1
|
Patrickson CJ, Haemmerli V, Guo S, Ramsay AJ, Luxmoore IJ. Microwave quantum heterodyne sensing using a continuous concatenated dynamical decoupling protocol. Nat Commun 2025; 16:4380. [PMID: 40355431 PMCID: PMC12069688 DOI: 10.1038/s41467-025-59148-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 04/10/2025] [Indexed: 05/14/2025] Open
Abstract
By sequentially recording the phase of an AC signal relative to an external clock, quantum heterodyne schemes have recorded MHz and GHz signals with Fourier-limited precision. However, in systems with large inhomogeneous broadening, existing heterodyne protocols provide limited protection of the spin coherence, impacting amplitude sensitivity. Here, we use a continuous microwave scheme that extends spin coherence towards the effectiveT 2 ≈ 1 2 T 1 limit and resolves the frequency, amplitude and phase of MHz to GHz magnetic fields. In an ensemble of boron vacancies in hexagonal boron nitride the scheme achieves an amplitude sensitivity of η ≈ 3 - 5 μ T / Hz and phase sensitivity ofη ϕ ≈ 0.076 rads / Hz . We demonstrate that the scheme is compatible with quantum heterodyne detection, recording a GHz signal with a resolution < 1 Hz and SNR of 235 over a 10 s measurement. Achieving this performance in a two-dimensional material platform could have broad applications in probing nanoscale condensed matter systems.
Collapse
Affiliation(s)
| | | | - Shi Guo
- Department of Engineering, University of Exeter, Exeter, UK
| | - Andrew J Ramsay
- Hitachi Cambridge Laboratory, Hitachi Europe Ltd., Cambridge, UK
| | | |
Collapse
|
2
|
Fraunié J, Clua-Provost T, Roux S, Mu Z, Delpoux A, Seine G, Lagarde D, Watanabe K, Taniguchi T, Marie X, Poirier T, Edgar JH, Grisolia J, Lassagne B, Claverie A, Jacques V, Robert C. Charge State Tuning of Spin Defects in Hexagonal Boron Nitride. NANO LETTERS 2025; 25:5836-5842. [PMID: 40145871 DOI: 10.1021/acs.nanolett.5c00654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Boron vacancies in hexagonal boron nitride (hBN) are among the most extensively studied optically active spin defects in van der Waals crystals, due to their promising potential to develop two-dimensional (2D) quantum sensors. In this letter, we demonstrate the tunability of the charge state of boron vacancies in ultrathin hBN layers, revealing a transition from the optically active singly negatively charged state to the optically inactive doubly negatively charged state when sandwiched between graphene electrodes. Notably, there is a photoluminescence quenching of a few percent upon the application of a bias voltage between the electrodes. Our findings emphasize the critical importance of considering the charge state of optically active defects in 2D materials, while also showing that the negatively charged boron vacancy remains robust against external perpendicular electric fields. This stability makes it a promising candidate for integration into various van der Waals heterostructures.
Collapse
Affiliation(s)
- J Fraunié
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Av. Rangueil, 31077 Toulouse, France
| | - T Clua-Provost
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS, 34095 Montpellier, France
| | - S Roux
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Av. Rangueil, 31077 Toulouse, France
| | - Z Mu
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS, 34095 Montpellier, France
| | - A Delpoux
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Av. Rangueil, 31077 Toulouse, France
| | - G Seine
- CEMES-CNRS and Université de Toulouse, 29 rue J. Marvig, 31055 Toulouse, France
| | - D Lagarde
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Av. Rangueil, 31077 Toulouse, France
| | - K Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - T Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - X Marie
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Av. Rangueil, 31077 Toulouse, France
| | - T Poirier
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - J H Edgar
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - J Grisolia
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Av. Rangueil, 31077 Toulouse, France
| | - B Lassagne
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Av. Rangueil, 31077 Toulouse, France
| | - A Claverie
- CEMES-CNRS and Université de Toulouse, 29 rue J. Marvig, 31055 Toulouse, France
| | - V Jacques
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS, 34095 Montpellier, France
| | - C Robert
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Av. Rangueil, 31077 Toulouse, France
| |
Collapse
|
3
|
Lee W, Liu VS, Zhang Z, Kim S, Gong R, Du X, Pham K, Poirier T, Hao Z, Edgar JH, Kim P, Zu C, Davis EJ, Yao NY. Intrinsic High-Fidelity Spin Polarization of Charged Vacancies in Hexagonal Boron Nitride. PHYSICAL REVIEW LETTERS 2025; 134:096202. [PMID: 40131064 DOI: 10.1103/physrevlett.134.096202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 01/27/2025] [Indexed: 03/26/2025]
Abstract
The negatively charged boron vacancy (V_{B}^{-}) in hexagonal boron nitride (hBN) has garnered significant attention among defects in two-dimensional materials. This owes, in part, to its deterministic generation, well-characterized atomic structure, and optical polarizability at room temperature. We investigate the latter through extensive measurements probing both the ground and excited state polarization dynamics. We develop a semiclassical model based on these measurements that predicts a near-unity degree of spin polarization, surpassing other solid-state spin defects under ambient conditions. Building upon our model, we include the presence of nuclear spin degrees of freedom adjacent to the V_{B}^{-} and perform a comprehensive set of Lindbladian numerics to investigate the hyperfine-induced polarization of the nuclear spins. Our simulations predict a number of important features that emerge as a function of magnetic field which are borne out by experiment.
Collapse
Affiliation(s)
- W Lee
- Harvard University, Department of Physics, Cambridge, Massachusetts 02138, USA
| | - V S Liu
- Harvard University, Department of Physics, Cambridge, Massachusetts 02138, USA
| | - Z Zhang
- Harvard University, Department of Physics, Cambridge, Massachusetts 02138, USA
| | - S Kim
- Harvard University, Department of Physics, Cambridge, Massachusetts 02138, USA
| | - R Gong
- Washington University, Department of Physics, St. Louis, Missouri 63130, USA
| | - X Du
- Washington University, Department of Physics, St. Louis, Missouri 63130, USA
| | - K Pham
- Harvard University, Department of Physics, Cambridge, Massachusetts 02138, USA
| | - T Poirier
- Kansas State University, Tim Taylor Department of Chemical Engineering, Manhattan, Kansas 66506, USA
| | - Z Hao
- Harvard University, Department of Physics, Cambridge, Massachusetts 02138, USA
| | - J H Edgar
- Kansas State University, Tim Taylor Department of Chemical Engineering, Manhattan, Kansas 66506, USA
| | - P Kim
- Harvard University, Department of Physics, Cambridge, Massachusetts 02138, USA
| | - C Zu
- Washington University, Department of Physics, St. Louis, Missouri 63130, USA
| | - E J Davis
- Harvard University, Department of Physics, Cambridge, Massachusetts 02138, USA
- New York University, Department of Physics, New York, New York 10003, USA
| | - N Y Yao
- Harvard University, Department of Physics, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
4
|
Payne AJR, Jr NFX, Tamtögl A, Sacchi M. Unravelling the Epitaxial Growth Mechanism of Hexagonal and Nanoporous Boron Nitride: A First-Principles Microkinetic Model. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405404. [PMID: 39757415 PMCID: PMC11899527 DOI: 10.1002/smll.202405404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/17/2024] [Indexed: 01/07/2025]
Abstract
Understanding the chemical and physical mechanisms at play in 2D materials growth is critical for effective process development of methods such as chemical vapor deposition (CVD) as a toolbox for processing more complex nanostructures and 2D materials. A combination of density functional theory and microkinetic modeling is employed to comprehensively investigate the reaction mechanism governing the epitaxial growth of hexagonal boron nitride (hBN) on Ru(0001) from borazine. This analysis encompasses four key stages prior to the formation of the complete hBN overlayer: (i) adsorption, diffusion and deprotonation of borazine, (ii) dimerization and microkinetic modeling (iii) stability of larger borazine polymers and (iv) formation of nanoporous intermediates. In doing so, the exact deprotonation sequence is followed for the first time, illustrating its crucial role for the formation of nanostructures. These findings not only provide insights into the epitaxial growth of hBN and the stability of intermediate overlayers, which are strongly dependent on surface temperature and the amount of precursor exposures, they offer also crucial guidance for producing high-quality hBN monolayers with regular patterns or functionalisation. Importantly, these results align with experimental data and provide a detailed model which explains temperature-dependent, in-situ surface measurements during hBN growth on Ru and other substrates.
Collapse
Affiliation(s)
- Anthony J. R. Payne
- School of Chemistry and Chemical EngineeringUniversity of SurreyGU2 7XHGuildfordUK
| | - Neubi F. Xavier Jr
- School of Chemistry and Chemical EngineeringUniversity of SurreyGU2 7XHGuildfordUK
| | - Anton Tamtögl
- Institute of Experimental PhysicsGraz University of TechnologyGraz8010Austria
| | - Marco Sacchi
- School of Chemistry and Chemical EngineeringUniversity of SurreyGU2 7XHGuildfordUK
| |
Collapse
|
5
|
Xuan D, Wang Y, Zhang X. Electrically coherent manipulation of individual atomic and molecular spins on surface. Phys Chem Chem Phys 2025. [PMID: 40018819 DOI: 10.1039/d5cp00069f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
The development of quantum information technology demands precise engineering and control of quantum states at the single-atom level. Recent advances in electron spin resonance combined scanning tunneling microscopy (ESR-STM) have enabled quantum coherent control of individual atomic and molecular spins on surfaces, marking a significant advance in quantum nanoscience and technology. This review summarized the latest developments in electrically coherent manipulation of surface-based quantum systems, focusing on single atomic and molecular spin manipulation, and multi-spin system dynamics. Special attention is given to recent achievements in universal coherent control, dynamical decoupling and realization of multi-qubit gates, demonstrating the growing potential of surface spin systems as a platform for quantum information processing.
Collapse
Affiliation(s)
- Dalong Xuan
- Spin-X Institute, School of Microelectronics, South China University of Technology, Guangzhou 511442, China.
| | - Yu Wang
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore.
| | - Xue Zhang
- Spin-X Institute, School of Microelectronics, South China University of Technology, Guangzhou 511442, China.
- State Key Laboratory of Luminescent Materials and Devices, Center for Electron Microscopy, South China University of Technology, Guangzhou 511442, China
| |
Collapse
|
6
|
Mejia E, Woods JM, Adhikari A, Singh C, Taniguchi T, Watanabe K, Bisogni V, Sofer Z, Pelliciari J, Grosso G. Dynamic Interplay of Nonlocal Recombination Pathways in Quantum Emitters in Hexagonal Boron Nitride. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2025; 129:2044-2053. [PMID: 39906315 PMCID: PMC11789140 DOI: 10.1021/acs.jpcc.4c07147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 02/06/2025]
Abstract
Optically active defects in wide bandgap materials play a central role in several emerging applications in quantum information and sensing as they allow for manipulating and harvesting the internal degrees of freedom of single electrons with optical means. Interactions among defect states and with the surrounding environment represent a crucial feature for sensing but can severely hamper the coherence of the quantum states and prevent an efficient integration with photonic architectures due to unpredictable spectral instability. Understanding and controlling defect interactions would mitigate the effects of spectral instabilities and enable quantum applications based on long-range interactions. Here, we investigate the photoluminescence spectral dynamics of quantum emitters in defective hexagonal boron nitride (hBN), a material whose emission spectrum notoriously displays spectral wandering and diffusion, and we identify several optical transitions with discrete energy jumps. We associate the spectral jumps with the interplay amid competing recombination pathways available to the defect states in a process like donor-acceptor-pairs (DAP). The discrete spectral jumps observed in the emission spectrum of hBN arise from interactions between the harmonic states of nitrogen π orbitals of delocalized defects, and their energies can be ascribed to a DAP-like transition sequence. Our results allow mapping of the defect geometry in an hBN lattice, setting the basis for mitigating the effects of spectral jumping in this platform and paving the way toward using the long-range interaction of defect ensembles for quantum technology.
Collapse
Affiliation(s)
- Enrique
A. Mejia
- Photonics
Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
| | - John M. Woods
- Photonics
Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
| | - Ashok Adhikari
- Photonics
Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
| | - Charanjot Singh
- Photonics
Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
| | - Takashi Taniguchi
- Research
Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Kenji Watanabe
- Research
Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Valentina Bisogni
- National
Synchrotron Light Source II, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Zdeněk Sofer
- Department
of Inorganic Chemistry, University of Chemistry
and Technology Prague, Technická 5, Prague 6 166 28, Czech Republic
| | - Jonathan Pelliciari
- National
Synchrotron Light Source II, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Gabriele Grosso
- Photonics
Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
- Physics
Program, Graduate Center, City University
of New York, New York, New York 10016, United States
| |
Collapse
|
7
|
Zheng M, Ale S, Chen P, Tu J, Zhou Q, Song H, Wang Y, Wang J, Guo G, Deng G. Magnetic field dependence of V B- defects in hexagonal boron nitride. OPTICS LETTERS 2024; 49:7222-7225. [PMID: 39671681 DOI: 10.1364/ol.545237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/15/2024] [Indexed: 12/15/2024]
Abstract
The interface with spin defects in hexagonal boron nitride has recently become a promising platform and has shown great potential in a wide range of quantum technologies. Varieties of spin properties of V B- defects in hexagonal boron nitride (hBN) have been researched widely and deeply, like their structure and coherent control. However, little is known about the influence of off-axis magnetic fields on the coherence properties of V B- defects in hBN. Here, by using optically detected magnetic resonance (ODMR) spectroscopy, we systematically investigated the variations in ODMR resonance frequencies under different transverse and longitudinal external magnetic fields. In addition, we measured the ODMR spectra under off-axis magnetic fields of constant strength but various angles and observed that the splitting of the resonance frequencies decreases as the angle increases, aligning with our theoretical calculation based on the Hamiltonian, from which we came up with a solution of detecting the off-axis magnetic field angle. Through Rabi oscillation measurements, we found that the off-axis magnetic field suppresses the spin coherence time. These results are crucial for optimizing V B- defects in hBN, establishing their significance as robust quantum sensors for quantum information processing and magnetic sensing in varied environments.
Collapse
|
8
|
Fang HH, Wang XJ, Marie X, Sun HB. Quantum sensing with optically accessible spin defects in van der Waals layered materials. LIGHT, SCIENCE & APPLICATIONS 2024; 13:303. [PMID: 39496613 PMCID: PMC11535532 DOI: 10.1038/s41377-024-01630-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 11/06/2024]
Abstract
Quantum sensing has emerged as a powerful technique to detect and measure physical and chemical parameters with exceptional precision. One of the methods is to use optically active spin defects within solid-state materials. These defects act as sensors and have made significant progress in recent years, particularly in the realm of two-dimensional (2D) spin defects. In this article, we focus on the latest trends in quantum sensing that use spin defects in van der Waals (vdW) materials. We discuss the benefits of combining optically addressable spin defects with 2D vdW materials while highlighting the challenges and opportunities to use these defects. To make quantum sensing practical and applicable, the article identifies some areas worth further exploration. These include identifying spin defects with properties suitable for quantum sensing, generating quantum defects on demand with control of their spatial localization, understanding the impact of layer thickness and interface on quantum sensing, and integrating spin defects with photonic structures for new functionalities and higher emission rates. The article explores the potential applications of quantum sensing in several fields, such as superconductivity, ferromagnetism, 2D nanoelectronics, and biology. For instance, combining nanoscale microfluidic technology with nanopore and quantum sensing may lead to a new platform for DNA sequencing. As materials technology continues to evolve, and with the advancement of defect engineering techniques, 2D spin defects are expected to play a vital role in quantum sensing.
Collapse
Affiliation(s)
- Hong-Hua Fang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, 100084, Beijing, China.
| | - Xiao-Jie Wang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, 100084, Beijing, China
| | - Xavier Marie
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Avenue Rangueil, 31077, Toulouse, France
- Institut Universitaire de France, 75231, Paris, France
| | - Hong-Bo Sun
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
9
|
Hennessey M, Whitefield B, Singh P, Alijani H, Abe H, Ohshima T, Gavin C, Broadway DA, Toth M, Tetienne JP, Aharonovich I, Kianinia M. Engineering Boron Vacancy Defects in Boron Nitride Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57552-57557. [PMID: 39390758 DOI: 10.1021/acsami.4c12802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Spin defects in hexagonal boron nitride (hBN) are emerging as promising platforms for quantum sensing applications. In particular, the negatively charged boron vacancy (VB-) centers have been engineered in bulk hBN and few-layer hBN flakes, and employed for sensing. Here, we investigate the engineering of VB- spin defects in boron nitride nanotubes (BNNTs). The generated spin defects are distributed along and around the BNNTs. Moreover, in contrast to hBN flakes, the spins in BNNTs exhibit a directional response relative to the direction of a surrounding magnetic field, which is consistent with the tubular geometry. The unique geometry of BNNTs allows for a more controlled and predictable placement of spin defects compared to bulk hBN, paving the way for innovative sensing applications with high spatial resolution and optomechanical studies of spin defects in hBN.
Collapse
Affiliation(s)
- Madeline Hennessey
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Benjamin Whitefield
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Priya Singh
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Hossein Alijani
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Hiroshi Abe
- Takasaki Institute for Advanced Quantum Science, National Institutes for Quantum Science and Technology, Takasaki Gunma 370-1292, Japan
| | - Takeshi Ohshima
- Takasaki Institute for Advanced Quantum Science, National Institutes for Quantum Science and Technology, Takasaki Gunma 370-1292, Japan
| | - Christopher Gavin
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - David A Broadway
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Milos Toth
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | | | - Igor Aharonovich
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Mehran Kianinia
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| |
Collapse
|
10
|
Das S, Melendez AL, Kao IH, García-Monge JA, Russell D, Li J, Watanabe K, Taniguchi T, Edgar JH, Katoch J, Yang F, Hammel PC, Singh S. Quantum Sensing of Spin Dynamics Using Boron-Vacancy Centers in Hexagonal Boron Nitride. PHYSICAL REVIEW LETTERS 2024; 133:166704. [PMID: 39485973 DOI: 10.1103/physrevlett.133.166704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/03/2024] [Accepted: 08/30/2024] [Indexed: 11/03/2024]
Abstract
Spin defects embedded in solid-state systems are appealing for quantum sensing of materials and for quantum science and engineering. The spin-sensitive photoluminescence of optically active spin defects in Van der Waals based materials, such as the boron-vacancy (V_{B}^{-}) center in hexagonal boron nitride, enables its application as a quantum sensor to detect weak, spatially localized magnetic static and dynamic fields. However, the utility of V_{B}^{-} centers to probe spin dynamics in magnetic systems has yet to be demonstrated; this is essential to establish the V_{B}^{-} as a modular sensing platform that can be seamlessly integrated with emergent quantum materials to probe a wide range of static and dynamic phenomena. Here, we use V_{B}^{-} centers to experimentally probe uniform mode magnon dynamics and optically perform ferromagnetic resonance spectroscopy on a thin magnetic film.
Collapse
Affiliation(s)
- Shekhar Das
- The Ohio State University, Department of Physics, Columbus, Ohio 43210, USA
| | - Alex L Melendez
- The Ohio State University, Department of Physics, Columbus, Ohio 43210, USA
| | - I-Hsuan Kao
- Carnegie Mellon University, Department of Physics, Pittsburgh, Pennsylvania 15213, USA
| | | | - Daniel Russell
- The Ohio State University, Department of Physics, Columbus, Ohio 43210, USA
| | - Jiahan Li
- Kansas State University, Tim Taylor Department of Chemical Engineering, Manhattan, Kansas, USA
| | - Kenji Watanabe
- National Institute for Materials Science, Research Center for Electronic and Optical Materials, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- National Institute for Materials Science, Research Center for Materials Nanoarchitectonics, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - James H Edgar
- Kansas State University, Tim Taylor Department of Chemical Engineering, Manhattan, Kansas, USA
| | - Jyoti Katoch
- Carnegie Mellon University, Department of Physics, Pittsburgh, Pennsylvania 15213, USA
| | - Fengyuan Yang
- The Ohio State University, Department of Physics, Columbus, Ohio 43210, USA
| | - P Chris Hammel
- The Ohio State University, Department of Physics, Columbus, Ohio 43210, USA
| | - Simranjeet Singh
- Carnegie Mellon University, Department of Physics, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
11
|
Gao X, Vaidya S, Dikshit S, Ju P, Shen K, Jin Y, Zhang S, Li T. Nanotube spin defects for omnidirectional magnetic field sensing. Nat Commun 2024; 15:7697. [PMID: 39227570 PMCID: PMC11372065 DOI: 10.1038/s41467-024-51941-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 08/22/2024] [Indexed: 09/05/2024] Open
Abstract
Optically addressable spin defects in three-dimensional (3D) crystals and two-dimensional (2D) van der Waals (vdW) materials are revolutionizing nanoscale quantum sensing. Spin defects in one-dimensional (1D) vdW nanotubes will provide unique opportunities due to their small sizes in two dimensions and absence of dangling bonds on side walls. However, optically detected magnetic resonance of localized spin defects in a nanotube has not been observed. Here, we report the observation of single spin color centers in boron nitride nanotubes (BNNTs) at room temperature. Our findings suggest that these BNNT spin defects possess a spin S = 1/2 ground state without an intrinsic quantization axis, leading to orientation-independent magnetic field sensing. We harness this unique feature to observe anisotropic magnetization of a 2D magnet in magnetic fields along orthogonal directions, a challenge for conventional spin S = 1 defects such as diamond nitrogen-vacancy centers. Additionally, we develop a method to deterministically transfer a BNNT onto a cantilever and use it to demonstrate scanning probe magnetometry. Further refinement of our approach will enable atomic scale quantum sensing of magnetic fields in any direction.
Collapse
Affiliation(s)
- Xingyu Gao
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Sumukh Vaidya
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Saakshi Dikshit
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Peng Ju
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Kunhong Shen
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Yuanbin Jin
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Shixiong Zhang
- Department of Physics, Indiana University, Bloomington, IN, 47405, USA
- Quantum Science and Engineering Center, Indiana University, Bloomington, IN, 47405, USA
| | - Tongcang Li
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA.
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA.
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN, 47907, USA.
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
12
|
Cobarrubia A, Schottle N, Suliman D, Gomez-Barron S, Patino CR, Kiefer B, Behura SK. Hexagonal Boron Nitride Quantum Simulator: Prelude to Spin and Photonic Qubits. ACS NANO 2024; 18:22609-22619. [PMID: 39138124 PMCID: PMC11363136 DOI: 10.1021/acsnano.4c04240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024]
Abstract
The quest for qubit operation at room temperature is accelerating the field of quantum information science and technology. Solid state quantum defects with spin-optical properties are promising spin- and photonic qubit candidates for room temperature operations. In this regard, a single boron vacancy within hexagonal boron nitride (h-BN) lattice such as VB- defect has coherent quantum interfaces for spin and photonic qubits owing to the large band gap of h-BN (6 eV) that can shield a computational subspace from environmental noise. However, for a VB- defect in h-BN to be a potential quantum simulator, the design and characterization of the Hamiltonian involving mutual interactions of the defect and other degrees of freedom are needed to fully understand the effect of defects on the computational subspace. Here, we studied the key coupling tensors such as zero-field splitting, Zeeman effect, and hyperfine splitting in order to build the Hamiltonian of the VB- defect. These eigenstates are spin triplet states that form a computational subspace. To study the phonon-assisted single photon emission in the VB- defect, the Hamiltonian is characterized by electron-phonon interaction with Jahn-Teller distortions. A theoretical demonstration of how the VB- Hamiltonian is utilized to relate these quantum properties to spin- and photonic-quantum information processing. For selecting promising host 2D materials for spin and photonic qubits, we present a data-mining perspective based on the proposed Hamiltonian engineering of the VB- defect in which h-BN is one of four materials chosen to be room temperature qubit candidates.
Collapse
Affiliation(s)
- Antonio Cobarrubia
- Department
of Physics, San Diego State University, San Diego, California 92182, United States
- Computational
Science Research Center, San Diego State
University, San Diego, California 92182, United States
| | - Nicholas Schottle
- Department
of Physics, San Diego State University, San Diego, California 92182, United States
| | - Dilon Suliman
- Department
of Physics, San Diego State University, San Diego, California 92182, United States
| | - Sebastian Gomez-Barron
- Department
of Physics, San Diego State University, San Diego, California 92182, United States
| | - Christopher R. Patino
- Department
of Physics, San Diego State University, San Diego, California 92182, United States
| | - Boris Kiefer
- Department
of Physics, New Mexico State University, Las Cruces, New Mexico 88003, United States
| | - Sanjay K. Behura
- Department
of Physics, San Diego State University, San Diego, California 92182, United States
| |
Collapse
|
13
|
Scholten SC, Singh P, Healey AJ, Robertson IO, Haim G, Tan C, Broadway DA, Wang L, Abe H, Ohshima T, Kianinia M, Reineck P, Aharonovich I, Tetienne JP. Multi-species optically addressable spin defects in a van der Waals material. Nat Commun 2024; 15:6727. [PMID: 39112477 PMCID: PMC11306348 DOI: 10.1038/s41467-024-51129-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Optically addressable spin defects hosted in two-dimensional van der Waals materials represent a new frontier for quantum technologies, promising to lead to a new class of ultrathin quantum sensors and simulators. Recently, hexagonal boron nitride (hBN) has been shown to host several types of optically addressable spin defects, thus offering a unique opportunity to simultaneously address and utilise various spin species in a single material. Here we demonstrate an interplay between two separate spin species within a single hBN crystal, namely S = 1 boron vacancy defects and carbon-related electron spins. We reveal the S = 1/2 character of the carbon-related defect and further demonstrate room temperature coherent control and optical readout of both S = 1 and S = 1/2 spin species. By tuning the two spin ensembles into resonance with each other, we observe cross-relaxation indicating strong inter-species dipolar coupling. We then demonstrate magnetic imaging using the S = 1/2 defects and leverage their lack of intrinsic quantization axis to probe the magnetic anisotropy of a test sample. Our results establish hBN as a versatile platform for quantum technologies in a van der Waals host at room temperature.
Collapse
Affiliation(s)
- Sam C Scholten
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
- School of Physics, University of Melbourne, Melbourne, VIC 3010, Australia
- Centre for Quantum Computation and Communication Technology, School of Physics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Priya Singh
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | | | | | - Galya Haim
- School of Physics, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Applied Physics, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Cheng Tan
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - David A Broadway
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Lan Wang
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
- Low Dimensional Magnetism and Spintronic Devices Lab, School of Physics, Hefei University of Technology, 230009, Hefei, Anhui, China
| | - Hiroshi Abe
- National Institutes for Quantum Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Takeshi Ohshima
- National Institutes for Quantum Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
- Department of Materials Science, Tohoku University, 6-6-02 Aramaki-Aza, Aoba-ku, Sendai 980-8579, Japan
| | - Mehran Kianinia
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Philipp Reineck
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Igor Aharonovich
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia.
- ARC Centre of Excellence for Transformative Meta-Optical Systems, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | | |
Collapse
|
14
|
Islam MS, Chowdhury RK, Barthelemy M, Moczko L, Hebraud P, Berciaud S, Barsella A, Fras F. Large-Scale Statistical Analysis of Defect Emission in hBN: Revealing Spectral Families and Influence of Flake Morphology. ACS NANO 2024. [PMID: 39083640 DOI: 10.1021/acsnano.3c10403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Quantum emitters in two-dimensional layered hexagonal boron nitride are quickly emerging as a highly promising platform for next-generation quantum technologies. However, the precise identification and control of defects are key parameters to achieve the next step in their development. We conducted a comprehensive study by analyzing over 10,000 photoluminescence emission lines from liquid exfoliated hBN nanoflake samples, revealing 11 narrow sets of defect families within the 1.6 to 2.2 eV energy range. This challenges hypotheses of a random energy distribution. We also reported averaged defect parameters, including emission line widths, spatial density, phonon side bands, and Franck-Condon-related factors. These findings provide valuable insights into deciphering the microscopic origin of emitters in hBN hosts. We also explored the influence of the hBN host morphology on defect family formation, demonstrating its crucial impact. By tuning the flake size and arrangement, we achieve selective control of defect types while maintaining high spatial density. This offers a scalable approach to defect emission control, diverging from costly engineering methods. It emphasizes the significance of the morphological aspects of hBN hosts for gaining insights into defect origins and expanding their spectral control.
Collapse
Affiliation(s)
- Md Samiul Islam
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS, UMR 7504, F-67000 Strasbourg, France
| | - Rup Kumar Chowdhury
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS, UMR 7504, F-67000 Strasbourg, France
| | - Marie Barthelemy
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS, UMR 7504, F-67000 Strasbourg, France
| | - Loic Moczko
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS, UMR 7504, F-67000 Strasbourg, France
| | - Pascal Hebraud
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS, UMR 7504, F-67000 Strasbourg, France
| | - Stephane Berciaud
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS, UMR 7504, F-67000 Strasbourg, France
| | - Alberto Barsella
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS, UMR 7504, F-67000 Strasbourg, France
| | - Francois Fras
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS, UMR 7504, F-67000 Strasbourg, France
| |
Collapse
|
15
|
Gong R, Du X, Janzen E, Liu V, Liu Z, He G, Ye B, Li T, Yao NY, Edgar JH, Henriksen EA, Zu C. Isotope engineering for spin defects in van der Waals materials. Nat Commun 2024; 15:104. [PMID: 38168074 PMCID: PMC10761865 DOI: 10.1038/s41467-023-44494-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Spin defects in van der Waals materials offer a promising platform for advancing quantum technologies. Here, we propose and demonstrate a powerful technique based on isotope engineering of host materials to significantly enhance the coherence properties of embedded spin defects. Focusing on the recently-discovered negatively charged boron vacancy center ([Formula: see text]) in hexagonal boron nitride (hBN), we grow isotopically purified h10B15N crystals. Compared to [Formula: see text] in hBN with the natural distribution of isotopes, we observe substantially narrower and less crowded [Formula: see text] spin transitions as well as extended coherence time T2 and relaxation time T1. For quantum sensing, [Formula: see text] centers in our h10B15N samples exhibit a factor of 4 (2) enhancement in DC (AC) magnetic field sensitivity. For additional quantum resources, the individual addressability of the [Formula: see text] hyperfine levels enables the dynamical polarization and coherent control of the three nearest-neighbor 15N nuclear spins. Our results demonstrate the power of isotope engineering for enhancing the properties of quantum spin defects in hBN, and can be readily extended to improving spin qubits in a broad family of van der Waals materials.
Collapse
Affiliation(s)
- Ruotian Gong
- Department of Physics, Washington University, St. Louis, MO, 63130, USA
| | - Xinyi Du
- Department of Physics, Washington University, St. Louis, MO, 63130, USA
| | - Eli Janzen
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS, 66506, USA
| | - Vincent Liu
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Zhongyuan Liu
- Department of Physics, Washington University, St. Louis, MO, 63130, USA
| | - Guanghui He
- Department of Physics, Washington University, St. Louis, MO, 63130, USA
| | - Bingtian Ye
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Tongcang Li
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Norman Y Yao
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - James H Edgar
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS, 66506, USA
| | - Erik A Henriksen
- Department of Physics, Washington University, St. Louis, MO, 63130, USA
- Institute of Materials Science and Engineering, Washington University, St. Louis, MO, 63130, USA
| | - Chong Zu
- Department of Physics, Washington University, St. Louis, MO, 63130, USA.
- Institute of Materials Science and Engineering, Washington University, St. Louis, MO, 63130, USA.
| |
Collapse
|
16
|
Janzen E, Schutte H, Plo J, Rousseau A, Michel T, Desrat W, Valvin P, Jacques V, Cassabois G, Gil B, Edgar JH. Boron and Nitrogen Isotope Effects on Hexagonal Boron Nitride Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306033. [PMID: 37705372 DOI: 10.1002/adma.202306033] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/22/2023] [Indexed: 09/15/2023]
Abstract
The unique physical, mechanical, chemical, optical, and electronic properties of hexagonal boron nitride (hBN) make it a promising 2D material for electronic, optoelectronic, nanophotonic, and quantum devices. Here, the changes in hBN's properties induced by isotopic purification in both boron and nitrogen are reported. Previous studies on isotopically pure hBN have focused on purifying the boron isotope concentration in hBN from its natural concentration (≈20 at% 10 B, 80 at% 11 B) while using naturally abundant nitrogen (99.6 at% 14 N, 0.4 at% 15 N), that is, almost pure 14 N. In this study, the class of isotopically purified hBN crystals to 15 N is extended. Crystals in the four configurations, namely h10 B14 N, h11 B14 N, h10 B15 N, and h11 B15 N, are grown by the metal flux method using boron and nitrogen single isotope (> 99%) enriched sources, with nickel plus chromium as the solvent. In-depth Raman and photoluminescence spectroscopies demonstrate the high quality of the monoisotopic hBN crystals with vibrational and optical properties of the 15 N-purified crystals at the state-of-the-art of currently available 14 N-purified hBN. The growth of high-quality h10 B14 N, h11 B14 N, h10 B15 N, and h11 B15 N opens exciting perspectives for thermal conductivity control in heat management, as well as for advanced functionalities in quantum technologies.
Collapse
Affiliation(s)
- Eli Janzen
- Tim Taylor Department of Chemical Engineering, Kansas State University, 1005 Durland Hall, 1701A Platt St., Manhattan, KS, 66506-5102, USA
| | - Hannah Schutte
- Tim Taylor Department of Chemical Engineering, Kansas State University, 1005 Durland Hall, 1701A Platt St., Manhattan, KS, 66506-5102, USA
| | - Juliette Plo
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS, Montpellier, 34095, France
| | - Adrien Rousseau
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS, Montpellier, 34095, France
| | - Thierry Michel
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS, Montpellier, 34095, France
| | - Wilfried Desrat
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS, Montpellier, 34095, France
| | - Pierre Valvin
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS, Montpellier, 34095, France
| | - Vincent Jacques
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS, Montpellier, 34095, France
| | - Guillaume Cassabois
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS, Montpellier, 34095, France
| | - Bernard Gil
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS, Montpellier, 34095, France
| | - James H Edgar
- Tim Taylor Department of Chemical Engineering, Kansas State University, 1005 Durland Hall, 1701A Platt St., Manhattan, KS, 66506-5102, USA
| |
Collapse
|
17
|
Clua-Provost T, Durand A, Mu Z, Rastoin T, Fraunié J, Janzen E, Schutte H, Edgar JH, Seine G, Claverie A, Marie X, Robert C, Gil B, Cassabois G, Jacques V. Isotopic Control of the Boron-Vacancy Spin Defect in Hexagonal Boron Nitride. PHYSICAL REVIEW LETTERS 2023; 131:126901. [PMID: 37802939 DOI: 10.1103/physrevlett.131.126901] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/26/2023] [Indexed: 10/08/2023]
Abstract
We report on electron spin resonance (ESR) spectroscopy of boron-vacancy (V_{B}^{-}) centers hosted in isotopically engineered hexagonal boron nitride (hBN) crystals. We first show that isotopic purification of hBN with ^{15}N yields a simplified and well-resolved hyperfine structure of V_{B}^{-} centers, while purification with ^{10}B leads to narrower ESR linewidths. These results establish isotopically purified h^{10}B^{15}N crystals as the optimal host material for future use of V_{B}^{-} spin defects in quantum technologies. Capitalizing on these findings, we then demonstrate optically induced polarization of ^{15}N nuclei in h^{10}B^{15}N, whose mechanism relies on electron-nuclear spin mixing in the V_{B}^{-} ground state. This work opens up new prospects for future developments of spin-based quantum sensors and simulators on a two-dimensional material platform.
Collapse
Affiliation(s)
- T Clua-Provost
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS, 34095 Montpellier, France
| | - A Durand
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS, 34095 Montpellier, France
| | - Z Mu
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS, 34095 Montpellier, France
| | - T Rastoin
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS, 34095 Montpellier, France
| | - J Fraunié
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Avenue Rangueil, 31077 Toulouse, France
| | - E Janzen
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, USA
| | - H Schutte
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, USA
| | - J H Edgar
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, USA
| | - G Seine
- CEMES-CNRS and Université de Toulouse, 29 rue J. Marvig, 31055 Toulouse, France
| | - A Claverie
- CEMES-CNRS and Université de Toulouse, 29 rue J. Marvig, 31055 Toulouse, France
| | - X Marie
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Avenue Rangueil, 31077 Toulouse, France
| | - C Robert
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Avenue Rangueil, 31077 Toulouse, France
| | - B Gil
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS, 34095 Montpellier, France
| | - G Cassabois
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS, 34095 Montpellier, France
| | - V Jacques
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS, 34095 Montpellier, France
| |
Collapse
|
18
|
Durand A, Clua-Provost T, Fabre F, Kumar P, Li J, Edgar JH, Udvarhelyi P, Gali A, Marie X, Robert C, Gérard JM, Gil B, Cassabois G, Jacques V. Optically Active Spin Defects in Few-Layer Thick Hexagonal Boron Nitride. PHYSICAL REVIEW LETTERS 2023; 131:116902. [PMID: 37774304 DOI: 10.1103/physrevlett.131.116902] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/22/2023] [Indexed: 10/01/2023]
Abstract
Optically active spin defects in hexagonal boron nitride (hBN) are promising quantum systems for the design of two-dimensional quantum sensing units offering optimal proximity to the sample being probed. In this Letter, we first demonstrate that the electron spin resonance frequencies of boron vacancy centers (V_{B}^{-}) can be detected optically in the limit of few-atomic-layer thick hBN flakes despite the nanoscale proximity of the crystal surface that often leads to a degradation of the stability of solid-state spin defects. We then analyze the variations of the electronic spin properties of V_{B}^{-} centers with the hBN thickness with a focus on (i) the zero-field splitting parameters, (ii) the optically induced spin polarization rate and (iii) the longitudinal spin relaxation time. This Letter provides important insights into the properties of V_{B}^{-} centers embedded in ultrathin hBN flakes, which are valuable for future developments of foil-based quantum sensing technologies.
Collapse
Affiliation(s)
- A Durand
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS, 34095 Montpellier, France
| | - T Clua-Provost
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS, 34095 Montpellier, France
| | - F Fabre
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS, 34095 Montpellier, France
| | - P Kumar
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS, 34095 Montpellier, France
| | - J Li
- Tim Taylor Department of Chemical Engineering, Kansas State University, Kansas 66506, USA
| | - J H Edgar
- Tim Taylor Department of Chemical Engineering, Kansas State University, Kansas 66506, USA
| | - P Udvarhelyi
- Department of Atomic Physics, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - A Gali
- Department of Atomic Physics, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
- Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary
| | - X Marie
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Avenue Rangueil, 31077 Toulouse, France
| | - C Robert
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Avenue Rangueil, 31077 Toulouse, France
| | - J M Gérard
- Univ. Grenoble Alpes, CEA, Grenoble INP, IRIG, PHELIQS, "Nanophysique et Semiconducteurs" Group, F-38000 Grenoble, France
| | - B Gil
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS, 34095 Montpellier, France
| | - G Cassabois
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS, 34095 Montpellier, France
| | - V Jacques
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS, 34095 Montpellier, France
| |
Collapse
|
19
|
Rizzato R, Schalk M, Mohr S, Hermann JC, Leibold JP, Bruckmaier F, Salvitti G, Qian C, Ji P, Astakhov GV, Kentsch U, Helm M, Stier AV, Finley JJ, Bucher DB. Extending the coherence of spin defects in hBN enables advanced qubit control and quantum sensing. Nat Commun 2023; 14:5089. [PMID: 37607945 PMCID: PMC10444786 DOI: 10.1038/s41467-023-40473-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/26/2023] [Indexed: 08/24/2023] Open
Abstract
Negatively-charged boron vacancy centers ([Formula: see text]) in hexagonal Boron Nitride (hBN) are attracting increasing interest since they represent optically-addressable qubits in a van der Waals material. In particular, these spin defects have shown promise as sensors for temperature, pressure, and static magnetic fields. However, their short spin coherence time limits their scope for quantum technology. Here, we apply dynamical decoupling techniques to suppress magnetic noise and extend the spin coherence time by two orders of magnitude, approaching the fundamental T1 relaxation limit. Based on this improvement, we demonstrate advanced spin control and a set of quantum sensing protocols to detect radiofrequency signals with sub-Hz resolution. The corresponding sensitivity is benchmarked against that of state-of-the-art NV-diamond quantum sensors. This work lays the foundation for nanoscale sensing using spin defects in an exfoliable material and opens a promising path to quantum sensors and quantum networks integrated into ultra-thin structures.
Collapse
Affiliation(s)
- Roberto Rizzato
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Lichtenbergstraße 4, Garching bei München, 85748, Germany.
- University of Bari, Department of Physics "M. Merlin", Via Amendola 173, Bari, 70125, Italy.
| | - Martin Schalk
- Walter Schottky Institute, TUM School of Natural Sciences, Am Coulombwall 4, Garching bei München, 85748, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, München, D-80799, Germany
| | - Stephan Mohr
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Lichtenbergstraße 4, Garching bei München, 85748, Germany
| | - Jens C Hermann
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Lichtenbergstraße 4, Garching bei München, 85748, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, München, D-80799, Germany
| | - Joachim P Leibold
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Lichtenbergstraße 4, Garching bei München, 85748, Germany
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, James-Franck-Str. 1, Garching bei München, 85748, Germany
| | - Fleming Bruckmaier
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Lichtenbergstraße 4, Garching bei München, 85748, Germany
| | - Giovanna Salvitti
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Lichtenbergstraße 4, Garching bei München, 85748, Germany
- University of Bologna, Department of Chemistry "G. Ciamician", Via Selmi, 2, Bologna, 40126, Italy
| | - Chenjiang Qian
- Walter Schottky Institute, TUM School of Natural Sciences, Am Coulombwall 4, Garching bei München, 85748, Germany
| | - Peirui Ji
- Walter Schottky Institute, TUM School of Natural Sciences, Am Coulombwall 4, Garching bei München, 85748, Germany
| | - Georgy V Astakhov
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, Dresden, 01328, Germany
| | - Ulrich Kentsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, Dresden, 01328, Germany
| | - Manfred Helm
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, Dresden, 01328, Germany
- TU Dresden, 01062, Dresden, Germany
| | - Andreas V Stier
- Walter Schottky Institute, TUM School of Natural Sciences, Am Coulombwall 4, Garching bei München, 85748, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, München, D-80799, Germany
| | - Jonathan J Finley
- Walter Schottky Institute, TUM School of Natural Sciences, Am Coulombwall 4, Garching bei München, 85748, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, München, D-80799, Germany
| | - Dominik B Bucher
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Lichtenbergstraße 4, Garching bei München, 85748, Germany.
- Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, München, D-80799, Germany.
| |
Collapse
|
20
|
Gong R, He G, Gao X, Ju P, Liu Z, Ye B, Henriksen EA, Li T, Zu C. Coherent dynamics of strongly interacting electronic spin defects in hexagonal boron nitride. Nat Commun 2023; 14:3299. [PMID: 37280252 PMCID: PMC10244381 DOI: 10.1038/s41467-023-39115-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 05/26/2023] [Indexed: 06/08/2023] Open
Abstract
Optically active spin defects in van der Waals materials are promising platforms for modern quantum technologies. Here we investigate the coherent dynamics of strongly interacting ensembles of negatively charged boron-vacancy ([Formula: see text]) centers in hexagonal boron nitride (hBN) with varying defect density. By employing advanced dynamical decoupling sequences to selectively isolate different dephasing sources, we observe more than 5-fold improvement in the measured coherence times across all hBN samples. Crucially, we identify that the many-body interaction within the [Formula: see text] ensemble plays a substantial role in the coherent dynamics, which is then used to directly estimate the concentration of [Formula: see text]. We find that at high ion implantation dosage, only a small portion of the created boron vacancy defects are in the desired negatively charged state. Finally, we investigate the spin response of [Formula: see text] to the local charged defects induced electric field signals, and estimate its ground state transverse electric field susceptibility. Our results provide new insights on the spin and charge properties of [Formula: see text], which are important for future use of defects in hBN as quantum sensors and simulators.
Collapse
Affiliation(s)
- Ruotian Gong
- Department of Physics, Washington University, St. Louis, MO, 63130, USA
| | - Guanghui He
- Department of Physics, Washington University, St. Louis, MO, 63130, USA
| | - Xingyu Gao
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Peng Ju
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Zhongyuan Liu
- Department of Physics, Washington University, St. Louis, MO, 63130, USA
| | - Bingtian Ye
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
- Department of Physics, University of California, Berkeley, CA, 94720, USA
| | - Erik A Henriksen
- Department of Physics, Washington University, St. Louis, MO, 63130, USA
- Institute of Materials Science and Engineering, Washington University, St. Louis, MO, 63130, USA
| | - Tongcang Li
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Chong Zu
- Department of Physics, Washington University, St. Louis, MO, 63130, USA.
- Institute of Materials Science and Engineering, Washington University, St. Louis, MO, 63130, USA.
| |
Collapse
|
21
|
Gali Á. Recent advances in the ab initio theory of solid-state defect qubits. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:359-397. [PMID: 39635404 PMCID: PMC11501427 DOI: 10.1515/nanoph-2022-0723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/23/2023] [Indexed: 12/07/2024]
Abstract
Solid-state defects acting as single photon sources and quantum bits are leading contenders in quantum technologies. Despite great efforts, not all the properties and behaviours of the presently known solid-state defect quantum bits are understood. Furthermore, various quantum technologies require novel solutions, thus new solid-state defect quantum bits should be explored to this end. These issues call to develop ab initio methods which accurately yield the key parameters of solid-state defect quantum bits and vastly accelerate the identification of novel ones for a target quantum technology application. In this review, we describe recent developments in the field including the calculation of excited states with quantum mechanical forces, treatment of spatially extended wavefunctions in supercell models, methods for temperature-dependent Herzberg-Teller fluorescence spectrum and photo-ionisation thresholds, accurate calculation of magneto-optical parameters of defects consisting of heavy atoms, as well as spin-phonon interaction responsible for temperature dependence of the longitudonal spin relaxation T 1 time and magneto-optical parameters, and finally the calculation of spin dephasing and spin-echo times. We highlight breakthroughs including the description of effective-mass like excited states of deep defects and understanding the leading microscopic effect in the spin-relaxation of isolated nitrogen-vacancy centre in diamond.
Collapse
Affiliation(s)
- Ádám Gali
- Wigner Research Centre for Physics, PO. Box 49, BudapestH-1525, Hungary
- Department of Atomic Physics, Institute of Physics, Budapest University of Technology and Economics, Műegyetem rakpart 3., BudapestH-1111, Hungary
| |
Collapse
|
22
|
Ramsay AJ, Hekmati R, Patrickson CJ, Baber S, Arvidsson-Shukur DRM, Bennett AJ, Luxmoore IJ. Coherence protection of spin qubits in hexagonal boron nitride. Nat Commun 2023; 14:461. [PMID: 36709208 PMCID: PMC9884286 DOI: 10.1038/s41467-023-36196-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/17/2023] [Indexed: 01/29/2023] Open
Abstract
Spin defects in foils of hexagonal boron nitride are an attractive platform for magnetic field imaging, since the probe can be placed in close proximity to the target. However, as a III-V material the electron spin coherence is limited by the nuclear spin environment, with spin echo coherence times of ∽100 ns at room temperature accessible magnetic fields. We use a strong continuous microwave drive with a modulation in order to stabilize a Rabi oscillation, extending the coherence time up to ∽ 4μs, which is close to the 10 μs electron spin lifetime in our sample. We then define a protected qubit basis, and show full control of the protected qubit. The coherence times of a superposition of the protected qubit can be as high as 0.8 μs. This work establishes that boron vacancies in hexagonal boron nitride can have electron spin coherence times that are competitive with typical nitrogen vacancy centres in small nanodiamonds under ambient conditions.
Collapse
Affiliation(s)
- Andrew J Ramsay
- Hitachi Cambridge Laboratory, Hitachi Europe Ltd., CB3 0HE, Cambridge, UK
| | - Reza Hekmati
- School of Physics and Astronomy, Cardiff University, Queen's Building, CF24 3AA, Cardiff, UK
| | | | - Simon Baber
- Department of Engineering, University of Exeter, EX4 4QF, Exeter, UK
| | | | - Anthony J Bennett
- School of Physics and Astronomy, Cardiff University, Queen's Building, CF24 3AA, Cardiff, UK
- School of Engineering, Cardiff University, Queen's Building, CF24 3AA, Cardiff, UK
| | - Isaac J Luxmoore
- Department of Engineering, University of Exeter, EX4 4QF, Exeter, UK.
| |
Collapse
|
23
|
Aharonovich I, Tetienne JP, Toth M. Quantum Emitters in Hexagonal Boron Nitride. NANO LETTERS 2022; 22:9227-9235. [PMID: 36413674 DOI: 10.1021/acs.nanolett.2c03743] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hexagonal boron nitride (hBN) has emerged as a fascinating platform to explore quantum emitters and their applications. Beyond being a wide-bandgap material, it is also a van der Waals crystal, enabling direct exfoliation of atomically thin layers─a combination which offers unique advantages over bulk, 3D crystals. In this Mini Review we discuss the unique properties of hBN quantum emitters and highlight progress toward their future implementation in practical devices. We focus on engineering and integration of the emitters with scalable photonic resonators. We also highlight recently discovered spin defects in hBN and discuss their potential utility for quantum sensing. All in all, hBN has become a front runner in explorations of solid-state quantum science with promising future prospects.
Collapse
Affiliation(s)
- Igor Aharonovich
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | | | - Milos Toth
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| |
Collapse
|
24
|
Li S, Gali A. Identification of an Oxygen Defect in Hexagonal Boron Nitride. J Phys Chem Lett 2022; 13:9544-9551. [PMID: 36201340 PMCID: PMC9589898 DOI: 10.1021/acs.jpclett.2c02687] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/04/2022] [Indexed: 05/30/2023]
Abstract
Paramagnetic fluorescent defects in two-dimensional hexagonal boron nitride (hBN) are promising building blocks for quantum information processing. Although numerous defect-related single-photon sources and a few quantum bits have been found, except for the boron vacancy, their identification is still elusive. Here, we demonstrate that the comparison of experimental and first-principles simulated electron paramagnetic resonance (EPR) spectra is a powerful tool for defect identification in hBN, and first-principles modeling is inevitable in this process as a result of the dense nuclear spin environment of hBN. In particular, a recently observed EPR center is associated with the negatively charged oxygen vacancy complex by means of the many-body perturbation theory method on top of hybrid density functional calculations. To our surprise, the negatively charged oxygen vacancy complex produces a coherent emission around 2 eV with a well-reproducing previously recorded photoluminescence spectrum of some quantum emitters, according to our calculations.
Collapse
Affiliation(s)
- Song Li
- Wigner
Research Centre for Physics, Post Office Box 49, H-1525Budapest, Hungary
| | - Adam Gali
- Wigner
Research Centre for Physics, Post Office Box 49, H-1525Budapest, Hungary
- Department
of Atomic Physics, Institute of Physics, Budapest University of Technology and Economics, Műegyetem rakpart 3, H-1111Budapest, Hungary
| |
Collapse
|
25
|
Liu W, Ivády V, Li ZP, Yang YZ, Yu S, Meng Y, Wang ZA, Guo NJ, Yan FF, Li Q, Wang JF, Xu JS, Liu X, Zhou ZQ, Dong Y, Chen XD, Sun FW, Wang YT, Tang JS, Gali A, Li CF, Guo GC. Coherent dynamics of multi-spin V
B
−
center in hexagonal boron nitride. Nat Commun 2022; 13:5713. [PMID: 36175507 PMCID: PMC9522675 DOI: 10.1038/s41467-022-33399-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/14/2022] [Indexed: 11/09/2022] Open
Abstract
Hexagonal boron nitride (hBN) has recently been demonstrated to contain optically polarized and detected electron spins that can be utilized for implementing qubits and quantum sensors in nanolayered-devices. Understanding the coherent dynamics of microwave driven spins in hBN is of crucial importance for advancing these emerging new technologies. Here, we demonstrate and study the Rabi oscillation and related phenomena of a negatively charged boron vacancy (V B − ) spin ensemble in hBN. We report on different dynamics of the V B − spins at weak and strong magnetic fields. In the former case the defect behaves like a single electron spin system, while in the latter case it behaves like a multi-spin system exhibiting multiple-frequency dynamical oscillation as beat in the Ramsey fringes. We also carry out theoretical simulations for the spin dynamics of V B − and reveal that the nuclear spins can be driven via the strong electron nuclear coupling existing in V B − center, which can be modulated by the magnetic field and microwave field.
Collapse
Affiliation(s)
- Wei Liu
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, P. R. China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026 P. R. China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088 China
| | - Viktor Ivády
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Street 38, D-01187 Dresden, Germany
- Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
- Wigner Research Centre for Physics, PO Box 49, H-1525 Budapest, Hungary
| | - Zhi-Peng Li
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, P. R. China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026 P. R. China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088 China
| | - Yuan-Ze Yang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, P. R. China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026 P. R. China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088 China
| | - Shang Yu
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, P. R. China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026 P. R. China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088 China
| | - Yu Meng
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, P. R. China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026 P. R. China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088 China
| | - Zhao-An Wang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, P. R. China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026 P. R. China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088 China
| | - Nai-Jie Guo
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, P. R. China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026 P. R. China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088 China
| | - Fei-Fei Yan
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, P. R. China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026 P. R. China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088 China
| | - Qiang Li
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, P. R. China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026 P. R. China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088 China
| | - Jun-Feng Wang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, P. R. China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026 P. R. China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088 China
| | - Jin-Shi Xu
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, P. R. China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026 P. R. China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088 China
| | - Xiao Liu
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, P. R. China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026 P. R. China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088 China
| | - Zong-Quan Zhou
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, P. R. China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026 P. R. China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088 China
| | - Yang Dong
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, P. R. China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026 P. R. China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088 China
| | - Xiang-Dong Chen
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, P. R. China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026 P. R. China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088 China
| | - Fang-Wen Sun
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, P. R. China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026 P. R. China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088 China
| | - Yi-Tao Wang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, P. R. China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026 P. R. China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088 China
| | - Jian-Shun Tang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, P. R. China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026 P. R. China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088 China
| | - Adam Gali
- Wigner Research Centre for Physics, PO Box 49, H-1525 Budapest, Hungary
- Department of Atomic Physics, Institute of Physics, Budapest University of Technology and Economics, Műegyetem rakpart 3., H-1111 Budapest, Hungary
| | - Chuan-Feng Li
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, P. R. China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026 P. R. China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088 China
| | - Guang-Can Guo
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, P. R. China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026 P. R. China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088 China
| |
Collapse
|
26
|
Huang M, Zhou J, Chen D, Lu H, McLaughlin NJ, Li S, Alghamdi M, Djugba D, Shi J, Wang H, Du CR. Wide field imaging of van der Waals ferromagnet Fe3GeTe2 by spin defects in hexagonal boron nitride. Nat Commun 2022; 13:5369. [PMID: 36100604 PMCID: PMC9470674 DOI: 10.1038/s41467-022-33016-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
Emergent color centers with accessible spins hosted by van der Waals materials have attracted substantial interest in recent years due to their significant potential for implementing transformative quantum sensing technologies. Hexagonal boron nitride (hBN) is naturally relevant in this context due to its remarkable ease of integration into devices consisting of low-dimensional materials. Taking advantage of boron vacancy spin defects in hBN, we report nanoscale quantum imaging of low-dimensional ferromagnetism sustained in Fe3GeTe2/hBN van der Waals heterostructures. Exploiting spin relaxometry methods, we have further observed spatially varying magnetic fluctuations in the exfoliated Fe3GeTe2 flake, whose magnitude reaches a peak value around the Curie temperature. Our results demonstrate the capability of spin defects in hBN of investigating local magnetic properties of layered materials in an accessible and precise way, which can be extended readily to a broad range of miniaturized van der Waals heterostructure systems. Hexagonal boron nitride (h-BN) has been used extensively to encapsulate other van der Waals materials, protecting them from environmental degradation, and allowing integration into more complex heterostructures. Here, the authors make use of boron vacancy spin defects in h-BN using them to image the magnetic properties of a Fe3GeTe2 flake.
Collapse
|
27
|
Gao X, Vaidya S, Li K, Ju P, Jiang B, Xu Z, Allcca AEL, Shen K, Taniguchi T, Watanabe K, Bhave SA, Chen YP, Ping Y, Li T. Nuclear spin polarization and control in hexagonal boron nitride. NATURE MATERIALS 2022; 21:1024-1028. [PMID: 35970964 DOI: 10.1038/s41563-022-01329-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Electron spins in van der Waals materials are playing a crucial role in recent advances in condensed-matter physics and spintronics. However, nuclear spins in van der Waals materials remain an unexplored quantum resource. Here we report optical polarization and coherent control of nuclear spins in a van der Waals material at room temperature. We use negatively charged boron vacancy ([Formula: see text]) spin defects in hexagonal boron nitride to polarize nearby nitrogen nuclear spins. We observe the Rabi frequency of nuclear spins at the excited-state level anti-crossing of [Formula: see text] defects to be 350 times larger than that of an isolated nucleus, and demonstrate fast coherent control of nuclear spins. Further, we detect strong electron-mediated nuclear-nuclear spin coupling that is five orders of magnitude larger than the direct nuclear-spin dipolar coupling, enabling multi-qubit operations. Our work opens new avenues for the manipulation of nuclear spins in van der Waals materials for quantum information science and technology.
Collapse
Affiliation(s)
- Xingyu Gao
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA
| | - Sumukh Vaidya
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA
| | - Kejun Li
- Department of Physics, University of California, Santa Cruz, CA, USA
| | - Peng Ju
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA
| | - Boyang Jiang
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| | - Zhujing Xu
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA
| | | | - Kunhong Shen
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Sunil A Bhave
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - Yong P Chen
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
- WPI-AIMR International Research Center for Materials Sciences, Tohoku University, Sendai, Japan
| | - Yuan Ping
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Tongcang Li
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA.
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA.
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN, USA.
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|