1
|
Streif S, Baeumner AJ. Advances in Surrogate Neutralization Tests for High-Throughput Screening and the Point-of-Care. Anal Chem 2025; 97:5407-5423. [PMID: 40035475 PMCID: PMC11923957 DOI: 10.1021/acs.analchem.5c00666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Affiliation(s)
- Simon Streif
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Antje J Baeumner
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
2
|
Yao Z, Kim J, Geng B, Chen J, Wong V, Lyakisheva A, Snider J, Dimlić MR, Raić S, Stagljar I. A split intein and split luciferase-coupled system for detecting protein-protein interactions. Mol Syst Biol 2025; 21:107-125. [PMID: 39668253 PMCID: PMC11791039 DOI: 10.1038/s44320-024-00081-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 11/21/2024] [Accepted: 11/29/2024] [Indexed: 12/14/2024] Open
Abstract
Elucidation of protein-protein interactions (PPIs) represents one of the most important methods in biomedical research. Recently, PPIs have started to be exploited for drug discovery purposes and have thus attracted much attention from both the academic and pharmaceutical sectors. We previously developed a sensitive method, Split Intein-Mediated Protein Ligation (SIMPL), for detecting binary PPIs via irreversible splicing of the interacting proteins being investigated. Here, we incorporated tripart nanoluciferase (tNLuc) into the system, providing a luminescence signal which, in conjunction with homogenous liquid phase operation, improves the quantifiability and operability of the assay. Using a reference PPI set, we demonstrated an improvement in both sensitivity and specificity over the original SIMPL assay. Moreover, we designed the new SIMPL-tNLuc ('SIMPL2') platform with an inherent modularity allowing for flexible measurement of molecular modulators of target PPIs, including inhibitors, molecular glues and PROTACs. Our results demonstrate that SIMPL2 is a sensitive, cost- and labor-effective tool suitable for high-throughput screening (HTS) in both PPI mapping and drug discovery applications.
Collapse
Affiliation(s)
- Zhong Yao
- Donnelly Centre, University of Toronto, Toronto, ON, Canada.
| | - Jiyoon Kim
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Betty Geng
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Jinkun Chen
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Victoria Wong
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | | | - Jamie Snider
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Marina Rudan Dimlić
- Mediterranean Institute for Life Sciences, University of Split School of Medicine, Split, Croatia
| | - Sanda Raić
- Mediterranean Institute for Life Sciences, University of Split School of Medicine, Split, Croatia
| | - Igor Stagljar
- Donnelly Centre, University of Toronto, Toronto, ON, Canada.
- Mediterranean Institute for Life Sciences, University of Split School of Medicine, Split, Croatia.
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Astakhova EA, Baranov KO, Shilova NV, Polyakova SM, Zuev EV, Poteryaev DA, Taranin AV, Filatov AV. Antibody Avidity Maturation Following Booster Vaccination with an Intranasal Adenovirus Salnavac Vaccine. Vaccines (Basel) 2024; 12:1362. [PMID: 39772024 PMCID: PMC11680177 DOI: 10.3390/vaccines12121362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND The COVID-19 pandemic has led to the rapid development of new vaccines and methods of testing vaccine-induced immunity. Despite the extensive research that has been conducted on the level of specific antibodies, less attention has been paid to studying the avidity of these antibodies. The avidity of serum antibodies is associated with a vaccine showing high effectiveness and reflects the process of affinity maturation. In the context of vaccines against SARS-CoV-2, only a limited number of studies have investigated the avidity of antibodies, often solely focusing on the wild-type virus following vaccination. This study provides new insights into the avidity of serum antibodies following adenovirus-based boosters. We focused on the effects of an intranasal Salnavac booster, which is compared, using a single analytical platform, to an intramuscular Sputnik V. METHODS The avidity of RBD-specific IgGs and IgAs was investigated through ELISA using urea and biolayer interferometry. RESULTS The results demonstrated the similar avidities of serum antibodies, which were induced by both vaccines for six months post-booster. However, an increase in antibody avidity was observed for the wild-type and Delta variants, but not for the BA.4/5 variant. CONCLUSIONS Collectively, our data provide the insights into antibody avidity maturation after the adenovirus-based vaccines against SARS-CoV-2.
Collapse
Affiliation(s)
- Ekaterina A. Astakhova
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, 115522 Moscow, Russia;
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Moscow Center for Advanced Studies, Kulakova Street 20, 123592 Moscow, Russia
| | - Konstantin O. Baranov
- Laboratory of Immunogenetics, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia (A.V.T.)
| | - Nadezhda V. Shilova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Svetlana M. Polyakova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | | | | | - Alexander V. Taranin
- Laboratory of Immunogenetics, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia (A.V.T.)
| | - Alexander V. Filatov
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, 115522 Moscow, Russia;
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
4
|
Bergeron É, Chiang CF, Lo MK, Karaaslan E, Satter SM, Rahman MZ, Hossain ME, Aquib WR, Rahman DI, Sarwar SB, Montgomery JM, Klena JD, Spiropoulou CF. Streamlined detection of Nipah virus antibodies using a split NanoLuc biosensor. Emerg Microbes Infect 2024; 13:2398640. [PMID: 39194145 PMCID: PMC11391874 DOI: 10.1080/22221751.2024.2398640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 08/29/2024]
Abstract
Nipah virus (NiV) is an emerging zoonotic RNA virus that can cause fatal respiratory and neurological diseases in animals and humans. Accurate NiV diagnostics and surveillance tools are crucial for the identification of acute and resolved infections and to improve our understanding of NiV transmission and circulation. Here, we have developed and validated a split NanoLuc luciferase NiV glycoprotein (G) biosensor for detecting antibodies in clinical and animal samples. This assay is performed by simply mixing reagents and measuring luminescence, which depends on the complementation of the split NanoLuc luciferase G biosensor following its binding to antibodies. This anti-NiV-G "mix-and-read" assay was validated using the WHO's first international standard for anti-NiV antibodies and more than 700 serum samples from the NiV-endemic country of Bangladesh. Anti-NiV antibodies from survivors persisted for at least 8 years according to both ⍺NiV-G mix-and-read and NiV neutralization assays. The ⍺NiV-G mix-and-read assay sensitivity (98.6%) and specificity (100%) were comparable to anti-NiV IgG ELISA performance but failed to detect anti-NiV antibodies in samples collected less than a week following the appearance of symptoms. Overall, the anti-NiV-G biosensor represents a simple, fast, and reliable tool that could support the expansion of NiV surveillance and retrospective outbreak investigations.
Collapse
Affiliation(s)
- Éric Bergeron
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, USA
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, USA
| | - Cheng-Feng Chiang
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - Michael K Lo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - Elif Karaaslan
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | | | | | | | | | | | | | - Joel M Montgomery
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - John D Klena
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| |
Collapse
|
5
|
Meng F, Zhou N, Hu G, Liu R, Zhang Y, Jing M, Hou Q. A comprehensive overview of recent advances in generative models for antibodies. Comput Struct Biotechnol J 2024; 23:2648-2660. [PMID: 39027650 PMCID: PMC11254834 DOI: 10.1016/j.csbj.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Therapeutic antibodies are an important class of biopharmaceuticals. With the rapid development of deep learning methods and the increasing amount of antibody data, antibody generative models have made great progress recently. They aim to solve the antibody space searching problems and are widely incorporated into the antibody development process. Therefore, a comprehensive introduction to the development methods in this field is imperative. Here, we collected 34 representative antibody generative models published recently and all generative models can be divided into three categories: sequence-generating models, structure-generating models, and hybrid models, based on their principles and algorithms. We further studied their performance and contributions to antibody sequence prediction, structure optimization, and affinity enhancement. Our manuscript will provide a comprehensive overview of the status of antibody generative models and also offer guidance for selecting different approaches.
Collapse
Affiliation(s)
- Fanxu Meng
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Na Zhou
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250100, China
- National Institute of Health Data Science of China, Shandong University, Jinan 250100, China
| | - Guangchun Hu
- School of Information Science and Engineering, University of Jinan, Jinan 250022, China
| | - Ruotong Liu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250100, China
- National Institute of Health Data Science of China, Shandong University, Jinan 250100, China
| | - Yuanyuan Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ming Jing
- Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Shandong Computer Science Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Provincial Key Laboratory of Computer Networks, Shandong Fundamental Research Center for Computer Science, Jinan 250000, China
| | - Qingzhen Hou
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250100, China
- National Institute of Health Data Science of China, Shandong University, Jinan 250100, China
| |
Collapse
|
6
|
Baghdadi ME, Emamzadeh R, Nazari M, Michelini E. Development of a bioluminescent homogenous nanobody-based immunoassay for the detection of prostate-specific antigen (PSA). Enzyme Microb Technol 2024; 180:110474. [PMID: 38944901 DOI: 10.1016/j.enzmictec.2024.110474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
Prostate cancer is the most prevalent cancer in men. At present, the diagnosis and screening of prostate cancer rely on the essential biomarker known as prostate-specific antigen (PSA). The main purpose of this study was to develop a novel immunoassay for the detection of PSA based on a tri-part split-nanoluciferase system and a nanobody targeting PSA. In our approach, two small components of the split-nanoluciferase, referred to as β9 and β10, were individually fused to two anti-PSA nanobodies, N7 and N23. When these proteins bind to PSA and in the presence of the third nanoluciferase component, called Δ11S, the split-nanoluciferase components are brought into close proximity, facilitating the reassembly of the active nanoluciferase and activation of luminescence. These proteins were expressed in a bacterial expression system, purified, and employed for the intended immunoassay. The developed immunoassay demonstrated the capability to sensitively detect PSA within a linear range from 1.0 to 20.0 ng/mL with LOD of 0.4 ng/mL, and the results obtained through this immunoassay agreed with those derived from the ELISA. Our study indicates that the homogeneous immunoassay developed with nanobodies exhibits remarkable specificity for PSA and can serve as a reliable, fast, and user-friendly test for detecting PSA.
Collapse
Affiliation(s)
- Mahmoud Esraa Baghdadi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Rahman Emamzadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Mahboobeh Nazari
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Elisa Michelini
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum-University of Bologna, Via Selmi 2, Bologna 40126, Italy
| |
Collapse
|
7
|
Nippak P, Begum H, Ahmed W, Santhikumar D. Barriers and Concerns that Contribute to Vaccine Hesitancy in Black, Indigenous, and People of Colour (BIPOC) Individuals in Ontario, Canada. Cureus 2024; 16:e63033. [PMID: 39050314 PMCID: PMC11268265 DOI: 10.7759/cureus.63033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Despite research demonstrating the effectiveness of COVID-19 vaccines, hesitancy is extremely common in minority communities. The purpose of this study was to identify key barriers and concerns that contribute to vaccine hesitancy in Black, Indigenous, and People of Colour (BIPOC) individuals and provide recommendations to address these barriers and concerns. METHODS The study was an online cross-sectional survey conducted among 1491 BIPOC and Caucasian adults, recruited using social media networks in August-September 2021. The questionnaire consisted of five sections that probed concerns and attitudes contributing to COVID-19 vaccine hesitancy. RESULTS Respondents were mostly Caucasian males (75.7%) and the average age was 29.1 years. A higher proportion of BIPOC respondents received both doses (50.6%) than Caucasian respondents (36.4%). Out of the unvaccinated, a higher percentage of BIPOC respondents did not plan on getting vaccinated (17.1%) compared to Caucasian respondents (4.2%). BIPOC respondents preferred the Pfizer-BioNTech (34.1%) vaccine whereas Caucasian respondents preferred AstraZeneca (29.3%). The biggest concern BIPOC and Caucasian respondents had with COVID-19 vaccines were side effects (56.6% vs 54.4%, respectively). BIPOC respondents identified dependability as the next biggest concern after side effects. A higher percentage of BIPOC respondents were against getting vaccinated against COVID-19 (16% vs 1.2%) compared to Caucasian respondents. CONCLUSION Among unvaccinated respondents, COVID-19 vaccine hesitancy was most evident in the BIPOC respondents compared to Caucasian respondents. Side effects, trustworthiness, and lack of information were identified as the three most common concerns surrounding vaccines in general. Increased accessibility to reliable and accurate vaccine information in various languages/dialects can raise awareness about COVID-19 vaccinations in BIPOC communities.
Collapse
Affiliation(s)
- Pria Nippak
- Health Services Management, Ted Rogers School of Management, Toronto Metropolitan University, Toronto, CAN
| | - Housne Begum
- Health Services Management, Ted Rogers School of Management, Toronto Metropolitan University, Toronto, CAN
| | - Wajiha Ahmed
- Health Services Management, Ted Rogers School of Management, Toronto Metropolitan University, Toronto, CAN
| | - Devi Santhikumar
- Health Services Management, Ted Rogers School of Management, Toronto Metropolitan University, Toronto, CAN
| |
Collapse
|
8
|
Li X, Cheng N, Shi D, Li Y, Li C, Zhu M, Jin Q, Wu Z, Zhu L, He Y, Yao H, Ji J. Sulfated liposome-based artificial cell membrane glycocalyx nanodecoys for coronavirus inactivation by membrane fusion. Bioact Mater 2024; 33:1-13. [PMID: 38024234 PMCID: PMC10660003 DOI: 10.1016/j.bioactmat.2023.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/21/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
As a broad-spectrum antiviral nanoparticle, the cell membrane nanodecoy is a promising strategy for preventing viral infections. However, most of the cell membrane nanodecoys can only catch virus and cannot induce inactivation, which may bring about a considerably high risk of re-infection owing to the possible viral escape from the nanodecoys. To tackle this challenge, sulfated liposomes are employed to mimic the cell membrane glycocalyx for constructing an artificial cell membrane glycocalyx nanodecoy that exhibits excellent anti-coronavirus activity against HCoV-OC43, wild-type SARS-CoV-2, Alpha and Delta variant SARS-CoV-2 pseudovirus. In addition, this nanodecoy, loaded with surface sulfate groups as SARS-CoV-2 receptor arrays, can enhance the antiviral capability to virus inactivation through destroying the virus membrane structure and transfer the spike protein to postfusion conformation. Integrating bio-inspired recognition and inactivation of viruses in a single supramolecular entity, the artificial cell membrane nanodecoy opens a new avenue for the development of theranostic antiviral nanosystems, whose mass production is favored due to the facile engineering of sulfated liposomes.
Collapse
Affiliation(s)
- Xu Li
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ningtao Cheng
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Danrong Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yutong Li
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chen Li
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Miaojin Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhigang Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Linwei Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yi He
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032, China
| |
Collapse
|
9
|
Schobesberger S, Thumfart H, Selinger F, Spitz S, Gonzalez C, Pei L, Poglitsch M, Ertl P. Application of a Biomimetic Nanoparticle-Based Mock Virus to Determine SARS-CoV-2 Neutralizing Antibody Levels in Blood Samples Using a Lateral Flow Assay. Anal Chem 2024. [PMID: 38334364 PMCID: PMC10882572 DOI: 10.1021/acs.analchem.3c04372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
The presence of neutralizing antibodies against SARS-CoV-2 in blood, acquired through previous infection or vaccination, is known to prevent the (re)occurrence of outbreaks unless the virus mutates. Therefore, the measurement of neutralizing antibodies constitutes an indispensable tool in assessing an individual's and a population's immunity against SARS-CoV-2. For this reason, we have developed an innovative lateral flow assay (LFA) capable of detecting blood-derived neutralizing antibodies using a biomimetic SARS-CoV-2 mock virus system. Here, functionalized gold nanoparticles (AuNPs) featuring the trimeric spike (S) protein at its surface imitate the virus's structure and are applied to monitor the presence and efficacy of neutralizing antibodies in blood samples. The detection principle relies on the interaction between mock virus and the immobilized angiotensin-converting enzyme 2 (ACE2) receptor, which is inhibited when neutralizing antibodies are present. To further enhance the sensitivity of our competitive assay and identify low titers of neutralizing antibodies, an additional mixing pad is embedded into the device to increase the interaction time between mock virus and neutralizing antibodies. The developed LFA is benchmarked against the WHO International Standard (21/338) and demonstrated reliable quantification of neutralizing antibodies that inhibit ACE2 binding events down to a detection limit of an antibody titer of 59 IU/mL. Additional validation using whole blood and plasma samples showed reproducible results and good comparability to a laboratory-based reference test, thus highlighting its applicability for point-of-care testing.
Collapse
Affiliation(s)
| | - Helena Thumfart
- TU Wien, Faculty of Technical Chemistry, Getreidemarkt 9, 1060 Vienna, Austria
| | - Florian Selinger
- TU Wien, Faculty of Technical Chemistry, Getreidemarkt 9, 1060 Vienna, Austria
| | - Sarah Spitz
- TU Wien, Faculty of Technical Chemistry, Getreidemarkt 9, 1060 Vienna, Austria
| | | | - Lei Pei
- Covirabio GmbH, Brehmstraße 14a, 1110 Vienna, Austria
| | | | - Peter Ertl
- TU Wien, Faculty of Technical Chemistry, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
10
|
Saito T, Couzinet A, Murakami T, Shimomura M, Suzuki T, Katayama Y, Nakatsura T. Rapid and high throughput assessment of cellular immunity against SARS-CoV-2 based on the ex vivo activation of genes in leukocyte assay with whole blood. Biochem Biophys Res Commun 2024; 694:149398. [PMID: 38134475 DOI: 10.1016/j.bbrc.2023.149398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
During the novel coronavirus outbreak and vaccine development, antibody production garnered major focus as the primary immunogenic response. However, cellular immunity's recent demonstration of comparable or greater significance in controlling infection demands the re-evaluation of the importance of T-cell immunity in SARS-CoV-2 infection. Here, we developed a novel assay, the ex vivo activation of genes in leukocytes (EAGL), which employs short-term whole blood stimulation with the LeukoComplete™ system, to measure ex vivo SARS-CoV-2-specific T cell responses (cellular immunity). This assay measures upregulated mRNA expression related to leukocyte activation 4 h after antigen stimulation. LeukoComplete™ system uses whole blood samples, eliminating the need for pretreatment before analysis. Furthermore, this system's high reproducibility is ensured through a series of operations from mRNA extraction to cDNA synthesis on a 96-well plate. In the performance evaluation using fresh blood from previously SARS-CoV-2-infected and COVID-19-vaccinated individuals, the EAGL assay had a comparable sensitivity and specificity to the ELISpot assay (EAGL: 1.000/1.000; ELISpot: 0.900/0.973). As a simple, high-throughput assay, the EAGL assay is also a quantitative test that is useful in studies with large sample numbers, such as monitoring new vaccine efficacies against novel coronaviruses or epidemiologic studies that require cellular immune testing during viral infection.
Collapse
Affiliation(s)
- Taro Saito
- Minaris Medical Co., Ltd, Nagaizumi, Shizuoka, 411-0932, Japan
| | - Arnaud Couzinet
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, 277-8577, Japan
| | | | - Manami Shimomura
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, 277-8577, Japan
| | - Toshihiro Suzuki
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, 277-8577, Japan
| | - Yuki Katayama
- Minaris Medical Co., Ltd, Nagaizumi, Shizuoka, 411-0932, Japan; Resonac Corporation, Minato, Tokyo, 105-7325, Japan.
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, 277-8577, Japan
| |
Collapse
|
11
|
Nam M, Cha JH, Kim SW, Kim SB, Lee KB, Chung YS, Yun SG, Nam MH, Lee CK, Cho Y. Performance Evaluation of Three Antibody Binding Assays, a Neutralizing Antibody Assay, and an Interferon-Gamma Release Assay for SARS-CoV-2 According to Vaccine Type in Vaccinated Group. Diagnostics (Basel) 2023; 13:3688. [PMID: 38132272 PMCID: PMC10742828 DOI: 10.3390/diagnostics13243688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
We evaluated the performance of SARS-CoV-2 assays in the vaccinated group using receptor-binding domain antibody assays (RBD Ab assay), neutralizing antibody assay (nAb assay), and interferon-gamma release assay (IGR assay). We also compared the performance of the SARS-CoV-2 assays based on vaccine type in a large population. We collected 1851 samples from vaccinated individuals with vector, mix-and-match (MM), and mRNA vaccines. The performance of the RBD Ab assays was assessed by SARS-CoV-2 IgG II Quant (Abbott Laboratories, Sligo, Ireland), SARS-CoV-2 IgG (Beckman Coulter, CA, USA), and anti-SARS-CoV-2 S (Roche Diagnostics GmbH, Mannheim, Germany). The nAb assay was assessed by cPass SARS-CoV-2 neutralization antibody detection kits (GenScript, NJ, USA). The IGR assay was assessed by QuantiFERON (Qiagen, Venlo, The Netherlands). Median values of the RBD Ab assays and nAb assay sequentially increased after the first and second vaccinations. RBD Ab assays and nAb assay showed very strong correlations. The median values of the RBD Ab, nAb, and IGR were higher in the mRNA vaccine group than in the vector and MM vaccine groups. The agreement and correlation among the RBD Ab assays, nAb assay, and IGR assay were higher in the mRNA vaccine group than in the vector and MM vaccine groups. We compared the performance of the RBD Ab assay, nAb assay, and IGR assay based on the vaccine types using the RBD Ab, nAb, and IGR assays. This study provides a better understanding of the assessment of humoral and cellular immune responses after vaccination.
Collapse
Affiliation(s)
- Minjeong Nam
- Department of Laboratory Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea; (M.N.); (S.G.Y.); (M.-H.N.); (C.K.L.)
- Department of Laboratory Medicine, Korea University Anam Hospital, Seoul 02841, Republic of Korea; (J.H.C.); (S.-W.K.)
| | - Jae Hyun Cha
- Department of Laboratory Medicine, Korea University Anam Hospital, Seoul 02841, Republic of Korea; (J.H.C.); (S.-W.K.)
| | - Sang-Wook Kim
- Department of Laboratory Medicine, Korea University Anam Hospital, Seoul 02841, Republic of Korea; (J.H.C.); (S.-W.K.)
| | - Sun Bean Kim
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Korea University Anam Hospital, Seoul 02841, Republic of Korea; (S.B.K.); (K.-B.L.); (Y.-S.C.)
| | - Ki-Byung Lee
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Korea University Anam Hospital, Seoul 02841, Republic of Korea; (S.B.K.); (K.-B.L.); (Y.-S.C.)
| | - You-Seung Chung
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Korea University Anam Hospital, Seoul 02841, Republic of Korea; (S.B.K.); (K.-B.L.); (Y.-S.C.)
| | - Seung Gyu Yun
- Department of Laboratory Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea; (M.N.); (S.G.Y.); (M.-H.N.); (C.K.L.)
- Department of Laboratory Medicine, Korea University Anam Hospital, Seoul 02841, Republic of Korea; (J.H.C.); (S.-W.K.)
| | - Myung-Hyun Nam
- Department of Laboratory Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea; (M.N.); (S.G.Y.); (M.-H.N.); (C.K.L.)
- Department of Laboratory Medicine, Korea University Anam Hospital, Seoul 02841, Republic of Korea; (J.H.C.); (S.-W.K.)
| | - Chang Kyu Lee
- Department of Laboratory Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea; (M.N.); (S.G.Y.); (M.-H.N.); (C.K.L.)
| | - Yunjung Cho
- Department of Laboratory Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea; (M.N.); (S.G.Y.); (M.-H.N.); (C.K.L.)
- Department of Laboratory Medicine, Korea University Anam Hospital, Seoul 02841, Republic of Korea; (J.H.C.); (S.-W.K.)
| |
Collapse
|
12
|
Oliayi M, Emamzadeh R, Rastegar M, Nazari M. Tri-part NanoLuc as a new split technology with potential applications in chemical biology: a mini-review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:3924-3931. [PMID: 37545367 DOI: 10.1039/d3ay00512g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
For several decades, researchers have been using protein-fragment complementation assay (PCA) approaches for biosensing to study protein-protein interaction for a variety of aims, including viral infection, cellular apoptosis, G protein coupled receptor (GPCR) signaling, drug and substrate screening, and protein aggregation and protein editing by CRISPR/Cas9. As a reporter, NanoLuc (NLuc), a smaller and the brightest engineered luciferase derived from deep-sea shrimp Oplophorus gracilirostris, has been found to have many benefits over other luminescent enzymes in PCA. Inspired by the split green fluorescent protein (GFP) and its β-barrel structure, two split NLuc consisting of peptide fragments have been reported including the binary and ternary NLuc systems. NanoBiT® (large fragment + peptide) has been used extensively. In contrast, tripart split NLuc (large fragment + 2 peptides) has been applied and hardly used, while it has some advantages over NanoBiT in some studies. Nevertheless, tripart NLuc has some drawbacks and challenges to overcome but has several potential characteristics to become a multifunctional and powerful tool. In this review, several aspects of tripart NLuc are studied and a brief comparison with NanoBiT® is given.
Collapse
Affiliation(s)
- Mina Oliayi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Rahman Emamzadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Mahboobeh Nazari
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| |
Collapse
|
13
|
Whelan M, Galipeau Y, White-Al Habeeb N, Konforte D, Abou El Hassan M, Booth RA, Arnold C, Langlois MA, Pelchat M. Cross-sectional Characterization of SARS-CoV-2 Antibody Levels and Decay Rates Following Infection of Unvaccinated Elderly Individuals. Open Forum Infect Dis 2023; 10:ofad384. [PMID: 37547857 PMCID: PMC10404006 DOI: 10.1093/ofid/ofad384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/19/2023] [Indexed: 08/08/2023] Open
Abstract
Background SARS-CoV-2 infections have disproportionally burdened elderly populations with excessive mortality. While several contributing factors exists, questions remain about the quality and duration of humoral antibody-mediated responses resulting from infections in unvaccinated elderly individuals. Methods Residual serum/plasma samples were collected from individuals undergoing routine SARS-CoV-2 polymerase chain reaction testing in a community laboratory in Canada. The samples were collected in 2020, before vaccines became available. IgG, IgA, and IgM antibodies against SARS-CoV-2 nucleocapsid, trimeric spike, and its receptor-binding domain were quantified via a high-throughput chemiluminescent enzyme-linked immunosorbent assay. Neutralization efficiency was also quantified through a surrogate high-throughput protein-based neutralization assay. Results This study analyzed SARS-CoV-2 antibody levels in a large cross-sectional cohort (N = 739), enriched for elderly individuals (median age, 82 years; 75% >65 years old), where 72% of samples tested positive for SARS-CoV-2 by polymerase chain reaction. The age group ≥90 years had higher levels of antibodies than that <65 years. Neutralization efficiency showed an age-dependent trend, where older persons had higher levels of neutralizing antibodies. Antibodies targeting the nucleocapsid had the fastest decline. IgG antibodies targeting the receptor-binding domain remained stable over time, potentially explaining the lack of neutralization decay observed in this cohort. Conclusions Despite older individuals having the highest levels of antibodies postinfection, they are the cohort in which antibody decay was the fastest. Until a better understanding of correlates of protection is acquired, along with the protective role of nonneutralizing antibodies, booster vaccinations remain important in this demographic.
Collapse
Affiliation(s)
- Marilyn Whelan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Yannick Galipeau
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | | | | | - Mohamed Abou El Hassan
- LifeLabs Medical Laboratory Services, Etobicoke, Canada
- Department of Pathology, Dalhousie University, Halifax, Canada
| | - Ronald A Booth
- Department of Pathology and Laboratory Medicine and the Eastern Ontario Regional Laboratory Association, University of Ottawa and The Ottawa Hospital, Ottawa, Canada
| | - Corey Arnold
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| | - Martin Pelchat
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| |
Collapse
|
14
|
Ham Y, Cho NC, Kim D, Kim JH, Jo MJ, Jeong MS, Pak BY, Lee S, Lee MK, Chi SW, Kim TD, Jeong NC, Cho S. The SpACE-CCM: A facile and versatile cell culture medium-based biosensor for detection of SARS-CoV-2 spike-ACE2 interaction. Biosens Bioelectron 2023; 227:115169. [PMID: 36827795 PMCID: PMC9938795 DOI: 10.1016/j.bios.2023.115169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/05/2023] [Accepted: 02/17/2023] [Indexed: 02/21/2023]
Abstract
The COVID-19 pandemic is an ongoing global public health threat. COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and binding of the SARS-CoV-2 spike to its receptor, angiotensin-converting enzyme 2 (ACE2), on host cells is critical for viral infection. Here, we developed a luminescent biosensor that readily detects interactions of the spike receptor-binding domain (RBD) and ACE2 in cell culture medium ('SpACE-CCM'), which was based on bimolecular complementation of the split nanoluciferase-fused spike RBD and ectodomain of ACE2 and further engineered to be efficiently secreted from cells by adding a heterologous secretory signal peptide (SSP). Screening of various SSPs identified 'interferon-α+alanine-aspartate' as the SSP that induced the highest activity. The SpACE-CCM biosensor was validated by observing a marked reduction of the activity caused by interaction-defective mutations or in the presence of neutralizing antibodies, recombinant decoy proteins, or peptides. Importantly, the SpACE-CCM biosensor responded well in assay-validating conditions compared with conventional cell lysate-based NanoLuc Binary Technology, indicating its advantage. We further demonstrated the biosensor's versatility by quantitatively detecting neutralizing activity in blood samples from COVID-19 patients and vaccinated individuals, discovering a small molecule interfering with the spike RBD-ACE2 interaction through high-throughput screening, and assessing the cross-reactivity of neutralizing antibodies against SARS-CoV-2 variants. Because the SpACE-CCM is a facile and rapid one-step reaction biosensor that aptly recapitulates the native spike-ACE2 interaction, it would be advantageous in many experimental and clinical applications associated with this interaction.
Collapse
Affiliation(s)
- Youngwook Ham
- Nucleic Acid Therapeutics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungbuk, 28116, Republic of Korea; Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (KUST), Daejeon, 34113, Republic of Korea
| | - Nam-Chul Cho
- Korea Chemical Bank, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea
| | - Daeyong Kim
- Nucleic Acid Therapeutics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungbuk, 28116, Republic of Korea; Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (KUST), Daejeon, 34113, Republic of Korea
| | - Jung-Hee Kim
- AM Science Corp., Gyeonggi, 12902, Republic of Korea
| | - Min Ju Jo
- Nucleic Acid Therapeutics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungbuk, 28116, Republic of Korea; College of Pharmacy, Chungbuk National University, Chungbuk, 28644, Republic of Korea
| | - Min Seon Jeong
- Nucleic Acid Therapeutics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungbuk, 28116, Republic of Korea; Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (KUST), Daejeon, 34113, Republic of Korea
| | - Bo-Yeong Pak
- AM Science Corp., Gyeonggi, 12902, Republic of Korea
| | - Sanghyeok Lee
- AM Science Corp., Gyeonggi, 12902, Republic of Korea
| | - Mi-Kyung Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Proteome Structural Biology, KRIBB School of Bioscience, Korea University of Science and Technology (KUST), Daejeon, 34113, Republic of Korea
| | - Seung-Wook Chi
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Proteome Structural Biology, KRIBB School of Bioscience, Korea University of Science and Technology (KUST), Daejeon, 34113, Republic of Korea
| | - Tae-Don Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (KUST), Daejeon, 34113, Republic of Korea
| | | | - Sungchan Cho
- Nucleic Acid Therapeutics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungbuk, 28116, Republic of Korea; Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (KUST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
15
|
Yao Z, Geng B, Marcon E, Pu S, Tang H, Merluza J, Bello A, Snider J, Lu P, Wood H, Stagljar I. Omicron Spike Protein Is Vulnerable to Reduction. J Mol Biol 2023; 435:168128. [PMID: 37100168 PMCID: PMC10125213 DOI: 10.1016/j.jmb.2023.168128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
SARS-CoV-2 virus spike (S) protein is an envelope protein responsible for binding to the ACE2 receptor, driving subsequent entry into host cells. The existence of multiple disulfide bonds in the S protein makes it potentially susceptible to reductive cleavage. Using a tri-part split luciferase-based binding assay, we evaluated the impacts of chemical reduction on S proteins from different virus variants and found that those from the Omicron family are highly vulnerable to reduction. Through manipulation of different Omicron mutations, we found that alterations in the receptor binding module (RBM) are the major determinants of this vulnerability. Specifically we discovered that Omicron mutations facilitate the cleavage of C480-C488 and C379-C432 disulfides, which consequently impairs binding activity and protein stability. The vulnerability of Omicron S proteins suggests a mechanism that can be harnessed to treat specific SARS-CoV-2 strains.
Collapse
Affiliation(s)
- Zhong Yao
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 3E1, Canada.
| | - Betty Geng
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Edyta Marcon
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Shuye Pu
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Hua Tang
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - John Merluza
- Zoonotic Diseases and Special Pathogens division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Alexander Bello
- Zoonotic Diseases and Special Pathogens division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Jamie Snider
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Ping Lu
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Heidi Wood
- Zoonotic Diseases and Special Pathogens division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Igor Stagljar
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada; Mediterranean Institute for Life Sciences, Meštrovićevo Šetalište 45, HR-21000 Split, Croatia.
| |
Collapse
|
16
|
Streif S, Neckermann P, Spitzenberg C, Weiss K, Hoecherl K, Kulikowski K, Hahner S, Noelting C, Einhauser S, Peterhoff D, Asam C, Wagner R, Baeumner AJ. Liposome-based high-throughput and point-of-care assays toward the quick, simple, and sensitive detection of neutralizing antibodies against SARS-CoV-2 in patient sera. Anal Bioanal Chem 2023; 415:1421-1435. [PMID: 36754874 PMCID: PMC9909147 DOI: 10.1007/s00216-023-04548-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 01/16/2023] [Indexed: 02/10/2023]
Abstract
The emergence of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) in 2019 caused an increased interest in neutralizing antibody tests to determine the immune status of the population. Standard live-virus-based neutralization assays such as plaque-reduction assays or pseudovirus neutralization tests cannot be adapted to the point-of-care (POC). Accordingly, tests quantifying competitive binding inhibition of the angiotensin-converting enzyme 2 (ACE2) receptor to the receptor-binding domain (RBD) of SARS-CoV-2 by neutralizing antibodies have been developed. Here, we present a new platform using sulforhodamine B encapsulating liposomes decorated with RBD as foundation for the development of both a fluorescent, highly feasible high-throughput (HTS) and a POC-ready neutralizing antibody assay. RBD-conjugated liposomes are incubated with serum and subsequently immobilized in an ACE2-coated plate or mixed with biotinylated ACE2 and used in test strip with streptavidin test line, respectively. Polyclonal neutralizing human antibodies were shown to cause complete binding inhibition, while S309 and CR3022 human monoclonal antibodies only caused partial inhibition, proving the functionality of the assay. Both formats, the HTS and POC assay, were then tested using 20 sera containing varying titers of neutralizing antibodies, and a control panel of sera including prepandemic sera and reconvalescent sera from respiratory infections other than SARS-CoV-2. Both assays correlated well with a standard pseudovirus neutralization test (r = 0.847 for HTS and r = 0.614 for POC format). Furthermore, excellent correlation (r = 0.868) between HTS and POC formats was observed. The flexibility afforded by liposomes as signaling agents using different dyes and sizes can hence be utilized in the future for a broad range of multianalyte neutralizing antibody diagnostics.
Collapse
Affiliation(s)
- Simon Streif
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstr. 31, 93053, Regensburg, Germany
| | - Patrick Neckermann
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Universitaetsstr. 31, 93053, Regensburg, Germany
| | - Clemens Spitzenberg
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstr. 31, 93053, Regensburg, Germany
| | - Katharina Weiss
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstr. 31, 93053, Regensburg, Germany
| | - Kilian Hoecherl
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstr. 31, 93053, Regensburg, Germany
| | - Kacper Kulikowski
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstr. 31, 93053, Regensburg, Germany
| | - Sonja Hahner
- Mikrogen GmbH, Floriansbogen 2-4, 82061, Neuried, Germany
| | | | - Sebastian Einhauser
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Universitaetsstr. 31, 93053, Regensburg, Germany
| | - David Peterhoff
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Universitaetsstr. 31, 93053, Regensburg, Germany
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Claudia Asam
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Universitaetsstr. 31, 93053, Regensburg, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Universitaetsstr. 31, 93053, Regensburg, Germany
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Antje J Baeumner
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstr. 31, 93053, Regensburg, Germany.
| |
Collapse
|
17
|
Kuo HC, Kuo KC, Du PX, Keskin BB, Su WY, Ho TS, Tsai PS, Pau CH, Shih HC, Huang YH, Weng KP, Syu GD. Profiling humoral immunity after mixing and matching COVID-19 vaccines using SARS-CoV-2 variant protein microarrays. Mol Cell Proteomics 2023; 22:100507. [PMID: 36787877 PMCID: PMC9922205 DOI: 10.1016/j.mcpro.2023.100507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
In November 2022, 68% of the population received at least one dose of COVID-19 vaccines. Due to the ongoing mutations, especially for the variants of concern (VOCs), it is important to monitor the humoral immune responses after different vaccination strategies. In this study, we developed a SARS-CoV-2 variant protein microarray that contained the spike proteins from the VOCs, e.g., alpha, beta, gamma, delta, and omicron, to quantify the binding antibody and surrogate neutralizing antibody. Plasmas were collected after two doses of matching AZD1222 (AZx2), two doses of matching mRNA-1273 (Mx2), or mixing AZD1222 and mRNA-1273 (AZ+M). The results showed a significant decrease of surrogate neutralizing antibodies against the receptor-binding domain in all VOCs in AZx2 and Mx2 but not AZ+M. A similar but minor reduction pattern of surrogate neutralizing antibodies against the extracellular domain was observed. While Mx2 exhibited a higher surrogate neutralizing level against all VOCs compared to AZx2, AZ+M showed an even higher surrogate neutralizing level in gamma and omicron compared to Mx2. It is worth noting that the binding antibody displayed a low correlation to the surrogate neutralizing antibody (R-square 0.130-0.382). This study delivers insights into humoral immunities, SARS-CoV-2 mutations, and mixing and matching vaccine strategies, which may provide a more effective vaccine strategy especially in preventing omicron.
Collapse
Affiliation(s)
- Ho-Chang Kuo
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan,Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan,College of Medicine, Chang Gung University, Taoyuan, Taiwan 33302
| | - Kuang-Che Kuo
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Pin-Xian Du
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Batuhan Birol Keskin
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Wen-Yu Su
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Tzong-Shiann Ho
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan R.O.C.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan R.O.C.,Department of Pediatrics, Tainan Hospital, Ministry of Health and Welfare, Tainan 700, Taiwan R.O.C
| | - Pei-Shan Tsai
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Chi Ho Pau
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Hsi-Chang Shih
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ying-Hsien Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan,Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan,College of Medicine, Chang Gung University, Taoyuan, Taiwan 33302
| | - Ken-Pen Weng
- Congenital Structural Heart Disease Center, Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan,School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Guan-Da Syu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan; International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan 701, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
18
|
Klüpfel J, Paßreiter S, Rumpf M, Christa C, Holthoff HP, Ungerer M, Lohse M, Knolle P, Protzer U, Elsner M, Seidel M. Automated detection of neutralizing SARS-CoV-2 antibodies in minutes using a competitive chemiluminescence immunoassay. Anal Bioanal Chem 2023; 415:391-404. [PMID: 36346456 PMCID: PMC9643999 DOI: 10.1007/s00216-022-04416-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/13/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
Abstract
The SARS-CoV-2 pandemic has shown the importance of rapid and comprehensive diagnostic tools. While there are numerous rapid antigen tests available, rapid serological assays for the detection of neutralizing antibodies are and will be needed to determine not only the amount of antibodies formed after infection or vaccination but also their neutralizing potential, preventing the cell entry of SARS-CoV-2. Current active-virus neutralization assays require biosafety level 3 facilities, while virus-free surrogate assays are more versatile in applications, but still take typically several hours until results are available. To overcome these disadvantages, we developed a competitive chemiluminescence immunoassay that enables the detection of neutralizing SARS-CoV-2 antibodies within 7 min. The neutralizing antibodies bind to the viral receptor binding domain (RBD) and inhibit the binding to the human angiotensin-converting enzyme 2 (ACE2) receptor. This competitive binding inhibition test was characterized with a set of 80 samples, which could all be classified correctly. The assay results favorably compare to those obtained with a more time-intensive ELISA-based neutralization test and a commercial surrogate neutralization assay. Our test could further be used to detect individuals with a high total IgG antibody titer, but only a low neutralizing titer, as well as for monitoring neutralizing antibodies after vaccinations. This effective performance in SARS-CoV-2 seromonitoring delineates the potential for the test to be adapted to other diseases in the future.
Collapse
Affiliation(s)
- Julia Klüpfel
- Institute of Water Chemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Sandra Paßreiter
- Institute of Water Chemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Melina Rumpf
- Institute of Water Chemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Catharina Christa
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Trogerstr. 30, 81675 Munich, Germany
| | | | - Martin Ungerer
- ISAR Bioscience GmbH, Semmelweisstr. 5, 82152 Planegg, Germany
| | - Martin Lohse
- ISAR Bioscience GmbH, Semmelweisstr. 5, 82152 Planegg, Germany
| | - Percy Knolle
- Institute of Molecular Immunology/Experimental Oncology, Technical University of Munich, Ismaningerstr. 22, 81675 Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Trogerstr. 30, 81675 Munich, Germany ,German Center for Infection Research (DZIF), 81675 Munich, Germany
| | - Martin Elsner
- Institute of Water Chemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Michael Seidel
- Institute of Water Chemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| |
Collapse
|
19
|
Hajissa K, Mussa A, Karobari MI, Abbas MA, Ibrahim IK, Assiry AA, Iqbal A, Alhumaid S, Mutair AA, Rabaan AA, Messina P, Scardina GA. The SARS-CoV-2 Antibodies, Their Diagnostic Utility, and Their Potential for Vaccine Development. Vaccines (Basel) 2022; 10:1346. [PMID: 36016233 PMCID: PMC9412318 DOI: 10.3390/vaccines10081346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
Antibodies (Abs) are important immune mediators and powerful diagnostic markers in a wide range of infectious diseases. Understanding the humoral immunity or the development of effective antibodies against SARS-CoV-2 is a prerequisite for limiting disease burden in the community and aids in the development of new diagnostic, therapeutic, and vaccination options. Accordingly, the role of antiviral antibodies in the resistance to and diagnosis of SARS-CoV-2 infection was explored. Antibody testing showed the potential in adding important diagnostic value to the routine diagnosis and clinical management of COVID-19. They could also play a critical role in COVID-19 surveillance, allowing for a better understanding of the full scope of the disease. The development of several vaccines and the success of passive immunotherapy suggest that anti-SARS-CoV-2 antibodies have the potential to be used in the treatment and prevention of SARS-CoV-2 infection. In this review, we highlight the role of antibodies in the diagnosis of SARS-CoV-2 infection and provide an update on their protective roles in controlling SARS-CoV-2 infection as well as vaccine development.
Collapse
Affiliation(s)
- Khalid Hajissa
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Kelantan, Malaysia
- Department of Zoology, Faculty of Science and Technology, Omdurman Islamic University, Omdurman P.O. Box 382, Sudan
| | - Ali Mussa
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Kelantan, Malaysia
- Department of Biology, Faculty of Education, Omdurman Islamic University, Omdurman P.O. Box 382, Sudan
| | - Mohmed Isaqali Karobari
- Conservative Dentistry Unit, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kota Bharu 16150, Kelantan, Malaysia
- Department of Conservative Dentistry & Endodontics, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences University, Chennai 600077, Tamil Nadu, India
- Department of Restorative Dentistry & Endodontics, Faculty of Dentistry, University of Puthisastra, Phnom Penh 12211, Cambodia
| | - Muhammad Adamu Abbas
- Department of Medical Microbiology and Parasitology, College of Health Sciences, Bayero University Kano, Kano 3011, Nigeria
| | - Ibrahim Khider Ibrahim
- Department of Haematology, Faculty of Medical Laboratory Sciences, Al Neelain University, Khartoum 11111, Sudan
| | - Ali A Assiry
- Preventive Dental Science Department, Faculty of Dentistry, Najran University, Najran 55461, Saudi Arabia
| | - Azhar Iqbal
- Department of Restorative Dentistry, College of Dentistry, Jouf University, Sakaka 72345, Saudi Arabia
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa 31982, Saudi Arabia
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa 36342, Saudi Arabia
- College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, NSW 2522, Australia
- Nursing Department, Prince Sultan Military College of Health Sciences, Dhahran 33048, Saudi Arabia
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Pietro Messina
- Department of Surgical, Oncological and Stomatological Disciplines, University of Palermo, 90133 Palermo, Italy
| | | |
Collapse
|