammatory mediators. The treatment of THP-1-derived macrophages with the secretome of adipocytes from patients with obesity upregulated (P < 0.001) PIEZO1 levels. Rats undergoing bariatric surgery exhibited decreased (P < 0.01) expression levels of Piezo1 in the epididymal AT. CONCLUSIONS Static compression triggered an upregulation of PIEZO1 in VAT explants together with a strong inflammation. In addition, the increased expression of PIEZO1 in VAT in obesity and obesity-associated T2D, primarily attributable to adipocytes, is closely associated with SWELL1 and inflammatory markers.
Collapse
Affiliation(s)
- Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Beatriz Ramírez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Xabier Unamuno
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
| | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Jorge Baixauli
- Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Gabriel Reina
- Department of Microbiology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Ana Sancho
- Biomedical Engineering and Science Department, University of Navarra, TECNUN School of Engineering, San Sebastián, Spain
| | - Camilo Silva
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Javier A Cienfuegos
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
13
|
Kinsella JA, Debant M, Parsonage G, Morley LC, Bajarwan M, Revill C, Foster R, Beech DJ. Pharmacology of PIEZO1 channels. Br J Pharmacol 2024; 181:4714-4732. [PMID: 39402010 DOI: 10.1111/bph.17351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/15/2024] [Accepted: 08/25/2024] [Indexed: 11/05/2024] Open
Abstract
PIEZO1 is a eukaryotic membrane protein that assembles as trimers to form calcium-permeable, non-selective cation channels with exquisite capabilities for mechanical force sensing and transduction of force into effect in diverse cell types that include blood cells, endothelial cells, epithelial cells, fibroblasts and stem cells and diverse systems that include bone, lymphatics and muscle. The channel has wide-ranging roles and is considered as a target for novel therapeutics in ailments spanning cancers and cardiovascular, dental, gastrointestinal, hepatobiliary, infectious, musculoskeletal, nervous system, ocular, pregnancy, renal, respiratory and urological disorders. The identification of PIEZO1 modulators is in its infancy but useful experimental tools emerged for activating, and to a lesser extent inhibiting, the channels. Elementary structure-activity relationships are known for the Yoda series of small molecule agonists, which show the potential for diverse physicochemical and pharmacological properties. Intriguing effects of Yoda1 include the stimulated removal of excess cerebrospinal fluid. Despite PIEZO1's broad expression, opportunities are suggested for selective positive or negative modulation without intolerable adverse effects. Here we provide a focused, non-systematic, narrative review of progress with this pharmacology and discuss potential future directions for research in the area.
Collapse
Affiliation(s)
- Jacob A Kinsella
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
- School of Chemistry, University of Leeds, Leeds, UK
| | - Marjolaine Debant
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Gregory Parsonage
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Lara C Morley
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Muath Bajarwan
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | | | | | - David J Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
14
|
Huang Y, Mo H, Yang J, Gao L, Tao T, Shu Q, Guo W, Zhao Y, Lyu J, Wang Q, Guo J, Zhai H, Zhu L, Chen H, Xu G. Mechano-regulation of GLP-1 production by Piezo1 in intestinal L cells. eLife 2024; 13:RP97854. [PMID: 39509292 PMCID: PMC11542922 DOI: 10.7554/elife.97854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Glucagon-like peptide 1 (GLP-1) is a gut-derived hormone secreted by intestinal L cells and vital for postprandial glycemic control. As open-type enteroendocrine cells, whether L cells can sense mechanical stimuli caused by chyme and thus regulate GLP-1 synthesis and secretion is unexplored. Molecular biology techniques revealed the expression of Piezo1 in intestinal L cells. Its level varied in different energy status and correlates with blood glucose and GLP-1 levels. Mice with L cell-specific loss of Piezo1 (Piezo1 IntL-CKO) exhibited impaired glucose tolerance, increased body weight, reduced GLP-1 production and decreased CaMKKβ/CaMKIV-mTORC1 signaling pathway under normal chow diet or high-fat diet. Activation of the intestinal Piezo1 by its agonist Yoda1 or intestinal bead implantation increased the synthesis and secretion of GLP-1, thus alleviated glucose intolerance in diet-induced-diabetic mice. Overexpression of Piezo1, Yoda1 treatment or stretching stimulated GLP-1 production and CaMKKβ/CaMKIV-mTORC1 signaling pathway, which could be abolished by knockdown or blockage of Piezo1 in primary cultured mouse L cells and STC-1 cells. These experimental results suggest a previously unknown regulatory mechanism for GLP-1 production in L cells, which could offer new insights into diabetes treatments.
Collapse
Affiliation(s)
- Yanling Huang
- Department of Physiology, School of Medicine, Jinan UniversityGuangzhouChina
| | - Haocong Mo
- Department of Physiology, School of Medicine, Jinan UniversityGuangzhouChina
| | - Jie Yang
- Department of Pathology, School of Basic Medicine, Guangzhou Medical UniversityGuangdongChina
| | - Luyang Gao
- Department of Physiology, School of Medicine, Jinan UniversityGuangzhouChina
| | - Tian Tao
- Department of Physiology, School of Medicine, Jinan UniversityGuangzhouChina
| | - Qing Shu
- Department of Physiology, School of Medicine, Jinan UniversityGuangzhouChina
| | - Wenying Guo
- Department of Physiology, School of Medicine, Jinan UniversityGuangzhouChina
| | - Yawen Zhao
- Department of Physiology, School of Medicine, Jinan UniversityGuangzhouChina
| | - Jingya Lyu
- Department of Physiology, School of Medicine, Jinan UniversityGuangzhouChina
| | - Qimeng Wang
- Biotherapy Center, Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhouChina
| | - Jinghui Guo
- School of Medicine, The Chinese University of Hong KongShenzhenChina
| | - Hening Zhai
- Endoscopy Center, The First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Linyan Zhu
- Department of Pharmacology, School of Medicine, Jinan UniversityGuangzhouChina
| | - Hui Chen
- Biotherapy Center, Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhouChina
| | - Geyang Xu
- Department of Physiology, School of Medicine, Jinan UniversityGuangzhouChina
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of EducationGuangzhouChina
| |
Collapse
|
15
|
Mierke CT. Mechanosensory entities and functionality of endothelial cells. Front Cell Dev Biol 2024; 12:1446452. [PMID: 39507419 PMCID: PMC11538060 DOI: 10.3389/fcell.2024.1446452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
The endothelial cells of the blood circulation are exposed to hemodynamic forces, such as cyclic strain, hydrostatic forces, and shear stress caused by the blood fluid's frictional force. Endothelial cells perceive mechanical forces via mechanosensors and thus elicit physiological reactions such as alterations in vessel width. The mechanosensors considered comprise ion channels, structures linked to the plasma membrane, cytoskeletal spectrin scaffold, mechanoreceptors, and junctional proteins. This review focuses on endothelial mechanosensors and how they alter the vascular functions of endothelial cells. The current state of knowledge on the dysregulation of endothelial mechanosensitivity in disease is briefly presented. The interplay in mechanical perception between endothelial cells and vascular smooth muscle cells is briefly outlined. Finally, future research avenues are highlighted, which are necessary to overcome existing limitations.
Collapse
|
16
|
Ni K, Che B, Gu R, Wang C, Pan Y, Li J, Liu L, Luo M, Deng L. Single-Cell Hypertrophy Promotes Contractile Function of Cultured Human Airway Smooth Muscle Cells via Piezo1 and YAP Auto-Regulation. Cells 2024; 13:1697. [PMID: 39451215 PMCID: PMC11505810 DOI: 10.3390/cells13201697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/30/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
Severe asthma is characterized by increased cell volume (hypertrophy) and enhanced contractile function (hyperresponsiveness) of the airway smooth muscle cells (ASMCs). The causative relationship and underlying regulatory mechanisms between them, however, have remained unclear. Here, we manipulated the single-cell volume of in vitro cultured human ASMCs to increase from 2.7 to 5.2 and 8.2 × 103 μm3 as a simulated ASMC hypertrophy by culturing the cells on micropatterned rectangular substrates with a width of 25 μm and length from 50 to 100 and 200 μm, respectively. We found that as the cell volume increased, ASMCs exhibited a pro-contractile function with increased mRNA expression of contractile proteins, increased cell stiffness and traction force, and enhanced response to contractile stimulation. We also uncovered a concomitant increase in membrane tension and Piezo1 mRNA expression with increasing cell volume. Perhaps more importantly, we found that the enhanced contractile function due to cell volume increase was largely attenuated when membrane tension and Piezo1 mRNA expression were downregulated, and an auto-regulatory loop between Piezo1 and YAP mRNA expression was also involved in perpetuating the contractile function. These findings, thus, provide convincing evidence of a direct link between hypertrophy and enhanced contractile function of ASMCs that was mediated via Piezo1 mRNA expression, which may be specifically targeted as a novel therapeutic strategy to treat pulmonary diseases associated with ASMC hypertrophy such as severe asthma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mingzhi Luo
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| | - Linhong Deng
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
17
|
Koster AK, Yarishkin O, Dubin AE, Kefauver JM, Pak RA, Cravatt BF, Patapoutian A. Chemical mapping of the surface interactome of PIEZO1 identifies CADM1 as a modulator of channel inactivation. Proc Natl Acad Sci U S A 2024; 121:e2415934121. [PMID: 39356664 PMCID: PMC11474052 DOI: 10.1073/pnas.2415934121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
The propeller-shaped blades of the PIEZO1 and PIEZO2 ion channels partition into the plasma membrane and respond to indentation or stretching of the lipid bilayer, thus converting mechanical forces into signals that can be interpreted by cells, in the form of calcium flux and changes in membrane potential. While PIEZO channels participate in diverse physiological processes, from sensing the shear stress of blood flow in the vasculature to detecting touch through mechanoreceptors in the skin, the molecular details that enable these mechanosensors to tune their responses over a vast dynamic range of forces remain largely uncharacterized. To survey the molecular landscape surrounding PIEZO channels at the cell surface, we employed a mass spectrometry-based proteomic approach to capture and identify extracellularly exposed proteins in the vicinity of PIEZO1. This PIEZO1-proximal interactome was enriched in surface proteins localized to cell junctions and signaling hubs within the plasma membrane. Functional screening of these interaction candidates by calcium imaging and electrophysiology in an overexpression system identified the adhesion molecule CADM1/SynCAM that slows the inactivation kinetics of PIEZO1 with little effect on PIEZO2. Conversely, we found that CADM1 knockdown accelerates inactivation of endogenous PIEZO1 in Neuro-2a cells. Systematic deletion of CADM1 domains indicates that the transmembrane region is critical for the observed effects on PIEZO1, suggesting that modulation of inactivation is mediated by interactions in or near the lipid bilayer.
Collapse
Affiliation(s)
- Anna K. Koster
- HHMI, Scripps Research, La JollaCA92037
- Department of Neuroscience, Scripps Research, La Jolla, CA92037
- Department of Chemistry, Scripps Research, La Jolla, CA92037
| | - Oleg Yarishkin
- HHMI, Scripps Research, La JollaCA92037
- Department of Neuroscience, Scripps Research, La Jolla, CA92037
| | - Adrienne E. Dubin
- HHMI, Scripps Research, La JollaCA92037
- Department of Neuroscience, Scripps Research, La Jolla, CA92037
| | - Jennifer M. Kefauver
- HHMI, Scripps Research, La JollaCA92037
- Department of Neuroscience, Scripps Research, La Jolla, CA92037
| | - Ryan A. Pak
- HHMI, Scripps Research, La JollaCA92037
- Department of Neuroscience, Scripps Research, La Jolla, CA92037
| | | | - Ardem Patapoutian
- HHMI, Scripps Research, La JollaCA92037
- Department of Neuroscience, Scripps Research, La Jolla, CA92037
| |
Collapse
|
18
|
Nagayach A, Bhaskar R, Ghosh S, Singh KK, Han SS, Sinha JK. Advancing the understanding of diabetic encephalopathy through unravelling pathogenesis and exploring future treatment perspectives. Ageing Res Rev 2024; 100:102450. [PMID: 39134179 DOI: 10.1016/j.arr.2024.102450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/25/2024]
Abstract
Diabetic encephalopathy (DE), a significant micro-complication of diabetes, manifests as neurochemical, structural, behavioral, and cognitive alterations. This condition is especially dangerous for the elderly because aging raises the risk of neurodegenerative disorders and cognitive impairment, both of which can be made worse by diabetes. Despite its severity, diagnosis of this disease is challenging, and there is a paucity of information on its pathogenesis. The pivotal roles of various cellular pathways, activated or influenced by hyperglycemia, insulin sensitivity, amyloid accumulation, tau hyperphosphorylation, brain vasculopathy, neuroinflammation, and oxidative stress, are widely recognized for contributing to the potential causes of diabetic encephalopathy. We also reviewed current pharmacological strategies for DE encompassing a comprehensive approach targeting metabolic dysregulations and neurological manifestations. Antioxidant-based therapies hold promise in mitigating oxidative stress-induced neuronal damage, while anti-diabetic drugs offer neuroprotective effects through diverse mechanisms, including modulation of insulin signaling pathways and neuroinflammation. Additionally, tissue engineering and nanomedicine-based approaches present innovative strategies for targeted drug delivery and regenerative therapies for DE. Despite significant progress, challenges remain in translating these therapeutic interventions into clinical practice, including long-term safety, scalability, and regulatory approval. Further research is warranted to optimize these approaches and address remaining gaps in the management of DE and associated neurodegenerative disorders.
Collapse
Affiliation(s)
- Aarti Nagayach
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh 201301 India
| | - Krishna Kumar Singh
- Symbiosis Centre for Information Technology, Symbiosis International (Deemed University), Rajiv Gandhi InfoTech Park, Hinjawadi, Pune, Maharashtra 411057, India
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea.
| | | |
Collapse
|
19
|
Guneri D, Alexandrou E, El Omari K, Dvořáková Z, Chikhale RV, Pike DTS, Waudby CA, Morris CJ, Haider S, Parkinson GN, Waller ZAE. Structural insights into i-motif DNA structures in sequences from the insulin-linked polymorphic region. Nat Commun 2024; 15:7119. [PMID: 39164244 PMCID: PMC11336075 DOI: 10.1038/s41467-024-50553-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 07/12/2024] [Indexed: 08/22/2024] Open
Abstract
The insulin-linked polymorphic region is a variable number of tandem repeats region of DNA in the promoter of the insulin gene that regulates transcription of insulin. This region is known to form the alternative DNA structures, i-motifs and G-quadruplexes. Individuals have different sequence variants of tandem repeats and although previous work investigated the effects of some variants on G-quadruplex formation, there is not a clear picture of the relationship between the sequence diversity, the DNA structures formed, and the functional effects on insulin gene expression. Here we show that different sequence variants of the insulin linked polymorphic region form different DNA structures in vitro. Additionally, reporter genes in cellulo indicate that insulin expression may change depending on which DNA structures form. We report the crystal structure and dynamics of an intramolecular i-motif, which reveal sequences within the loop regions forming additional stabilising interactions that are critical to formation of stable i-motif structures. The outcomes of this work reveal the detail in formation of stable i-motif DNA structures, with potential for rational based drug design for compounds to target i-motif DNA.
Collapse
Affiliation(s)
- Dilek Guneri
- School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Effrosyni Alexandrou
- School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Kamel El Omari
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, OX11 0DE, UK
| | - Zuzana Dvořáková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic
| | - Rupesh V Chikhale
- School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Daniel T S Pike
- School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Christopher A Waudby
- School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Christopher J Morris
- School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| | - Shozeb Haider
- School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
- UCL Centre for Advanced Research Computing, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Gary N Parkinson
- School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| | - Zoë A E Waller
- School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| |
Collapse
|
20
|
Sabbatinelli J, Giuliani A, Kwiatkowska KM, Matacchione G, Belloni A, Ramini D, Prattichizzo F, Pellegrini V, Piacenza F, Tortato E, Bonfigli AR, Gentilini D, Procopio AD, Garagnani P, Olivieri F, Bronte G. DNA Methylation-derived biological age and long-term mortality risk in subjects with type 2 diabetes. Cardiovasc Diabetol 2024; 23:250. [PMID: 39003492 PMCID: PMC11245869 DOI: 10.1186/s12933-024-02351-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024] Open
Abstract
BACKGROUND Individuals with type 2 diabetes (T2D) face an increased mortality risk, not fully captured by canonical risk factors. Biological age estimation through DNA methylation (DNAm), i.e. the epigenetic clocks, is emerging as a possible tool to improve risk stratification for multiple outcomes. However, whether these tools predict mortality independently of canonical risk factors in subjects with T2D is unknown. METHODS Among a cohort of 568 T2D patients followed for 16.8 years, we selected a subgroup of 50 subjects, 27 survived and 23 deceased at present, passing the quality check and balanced for all risk factors after propensity score matching. We analyzed DNAm from peripheral blood leukocytes using the Infinium Human MethylationEPIC BeadChip (Illumina) to evaluate biological aging through previously validated epigenetic clocks and assess the DNAm-estimated levels of selected inflammatory proteins and blood cell counts. We tested the associations of these estimates with mortality using two-stage residual-outcome regression analysis, creating a reference model on data from the group of survived patients. RESULTS Deceased subjects had higher median epigenetic age expressed with DNAmPhenoAge algorithm (57.49 [54.72; 60.58] years. vs. 53.40 [49.73; 56.75] years; p = 0.012), and accelerated DunedinPoAm pace of aging (1.05 [1.02; 1.11] vs. 1.02 [0.98; 1.06]; p = 0.012). DNAm PhenoAge (HR 1.16, 95% CI 1.05-1.28; p = 0.004) and DunedinPoAm (HR 3.65, 95% CI 1.43-9.35; p = 0.007) showed an association with mortality independently of canonical risk factors. The epigenetic predictors of 3 chronic inflammation-related proteins, i.e. CXCL10, CXCL11 and enRAGE, C-reactive protein methylation risk score and DNAm-based estimates of exhausted CD8 + T cell counts were higher in deceased subjects when compared to survived. CONCLUSIONS These findings suggest that biological aging, as estimated through existing epigenetic tools, is associated with mortality risk in individuals with T2D, independently of common risk factors and that increased DNAm-surrogates of inflammatory protein levels characterize deceased T2D patients. Replication in larger cohorts is needed to assess the potential of this approach to refine mortality risk in T2D.
Collapse
Affiliation(s)
- Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| | - Angelica Giuliani
- Istituti Clinici Scientifici Maugeri IRCCS, Cardiac Rehabilitation Unit of Bari Institute, Bari, Italy.
| | | | | | - Alessia Belloni
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Deborah Ramini
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| | | | | | - Francesco Piacenza
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona, Italy
| | - Elena Tortato
- Department of Metabolic Diseases and Diabetology, IRCCS INRCA, Ancona, Italy
| | | | - Davide Gentilini
- Department of Brain and Behavioral Sciences, Università di Pavia, Pavia, Italy
- Bioinformatics and Statistical Genomics Unit, Istituto Auxologico Italiano IRCCS, Cusano Milanino, Milan, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| | - Paolo Garagnani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona, Italy
| | - Giuseppe Bronte
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| |
Collapse
|
21
|
Liu H, Zhou L, Wang X, Lin Y, Yi P, Xiong Y, Zhan F, Zhou L, Dong Y, Ying J, Wu L, Xu G, Hua F. PIEZO1 as a new target for hyperglycemic stress-induced neuropathic injury: The potential therapeutic role of bezafibrate. Biomed Pharmacother 2024; 176:116837. [PMID: 38815290 DOI: 10.1016/j.biopha.2024.116837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/16/2024] [Accepted: 05/26/2024] [Indexed: 06/01/2024] Open
Abstract
Hyperglycemic stress can directly lead to neuronal damage. The mechanosensitive ion channel PIEZO1 can be activated in response to hyperglycemia, but its role in hyperglycemic neurotoxicity is unclear. The role of PIEZO1 in hyperglycemic neurotoxicity was explored by constructing a hyperglycemic mouse model and a high-glucose HT22 cell model. The results showed that PIEZO1 was significantly upregulated in response to high glucose stress. In vitro experiments have shown that high glucose stress induces changes in neuronal cell morphology and membrane tension, a key mechanism for PIEZO1 activation. In addition, high glucose stress upregulates serum/glucocorticoid-regulated kinase-1 (SGK1) and activates PIEZO1 through the Ca2+ pool and store-operated calcium entry (SOCE). PIEZO1-mediated Ca2+ influx further enhances SGK1 and SOCE, inducing intracellular Ca2+ peaks in neurons. PIEZO1 mediated intracellular Ca2+ elevation leads to calcium/calmodulin-dependent protein kinase 2α (CaMK2α) overactivation, which promotes oxidative stress and apoptosis signalling through p-CaMK2α/ERK/CREB and ox-CaMK2α/MAPK p38/NFκB p65 pathways, subsequently inducing synaptic damage and cognitive impairment in mice. The intron miR-107 of pantothenic kinase 1 (PANK1) is highly expressed in the brain and has been found to target PIEZO1 and SGK1. The PANK1 receptor is activated by peroxisome proliferator-activated receptor α (PPARα), an activator known to upregulate miR-107 levels in the brain. The clinically used lipid-lowering drug bezafibrate, a known PPARα activator, may upregulate miR-107 through the PPARɑ/PANK1 pathway, thereby inhibiting PIEZO1 and improving hyperglycemia-induced neuronal cell damage. This study provides a new idea for the pathogenesis and drug treatment of hyperglycemic neurotoxicity and diabetes-related cognitive dysfunction.
Collapse
Affiliation(s)
- Hailin Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Department of Emergency, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lian Zhou
- Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Department of Anesthesiology, Ganjiang New Area Hospital of the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xifeng Wang
- Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yue Lin
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Pengcheng Yi
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanhong Xiong
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Fenfang Zhan
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lanqian Zhou
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yao Dong
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lidong Wu
- Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Department of Emergency, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Guohai Xu
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
22
|
Guo W, Gao L, Mo H, Deng H, Zhao Y, Xu G. Mechano-sensor Piezo1 inhibits glucagon production in pancreatic α-cells. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167185. [PMID: 38653360 DOI: 10.1016/j.bbadis.2024.167185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
OBJECTIVE Glucagon is a critical hormone regulating glucose metabolism. It stimulates the liver to release glucose under low blood sugar conditions, thereby maintaining blood glucose stability. Excessive glucagon secretion and hyperglycemia is observed in individuals with diabetes. Precise modulation of glucagon is significant to maintain glucose homeostasis. Piezo1 is a mechanosensitive ion channel capable of converting extracellular mechanical forces into intracellular signals, thus regulating hormonal synthesis and secretion. This study aims to investigate the role of Piezo1 in regulating glucagon production in α cells. METHODS The effects of Piezo1 on glucagon production were examined in normal- or high-fat diet fed α cell-specific Piezo1 knockout mice (Gcg-Piezo1-/-), and the murine pancreatic α cell line αTC1-6. Expression of Proglucagon was investigated by real-time PCR and western blotting. Plasma glucagon and insulin were detected by enzyme immunoassay. RESULTS Under both normal- and high-fat diet conditions, Gcg-Piezo1-/- mice exhibited increased pancreatic α cell proportion, hyperglucagonemia, impaired glucose tolerance, and activated pancreatic mTORC1 signaling. Activation of Piezo1 by its agonist Yoda1 or overexpression of Piezo1 led to decreased glucagon synthesis and suppressed mTOR signaling pathway in αTC1-6 cells. Additionally, the levels of glucagon in the medium were also reduced. Conversely, knockdown of Piezo1 produced opposite effects. CONCLUSION Our study uncovers the regulatory role of the Piezo1 ion channel in α cells. Piezo1 influences glucagon production by affecting mTOR signaling pathway.
Collapse
Affiliation(s)
- Wenying Guo
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China
| | - Luyang Gao
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China
| | - Haocong Mo
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China
| | - Handan Deng
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China
| | - Yawen Zhao
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China
| | - Geyang Xu
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, Guangdong, China.
| |
Collapse
|
23
|
Johansen CG, Holcomb K, Sela A, Morrall S, Park D, Farnsworth NL. Extracellular matrix stiffness mediates insulin secretion in pancreatic islets via mechanosensitive Piezo1 channel regulated Ca 2+ dynamics. Matrix Biol Plus 2024; 22:100148. [PMID: 38803329 PMCID: PMC11128509 DOI: 10.1016/j.mbplus.2024.100148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
The pancreatic islet is surrounded by ECM that provides both biochemical and mechanical cues to the islet β-cell to regulate cell survival and insulin secretion. Changes in ECM composition and mechanical properties drive β-cell dysfunction in many pancreatic diseases. While several studies have characterized changes in islet insulin secretion with changes in substrate stiffness, little is known about the mechanotransduction signaling driving altered islet function in response to mechanical cues. We hypothesized that increasing matrix stiffness will lead to insulin secretion dysfunction by opening the mechanosensitive ion channel Piezo1 and disrupting intracellular Ca2+ dynamics in mouse and human islets. To test our hypothesis, mouse and human cadaveric islets were encapsulated in a biomimetic reverse thermal gel (RTG) scaffold with tailorable stiffness that allows formation of islet focal adhesions with the scaffold and activation of Piezo1 in 3D. Our results indicate that increased scaffold stiffness causes insulin secretion dysfunction mediated by increases in Ca2+ influx and altered Ca2+ dynamics via opening of the mechanosensitive Piezo1 channel. Additionally, inhibition of Piezo1 rescued glucose-stimulated insulin secretion (GSIS) in islets in stiff scaffolds. Overall, our results emphasize the role mechanical properties of the islet microenvironment plays in regulating function. It also supports further investigation into the modulation of Piezo1 channel activity to restore islet function in diseases like type 2 diabetes (T2D) and pancreatic cancer where fibrosis of the peri-islet ECM leads to increased tissue stiffness and islet dysfunction.
Collapse
Affiliation(s)
- Chelsea G Johansen
- Department of Chemical & Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Keifer Holcomb
- Department of Chemical & Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Amit Sela
- Quantitative Biosciences & Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Stephanie Morrall
- Quantitative Biosciences & Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Daewon Park
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nikki L Farnsworth
- Department of Chemical & Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA
- Quantitative Biosciences & Engineering, Colorado School of Mines, Golden, CO 80401, USA
| |
Collapse
|
24
|
Gao J, Mang Q, Liu Y, Sun Y, Xu G. Integrated mRNA and miRNA analysis reveals the regulatory network of oxidative stress and inflammation in Coilia nasus brains during air exposure and salinity mitigation. BMC Genomics 2024; 25:446. [PMID: 38714962 PMCID: PMC11075292 DOI: 10.1186/s12864-024-10327-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Air exposure is an inevitable source of stress that leads to significant mortality in Coilia nasus. Our previous research demonstrated that adding 10‰ NaCl to aquatic water could enhance survival rates, albeit the molecular mechanisms involved in air exposure and salinity mitigation remained unclear. Conversely, salinity mitigation resulted in decreased plasma glucose levels and improved antioxidative activity. To shed light on this phenomenon, we characterized the transcriptomic changes in the C. nasus brain upon air exposure and salinity mitigation by integrated miRNA-mRNA analysis. RESULTS The plasma glucose level was elevated during air exposure, whereas it decreased during salinity mitigation. Antioxidant activity was suppressed during air exposure, but was enhanced during salinity mitigation. A total of 629 differentially expressed miRNAs (DEMs) and 791 differentially expressed genes (DEGs) were detected during air exposure, while 429 DEMs and 1016 DEGs were identified during salinity mitigation. GO analysis revealed that the target genes of DEMs and DEGs were enriched in biological process and cellular component during air exposure and salinity mitigation. KEGG analysis revealed that the target genes of DEMs and DEGs were enriched in metabolism. Integrated analysis showed that 24 and 36 predicted miRNA-mRNA regulatory pairs participating in regulating glucose metabolism, Ca2+ transport, inflammation, and oxidative stress. Interestingly, most of these miRNAs were novel miRNAs. CONCLUSION In this study, substantial miRNA-mRNA regulation pairs were predicted via integrated analysis of small RNA sequencing and RNA-Seq. Based on predicted miRNA-mRNA regulation and potential function of DEGs, miRNA-mRNA regulatory network involved in glucose metabolism and Ca2+ transport, inflammation, and oxidative stress in C. nasus brain during air exposure and salinity mitigation. They regulated the increased/decreased plasma glucose and inhibited/promoted antioxidant activity during air exposure and salinity mitigation. Our findings would propose novel insights to the mechanisms underlying fish responses to air exposure and salinity mitigation.
Collapse
Affiliation(s)
- Jun Gao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, 214081, China
| | - Qi Mang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, 214081, China
| | - Yuqian Liu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Yi Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, 214081, China
| | - Gangchun Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, 214081, China.
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, 214081, China.
| |
Collapse
|
25
|
Zhang X, Leng S, Liu X, Hu X, Liu Y, Li X, Feng Q, Guo W, Li N, Sheng Z, Wang S, Peng J. Ion channel Piezo1 activation aggravates the endothelial dysfunction under a high glucose environment. Cardiovasc Diabetol 2024; 23:150. [PMID: 38702777 PMCID: PMC11067304 DOI: 10.1186/s12933-024-02238-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 04/16/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Vasculopathy is the most common complication of diabetes. Endothelial cells located in the innermost layer of blood vessels are constantly affected by blood flow or vascular components; thus, their mechanosensitivity plays an important role in mediating vascular regulation. Endothelial damage, one of the main causes of hyperglycemic vascular complications, has been extensively studied. However, the role of mechanosensitive signaling in hyperglycemic endothelial damage remains unclear. METHODS Vascular endothelial-specific Piezo1 knockout mice were generated to investigate the effects of Piezo1 on Streptozotocin-induced hyperglycemia and vascular endothelial injury. In vitro activation or knockdown of Piezo1 was performed to evaluate the effects on the proliferation, migration, and tubular function of human umbilical vein endothelial cells in high glucose. Reactive oxygen species production, mitochondrial membrane potential alternations, and oxidative stress-related products were used to assess the extent of oxidative stress damage caused by Piezo1 activation. RESULTS Our study found that in VECreERT2;Piezo1flox/flox mice with Piezo1 conditional knockout in vascular endothelial cells, Piezo1 deficiency alleviated streptozotocin-induced hyperglycemia with reduced apoptosis and abscission of thoracic aortic endothelial cells, and decreased the inflammatory response of aortic tissue caused by high glucose. Moreover, the knockout of Piezo1 showed a thinner thoracic aortic wall, reduced tunica media damage, and increased endothelial nitric oxide synthase expression in transgenic mice, indicating the relief of endothelial damage caused by hyperglycemia. We also showed that Piezo1 activation aggravated oxidative stress injury and resulted in severe dysfunction through the Ca2+-induced CaMKII-Nrf2 axis in human umbilical vein endothelial cells. In Piezo1 conditional knockout mice, Piezo1 deficiency partially restored superoxide dismutase activity and reduced malondialdehyde content in the thoracic aorta. Mechanistically, Piezo1 deficiency decreased CaMKII phosphorylation and restored the expression of Nrf2 and its downstream molecules HO-1 and NQO1. CONCLUSION In summary, our study revealed that Piezo1 is involved in high glucose-induced oxidative stress injury and aggravated endothelial dysfunction, which have great significance for alleviating endothelial damage caused by hyperglycemia.
Collapse
MESH Headings
- Animals
- Humans
- Human Umbilical Vein Endothelial Cells/metabolism
- Human Umbilical Vein Endothelial Cells/pathology
- Mice, Knockout
- Diabetes Mellitus, Experimental/metabolism
- Oxidative Stress
- Ion Channels/metabolism
- Ion Channels/genetics
- Blood Glucose/metabolism
- Nitric Oxide Synthase Type III/metabolism
- Mechanotransduction, Cellular
- NF-E2-Related Factor 2/metabolism
- NF-E2-Related Factor 2/genetics
- NF-E2-Related Factor 2/deficiency
- Cells, Cultured
- Cell Proliferation
- Apoptosis
- Male
- Diabetic Angiopathies/metabolism
- Diabetic Angiopathies/physiopathology
- Diabetic Angiopathies/pathology
- Diabetic Angiopathies/genetics
- Diabetic Angiopathies/etiology
- Cell Movement
- Mice, Inbred C57BL
- Reactive Oxygen Species/metabolism
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiopathology
- Mice
- Streptozocin
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Endothelium, Vascular/pathology
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Shaoqiu Leng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinyue Liu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiang Hu
- Advanced Medical Research Institute, Shandong University, Jinan, China
- Shandong Key Laboratory of Immunochematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yan Liu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xin Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qi Feng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory; the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Guo
- Institute of Hematology, the First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Nailin Li
- Department of Medicine-Solna, Cardiovascular Medicine Unit, Karolinska Institutet, Stockholm, Sweden
| | - Zi Sheng
- Shandong Key Laboratory of Immunochematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuwen Wang
- Shandong Key Laboratory of Immunochematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
- National Key Laboratory for Innovation and Transformation of Luobing Theory; the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
- Advanced Medical Research Institute, Shandong University, Jinan, China.
| |
Collapse
|
26
|
Sonkodi B. Progressive Irreversible Proprioceptive Piezo2 Channelopathy-Induced Lost Forced Peripheral Oscillatory Synchronization to the Hippocampal Oscillator May Explain the Onset of Amyotrophic Lateral Sclerosis Pathomechanism. Cells 2024; 13:492. [PMID: 38534336 PMCID: PMC10969524 DOI: 10.3390/cells13060492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/18/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a mysterious lethal multisystem neurodegenerative disease that gradually leads to the progressive loss of motor neurons. A recent non-contact dying-back injury mechanism theory for ALS proposed that the primary damage is an acquired irreversible intrafusal proprioceptive terminal Piezo2 channelopathy with underlying genetic and environmental risk factors. Underpinning this is the theory that excessively prolonged proprioceptive mechanotransduction under allostasis may induce dysfunctionality in mitochondria, leading to Piezo2 channelopathy. This microinjury is suggested to provide one gateway from physiology to pathophysiology. The chronic, but not irreversible, form of this Piezo2 channelopathy is implicated in many diseases with unknown etiology. Dry eye disease is one of them where replenishing synthetic proteoglycans promote nerve regeneration. Syndecans, especially syndecan-3, are proposed as the first critical link in this hierarchical ordered depletory pathomechanism as proton-collecting/distributing antennas; hence, they may play a role in ALS pathomechanism onset. Even more importantly, the shedding or charge-altering variants of Syndecan-3 may contribute to the Piezo2 channelopathy-induced disruption of the Piezo2-initiated proton-based ultrafast long-range signaling through VGLUT1 and VGLUT2. Thus, these alterations may not only cause disruption to ultrafast signaling to the hippocampus in conscious proprioception, but could disrupt the ultrafast proprioceptive signaling feedback to the motoneurons. Correspondingly, an inert Piezo2-initiated proton-based ultrafast signaled proprioceptive skeletal system is coming to light that is suggested to be progressively lost in ALS. In addition, the lost functional link of the MyoD family of inhibitor proteins, as auxiliary subunits of Piezo2, may not only contribute to the theorized acquired Piezo2 channelopathy, but may explain how these microinjured ion channels evolve to be principal transcription activators.
Collapse
Affiliation(s)
- Balázs Sonkodi
- Department of Health Sciences and Sport Medicine, Hungarian University of Sports Science, 1123 Budapest, Hungary;
- Department of Sports Medicine, Semmelweis University, 1122 Budapest, Hungary
| |
Collapse
|
27
|
Cao R, Tian H, Tian Y, Fu X. A Hierarchical Mechanotransduction System: From Macro to Micro. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302327. [PMID: 38145330 PMCID: PMC10953595 DOI: 10.1002/advs.202302327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/27/2023] [Indexed: 12/26/2023]
Abstract
Mechanotransduction is a strictly regulated process whereby mechanical stimuli, including mechanical forces and properties, are sensed and translated into biochemical signals. Increasing data demonstrate that mechanotransduction is crucial for regulating macroscopic and microscopic dynamics and functionalities. However, the actions and mechanisms of mechanotransduction across multiple hierarchies, from molecules, subcellular structures, cells, tissues/organs, to the whole-body level, have not been yet comprehensively documented. Herein, the biological roles and operational mechanisms of mechanotransduction from macro to micro are revisited, with a focus on the orchestrations across diverse hierarchies. The implications, applications, and challenges of mechanotransduction in human diseases are also summarized and discussed. Together, this knowledge from a hierarchical perspective has the potential to refresh insights into mechanotransduction regulation and disease pathogenesis and therapy, and ultimately revolutionize the prevention, diagnosis, and treatment of human diseases.
Collapse
Affiliation(s)
- Rong Cao
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Huimin Tian
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Yan Tian
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Xianghui Fu
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| |
Collapse
|
28
|
Zhao Y, Liu Y, Tao T, Zhang J, Guo W, Deng H, Han M, Mo H, Tong X, Lin S, Yang J, Zhai H, Wang Q, Hu Z, Zhang W, Chen H, Xu G. Gastric mechanosensitive channel Piezo1 regulates ghrelin production and food intake. Nat Metab 2024; 6:458-472. [PMID: 38467889 DOI: 10.1038/s42255-024-00995-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/24/2024] [Indexed: 03/13/2024]
Abstract
Ghrelin, produced mainly by gastric X/A-like cells, triggers a hunger signal to the central nervous system to stimulate appetite. It remains unclear whether X/A-like cells sense gastric distention and thus regulate ghrelin production. Here we show that PIEZO1 expression in X/A-like cells decreases in patients with obesity when compared to controls, whereas it increases after sleeve gastrectomy. Male and female mice with specific loss of Piezo1 in X/A-like cells exhibit hyperghrelinaemia and hyperphagia and are more susceptible to overweight. These phenotypes are associated with impairment of the gastric CaMKKII/CaMKIV-mTOR signalling pathway. Activation of PIEZO1 by Yoda1 or gastric bead implantation inhibits ghrelin production, decreases energy intake and induces weight loss in mice. Inhibition of ghrelin production by Piezo1 through the CaMKKII/CaMKIV-mTOR pathway can be recapitulated in a ghrelin-producing cell line mHypoE-42. Our study reveals a mechanical regulation of ghrelin production and appetite by PIEZO1 of X/A-like cells, which suggests a promising target for anti-obesity therapy.
Collapse
Affiliation(s)
- Yawen Zhao
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Yang Liu
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Tian Tao
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Jinshan Zhang
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Wenying Guo
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Handan Deng
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Mengxue Han
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Haocong Mo
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiaohan Tong
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Song Lin
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Jie Yang
- Department of Pathology, School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Hening Zhai
- Endoscopy Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qimeng Wang
- Biotherapy Center; Cell-gene Therapy Translational Medicine Research Center, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhengfang Hu
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, China
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Hui Chen
- Biotherapy Center; Cell-gene Therapy Translational Medicine Research Center, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Geyang Xu
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China.
| |
Collapse
|
29
|
Abstract
Mechanical forces influence different cell types in our bodies. Among the earliest forces experienced in mammals is blood movement in the vascular system. Blood flow starts at the embryonic stage and ceases when the heart stops. Blood flow exposes endothelial cells (ECs) that line all blood vessels to hemodynamic forces. ECs detect these mechanical forces (mechanosensing) through mechanosensors, thus triggering physiological responses such as changes in vascular diameter. In this review, we focus on endothelial mechanosensing and on how different ion channels, receptors, and membrane structures detect forces and mediate intricate mechanotransduction responses. We further highlight that these responses often reflect collaborative efforts involving several mechanosensors and mechanotransducers. We close with a consideration of current knowledge regarding the dysregulation of endothelial mechanosensing during disease. Because hemodynamic disruptions are hallmarks of cardiovascular disease, studying endothelial mechanosensing holds great promise for advancing our understanding of vascular physiology and pathophysiology.
Collapse
Affiliation(s)
- Xin Rui Lim
- Department of Pharmacology, Larner College of Medicine and Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, Vermont, USA;
| | - Osama F Harraz
- Department of Pharmacology, Larner College of Medicine and Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, Vermont, USA;
| |
Collapse
|
30
|
Tranter JD, Kumar A, Nair VK, Sah R. Mechanosensing in Metabolism. Compr Physiol 2023; 14:5269-5290. [PMID: 38158369 PMCID: PMC11681368 DOI: 10.1002/cphy.c230005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Electrical mechanosensing is a process mediated by specialized ion channels, gated directly or indirectly by mechanical forces, which allows cells to detect and subsequently respond to mechanical stimuli. The activation of mechanosensitive (MS) ion channels, intrinsically gated by mechanical forces, or mechanoresponsive (MR) ion channels, indirectly gated by mechanical forces, results in electrical signaling across lipid bilayers, such as the plasma membrane. While the functions of mechanically gated channels within a sensory context (e.g., proprioception and touch) are well described, there is emerging data demonstrating functions beyond touch and proprioception, including mechanoregulation of intracellular signaling and cellular/systemic metabolism. Both MR and MS ion channel signaling have been shown to contribute to the regulation of metabolic dysfunction, including obesity, insulin resistance, impaired insulin secretion, and inflammation. This review summarizes our current understanding of the contributions of several MS/MR ion channels in cell types implicated in metabolic dysfunction, namely, adipocytes, pancreatic β-cells, hepatocytes, and skeletal muscle cells, and discusses MS/MR ion channels as possible therapeutic targets. © 2024 American Physiological Society. Compr Physiol 14:5269-5290, 2024.
Collapse
Affiliation(s)
- John D. Tranter
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ashutosh Kumar
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Vinayak K. Nair
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rajan Sah
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Cardiovascular Research, Washington University, St. Louis, Missouri, USA
- St. Louis VA Medical Center, St. Louis, Missouri, USA
| |
Collapse
|
31
|
Sonkodi B, Radovits T, Csulak E, Kopper B, Sydó N, Merkely B. Orthostasis Is Impaired Due to Fatiguing Intensive Acute Concentric Exercise Succeeded by Isometric Weight-Loaded Wall-Sit in Delayed-Onset Muscle Soreness: A Pilot Study. Sports (Basel) 2023; 11:209. [PMID: 37999426 PMCID: PMC10675158 DOI: 10.3390/sports11110209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
The aim of the study was to investigate any indication of diminished orthostatic tolerance as a result of fatiguing intensive acute concentric exercise with a successive isometric wall-sit followed by an orthostatic stress test, with a special focus on any distinguishable alterations due to a delayed-onset muscle soreness effect. The exercise protocol was carried out among nineteen (10 female, 9 male) junior swimmers from the Hungarian National Swim Team. All athletes showed a positive orthostatic stress test right after our exercise protocol. The diastolic blood pressure was significantly lower due to the delayed-onset muscle soreness effect in the standing position after the supine position of the orthostatic stress test, in contrast to the athletes who did not experience delayed-onset muscle soreness. Furthermore, the heart rate was dysregulated in athletes with a delayed-onset muscle soreness effect when they assumed a supine position after the sustained standing position during the orthostatic stress test, in contrast to the athletes without delayed-onset muscle soreness. Interesting to note is that, in three subjects, the sustained standing position decreased the heart rate below the level of the initial supine position and six athletes experienced dizziness in the standing position, and all of these athletes were from the group that experienced delayed-onset muscle soreness. Accordingly, this study, for the first time, demonstrated that delayed-onset muscle soreness impairs orthostasis after unaccustomed fatiguing intensive acute concentric exercise with a successive isometric weight-loaded wall-sit; however, validation of this association should be investigated in a larger sample size.
Collapse
Affiliation(s)
- Balázs Sonkodi
- Department of Health Sciences and Sport Medicine, Hungarian University of Sports Science, 1123 Budapest, Hungary
- Department of Sports Medicine, Semmelweis University, 1122 Budapest, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
| | - Emese Csulak
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
| | - Bence Kopper
- Faculty of Kinesiology, Hungarian University of Sports Science, 1123 Budapest, Hungary
| | - Nóra Sydó
- Department of Sports Medicine, Semmelweis University, 1122 Budapest, Hungary
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
| | - Béla Merkely
- Department of Sports Medicine, Semmelweis University, 1122 Budapest, Hungary
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
| |
Collapse
|
32
|
Abstract
All cells in the body are exposed to physical force in the form of tension, compression, gravity, shear stress, or pressure. Cells convert these mechanical cues into intracellular biochemical signals; this process is an inherent property of all cells and is essential for numerous cellular functions. A cell's ability to respond to force largely depends on the array of mechanical ion channels expressed on the cell surface. Altered mechanosensing impairs conscious senses, such as touch and hearing, and unconscious senses, like blood pressure regulation and gastrointestinal (GI) activity. The GI tract's ability to sense pressure changes and mechanical force is essential for regulating motility, but it also underlies pain originating in the GI tract. Recent identification of the mechanically activated ion channels Piezo1 and Piezo2 in the gut and the effects of abnormal ion channel regulation on cellular function indicate that these channels may play a pathogenic role in disease. Here, we discuss our current understanding of mechanically activated Piezo channels in the pathogenesis of pancreatic and GI diseases, including pancreatitis, diabetes mellitus, irritable bowel syndrome, GI tumors, and inflammatory bowel disease. We also describe how Piezo channels could be important targets for treating GI diseases.
Collapse
|
33
|
Zong B, Yu F, Zhang X, Pang Y, Zhao W, Sun P, Li L. Mechanosensitive Piezo1 channel in physiology and pathophysiology of the central nervous system. Ageing Res Rev 2023; 90:102026. [PMID: 37532007 DOI: 10.1016/j.arr.2023.102026] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023]
Abstract
Since the discovery of the mechanosensitive Piezo1 channel in 2010, there has been a significant amount of research conducted to explore its regulatory role in the physiology and pathology of various organ systems. Recently, a growing body of compelling evidence has emerged linking the activity of the mechanosensitive Piezo1 channel to health and disease of the central nervous system. However, the exact mechanisms underlying these associations remain inadequately comprehended. This review systematically summarizes the current research on the mechanosensitive Piezo1 channel and its implications for central nervous system mechanobiology, retrospects the results demonstrating the regulatory role of the mechanosensitive Piezo1 channel on various cell types within the central nervous system, including neural stem cells, neurons, oligodendrocytes, microglia, astrocytes, and brain endothelial cells. Furthermore, the review discusses the current understanding of the involvement of the Piezo1 channel in central nervous system disorders, such as Alzheimer's disease, multiple sclerosis, glaucoma, stroke, and glioma.
Collapse
Affiliation(s)
- Boyi Zong
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Fengzhi Yu
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaoyou Zhang
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Yige Pang
- Department of Neurosurgery, Zibo Central Hospital, Zibo 255000, Shandong, China
| | - Wenrui Zhao
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Peng Sun
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Lin Li
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
34
|
Ganugula R, Arora M, Dwivedi S, Chandrashekar DS, Varambally S, Scott EM, Kumar MNVR. Systemic Anti-Inflammatory Therapy Aided by Curcumin-Laden Double-Headed Nanoparticles Combined with Injectable Long-Acting Insulin in a Rodent Model of Diabetes Eye Disease. ACS NANO 2023; 17:6857-6874. [PMID: 36951721 DOI: 10.1021/acsnano.3c00535] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Therapeutic interventions that counter emerging targets in diabetes eye diseases are lacking. We hypothesize that a combination therapy targeting inflammation and hyperglycemia can prevent diabetic eye diseases. Here, we report a multipronged approach to prevent diabetic cataracts and retinopathy by combining orally bioavailable curcumin-laden double-headed (two molecules of gambogic acid conjugated to terminal carboxyl groups of poly(d,l-lactide-co-glycolide)) nanoparticles and injectable basal insulin. The combination treatment led to a significant delay in the progression of diabetic cataracts and retinopathy, improving liver function and peripheral glucose homeostasis. We found a concurrent reduction in lens aggregate protein, AGEs, and increased mitochondrial ATP production. Importantly, inhibition of Piezo1 protected against hyperglycemia-induced retinal vascular damage suggesting possible involvement of Piezo1 in the regulation of retinal phototransduction. Histologic evaluation of murine small intestines revealed that chronic administration of curcumin-laden double-headed nanoparticles was well tolerated, circumventing the fear of nanoparticle toxicity. These findings establish the potential of anti-inflammatory and anti-hyperglycemic combination therapy for the prevention of diabetic cataracts and retinopathy.
Collapse
Affiliation(s)
- R Ganugula
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Department of Biological Sciences, The University of Alabama, SEC 1325, Box 870344, Tuscaloosa, Alabama 35487, United States
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - M Arora
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Department of Biological Sciences, The University of Alabama, SEC 1325, Box 870344, Tuscaloosa, Alabama 35487, United States
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - S Dwivedi
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - D S Chandrashekar
- Genomic Diagnostics and Bioinformatics, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35233, United States
| | - S Varambally
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35233, United States
| | - E M Scott
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, 930 Campus Road, Ithaca, New York 14853, United States
| | - M N V Ravi Kumar
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Department of Biological Sciences, The University of Alabama, SEC 1325, Box 870344, Tuscaloosa, Alabama 35487, United States
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas 77843, United States
- Chemical and Biological Engineering, University of Alabama, SEC 3448, Box 870203, Tuscaloosa, Alabama 35487, United States
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| |
Collapse
|
35
|
Han Y, Tan T, Li Z, Ma Z, Lan G, Liang J, Li K, Bai L. Identification of Selection Signatures and Loci Associated with Important Economic Traits in Yunan Black and Huainan Pigs. Genes (Basel) 2023; 14:genes14030655. [PMID: 36980926 PMCID: PMC10048629 DOI: 10.3390/genes14030655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Henan Province is located in central China and rich in domestic pig populations; Huainan (HN) pigs are one of three Henan indigenous breeds with great performance, including early maturation, strong disease resistance and high meat quality. Yunan (YN) black pigs are a typical, newly cultivated breed, synthesized between HN pigs and American Duroc, and are subjected to selection for important traits, such as fast growth and excellent meat quality. However, the genomic differences, selection signatures and loci associated with important economic traits in YN black pigs and HN pigs are still not well understood. In this study, based on high-density SNP chip analysis of 159 samples covering commercial DLY (Duroc × Landrace × Large White) pigs, HN pigs and YN black pigs, we performed a comprehensive analysis of phylogenetic relationships and genetic diversity among the three breeds. Furthermore, we used composite likelihood ratio tests (CLR) and F-statistics (Fst) to identify specific signatures of selection associated with important economic traits and potential candidate genes. We found 147 selected regions (top 1%) harboring 90 genes based on genetic differentiation (Fst) in the YN-DLY group. In the HN-DLY group, 169 selected regions harbored 58 genes. In the YN-HN group, 179 selected regions harbored 77 genes. In addition, the QTLs database with the most overlapping regions was associated with triglyceride level, number of mummified pigs, hemoglobin and loin muscle depth for YN black pigs, litter size and intramuscular fat content for HN pigs, and humerus length, linolenic acid content and feed conversion ratio mainly in DLY pigs. Of note, overlapping 14 tissue-specific promoters’ annotation with the top Fst 1% selective regions systematically demonstrated the muscle-specific and hypothalamus-specific regulatory elements in YN black pigs. Taken together, these results contribute to an accurate knowledge of crossbreeding, thus benefitting the evaluation of production performance and improving the genome-assisted breeding of other important indigenous pig in the future.
Collapse
Affiliation(s)
- Yachun Han
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Tao Tan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Zixin Li
- College of Animal Science & Technology, Guangxi University, Nanning 530003, China
| | - Zheng Ma
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Ganqiu Lan
- College of Animal Science & Technology, Guangxi University, Nanning 530003, China
| | - Jing Liang
- College of Animal Science & Technology, Guangxi University, Nanning 530003, China
| | - Kui Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Lijing Bai
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Correspondence: ; Tel./Fax: +86-0755-2325-0160
| |
Collapse
|