1
|
Sugiyama A, Minami M, Ugajin K, Inaba-Inoue S, Yabuno N, Takekawa Y, Xiaomei S, Takei S, Sasaki M, Nomai T, Jiang X, Kita S, Maenaka K, Hirose M, Yao M, Gooley PR, Moseley GW, Sugita Y, Ose T. Structural analysis reveals how tetrameric tyrosine-phosphorylated STAT1 is targeted by the rabies virus P-protein. Sci Signal 2025; 18:eads2210. [PMID: 40100957 DOI: 10.1126/scisignal.ads2210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 02/28/2025] [Indexed: 03/20/2025]
Abstract
Signal transducer and activator of transcription (STAT) family members mediate signaling in the Janus kinase (JAK)-STAT pathway and are activated by phosphorylation at a conserved tyrosine residue, resulting in dimerization through reciprocal interactions between the phosphotyrosine and a Src homology 2 (SH2) domain. Tyrosine-phosphorylated STAT (pY-STAT) then translocates to the nucleus to induce the expression of genes encoding antiviral proteins. Although the active and functional forms of STATs are conventionally considered to be dimers, STATs can undergo higher-order oligomerization, which is implicated in regulating transcriptional activity. We present the cryo-electron microscopy (cryo-EM) structure of the tetrameric form of intact pY-STAT1 in complex with DNA, which indicates that interactions between the amino-terminal domains (NTDs) of STAT1 induce oligomerization. The tetrameric structure revealed a compact conformation with a previously uncharacterized binding interface: Two DNA-bound dimers are twofold symmetrically aligned to transform into a tandem DNA-binding model without NTD dimer separation. Moreover, biochemical analyses indicated that the rabies virus P-protein selectively targeted tetrameric pY-STAT1. Combined with data showing which regions contribute to the interaction between pY-STAT1 and the P-protein, we constructed a binding model explaining how P recognizes the pY-STAT1 tetramer. These data provide insight into how pathogenic viruses target signaling pathways that mediate the host immune response.
Collapse
Affiliation(s)
- Aoi Sugiyama
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Miku Minami
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Kaito Ugajin
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Satomi Inaba-Inoue
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Nana Yabuno
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yuichiro Takekawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Sun Xiaomei
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Shiho Takei
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Mina Sasaki
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Tomo Nomai
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Xinxin Jiang
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Shunsuke Kita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Katsumi Maenaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Mika Hirose
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Min Yao
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Paul R Gooley
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Gregory W Moseley
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Yukihiko Sugita
- Institute for Life and Medical Sciences, Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8507, Japan
| | - Toyoyuki Ose
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
2
|
Haas-Neill L, Meneksedag-Erol D, Chaudhry A, Novoselova M, Ashraf QF, de Araujo ED, Wilson DJ, Rauscher S. The structural influence of the oncogenic driver mutation N642H in the STAT5B SH2 domain. Protein Sci 2025; 34:e70022. [PMID: 39723827 DOI: 10.1002/pro.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
The point mutation N642H of the signal transducer and activator of transcription 5B (STAT5B) protein is associated with aggressive and drug-resistant forms of leukemia. This mutation is thought to promote cancer due to hyperactivation of STAT5B caused by increased stability of the active, parallel dimer state. However, the molecular mechanism leading to this stabilization is not well understood as there is currently no structure of the parallel dimer. To investigate the mutation's mechanism of action, we conducted extensive all-atom molecular dynamics simulations of multiple oligomeric forms of both STAT5B and STAT5BN642H, including a model for the parallel dimer. The N642H mutation directly affects the hydrogen bonding network within the phosphotyrosine (pY)-binding pocket of the parallel dimer, enhancing the pY-binding interaction. The simulations indicate that apo STAT5B is highly flexible, exploring a diverse conformational space. In contrast, apo STAT5BN642H accesses two distinct conformational states, one of which resembles the conformation of the parallel dimer. The simulation predictions of the effects of the mutation on structure and dynamics are supported by the results of hydrogen-deuterium exchange (HDX) mass spectrometry measurements carried out on STAT5B and STAT5BN642H in which a phosphopeptide was used to mimic the effects of parallel dimerization on the SH2 domain. The molecular-level information uncovered in this work contributes to our understanding of STAT5B hyperactivation by the N642H mutation and could help pave the way for novel therapeutic strategies targeting this mutation.
Collapse
Affiliation(s)
- Liam Haas-Neill
- Department of Physics, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Deniz Meneksedag-Erol
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Ayesha Chaudhry
- Department of Chemistry, York University, Toronto, Ontario, Canada
| | - Masha Novoselova
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Qirat F Ashraf
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Elvin D de Araujo
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Derek J Wilson
- Department of Chemistry, York University, Toronto, Ontario, Canada
| | - Sarah Rauscher
- Department of Physics, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Tan Y, Mu J, Chen J. IL-36 Gamma: A Novel Adjuvant Cytokine Enhancing Protective Immunity Induced by DNA Immunization with TGIST and TGNSM Against Toxoplasma gondii Infection in Mice. Microorganisms 2024; 12:2258. [PMID: 39597646 PMCID: PMC11596725 DOI: 10.3390/microorganisms12112258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Toxoplasma gondii can cause congenital infections and abortions in humans. TgIST and TgNSM play critical roles in intracellular cyst formation and chronic infection. However, no studies have explored their potential to induce protective immunity against T. gondii infection. OBJECTIVE To evaluate the immune efficacy of DNA vaccines encoding TgNSM and TgIST genes against T. gondii infection, using the acute and chronic ME49 strain (Type II). METHODS DNA vaccines, including eukaryotic plasmids pVAX-IST and pVAX-NSM, were constructed. A cocktail DNA vaccine combining these two genes was formulated. The expression and immunogenicity were determined using the indirect immunofluorescence assay (IFA). Mice were immunized with DNA vaccines encoding either TgIST or TgNSM, as well as with the cocktail DNA vaccine. Humoral and cellular immune responses were analyzed by detecting antibody levels, cytotoxic T cell (CTL) responses, cytokines, and lymphocyte surface markers. Mouse survival and brain cyst counts were assessed 1 to 2 months post-vaccination in experimental toxoplasmosis models. The adjuvant efficacy of plasmid pVAX-IL-36γ in enhancing DNA vaccine-induced protective immunity was also evaluated. RESULTS DNA immunization with pVAX-IST and pVAX-NSM elicited strong humoral and cellular immune responses, characterized by increased Toxoplasma-specific IgG2a titers, Th1 responses (including production of IFN-γ, IL-2, IL-12p40, and IL-12p70), and cell-mediated activity with elevated frequencies of CD8+ and CD4+ T cells, and CTL responses. This provided significant protective efficacy against acute and chronic T. gondii infection. Mice immunized with the two-gene cocktail (pVAX-IST + pVAX-NSM) showed greater protection than those immunized with single-gene vaccines. Co-administration of the molecular adjuvant pVAX-IL-36γ further enhanced the protective immunity induced by the cocktail DNA vaccine. CONCLUSIONS TgIST and TgNSM induce effective immunity against T. gondii infection, making them promising vaccine candidates against toxoplasmosis. Additionally, IL-36γ is a promising genetic adjuvant that enhances protective immunity in a vaccine setting against T. gondii, and it should be evaluated in strategies against other apicomplexan parasites.
Collapse
Affiliation(s)
| | | | - Jia Chen
- Department of Radiology, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China; (Y.T.); (J.M.)
| |
Collapse
|
4
|
Jin QW, Yu T, Pan M, Fan YM, Ge CC, He XB, Gong JZ, Tao JP, Fu BQ, Jing ZZ, Huang SY. Toxoplasma gondii ROP5 Enhances Type I IFN Responses by Promoting Ubiquitination of STING. Int J Mol Sci 2024; 25:11262. [PMID: 39457045 PMCID: PMC11508707 DOI: 10.3390/ijms252011262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Toxoplasma gondii is a widely spread opportunistic pathogen that can infect nearly all warm-blooded vertebrates and cause serious toxoplasmosis in immunosuppressed animals and patients. However, the relationship between the host's innate immune system and effector proteins is poorly understood, particularly with regard to how effectors antagonize cGAS-STING signaling during T. gondii infection. In this study, the ROP5 from the PRU strain of T. gondii was found to promote cGAS-STING-mediated immune responses. Mechanistically, ROP5 interacted with STING through predicted domain 2 and modulated cGAS-STING signaling in a predicted domain 3-dependent manner. Additionally, ROP5 strengthened cGAS-STING signaling by enhancing the K63-linked ubiquitination of STING. Consistently, ROP5 deficient PRU (PRUΔROP5) induced fewer type I IFN-related immune responses and replicated faster than the parental strain in RAW264.7 cells. Taken together, this study provides new insights into the mechanism by which ROP5 regulates T. gondii infection and provides new clues for strategies to prevent and control toxoplasmosis.
Collapse
Affiliation(s)
- Qi-Wang Jin
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Q.-W.J.); (T.Y.)
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, China
| | - Ting Yu
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Q.-W.J.); (T.Y.)
| | - Ming Pan
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Q.-W.J.); (T.Y.)
| | - Yi-Min Fan
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Q.-W.J.); (T.Y.)
| | - Ceng-Ceng Ge
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Q.-W.J.); (T.Y.)
| | - Xiao-Bing He
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, China
| | - Jing-Zhi Gong
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Q.-W.J.); (T.Y.)
| | - Jian-Ping Tao
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Q.-W.J.); (T.Y.)
| | - Bao-Quan Fu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, China
| | - Zhi-Zhong Jing
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, China
| | - Si-Yang Huang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Q.-W.J.); (T.Y.)
| |
Collapse
|
5
|
Fontanilla FL, Ibana JA, Carabeo RA, Brinkworth AJ. Chlamydia trachomatis modulates the expression of JAK-STAT signaling components to attenuate the type II interferon response of epithelial cells. mBio 2024; 15:e0183424. [PMID: 39194253 PMCID: PMC11481910 DOI: 10.1128/mbio.01834-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 08/29/2024] Open
Abstract
Chlamydia trachomatis has adapted to subvert signaling in epithelial cells to ensure successful intracellular development. Interferon-γ (IFNγ) produced by recruited lymphocytes signals through the JAK/STAT pathway to restrict chlamydial growth in the genital tract. However, during Chlamydia infection in vitro, addition of IFNγ does not fully induce nuclear localization of its transcription factor STAT1 and expression of its target gene, IDO1. We hypothesize that this altered interferon response is a result of Chlamydia targeting components of the IFNγ-JAK/STAT pathway. To assess the ability of replicating Chlamydia to dampen interferon signaling, HEp2 human epithelial cells were infected with C. trachomatis serovar L2 for 24 hours prior to exposure to physiologically relevant levels of IFNγ (500 pg/mL). This novel approach enabled us to observe reduced phospho-activation of both STAT1 and its kinase Janus Kinase 2 (JAK2) in infected cells compared with mock-infected cells. Importantly, basal JAK2 and STAT1 transcript and protein levels were dampened by infection even in the absence of interferon, which could have implications for cytokine signaling beyond IFNγ. Additionally, target genes IRF1, GBP1, APOL3, IDO1, and SOCS1 were not fully induced in response to IFNγ exposure. Infection-dependent decreases in transcript, protein, and phosphoprotein were rescued when de novo bacterial protein synthesis was inhibited with chloramphenicol, restoring expression of IFNγ-target genes. Similar Chlamydia-dependent dampening of STAT1 and JAK2 transcript levels was observed in infected HeLa and END1 endocervical cells and in HEp2s infected with C. trachomatis serovar D, suggesting a conserved mechanism of dampening the interferon response by reducing the availability of key signaling components. IMPORTANCE As an obligate intracellular pathogen that has evolved to infect the genital epithelium, Chlamydia has developed strategies to prevent detection and antimicrobial signaling in its host to ensure its survival and spread. A major player in clearing Chlamydia infections is the inflammatory cytokine interferon-γ (IFNγ), which is produced by immune cells that are recruited to the site of infection. Reports of IFNγ levels in endocervical specimens from Chlamydia-infected patients range from 1 to 350 pg/mL, while most in vitro studies of the effects of IFNγ on chlamydial growth have used 15-85-fold higher concentrations. By using physiologically relevant concentrations of IFNγ, we were able to assess Chlamydia's ability to modulate its signaling. We found that Chlamydia decreases the expression of multiple components that are required for inducing gene expression by IFNγ, providing a possible mechanism by which Chlamydia trachomatis can attenuate the immune response in the female genital tract to cause long-term infections.
Collapse
Affiliation(s)
- Francis L. Fontanilla
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Immunopharmacology Research Laboratory, Institute of Biology, College of Science, University of the Philippines, Diliman, Philippines
| | - Joyce A. Ibana
- Immunopharmacology Research Laboratory, Institute of Biology, College of Science, University of the Philippines, Diliman, Philippines
| | - Rey A. Carabeo
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Amanda J. Brinkworth
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
6
|
ten Hoeve AL, Rodriguez ME, Säflund M, Michel V, Magimel L, Ripoll A, Yu T, Hakimi MA, Saeij JPJ, Ozata DM, Barragan A. Hypermigration of macrophages through the concerted action of GRA effectors on NF-κB/p38 signaling and host chromatin accessibility potentiates Toxoplasma dissemination. mBio 2024; 15:e0214024. [PMID: 39207098 PMCID: PMC11481493 DOI: 10.1128/mbio.02140-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Mononuclear phagocytes facilitate the dissemination of the obligate intracellular parasite Toxoplasma gondii. Here, we report how a set of secreted parasite effector proteins from dense granule organelles (GRA) orchestrates dendritic cell-like chemotactic and pro-inflammatory activation of parasitized macrophages. These effects enabled efficient dissemination of the type II T. gondii lineage, a highly prevalent genotype in humans. We identify novel functions for effectors GRA15 and GRA24 in promoting CCR7-mediated macrophage chemotaxis by acting on NF-κB and p38 mitogen-activated protein kinase signaling pathways, respectively, with contributions by GRA16/18 and counter-regulation by effector TEEGR. Furthermore, GRA28 boosted chromatin accessibility and GRA15/24/NF-κB-dependent transcription at the Ccr7 gene locus in primary macrophages. In vivo, adoptively transferred macrophages infected with wild-type T. gondii outcompeted macrophages infected with a GRA15/24 double mutant in migrating to secondary organs in mice. The data show that T. gondii, rather than being passively shuttled, actively promotes its dissemination by inducing a finely regulated pro-migratory state in parasitized human and murine phagocytes via co-operating polymorphic GRA effectors. IMPORTANCE Intracellular pathogens can hijack the cellular functions of infected host cells to their advantage, for example, for intracellular survival and dissemination. However, how microbes orchestrate the hijacking of complex cellular processes, such as host cell migration, remains poorly understood. As such, the common parasite Toxoplasma gondii actively invades the immune cells of humans and other vertebrates and modifies their migratory properties. Here, we show that the concerted action of a number of secreted effector proteins from the parasite, principally GRA15 and GRA24, acts on host cell signaling pathways to activate chemotaxis. Furthermore, the protein effector GRA28 selectively acted on chromatin accessibility in the host cell nucleus to selectively boost host gene expression. The joint activities of GRA effectors culminated in pro-migratory signaling within the infected phagocyte. We provide a molecular framework delineating how T. gondii can orchestrate a complex biological phenotype, such as the migratory activation of phagocytes to boost dissemination.
Collapse
Affiliation(s)
- Arne L. ten Hoeve
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Matias E. Rodriguez
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Martin Säflund
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Valentine Michel
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Lucas Magimel
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Albert Ripoll
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Tianxiong Yu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Mohamed-Ali Hakimi
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Jeroen P. J. Saeij
- Department of Pathology, Microbiology, and Immunology, University of California Davis, Davis, California, USA
| | - Deniz M. Ozata
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
7
|
Henry B, Phillips AJ, Sibley LD, Rosenberg A. A combination of four Toxoplasma gondii nuclear-targeted effectors protects against interferon gamma-driven human host cell death. mBio 2024; 15:e0212424. [PMID: 39292011 PMCID: PMC11481881 DOI: 10.1128/mbio.02124-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
In both mice and humans, Type II interferon gamma (IFNγ) is crucial for the regulation of Toxoplasma gondii (T. gondii) infection, during acute or chronic phases. To thwart this defense, T. gondii secretes protein effectors hindering the host's immune response. For example, T. gondii relies on the MYR translocon complex to deploy soluble dense granule effectors (GRAs) into the host cell cytosol or nucleus. Recent genome-wide loss-of-function screens in IFNγ-primed primary human fibroblasts identified MYR translocon components as crucial for parasite resistance against IFNγ-driven vacuole clearance. However, these screens did not pinpoint specific MYR-dependent GRA proteins responsible for IFNγ signaling blockade, suggesting potential functional redundancy. Our study reveals that T. gondii depends on the MYR translocon complex to prevent parasite premature egress and host cell death in human cells stimulated with IFNγ post-infection, a unique phenotype observed in various human cell lines but not in murine cells. Intriguingly, inhibiting parasite egress did not prevent host cell death, indicating this mechanism is distinct from those described previously. Genome-wide loss-of-function screens uncovered TgIST, GRA16, GRA24, and GRA28 as effectors necessary for a complete block of IFNγ response. GRA24 and GRA28 directly influenced IFNγ-driven transcription, GRA24's action depended on its interaction with p38 MAPK, while GRA28 disrupted histone acetyltransferase activity of CBP/p300. Given the intricate nature of the immune response to T. gondii, it appears that the parasite has evolved equally elaborate mechanisms to subvert IFNγ signaling, extending beyond direct interference with the JAK/STAT1 pathway, to encompass other signaling pathways as well.IMPORTANCEToxoplasma gondii, an intracellular parasite, affects nearly one-third of the global human population, posing significant risks for immunocompromised patients and infants infected in utero. In murine models, the core mechanisms of IFNγ-mediated immunity against T. gondii are consistently preserved, showcasing a remarkable conservation of immune defense mechanisms. In humans, the recognized restriction mechanisms vary among cell types, lacking a universally applicable mechanism. This difference underscores a significant variation in the genes employed by T. gondii to shield itself against the IFNγ response in human vs murine cells. Here, we identified a specific combination of four parasite-secreted effectors deployed into the host cell nucleus, disrupting IFNγ signaling. This disruption is crucial in preventing premature egress of the parasite and host cell death. Notably, this phenotype is exclusive to human cells, highlighting the intricate and unique mechanisms T. gondii employs to modulate host responses in the human cellular environment.
Collapse
Affiliation(s)
- Brittany Henry
- Department of Infectious Diseases, Center for Tropical and Emerging Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Aubrey J. Phillips
- Department of Infectious Diseases, Center for Tropical and Emerging Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alex Rosenberg
- Department of Infectious Diseases, Center for Tropical and Emerging Infectious Diseases, University of Georgia, Athens, Georgia, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
8
|
Lv Y, Qi J, Babon JJ, Cao L, Fan G, Lang J, Zhang J, Mi P, Kobe B, Wang F. The JAK-STAT pathway: from structural biology to cytokine engineering. Signal Transduct Target Ther 2024; 9:221. [PMID: 39169031 PMCID: PMC11339341 DOI: 10.1038/s41392-024-01934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/12/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024] Open
Abstract
The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway serves as a paradigm for signal transduction from the extracellular environment to the nucleus. It plays a pivotal role in physiological functions, such as hematopoiesis, immune balance, tissue homeostasis, and surveillance against tumors. Dysregulation of this pathway may lead to various disease conditions such as immune deficiencies, autoimmune diseases, hematologic disorders, and cancer. Due to its critical role in maintaining human health and involvement in disease, extensive studies have been conducted on this pathway, ranging from basic research to medical applications. Advances in the structural biology of this pathway have enabled us to gain insights into how the signaling cascade operates at the molecular level, laying the groundwork for therapeutic development targeting this pathway. Various strategies have been developed to restore its normal function, with promising therapeutic potential. Enhanced comprehension of these molecular mechanisms, combined with advances in protein engineering methodologies, has allowed us to engineer cytokines with tailored properties for targeted therapeutic applications, thereby enhancing their efficiency and safety. In this review, we outline the structural basis that governs key nodes in this pathway, offering a comprehensive overview of the signal transduction process. Furthermore, we explore recent advances in cytokine engineering for therapeutic development in this pathway.
Collapse
Affiliation(s)
- You Lv
- Center for Molecular Biosciences and Non-communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi, 710026, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Longxing Cao
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Guohuang Fan
- Immunophage Biotech Co., Ltd, No. 10 Lv Zhou Huan Road, Shanghai, 201112, China
| | - Jiajia Lang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jin Zhang
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi, 710026, China
| | - Pengbing Mi
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, 4072, Australia.
| | - Faming Wang
- Center for Molecular Biosciences and Non-communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China.
| |
Collapse
|
9
|
Song L, Wang R, Cao Y, Yu L. Mutual regulations between Toxoplasma gondii and type I interferon. Front Immunol 2024; 15:1428232. [PMID: 39040112 PMCID: PMC11260619 DOI: 10.3389/fimmu.2024.1428232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
In the decades since the discovery, Type I interferon (IFN-I) has been intensively studied for their antiviral activity. However, increasing evidences suggest that it may also play an important role in the infection of Toxoplasma gondii, a model organism for intracellular parasites. Recent studies demonstrated that the induction of IFN-I by the parasite depends on cell type, strain genotype, and mouse strain. IFN-I can inhibit the proliferation of T. gondii, but few studies showed that it is beneficial to the growth of the parasite. Meanwhile, T. gondii also can secrete proteins that impact the pathway of IFN-I production and downstream induced interferon-stimulated genes (ISGs) regulation, thereby escaping immune destruction by the host. This article reviews the major findings and progress in the production, function, and regulation of IFN-I during T. gondii infection, to thoroughly understand the innate immune mechanism of T. gondii infection, which provides a new target for subsequent intervention and treatment.
Collapse
Affiliation(s)
- Lingling Song
- Department of Microbiology and Parasitology, Anhui Province Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Ruoyu Wang
- The Rausser College of Natural Resources, University of California, Berkeley, CA, United States
| | - Yuanyuan Cao
- Department of Microbiology and Parasitology, Anhui Province Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Li Yu
- Department of Microbiology and Parasitology, Anhui Province Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
10
|
Ju K, Zhang Y, Xu Z, Li L, Zhao X, Zhou H. Protective Efficacy of a Novel DNA Vaccine with a CL264 Molecular Adjuvant against Toxoplasma gondii in a Murine Model. Vaccines (Basel) 2024; 12:577. [PMID: 38932306 PMCID: PMC11209281 DOI: 10.3390/vaccines12060577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Toxoplasmosis is a significant global zoonosis with devastating impacts, and an effective vaccine against toxoplasmosis for humans has not yet been developed. In this study, we designed and formulated a novel DNA vaccine encoding the inhibitor of STAT1 transcriptional activity (IST) of T. gondii utilizing the eukaryotic expression vector pEGFP-N1 for the first time, with CL264 being a molecular adjuvant. Following intramuscular injection of the vaccine into mice, the levels of antibodies and cytokines were assessed to evaluate the immune response. Additionally, mice were challenged with highly virulent RH-strain tachyzoites of T. gondii, and their survival time was observed. The results show that the levels of IgG in serum, the ratio of IgG2a/IgG1 and the levels of IFN-γ in splenocytes of mice were significantly higher in the pEGFP-TgIST group and the pEGFP-TgIST + CL264 group than in the control group. In addition, the proportion of CD4+/CD8+ T cells was higher in mice immunized with either the pEGFP-TgIST group (p < 0.001) or the pEGFP-TgIST + CL264 group (p < 0.05) compared to the three control groups. Notably, TgIST-immunized mice exhibited prolonged survival times after T. gondii RH strain infection (p < 0.05). Our findings collectively demonstrate that the TgIST DNA vaccine elicits a significant humoral and cellular immune response and offers partial protection against acute T. gondii infection in the immunized mice, which suggests that TgIST holds potential as a candidate for further development as a DNA vaccine.
Collapse
Affiliation(s)
| | | | | | | | | | - Huaiyu Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (K.J.); (Y.Z.); (Z.X.); (L.L.); (X.Z.)
| |
Collapse
|
11
|
Liu Z, Wang H, Zhang Z, Ma Y, Jing Q, Zhang S, Han J, Chen J, Xiang Y, Kou Y, Wei Y, Wang L, Wang Y. Fam96a is essential for the host control of Toxoplasma gondii infection by fine-tuning macrophage polarization via an iron-dependent mechanism. PLoS Negl Trop Dis 2024; 18:e0012163. [PMID: 38713713 PMCID: PMC11101080 DOI: 10.1371/journal.pntd.0012163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/17/2024] [Accepted: 04/22/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND Toxoplasmosis affects a quarter of the world's population. Toxoplasma gondii (T.gondii) is an intracellular parasitic protozoa. Macrophages are necessary for proliferation and spread of T.gondii by regulating immunity and metabolism. Family with sequence similarity 96A (Fam96a; formally named Ciao2a) is an evolutionarily conserved protein that is highly expressed in macrophages, but whether it play a role in control of T. gondii infection is unknown. METHODOLOGY/PRINCIPAL FINDINGS In this study, we utilized myeloid cell-specific knockout mice to test its role in anti-T. gondii immunity. The results showed that myeloid cell-specific deletion of Fam96a led to exacerbate both acute and chronic toxoplasmosis after exposure to T. gondii. This was related to a defectively reprogrammed polarization in Fam96a-deficient macrophages inhibited the induction of immune effector molecules, including iNOS, by suppressing interferon/STAT1 signaling. Fam96a regulated macrophage polarization process was in part dependent on its ability to fine-tuning intracellular iron (Fe) homeostasis in response to inflammatory stimuli. In addition, Fam96a regulated the mitochondrial oxidative phosphorylation or related events that involved in control of T. gondii. CONCLUSIONS/SIGNIFICANCE All these findings suggest that Fam96a ablation in macrophages disrupts iron homeostasis and inhibits immune effector molecules, which may aggravate both acute and chronic toxoplasmosis. It highlights that Fam96a may autonomously act as a critical gatekeeper of T. gondii control in macrophages.
Collapse
Affiliation(s)
- Zhuanzhuan Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Hanying Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Zhiwei Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yulu Ma
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Qiyue Jing
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Shenghai Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jinzhi Han
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Junru Chen
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yaoyao Xiang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yanbo Kou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yanxia Wei
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Lu Wang
- Peking University Center for Human Disease Genomics, Beijing, China
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Yugang Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| |
Collapse
|
12
|
Lüder CGK. IFNs in host defence and parasite immune evasion during Toxoplasma gondii infections. Front Immunol 2024; 15:1356216. [PMID: 38384452 PMCID: PMC10879624 DOI: 10.3389/fimmu.2024.1356216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/23/2024] [Indexed: 02/23/2024] Open
Abstract
Interferons (IFNs) are a family of cytokines with diverse functions in host resistance to pathogens and in immune regulation. Type II IFN, i.e. IFN-γ, is widely recognized as a major mediator of resistance to intracellular pathogens, including the protozoan Toxoplasma gondii. More recently, IFN-α/β, i.e. type I IFNs, and IFN-λ (type III IFN) have been identified to also play important roles during T. gondii infections. This parasite is a widespread pathogen of humans and animals, and it is a model organism to study cell-mediated immune responses to intracellular infection. Its success depends, among other factors, on the ability to counteract the IFN system, both at the level of IFN-mediated gene expression and at the level of IFN-regulated effector molecules. Here, I review recent advances in our understanding of the molecular mechanisms underlying IFN-mediated host resistance and immune regulation during T. gondii infections. I also discuss those mechanisms that T. gondii has evolved to efficiently evade IFN-mediated immunity. Knowledge of these fascinating host-parasite interactions and their underlying signalling machineries is crucial for a deeper understanding of the pathogenesis of toxoplasmosis, and it might also identify potential targets of parasite-directed or host-directed supportive therapies to combat the parasite more effectively.
Collapse
Affiliation(s)
- Carsten G. K. Lüder
- Institute for Medical Microbiology and Virology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
13
|
ten Hoeve AL, Rodriguez ME, Säflund M, Michel V, Magimel L, Ripoll A, Yu T, Hakimi MA, Saeij JPJ, Ozata DM, Barragan A. Hypermigration of macrophages through the concerted action of GRA effectors on NF-κB/p38 signaling and host chromatin accessibility potentiates Toxoplasma dissemination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579146. [PMID: 38370679 PMCID: PMC10871220 DOI: 10.1101/2024.02.06.579146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Mononuclear phagocytes facilitate the dissemination of the obligate intracellular parasite Toxoplasma gondii. Here, we report how a set of secreted parasite effector proteins from dense granule organelles (GRA) orchestrates dendritic cell-like chemotactic and pro-inflammatory activation of parasitized macrophages. These effects enabled efficient dissemination of the type II T. gondii lineage, a highly prevalent genotype in humans. We identify novel functions for effectors GRA15 and GRA24 in promoting CCR7-mediated macrophage chemotaxis by acting on NF-κB and p38 MAPK signaling pathways, respectively, with contributions of GRA16/18 and counter-regulation by effector TEEGR. Further, GRA28 boosted chromatin accessibility and GRA15/24/NF-κB-dependent transcription at the Ccr7 gene locus in primary macrophages. In vivo, adoptively transferred macrophages infected with wild-type T. gondii outcompeted macrophages infected with a GRA15/24 double mutant in migrating to secondary organs in mice. The data show that T. gondii, rather than being passively shuttled, actively promotes its dissemination by inducing a finely regulated pro-migratory state in parasitized human and murine phagocytes via co-operating polymorphic GRA effectors.
Collapse
Affiliation(s)
- Arne L. ten Hoeve
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Matias E. Rodriguez
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Martin Säflund
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Valentine Michel
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Lucas Magimel
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Albert Ripoll
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Tianxiong Yu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Mohamed-Ali Hakimi
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Jeroen P. J. Saeij
- Department of Pathology, Microbiology, and Immunology, University of California Davis, Davis, CA 95616 California, USA
| | - Deniz M. Ozata
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
14
|
Seo SH, Lee JE, Ham DW, Shin EH. Toxoplasma gondii IST suppresses inflammatory and apoptotic responses by inhibiting STAT1-mediated signaling in IFN-γ/TNF-α-stimulated hepatocytes. PARASITES, HOSTS AND DISEASES 2024; 62:30-41. [PMID: 38443768 PMCID: PMC10915271 DOI: 10.3347/phd.23129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/29/2024] [Indexed: 03/07/2024]
Abstract
The dense granule protein of Toxoplasma gondii, inhibitor of signal transducer and activator of transcription 1 (IST) is an inhibitor of signal transducer and activator of transcription 1 (STAT1) transcriptional activity that binds to STAT1 and regulates the expression of inflammatory molecules in host cells. A sterile inflammatory liver injury in pathological acute liver failures occurs when excessive innate immune function, such as the massive release of IFN-γ and TNF-α, is activated without infection. In relation to inflammatory liver injury, we hypothesized that Toxoplasma gondii inhibitor of STAT1 transcription (TgIST) can inhibit the inflammatory response induced by activating the STAT1/IRF-1 mechanism in liver inflammation. This study used IFN-γ and TNF-α as inflammatory inducers at the cellular level of murine hepatocytes (Hepa-1c1c7) to determine whether TgIST inhibits the STAT1/IRF-1 axis. In stable cells transfected with TgIST, STAT1 expression decreased with a decrease in interferon regulatory factor (IRF)-1 levels. Furthermore, STAT1 inhibition of TgIST resulted in lower levels of NF-κB and COX2, as well as significantly lower levels of class II transactivator (CIITA), iNOS, and chemokines (CLXCL9/10/11). TgIST also significantly reduced the expression of hepatocyte proapoptotic markers (Caspase3/8/9, P53, and BAX), which are linked to sterile inflammatory liver injury. TgIST also reduced the expression of adhesion (ICAM-1 and VCAM-1) and infiltration markers of programmed death-ligand 1 (PD-L1) induced by hepatocyte and tissue damage. TgIST restored the cell apoptosis induced by IFN-γ/TNF-α stimulation. These results suggest that TgIST can inhibit STAT1-mediated inflammatory and apoptotic responses in hepatocytes stimulated with proinflammatory cytokines.
Collapse
Affiliation(s)
- Seung-Hwan Seo
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Institute of Endemic Diseases, Seoul 03080,
Korea
| | - Ji-Eun Lee
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Institute of Endemic Diseases, Seoul 03080,
Korea
| | - Do-Won Ham
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Institute of Endemic Diseases, Seoul 03080,
Korea
| | - Eun-Hee Shin
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Institute of Endemic Diseases, Seoul 03080,
Korea
- Seoul National University Bundang Hospital Medical Science, Seongnam 13620,
Korea
| |
Collapse
|
15
|
Martin AT, Giri S, Safronova A, Eliseeva SI, Kwok SF, Yarovinsky F. Parasite-induced IFN-γ regulates host defense via CD115 and mTOR-dependent mechanism of tissue-resident macrophage death. PLoS Pathog 2024; 20:e1011502. [PMID: 38377133 PMCID: PMC10906828 DOI: 10.1371/journal.ppat.1011502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 03/01/2024] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
Host resistance to a common protozoan parasite Toxoplasma gondii relies on a coordinated immune response involving multiple cell types, including macrophages. Embryonically seeded tissue-resident macrophages (TRMs) play a critical role in maintaining tissue homeostasis, but their role in parasite clearance is poorly understood. In this study, we uncovered a crucial aspect of host defense against T. gondii mediated by TRMs. Through the use of neutralizing antibodies and conditional IFN-γ receptor-deficient mice, we demonstrated that IFN-γ directly mediated the elimination of TRMs. Mechanistically, IFN-γ stimulation in vivo rendered macrophages unresponsive to macrophage colony-stimulating factor (M-CSF) and inactivated mTOR signaling by causing the shedding of CD115 (CSFR1), the receptor for M-CSF. Further experiments revealed the essential role of macrophage IFN-γ responsiveness in host resistance to T. gondii. The elimination of peritoneal TRMs emerged as an additional host defense mechanism aimed at limiting the parasite's reservoir. The identified mechanism, involving IFN-γ-induced suppression of CD115-dependent mTOR signaling in macrophages, provides insights into the adaptation of macrophage subsets during infection and highlights a crucial aspect of host defense against intracellular pathogens.
Collapse
Affiliation(s)
- Andrew T. Martin
- Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Shilpi Giri
- Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Alexandra Safronova
- Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Sophia I. Eliseeva
- Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Samantha F. Kwok
- Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Felix Yarovinsky
- Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| |
Collapse
|
16
|
Ghosh C, Nagpal S, Muñoz V. Molecular simulations integrated with experiments for probing the interaction dynamics and binding mechanisms of intrinsically disordered proteins. Curr Opin Struct Biol 2024; 84:102756. [PMID: 38118365 PMCID: PMC11242915 DOI: 10.1016/j.sbi.2023.102756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/22/2023]
Abstract
Intrinsically disordered proteins (IDPs) exploit their plasticity to deploy a rich panoply of soft interactions and binding phenomena. Advances in tailoring molecular simulations for IDPs combined with experimental cross-validation offer an atomistic view of the mechanisms that control IDP binding, function, and dysfunction. The emerging theme is that unbound IDPs autonomously form transient local structures and self-interactions that determine their binding behavior. Recent results have shed light on whether and how IDPs fold, stay disordered or drive condensation upon binding; how they achieve binding specificity and select among competing partners. The disorder-binding paradigm is now being proactively used by researchers to target IDPs for rational drug design and engineer molecular responsive elements for biosensing applications.
Collapse
Affiliation(s)
- Catherine Ghosh
- NSF-CREST Center for Cellular and Biomolecular Machines (CCBM), University of California at Merced, Merced, 95343 CA, USA; Department of Bioengineering, University of California at Merced, Merced, 95343 CA, USA. https://twitter.com/cat_ghosh
| | - Suhani Nagpal
- NSF-CREST Center for Cellular and Biomolecular Machines (CCBM), University of California at Merced, Merced, 95343 CA, USA; Department of Bioengineering, University of California at Merced, Merced, 95343 CA, USA; OpenEye, Cadence Molecular Sciences, Boston, 02114 MA, USA
| | - Victor Muñoz
- NSF-CREST Center for Cellular and Biomolecular Machines (CCBM), University of California at Merced, Merced, 95343 CA, USA; Department of Bioengineering, University of California at Merced, Merced, 95343 CA, USA.
| |
Collapse
|
17
|
Henry B, Sibley LD, Rosenberg A. A Combination of Four Nuclear Targeted Effectors Protects Toxoplasma Against Interferon Gamma Driven Human Host Cell Death During Acute Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.24.573224. [PMID: 38234811 PMCID: PMC10793417 DOI: 10.1101/2023.12.24.573224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
In both mice and humans, Type II interferon-gamma (IFNγ) is crucial for regulation of Toxoplasma gondii (T. gondii) infection, during acute or chronic phases. To thwart this defense, T. gondii secretes protein effectors hindering the hosťs immune response. For example, T. gondii relies on the MYR translocon complex to deploy soluble dense granule effectors (GRAs) into the host cell cytosol or nucleus. Recent genome-wide loss-of-function screens in IFNγ-primed primary human fibroblasts identified MYR translocon components as crucial for parasite resistance against IFNγ driven vacuole clearance. However, these screens did not pinpoint specific MYR-dependent GRA proteins responsible for IFNγ signaling blockade, suggesting potential functional redundancy. Our study reveals that T. gondii depends on the MYR translocon complex to prevent host cell death and parasite premature egress in human cells stimulated with IFNγ postinfection, a unique phenotype observed in various human cell lines but not in murine cells. Intriguingly, inhibiting parasite egress did not prevent host cell death, indicating this mechanism is distinct from those described previously. Genome-wide loss-of-function screens uncovered TgIST, GRA16, GRA24, and GRA28 as effectors necessary for a complete block of IFNγ response. GRA24 and GRA28 directly influenced IFNγ driven transcription, GRA24's action depended on its interaction with p38 MAPK, while GRA28 disrupted histone acetyltransferase activity of CBP/p300. Given the intricate nature of the immune response to T. gondii, it appears that the parasite has evolved equally elaborate mechanisms to subvert IFNγ signaling, extending beyond direct interference with the JAK/STAT1 pathway, to encompass other signaling pathways as well.
Collapse
Affiliation(s)
- Brittany Henry
- Department of Infectious Diseases, Center for Tropical and Emerging Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Alex Rosenberg
- Department of Infectious Diseases, Center for Tropical and Emerging Infectious Diseases, University of Georgia, Athens, Georgia, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
18
|
Kramer DA, Narvaez-Ortiz HY, Patel U, Shi R, Shen K, Nolen BJ, Roche J, Chen B. The intrinsically disordered cytoplasmic tail of a dendrite branching receptor uses two distinct mechanisms to regulate the actin cytoskeleton. eLife 2023; 12:e88492. [PMID: 37555826 PMCID: PMC10411975 DOI: 10.7554/elife.88492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/01/2023] [Indexed: 08/10/2023] Open
Abstract
Dendrite morphogenesis is essential for neural circuit formation, yet the molecular mechanisms underlying complex dendrite branching remain elusive. Previous studies on the highly branched Caenorhabditis elegans PVD sensory neuron identified a membrane co-receptor complex that links extracellular signals to intracellular actin remodeling machinery, promoting high-order dendrite branching. In this complex, the claudin-like transmembrane protein HPO-30 recruits the WAVE regulatory complex (WRC) to dendrite branching sites, stimulating the Arp2/3 complex to polymerize actin. We report here our biochemical and structural analysis of this interaction, revealing that the intracellular domain (ICD) of HPO-30 is intrinsically disordered and employs two distinct mechanisms to regulate the actin cytoskeleton. First, HPO-30 ICD binding to the WRC requires dimerization and involves the entire ICD sequence, rather than a short linear peptide motif. This interaction enhances WRC activation by the GTPase Rac1. Second, HPO-30 ICD directly binds to the sides and barbed end of actin filaments. Binding to the barbed end requires ICD dimerization and inhibits both actin polymerization and depolymerization, resembling the actin capping protein CapZ. These dual functions provide an intriguing model of how membrane proteins can integrate distinct mechanisms to fine-tune local actin dynamics.
Collapse
Affiliation(s)
- Daniel A Kramer
- Roy J Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State UniversityAmesUnited States
| | - Heidy Y Narvaez-Ortiz
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Urval Patel
- Roy J Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State UniversityAmesUnited States
| | - Rebecca Shi
- Department of Biology, Stanford UniversityStanfordUnited States
- Neurosciences IDP, Stanford UniversityStanfordUnited States
| | - Kang Shen
- Department of Biology, Stanford UniversityStanfordUnited States
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Brad J Nolen
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Julien Roche
- Roy J Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State UniversityAmesUnited States
| | - Baoyu Chen
- Roy J Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State UniversityAmesUnited States
| |
Collapse
|
19
|
Si F, Song S, Yu R, Li Z, Wei W, Wu C. Coronavirus accessory protein ORF3 biology and its contribution to viral behavior and pathogenesis. iScience 2023; 26:106280. [PMID: 36945252 PMCID: PMC9972675 DOI: 10.1016/j.isci.2023.106280] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Coronavirus porcine epidemic diarrhea virus (PEDV) is classified in the genus Alphacoronavirus, family Coronaviridae that encodes the only accessory protein, ORF3 protein. However, how ORF3 contributes to viral pathogenicity, adaptability, and replication is obscure. In this review, we summarize current knowledge and identify gaps in many aspects of ORF3 protein in PEDV, with emphasis on its unique biological features, including membrane topology, Golgi retention mechanism, potential intrinsic disordered property, functional motifs, protein glycosylation, and codon usage phenotypes related to genetic evolution and gene expression. In addition, we propose intriguing questions related to ORF3 protein that we hope to stimulate further studies and encourage collaboration among virologists worldwide to provide constructive knowledge about the unique characteristics and biological functions of ORF3 protein, by which their potential role in clarifying viral behavior and pathogenesis can be possible.
Collapse
Affiliation(s)
- Fusheng Si
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, P.R. China
| | - Shuai Song
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture of Rural Affairs, and Key Laboratory of Animal Disease Prevention of Guangdong Province, Guangzhou 510640, P.R. China
| | - Ruisong Yu
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, P.R. China
| | - Zhen Li
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, P.R. China
| | - Wenqiang Wei
- Department of Microbiology, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Chao Wu
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
20
|
Ten Hoeve AL, Braun L, Rodriguez ME, Olivera GC, Bougdour A, Belmudes L, Couté Y, Saeij JPJ, Hakimi MA, Barragan A. The Toxoplasma effector GRA28 promotes parasite dissemination by inducing dendritic cell-like migratory properties in infected macrophages. Cell Host Microbe 2022; 30:1570-1588.e7. [PMID: 36309013 PMCID: PMC9710525 DOI: 10.1016/j.chom.2022.10.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/26/2022] [Accepted: 10/03/2022] [Indexed: 11/03/2022]
Abstract
Upon pathogen detection, macrophages normally stay sessile in tissues while dendritic cells (DCs) migrate to secondary lymphoid tissues. The obligate intracellular protozoan Toxoplasma gondii exploits the trafficking of mononuclear phagocytes for dissemination via unclear mechanisms. We report that, upon T. gondii infection, macrophages initiate the expression of transcription factors normally attributed to DCs, upregulate CCR7 expression with a chemotactic response, and perform systemic migration when adoptively transferred into mice. We show that parasite effector GRA28, released by the MYR1 secretory pathway, cooperates with host chromatin remodelers in the host cell nucleus to drive the chemotactic migration of parasitized macrophages. During in vivo challenge studies, bone marrow-derived macrophages infected with wild-type T. gondii outcompeted those challenged with MYR1- or GRA28-deficient strains in migrating and reaching secondary organs. This work reveals how an intracellular parasite hijacks chemotaxis in phagocytes and highlights a remarkable migratory plasticity in differentiated cells of the mononuclear phagocyte system.
Collapse
Affiliation(s)
- Arne L Ten Hoeve
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Laurence Braun
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Matias E Rodriguez
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Gabriela C Olivera
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Alexandre Bougdour
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Lucid Belmudes
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France
| | - Yohann Couté
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France
| | - Jeroen P J Saeij
- Department of Pathology, Microbiology, and Immunology, University of California Davis, Davis, CA 95616, USA
| | - Mohamed-Ali Hakimi
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France.
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden.
| |
Collapse
|
21
|
Pramanik U, Nandy A, Khamari L, Mukherjee S. Structure and Transition Dynamics of Intrinsically Disordered Proteins Probed by Single-Molecule Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12764-12772. [PMID: 36217309 DOI: 10.1021/acs.langmuir.2c02409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Intrinsically disordered proteins (IDPs) are a class of proteins that do not follow the unanimated perspective of the structure-function paradigm. IDPs enunciate the dynamics of motions which are often difficult to characterize by a particular experimental or theoretical approach. The chameleon nature of the IDPs is a result of an alteration or transition in their conformation upon binding with ligands. Experimental investigations via ensemble-average approaches to probe this randomness are often difficult to synchronize. Thus, to sense the substates of different conformational ensembles of IDPs, researchers have often targeted approaches based on single-molecule measurements. In this Perspective, we will discuss various single-molecule approaches to explore the conformational transitions of IDPs in different scenarios, the outcome, challenges, and future prospects.
Collapse
Affiliation(s)
- Ushasi Pramanik
- Department of ChemistryIISER Bhopal, Bhopal Bypass Road, Bhauri, Bhopal462 066, Madhya Pradesh, India
| | - Atanu Nandy
- Department of ChemistryIISER Bhopal, Bhopal Bypass Road, Bhauri, Bhopal462 066, Madhya Pradesh, India
| | - Laxmikanta Khamari
- Department of ChemistryIISER Bhopal, Bhopal Bypass Road, Bhauri, Bhopal462 066, Madhya Pradesh, India
| | - Saptarshi Mukherjee
- Department of ChemistryIISER Bhopal, Bhopal Bypass Road, Bhauri, Bhopal462 066, Madhya Pradesh, India
| |
Collapse
|