1
|
Xiao S, Duan S, Caligiuri MA, Ma S, Yu J. YTHDF2: a key RNA reader and antitumor target. Trends Immunol 2025; 46:485-498. [PMID: 40399203 DOI: 10.1016/j.it.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 05/23/2025]
Abstract
N6-methyladenosine (m6A) is a key mRNA modification influencing mRNA stability and translation. YTHDF2, a major m6A 'reader', was initially recognized for promoting mRNA decay but is now also known to enhance translation by binding to methylated mRNAs. YTHDF2 maintains the function of immune suppressive cells, including tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), and regulatory T cells (Tregs), while also supporting cytotoxic immune cells, including natural killer (NK) and CD8+ T cells. Additionally, YTHDF2 acts as a tumor-intrinsic regulator orchestrating tumor immune evasion. Its multifaceted roles in tumor immunity make YTHDF2 a promising yet challenging therapeutic target. This review explores the complex roles and mechanisms of YTHDF2 in cancers, immune regulation, and tumor immune evasion and highlights emerging therapeutic strategies that target YTHDF2.
Collapse
Affiliation(s)
- Sai Xiao
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Songqi Duan
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA; City of Hope Comprehensive Cancer Center, Los Angeles, CA 91010, USA.
| | - Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA; City of Hope Comprehensive Cancer Center, Los Angeles, CA 91010, USA.
| | - Jianhua Yu
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, University of California, Irvine, CA 92697, USA; Institute for Precision Cancer Therapeutics and Immuno-Oncology, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA; The Clemons Family Center for Transformative Cancer Research, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
2
|
Gupta A, Mahto S, Oberley Deegan RE, Coulter DW, Mahato RI. COG133 peptide-conjugated lipid nanoparticles sensitize medulloblastoma to radiation therapy in mice. J Control Release 2025:113902. [PMID: 40449803 DOI: 10.1016/j.jconrel.2025.113902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 05/05/2025] [Accepted: 05/27/2025] [Indexed: 06/03/2025]
Abstract
Medulloblastoma (MB) is a malignant brain tumor that often arises in the cerebellum and has a propensity for spreading to the spinal cord or other parts of the central nervous system (CNS). Craniospinal irradiation (CSI) has long been a cornerstone in the treatment of MB, especially for patients with high-risk or metastatic disease. However, CSI often leads to long-term neurocognitive deficits, including learning disabilities, and growth abnormalities, especially in children. In this study, we aimed to decrease the dose of irradiation and the proliferation of MB by using Volasertib (VSB), a Polo-like kinase 1 (PLK1) specific inhibitor. VSB was highly potent in-vitro with an IC50 of 27.43 nM and 13 nM in HDMB03 and DAOY cells, respectively. However, in the orthotopic MB mouse model, VSB as a free drug did not improve overall survival or decrease tumor burden. Hence, we encapsulated VSB in COG133-conjugated lipid nanoparticles (COG133-LNPs) to circumvent the blood-brain barrier (BBB). We observed that COG-133-LNPs loaded with VSB increased the biodistribution of VSB by three folds than the non-targeted LNPs in the brain. Furthermore, COG133-LNPs along with irradiation decreased tumor burden significantly as compared to VSB or radiation alone. To our observation, COG133-LNPs display high potency in killing MB cells and sensitizing them toward radiation therapy.
Collapse
Affiliation(s)
- Aditya Gupta
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sohan Mahto
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Rebecca E Oberley Deegan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Donald W Coulter
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
3
|
Wang A, Wang X, Li D, Li A, He M, Yuan Y, Ye L, Liu J. A superior method for antitumor therapy and application: dual-ligand nanomedicines. J Mater Chem B 2025. [PMID: 40396464 DOI: 10.1039/d5tb00044k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Currently, nanomedicines have been widely applied in the treatment of various types of tumors. However, due to the complexity of the tumor microenvironment, conventional nanomedicines often exhibit poor efficacy, insufficient site specificity, and susceptibility to off-target effects. In contrast, dual-ligand nanomedicines demonstrate superior targeting ability and drug penetration in tumor therapy. These nanomedicines are equipped with two ligands on their surface, enabling targeting of specific receptors on the same or different cells. The specific binding between ligands and receptors significantly enhances the selectivity and targeting of dual-ligand nanomedicines towards tumors. This review systematically describes the preparation of dual-ligand nanomedicines, the influencing factors, and the types of delivered drugs, focusing on the application of dual-ligand nanomedicines in targeting the treatment of various tumors. We highlight the comprehensiveness of dual-ligand nanomedicines for the treatment of tumors, including glioblastoma, lung cancer, breast cancer, gastric cancer, and many other types of tumors. Finally, the possible challenges for the future development of dual-ligand nanomedicines in terms of preparation, clinic, and safety are further analyzed. We look forward to exploring dual-ligand nanomedicines in greater depth to provide references for their future development and clinical applications.
Collapse
Affiliation(s)
- Ailing Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China
| | - Xuejun Wang
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China
| | - Dan Li
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China
| | - Aixue Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China
| | - Mengyuan He
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China
| | - Yingying Yuan
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China
- College of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li Ye
- School of Pharmacy and (R & D Center) Lab. for Drug Discovery from Natural Resource, Macau University of Science and Technology, Macau SAR, 999078, China.
| | - Jiyong Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China
| |
Collapse
|
4
|
Stachura P, Lu Z, Kronberg RM, Xu HC, Liu W, Tu JW, Schaal K, Kameri E, Picard D, von Karstedt S, Fischer U, Bhatia S, Lang PA, Borkhardt A, Pandyra AA. Deep transfer learning approach for automated cell death classification reveals novel ferroptosis-inducing agents in subsets of B-ALL. Cell Death Dis 2025; 16:396. [PMID: 40382332 DOI: 10.1038/s41419-025-07704-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/23/2025] [Accepted: 04/29/2025] [Indexed: 05/20/2025]
Abstract
Ferroptosis is a recently described type of regulated necrotic cell death whose induction has anti-cancer therapeutic potential, especially in hematological malignancies. However, efforts to uncover novel ferroptosis-inducing therapeutics have been largely unsuccessful. In the current investigation, we classified brightfield microscopy images of tumor cells undergoing defined modes of cell death using deep transfer learning (DTL). The trained DTL network was subsequently combined with high-throughput pharmacological screening approaches using automated live cell imaging to identify novel ferroptosis-inducing functions of the polo-like kinase inhibitor volasertib. Secondary validation showed that subsets of B-cell acute lymphoblastic leukemia (B-ALL) cell lines, namely 697, NALM6, HAL01, REH and primary patient B-ALL samples were sensitive to ferroptosis induction by volasertib. This was accompanied by an upregulation of ferroptosis-related genes post-volasertib treatment in cell lines and patient samples. Importantly, using several leukemia models, we determined that volasertib delayed tumor growth and induced ferroptosis in vivo. Taken together, we have applied DTL to automated live-cell imaging in pharmacological screening to identify novel ferroptosis-inducing functions of a clinically relevant anti-cancer therapeutic.
Collapse
Affiliation(s)
- Paweł Stachura
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Zhe Lu
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Raphael M Kronberg
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225, Düsseldorf, Germany
- Mathematical Modelling of Biological Systems, Heinrich Heine University, Düsseldorf, North Rhine-Westphalia, Germany
- Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Haifeng C Xu
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Wei Liu
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Jia-Wey Tu
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Katerina Schaal
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Ersen Kameri
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
- Cancer Prevention Graduate School (CPGS), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Picard
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Silvia von Karstedt
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Weyertal 115b, Cologne, 50931, Germany
- CECAD Cluster of Excellence, Faculty of Medicine and University Hospital Cologne, University of Cologne, Joseph-Stelzmann-Straße 26, Cologne, 50931, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Straße 21, Cologne, 50931, Germany
| | - Ute Fischer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
- Cancer Prevention Graduate School (CPGS), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Philipp A Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Aleksandra A Pandyra
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany.
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany.
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany.
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany.
| |
Collapse
|
5
|
Chu X, Pu N, Yang X, Xie Y, Liu L, Jin Y. Subtypes of tumor-associated neutrophils and their roles in cancer immunotherapy. Crit Rev Oncol Hematol 2025; 212:104763. [PMID: 40334802 DOI: 10.1016/j.critrevonc.2025.104763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/30/2025] [Accepted: 05/02/2025] [Indexed: 05/09/2025] Open
Abstract
Neutrophils are essential components of the innate immune system. Tumor-associated neutrophils (TANs) are shaped by tumor microenvironment (TME), leading to significant heterogeneity in biological characteristics and functions. Recent advances in single-cell sequencing have revealed a wide array of TAN subtypes, while a comprehensive classification system is still lacking. This review aims to summarize the alterations observed in TAN subgroups following cancer immunotherapy, and identify the distinctions and commonalities between pro-tumor and anti-tumor subgroups. Current progress of preclinical and clinical studies is also highlighted, involving novel therapies targeting TANs.
Collapse
Affiliation(s)
- Xinyun Chu
- Department of Hepatobiliary & Pancreatic Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650000, China; Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ning Pu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xue Yang
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yuqi Xie
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Yun Jin
- Department of Hepatobiliary & Pancreatic Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650000, China.
| |
Collapse
|
6
|
Hyun H, Sun B, Yazdimamaghani M, Wielgus A, Wang Y, Montgomery SA, Zhang T, Cheng J, Serody JS, Wang AZ. Tumor-specific surface marker-independent targeting of tumors through nanotechnology and bioorthogonal glycochemistry. J Clin Invest 2025; 135:e184964. [PMID: 40067370 PMCID: PMC12043094 DOI: 10.1172/jci184964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 03/05/2025] [Indexed: 05/02/2025] Open
Abstract
Biological targeting is crucial for effective cancer treatment with reduced toxicity but is limited by the availability of tumor surface markers. To overcome this, we developed a nanoparticle-based (NP-based), tumor-specific surface marker-independent (TRACER) targeting approach. Utilizing the unique biodistribution properties of NPs, we encapsulated Ac4ManNAz (Maz) to selectively label tumors with azide-reactive groups. Surprisingly, while NP-delivered Maz was cleared by the liver, it did not label macrophages, potentially reducing off-target effects. To exploit this tumor-specific labeling, we functionalized anti-4-1BB Abs with dibenzocyclooctyne to target azide-labeled tumor cells and activate the immune response. In syngeneic B16F10 melanoma and orthotopic 4T1 breast cancer models, TRACER enhanced the therapeutic efficacy of anti-4-1BB, increasing the median survival time. Immunofluorescence analyses revealed increased tumor infiltration of CD8+ T and NK cells with TRACER. Importantly, TRACER reduced the hepatotoxicity associated with anti-4-1BB, resulting in normal serum ALT and AST levels and decreased CD8+ T cell infiltration into the liver. Quantitative analysis confirmed a 4.5-fold higher tumor-to-liver ratio of anti-4-1BB accumulation with TRACER compared with conventional anti-4-1BB Abs. Our work provides a promising approach for developing targeted cancer therapies that circumvent limitations imposed by the paucity of tumor-specific markers, potentially improving efficacy and reducing off-target effects to overcome the liver toxicity associated with anti-4-1BB.
Collapse
Affiliation(s)
- Hyesun Hyun
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill (UNC), Chapel Hill, North Carolina, USA
| | - Bo Sun
- College of Pharmacy, Skaggs Pharmaceutical Sciences Center, University of Arizona, Tucson, Arizona, USA
| | - Mostafa Yazdimamaghani
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill (UNC), Chapel Hill, North Carolina, USA
| | - Albert Wielgus
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill (UNC), Chapel Hill, North Carolina, USA
| | | | - Stephanie Ann Montgomery
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill (UNC), Chapel Hill, North Carolina, USA
- Department of Pathology and Laboratory Medicine, and
- Division of Comparative Medicine, UNC, Chapel Hill, North Carolina, USA
| | - Tian Zhang
- Department of Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jianjun Cheng
- School of Engineering, Westlake University; Hangzhou, Zhejiang, China
| | - Jonathan S. Serody
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill (UNC), Chapel Hill, North Carolina, USA
- Department of Medicine and
- Department of Immunology and Microbiology, UNC, Chapel Hill, North Carolina, USA
| | - Andrew Z. Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
7
|
Dunn M, Dymock L, Hoskins C. Solid lipid nanoparticles in pancreatic cancer treatment. BJC REPORTS 2025; 3:21. [PMID: 40217114 PMCID: PMC11992092 DOI: 10.1038/s44276-025-00130-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/13/2025] [Accepted: 03/02/2025] [Indexed: 04/14/2025]
Abstract
Pancreatic cancer comes with one of the poorest prognoses of all cancers and as such it is crucial that new therapies are developed to improve on the current statistics. Currently, chemotherapy is the cornerstone of pancreatic cancer treatment with several drugs, and combinations of drugs being utilised for their anti-cancer effect. However, pancreatic cancer has a dense stroma around the tumour and intratumoral bacteria which result in drugs having difficulty penetrating the tumour or being metabolised by bacteria rendering them inactive. The utilisation of nanotechnology in chemotherapy for pancreatic cancer has been a huge area of focus for researchers worldwide with most of the focus being on lipid-based, inorganic and polymer-based nanoparticles. Solid lipid nanoparticles which have been studied since being first published in the 1990s, have been poorly researched for pancreatic cancer applications. Being composed of physiological lipids, solid lipid nanoparticles offer a greatly reduced risk of acute or chronic toxicities arising compared to inorganic or polymeric nanoparticles. They also possess the ability to improve on circulation time, permeability, and bioavailability of many first-line chemotherapeutics.
Collapse
Affiliation(s)
- Mia Dunn
- Department of Pure and Applied Chemistry, University of Strathclyde, Technology Innovation Centre, 99 George Street, Glasgow, G1 1RD, UK
| | - Lewis Dymock
- Department of Pure and Applied Chemistry, University of Strathclyde, Technology Innovation Centre, 99 George Street, Glasgow, G1 1RD, UK
| | - Clare Hoskins
- Department of Pure and Applied Chemistry, University of Strathclyde, Technology Innovation Centre, 99 George Street, Glasgow, G1 1RD, UK.
| |
Collapse
|
8
|
George M, Boukherroub R, Sanyal A, Szunerits S. Treatment of lung diseases via nanoparticles and nanorobots: Are these viable alternatives to overcome current treatments? Mater Today Bio 2025; 31:101616. [PMID: 40124344 PMCID: PMC11930446 DOI: 10.1016/j.mtbio.2025.101616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025] Open
Abstract
Challenges Respiratory diseases remain challenging to treat, with current efforts primarily focused on managing symptoms rather than maintaining overall lung health. Traditional treatment methods, such as oral or parenteral administration of antiviral, antibacterial, and anti-inflammatory drugs, face limitations. These include difficulty in delivering therapeutic agents to pathogens residing deep in the airways and the risk of severe side effects due to high systemic drug concentrations. The growing threat of drug-resistant pathogens further complicates infection management. Advancements The lung's large surface area offers an attractive target for inhalation-based drug delivery. Nanoparticles (NP) enable uniform and sustained drug distribution across the alveolar network, overcoming challenges posed by complex lung anatomy. Recent breakthroughs in nanorobots (NR) have demonstrated precise navigation through biological environments, delivering therapies directly to affected lung areas with enhanced accuracy. Nanotechnology has also shown promise in treating lung cancer, with nanoparticles engineered to overcome biological barriers, improve drug solubility, and enable controlled drug release. Future scope This review explores the progress of NP and NR in addressing challenges in pulmonary drug delivery. These innovations allow targeted delivery of nucleic acids, drugs, or peptides to the pulmonary epithelium with unprecedented accuracy, offering significant potential for improving therapeutic effectiveness in respiratory disorders.
Collapse
Affiliation(s)
- Meekha George
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University (DPU), Viktor-Kaplan-Straße 2, Geb. E, 2700, Wiener Neustadt, Austria
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Univ. Polytechnique, Hauts-de-France, UMR 8520 - IEMN, F-59000, Lille, France
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Bebek, 34342, Istanbul, Turkey
| | - Sabine Szunerits
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University (DPU), Viktor-Kaplan-Straße 2, Geb. E, 2700, Wiener Neustadt, Austria
- Univ. Lille, CNRS, Univ. Polytechnique, Hauts-de-France, UMR 8520 - IEMN, F-59000, Lille, France
| |
Collapse
|
9
|
Liu Y, Li F, Lyu Y, Wang F, Lee LTO, He S, Guo Z, Li J. A Semiconducting Polymer NanoCRISPR for Near-Infrared Photoactivatable Gene Editing and Cancer Gene Therapy. NANO LETTERS 2025; 25:4518-4525. [PMID: 40053823 DOI: 10.1021/acs.nanolett.5c00285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR) gene editing has poor efficacy and off-target side effect concerns. We herein report a semiconducting polymer (SP)-based nanoCRISPR system to improve CRISPR delivery efficacy and allow for near-infrared (NIR) photoactivatable gene editing for cancer therapy. An amphiphilic SP acts as a photothermal converter, and its backbone is grafted with single-stranded deoxyribonucleic acid (DNA), which enables hybridization with single guide ribonucleic acid (sgRNA) via complementary base pairing to form sgRNA/SP-DNA. This sgRNA/SP-DNA nanosystem (nanoCRISPR) can effectively deliver sgRNA into cells and generate heat under NIR laser irradiation via the photothermal effect. The localized heat triggers the dissociation of single-stranded DNA and sgRNA to control the release of sgRNA, thereby achieving precise regulation of CRISPR activity. This NIR photoactivatable gene editing technology is able to precisely regulate the expression of green fluorescent protein (GFP) and polo-like kinase 1 (PLK1) gene for precision gene therapy.
Collapse
Affiliation(s)
- Yue Liu
- State Key Laboratory of Advanced Fiber Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Fei Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yan Lyu
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Fengshuo Wang
- State Key Laboratory of Advanced Fiber Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Leo Tsz On Lee
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau 999078, China
| | - Shasha He
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhong Guo
- Center for Biological Science and Technology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Jingchao Li
- State Key Laboratory of Advanced Fiber Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
10
|
Soni S, Megha K, Shah VB, Shah AC, Bhatt S, Merja M, Khadela A. Unlocking the therapeutic potential of antibody-drug conjugates in targeting molecular biomarkers in non-small cell lung cancer. J Egypt Natl Canc Inst 2025; 37:6. [PMID: 40025313 DOI: 10.1186/s43046-025-00264-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/01/2025] [Indexed: 03/04/2025] Open
Abstract
Non-small cell lung cancer (NSCLC) is a prevalent and lethal malignancy worldwide, posing significant challenges to patient survival. Recent advancements in the field of oncology have introduced immunotherapy and targeted therapy as primary treatment modalities for NSCLC. However, the emergence of treatment resistance and relapse has impeded their long-term effectiveness. Antibody-drug conjugates (ADCs), a rapidly evolving class of anti-cancer agents, offer a promising solution to this issue by harnessing the specificity of monoclonal antibodies and the cytotoxic potency of drug payloads. ADCs have demonstrated notable potential in targeting both highly expressing and low-expressing malignant cells, with early-phase clinical trials yielding superior survival outcomes in NSCLC patients. This review comprehensively outlines the recent advancements in ADC-based strategies for managing NSCLC, supported by evidence from clinical trials. Additionally, the review delves into the oncogenic mechanisms of various biomarkers and offers insights into strategies for their detection in NSCLC patients. Lastly, a forward-looking perspective is provided to address the challenges associated with the utilization of ADCs in NSCLC therapy.
Collapse
Affiliation(s)
- Shruti Soni
- Department of Pharmacology L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Kaivalya Megha
- Department of Pharmacology L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Vraj B Shah
- Department of Pharmacology L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Aayushi C Shah
- Department of Pharmacology L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Shelly Bhatt
- Department of Pharmacology L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Manthan Merja
- Starlit Cancer Centre, Kothiya Hospital campus, Ahmedabad, Gujarat, 382350, India
| | - Avinash Khadela
- Department of Pharmacology L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, 380009, India.
- Present address: L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
11
|
Lavallée É, Roulet-Matton M, Giang V, Cardona Hurtado R, Chaput D, Gravel SP. Mitochondrial signatures shape phenotype switching and apoptosis in response to PLK1 inhibitors. Life Sci Alliance 2025; 8:e202402912. [PMID: 39658088 PMCID: PMC11632064 DOI: 10.26508/lsa.202402912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024] Open
Abstract
PLK1 inhibitors are emerging anticancer agents that are being tested as monotherapy and combination therapies for various cancers. Although PLK1 inhibition in experimental models has shown potent antitumor effects, translation to the clinic has been hampered by low antitumor activity and tumor relapse. Here, we report the identification of mitochondrial protein signatures that determine the sensitivity to approaches targeting PLK1 in human melanoma cell lines. In response to PLK1 inhibition or gene silencing, resistant cells adopt a pro-inflammatory and dedifferentiated phenotype, whereas sensitive cells undergo apoptosis. Mitochondrial DNA depletion and silencing of the ABCD1 transporter sensitize cells to PLK1 inhibition and attenuate the associated pro-inflammatory response. We also found that nonselective inhibitors of the p90 ribosomal S6 kinase (RSK) exert their antiproliferative and pro-inflammatory effects via PLK1 inhibition. Specific inhibition of RSK, on the other hand, is anti-inflammatory and promotes a program of antigen presentation. This study reveals the overlooked effects of PLK1 on phenotype switching and suggests that mitochondrial precision medicine can help improve the response to targeted therapies.
Collapse
Affiliation(s)
- Émilie Lavallée
- Faculté de Pharmacie, Université de Montréal, Montréal, Canada
| | | | - Viviane Giang
- Faculté de Pharmacie, Université de Montréal, Montréal, Canada
| | | | - Dominic Chaput
- Faculté de Pharmacie, Université de Montréal, Montréal, Canada
| | | |
Collapse
|
12
|
Wang S, Shen X, Chen G, Zhang W, Tan B. Application and development of CRISPR-Cas12a methods for the molecular diagnosis of cancer: A review. Anal Chim Acta 2025; 1341:343603. [PMID: 39880493 DOI: 10.1016/j.aca.2024.343603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025]
Abstract
Rapid, sensitive, and specific molecular detection methods are crucial for diagnosing, treating and prognosing cancer patients. With advancements in biotechnology, molecular diagnostic technology has garnered significant attention as a fast and accurate method for cancer diagnosis. CRISPR-Cas12a (Cpf1), an important CRISPR-Cas family member, has revolutionized the field of molecular diagnosis since its introduction. CRISPR-Cas technologies are a new generation of molecular tools that are widely used in the detection of pathogens, cancers, and other diseases. Liquid biopsy methods based on CRISPR-Cas12a have demonstrated remarkable success in cancer diagnosis, encompassing the detection of DNA mutations, DNA methylation, tumor-related viruses, and non-nucleic acid molecule identification. This review systematically discusses the developmental history, key technologies, and principles of CRISPR-Cas12a-based molecular diagnostic techniques and their applications in cancer diagnosis. This review has also discussed the future development directions of CRISPR-Cas12a, aiming for it to become a reliable new technology that can be used in clinical application.
Collapse
Affiliation(s)
- Sidan Wang
- Nanchang University Queen Mary School, China
| | - Xiaoyu Shen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Guanxiao Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Buzhen Tan
- Department of Obstetrics and Gynecology the Second Affiliated Hospital of Nanchang University, China.
| |
Collapse
|
13
|
Ge Y, Zhou Q, Pan F, Wang R. Utilizing Nanoparticles to Overcome Anti-PD-1/PD-L1 Immunotherapy Resistance in Non-Small Cell Lung cancer: A Potential Strategy. Int J Nanomedicine 2025; 20:2371-2394. [PMID: 40027868 PMCID: PMC11871910 DOI: 10.2147/ijn.s505539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/25/2025] [Indexed: 03/05/2025] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality globally, with non-small cell lung cancer (NSCLC) constituting 85% of cases. Immune checkpoint inhibitors (ICIs) represented by anti-programmed cell death protein 1 (PD-1)/ programmed cell death ligand 1 (PD-L1) have emerged as a promising frontier in cancer treatment, effectively extending the survival of patients with NSCLC. However, the efficacy of ICIs exhibits significant variability across diverse patient populations, with a substantial proportion showing poor responsiveness and acquired resistance in those initially responsive to ICIs treatments. With the advancement of nanotechnology, nanoparticles offer unique advantages in tumor immunotherapy, including high permeability and prolonged retention(EPR) effects, enhanced drug delivery and stability, and modulation of the inflammatory tumor microenvironment(TME). This review summarizes the mechanisms of resistance to ICIs in NSCLC, focusing on tumor antigens loss and defective antigen processing and presentation, failure T cell priming, impaired T cell migration and infiltration, immunosuppressive TME, and genetic mutations. Furthermore, we discuss how nanoparticles, through their intrinsic properties such as the EPR effect, active targeting effect, shielding effect, self-regulatory effect, and synergistic effect, can potentiate the efficacy of ICIs and reverse resistance. In conclusion, nanoparticles serve as a robust platform for ICIs-based NSCLC therapy, aiding in overcoming resistance challenges.
Collapse
Affiliation(s)
- Yuli Ge
- Department of Medical Oncology, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| | - Qiong Zhou
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210093, People’s Republic of China
| | - Fan Pan
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210093, People’s Republic of China
| | - Rui Wang
- Department of Medical Oncology, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| |
Collapse
|
14
|
Wang Z, Yue L, Min J, Liu H, Zhang Y, Du Y, Su R, Qi W, Wang Y. Control the Gene Delivery and Anticancer Efficacy of Peptides through Chiral Modulation. NANO LETTERS 2025; 25:2693-2701. [PMID: 39910410 DOI: 10.1021/acs.nanolett.4c05572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Incorporating d-amino acids into peptides can influence the intermolecular interactions of peptides, thus determining the morphology and functionality of self-assembled supramolecular structures. Based on this, we propose a modular chirality regulation strategy and designed four chiral peptides by adjusting the chirality of different functional modules. The chirality can control the coassembly of peptides and nucleic acids into virus-like vesicles with controlled diameters and enzyme-responsiveness. Compared with homochiral peptides, the heterochiral peptides with chirality inversion in their hydrophobic domain transformed into more hydrophobic assemblies in response to the highly expressed enzyme matrix metalloproteinase 7 (MMP-7) in cancer cells and showed higher endosomal membrane disruption activity. Moreover, the heterochiral peptides exhibit high efficiency and selectivity in delivering siRNA gene drugs and inhibiting cancer cell growth, achieving a mortality rate of 95% in cancer cells. These results provide a promising strategy for designing peptide-based nucleic acid delivery systems through chiral modulation.
Collapse
Affiliation(s)
- Zixuan Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Lei Yue
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Jiwei Min
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Huiye Liu
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Yexi Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Yaohui Du
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Rongxin Su
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wei Qi
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yuefei Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
15
|
Arandhara A, Bhuyan P, Das BK. Exploring lung cancer microenvironment: pathways and nanoparticle-based therapies. Discov Oncol 2025; 16:159. [PMID: 39934547 DOI: 10.1007/s12672-025-01902-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
Lung cancer stands out as a significant global health burden, with staggering incidence and mortality rates primarily linked to smoking and environmental carcinogens. The tumor microenvironment (TME) emerges as a critical determinant of cancer progression and treatment outcomes, comprising a complex interplay of cells, signaling molecules, and extracellular matrix. Through a comprehensive literature review, we elucidate current research trends and therapeutic prospects, aiming to advance our understanding of TME modulation strategies and their clinical implications for lung cancer treatment. Dysregulated immune responses within the TME can facilitate tumor evasion, limiting the efficacy of immune checkpoint inhibitors (ICI). Consequently, TME modulation strategies have become potential avenues to enhance therapeutic responses. However, conventional TME-targeted therapies often face challenges. In contrast, nanoparticle (NP)-based therapies offer promising prospects for improved drug delivery and reduced toxicity, leveraging the enhanced permeability and retention (EPR) effect. Despite NP design and delivery advancements, obstacles like poor tumor cell uptake and off-target effects persist, necessitating further optimization. This review underscores the pivotal role of TME in lung cancer management, emphasizing the synergistic potential of immunotherapy and nano-therapy.
Collapse
Affiliation(s)
- Arunabh Arandhara
- Assam Pharmacy Institute, Titabar, Amgurikhat, Jorhat, Assam, 785632, India
| | - Pallabi Bhuyan
- School of Pharmacy, The Assam Kaziranga University, Koraikhowa, Jorhat, Assam, 785006, India
| | - Bhrigu Kumar Das
- Department of Pharmacology, School of Pharmaceutical Sciences, Girijananda Chowdhury University, Azara, Guwahati, Assam, 781017, India.
| |
Collapse
|
16
|
Hu Y, Yang R, Ni S, Song Z. Bibliometric analysis of targeted immunotherapy for osteosarcoma-current knowledge, hotspots and future perspectives. Front Immunol 2025; 15:1485053. [PMID: 39995821 PMCID: PMC11847827 DOI: 10.3389/fimmu.2024.1485053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/24/2024] [Indexed: 02/26/2025] Open
Abstract
Objective The objective of this study is to conduct a bibliometric analysis on examining the current condition, areas of interest, and rising trends of immunotherapy for osteosarcoma (ITFOS), as well as its importance in associated research domains. Methods An extensive collection of academic papers on the use of ITFOS was obtained from the Web of Science between January 1, 2000 and October 20, 2023. Then, using a variety of tools like HisCite, VOSviewer, CiteSpace, and the bibliometrix package, a bibliometric study was carried out. This study included the collection of information on country, institution, author, journal, and keywords. Results A comprehensive analysis was undertaken on a total of 616 publications obtained from 247 journals, encompassing the contributions of 3725 authors affiliated with 831 institutes spanning across 43 countries/regions. Notably, China exhibited the highest quantity of published 277 (44.99%) articles on ITFOS. The most productive institution was Zhejiang University, with 26 (4.22%) publications. The author with the highest publication output was Tsukahara, Tomohide from Japan with 15 (2.44%) publications. The article with the most citation was "DOI: 10.1200/JCO.2014.58.0225". Frontiers in Immunology demonstrated the highest level of productivity, having published a total of 31 (5.03%) articles. The most frequently used were "osteosarcoma," "immunotherapy," and "cancer,". Meanwhile, "sequencing", "prognostic signature" and "immune microenvironment" have been identified as the research frontiers for the forthcoming years. Conclusion This paper provides a thorough evaluation of current research trends and advancements in ITFOS. It includes relevant research findings and emphasizes collaborative efforts among authors, institutions, and countries.
Collapse
Affiliation(s)
- Yunxiang Hu
- Department of Orthopaedic Trauma, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- School of Graduates, Dalian Medical University, Dalian, Liaoning, China
| | - Rui Yang
- School of Graduates, Dalian Medical University, Dalian, Liaoning, China
| | - Shuai Ni
- Department of Orthopaedic Trauma, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- School of Graduates, Dalian Medical University, Dalian, Liaoning, China
| | - Zefeng Song
- School of Graduates, Dalian University of Technology, Dalian, Liaoning, China
| |
Collapse
|
17
|
Liu X, Liu X, Luo X, Zhu M, Liu N, Li J, Zhang Q, Zou C, Wu Y, Cao Z, Ma S, Wang W, Yang G, Gu J, Liu W, Li M, Yin A, He Y, Lin W. Synergistic strategies for glioblastoma treatment: CRISPR-based multigene editing combined with immune checkpoint blockade. J Nanobiotechnology 2025; 23:94. [PMID: 39920725 PMCID: PMC11806770 DOI: 10.1186/s12951-025-03112-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/12/2025] [Indexed: 02/09/2025] Open
Abstract
Glioblastoma (GBM) is a primary brain tumor known for its high levels of aggressiveness and resistance to current treatments such as radiotherapy and chemotherapy. As a result, there is a pressing need for innovative therapeutic approaches to combat GBM. Thus, we have developed an engineered multifunctional extracellular vesicle (EV) delivery system that offers an "all-in-one" strategy for GBM therapy. Our approach involved the use of genetic engineering to the long-lasting production of PD-1 and the brain-specific peptide angiopep-2 on the surface of EVs. These modified EVs were then utilized to rejuvenate exhausted CD8+ T cells blocking PD-L1, resulting in significant therapeutic benefits for GBM treatment. Furthermore, the EVs contained Cas9 protein and sgRNA for precise and minimally invasive gene therapy, which addressing the key barriers associated with in vivo CRISPR‒Cas9 gene editing treatment. The multigene editing of EVs resulted in efficient intratumor multisite gene editing (PLK1: 58.6%, VEGF: 52.7%), leading to the successful apoptosis of tumor cells in vivo and demonstrating an antiangiogenic effect. This research introduces a promising universal platform for combining immune checkpoint blockade therapy with gene editing treatment.
Collapse
Affiliation(s)
- Xiaolin Liu
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
- Department of Neurosurgery, Xijing Hospital, Xi'an, China
| | - Xiao Liu
- Department of Neurosurgery, Xijing Hospital, Xi'an, China
| | - Xiaonan Luo
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Maorong Zhu
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Nannan Liu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Xi'an, China
| | - Juan Li
- Department of Neurosurgery, Xijing Hospital, Xi'an, China
| | - Qi Zhang
- Department of Neurosurgery, Xijing Hospital, Xi'an, China
| | - Cheng Zou
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Yuxin Wu
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Zhengcong Cao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Shuangxin Ma
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Weizhong Wang
- Department of Neurosurgery, Xijing Hospital, Xi'an, China
| | - Guangzhao Yang
- Department of Neurosurgery, Xijing Hospital, Xi'an, China
| | - Jintao Gu
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Wei Liu
- Department of Neurosurgery, Xijing Hospital, Xi'an, China
| | - Meng Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Anan Yin
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Xi'an, China.
| | - Yalong He
- Department of Neurosurgery, Xijing Hospital, Xi'an, China.
| | - Wei Lin
- Department of Neurosurgery, Xijing Hospital, Xi'an, China.
- Department of Aviation Medicine, Xijing Hospital, Xi'an, China.
| |
Collapse
|
18
|
Fu J, Yu L, Wang Z, Chen H, Zhang S, Zhou H. Advances in controlled release drug delivery systems based on nanomaterials in lung cancer therapy: A review. Medicine (Baltimore) 2025; 104:e41415. [PMID: 39928802 PMCID: PMC11813027 DOI: 10.1097/md.0000000000041415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 02/12/2025] Open
Abstract
Lung cancer is one of the most common malignant tumors, with the highest morbidity and mortality rates. Currently, significant progress has been made in the treatment of lung cancer, which has effectively improved the overall prognosis of patients, but there are still many problems, such as tumor recurrence, drug resistance, and serious complications. With the rapid development of nanotechnology in the field of medicine, it breaks through the inherent limitations of traditional cancer treatments and shows great potential in tumor treatment. To address the drawbacks of traditional therapeutic means, nanodrug delivery systems can release drugs under specific conditions, thus realizing tumor-targeted drug delivery, which improves the antitumor effect of drugs. In this paper, we review the current treatments for lung cancer and further discuss the advantages and common carriers of nanodrug delivery systems. We also summarize the latest research progress of nanotargeted drug delivery systems in the field of lung cancer therapy, discuss the problems faced in their clinical translation, and look forward to future development opportunities and directions.
Collapse
Affiliation(s)
- Jiang Fu
- Department of Thoracic Surgery, Suining Central Hospital, Suining, China
- School of Medical and Life Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Yu
- Department of Physical Examination, Suining Central Hospital, Suining, China
| | - Zixu Wang
- Department of Thoracic Surgery, Suining Central Hospital, Suining, China
- School of Medical and Life Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haoyu Chen
- Department of Thoracic Surgery, Suining Central Hospital, Suining, China
| | - Song Zhang
- Department of Thoracic Surgery, Suining Central Hospital, Suining, China
| | - Haining Zhou
- Department of Thoracic Surgery, Suining Central Hospital, Suining, China
- School of Medical and Life Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| |
Collapse
|
19
|
Srinivasarao DA, Shah S, Famta P, Vambhurkar G, Jain N, Pindiprolu SKSS, Sharma A, Kumar R, Padhy HP, Kumari M, Madan J, Srivastava S. Unravelling the role of tumor microenvironment responsive nanobiomaterials in spatiotemporal controlled drug delivery for lung cancer therapy. Drug Deliv Transl Res 2025; 15:407-435. [PMID: 39037533 DOI: 10.1007/s13346-024-01673-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
Design and development of efficient drug delivery technologies that impart site-specificity is the need of the hour for the effective treatment of lung cancer. The emergence of materials science and nanotechnology partially helped drug delivery scientists to achieve this objective. Various stimuli-responsive materials that undergo degradation at the pathological tumor microenvironment (TME) have been developed and explored for drug delivery applications using nanotechnological approaches. Nanoparticles (NPs), owing to their small size and high surface area to volume ratio, demonstrated enhanced cellular internalization, permeation, and retention at the tumor site. Such passive accumulation of stimuli-responsive materials helped to achieve spatiotemporally controlled and targeted drug delivery within the tumors. In this review, we discussed various stimuli-physical (interstitial pressure, temperature, and stiffness), chemical (pH, hypoxia, oxidative stress, and redox state), and biological (receptor expression, efflux transporters, immune cells, and their receptors or ligands)-that are characteristic to the TME. We mentioned an array of biomaterials-based nanoparticulate delivery systems that respond to these stimuli and control drug release at the TME. Further, we discussed nanoparticle-based combinatorial drug delivery strategies. Finally, we presented our perspectives on challenges related to scale-up, clinical translation, and regulatory approvals.
Collapse
Affiliation(s)
- Dadi A Srinivasarao
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India.
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Ganesh Vambhurkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Naitik Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Sai Kiran S S Pindiprolu
- Aditya Pharmacy College, Surampalem, 533 437, Andhra Pradesh, India
- Jawaharlal Nehru Technological University, Kakinada, 533 003, Andhra Pradesh, India
| | - Anamika Sharma
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), 500037, Telangana, Hyderabad, India
| | - Rahul Kumar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), 500037, Telangana, Hyderabad, India
| | - Hara Prasad Padhy
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), 500037, Telangana, Hyderabad, India
| | - Meenu Kumari
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), 500037, Telangana, Hyderabad, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India.
| |
Collapse
|
20
|
Li L, Xu Q, Zhang X, Jiang Y, Zhang L, Guo J, Liu H, Jiang B, Li S, Peng Q, Jiang N, Wang J. AIEgen-self-assembled nanoparticles with anti-PD-L1 antibody functionalization realize enhanced synergistic photodynamic therapy and immunotherapy against malignant melanoma. Mater Today Bio 2025; 30:101387. [PMID: 39742147 PMCID: PMC11683329 DOI: 10.1016/j.mtbio.2024.101387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/17/2024] [Accepted: 12/05/2024] [Indexed: 01/03/2025] Open
Abstract
Immune checkpoint inhibitors (ICIs) become integral in clinical practice, yet their application in cancer therapy is constrained by low overall response rates and the primary resistance of cancers to ICIs. Herein, this study proposes aggregation-induced emission (AIE)-based nanoparticles (NPs) for a more effective and synergistic approach combining immunotherapy and photodynamic therapy (PDT) to achieve higher responses than anti-PD-L1 monotherapy. The TBP@aPD-L1 NPs are constructed by functionalizing azide group-modified TBP-2 (TBP-N3) with anti-PD-L1 antibodies via the DBCO-S-S-PEG2000-COOH linker. The anti-PD-L1 target the tumor cells and promote the TBP-N3 accumulation in tumors for enhanced PDT. Notably, the TBP-N3, featuring aggregation-induced emission, boosts reactive oxygen species (ROS) generation through both type I and type II processes for enhanced PDT. The TBP@aPD-L1-mediated PDT induces more powerful effects of direct tumor cell-killing and further elicits effective immunogenic cell death (ICD), which exerts anti-tumor immunity by activating T cells for ICI treatment and reshapes the tumor immune microenvironment (TIME), thereby enhancing the efficacy of PD-L1 blockade of anti-PD-L1. Consequently, TBP@aPD-L1 NPs demonstrated significantly enhanced inhibition of tumor growth in the mouse model of malignant melanoma (MM). Our NPs act as a facile and effective drug delivery platform for enhanced immunotherapy combined with enhanced PDT in treating MM.
Collapse
Affiliation(s)
- Lu Li
- Department of Immunology, School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, PR China
| | - Qing Xu
- Department of Immunology, School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xiuzhen Zhang
- Hunan University of Medicine General Hospital, Hunan, 418000, PR China
| | - Yuan Jiang
- Department of Immunology, School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, PR China
| | - La Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Jiao Guo
- School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, PR China
| | - Haichuan Liu
- School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, PR China
| | - Bin Jiang
- School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, PR China
| | - Shenglong Li
- School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, PR China
| | - Qiling Peng
- Bijie Municipal Health Bureau, Guizhou, 551700, PR China
| | - Ning Jiang
- Department of Pathology, School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, PR China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, 400016, PR China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Jianwei Wang
- Department of Immunology, School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, PR China
| |
Collapse
|
21
|
Liao S, Li X, Lu Y, Luo K. Nanomedicine in Immunotherapy for Non-Small Cell Lung Cancer: Applications and Perspectives. SMALL METHODS 2025:e2401783. [PMID: 39871783 DOI: 10.1002/smtd.202401783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/17/2025] [Indexed: 01/29/2025]
Abstract
Non-small cell lung cancer (NSCLC) has a strikingly high incidence rate globally. Although immunotherapy brings a great breakthrough in its clinical treatment of NSCLC, significant challenges still need to be overcome. The development of novel multi-functional nanomedicines in the realm of tumor immunotherapy offers promising opportunities for NSCLC patients, as nanomedicines exhibit significant advantages, including specific targeting of tumor cells, improved drug bioavailability, reduced systemic toxicity, and overcoming of immune resistance. In this review, the core features and current clinical status of strategies for NSCLC immunotherapy including immune checkpoint blockade, antibody-drug conjugates, cell engagers, adoptive cells, and cancer vaccines, are surveyed. Particular emphasis is placed on the recent development of nanomedicines that boost these strategies. Nanomedicine can provide novel perspectives for NSCLC immunotherapy.
Collapse
Affiliation(s)
- Shuangsi Liao
- Division of Thoracic Tumor Multimodality Treatment, Department of Radiation Oncology, Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Cancer Center, Breast Center, Institute of Breast Health Medicine, Laboratory of Clinical Cell Therapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoling Li
- Division of Thoracic Tumor Multimodality Treatment, Department of Radiation Oncology, Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Cancer Center, Breast Center, Institute of Breast Health Medicine, Laboratory of Clinical Cell Therapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - You Lu
- Division of Thoracic Tumor Multimodality Treatment, Department of Radiation Oncology, Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Cancer Center, Breast Center, Institute of Breast Health Medicine, Laboratory of Clinical Cell Therapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kui Luo
- Division of Thoracic Tumor Multimodality Treatment, Department of Radiation Oncology, Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Cancer Center, Breast Center, Institute of Breast Health Medicine, Laboratory of Clinical Cell Therapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
22
|
Jiang W, Wang P, Huang L. Upregulation of phosphatase and tensin homolog deleted on chromosome ten inhibits lung cancer cell proliferation by suppressing the oncogene polo-like kinase 1 and inducing autophagy. Cytojournal 2025; 22:10. [PMID: 39958887 PMCID: PMC11829310 DOI: 10.25259/cytojournal_146_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/13/2024] [Indexed: 02/18/2025] Open
Abstract
Objective Lung cancer is one of the main causes of cancer-related mortality globally, and it poses considerable therapeutic challenges. Polo-like kinase 1 (PLK1) exhibits upregulation in lung cancer, and PLK1 silencing promotes autophagy in lung cancer cells, which inhibits tumor progression. The phosphatase and tensin homolog deleted on chromosome ten (PTEN) acts as a tumor suppressor gene. This study aimed to investigate whether PTEN regulates autophagy and inhibits lung cancer-cell proliferation by suppressing PLK1. Material and Methods In this study, we evaluated cell proliferation by silencing or overexpressing PLK1 and PTEN in A549 cells through 5-ethynyl-2'-deoxyuridine labeling and cloning experiments. The autophagy levels were detected through transmission electron microscopy, real-time quantitative polymerase chain reaction, and Western blot. Finally, the results of in vitro experiment were further verified using an in vivo xenograft tumor animal model. Results The upregulation of PTEN suppressed PLK1 expression in lung cancer cells and reduced their proliferation rate. In addition, the overexpression of PTEN has been associated with the growth of lung cancer tumors. In parallel, the levels of autophagy of lung cancer cells rose in response to PTEN upregulation in vivo and in vitro. Conclusion This study revealed that PTEN promotes the autophagy of lung cancer cells and inhibits cell proliferation and tumor growth by suppressing PLK1 expression. This finding provides a new strategy for lung cancer treatment by utilizing the autophagy-regulating effect of PTEN to inhibit lung cancer growth by targeting PLK1.
Collapse
Affiliation(s)
- Weizhou Jiang
- Department of Pulmonary Disease, Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong, China
| | - Pei Wang
- Department of Pulmonary Disease, Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong, China
| | - Limin Huang
- Department of Oncology, Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong, China
| |
Collapse
|
23
|
Li C, Lin W, Wang W, Wu J, Luo S, Chen L, Wu R, Shen Z, Wu ZS. Folding an RCA Scaffold into an Intelligent Coiled Nanosnake for Precise/Synergistic RNAi-/Chemotherapy of Cancer. Anal Chem 2025; 97:1107-1116. [PMID: 39783918 DOI: 10.1021/acs.analchem.4c03437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
An RCA product is a promising scaffold for the construction of DNA nanostructures, but so far, there is no RCA scaffold-based dynamic reconfigurable nanorobot for biological applications. In this contribution, we develop an intracellular stimuli-responsive reconfigurable coiled DNA nanosnake (N-Snake) by using incomplete aptamer-functionalized (A) DNA tetrahedrons (T) to fold a long tandemly repetitive DNA strand synthesized by rolling circle amplification reaction (R) with the help of palindromic fragment (P). A DNA-assembled product, ARTP, including spiked aptamers, can retain the structural integrity even if exposed to fetal bovine serum (FBS) for 24 h and displays substantially enhanced target molecule-dependent cellular internalization efficiency. ARTP contains tetrahedral containers and linear containers, so that there are 500 doxorubicins (DOXs) and 12.5 siRNAs per ARTP. Moreover, ARTP can precisely transport anticancer drugs to cancerous sites and controllably release via the structural reconfiguration upon intracellular stimuli, almost 100% inhibiting tumor growth without detectable systemic toxicity owing to the synergistic RNAi-/Chemotherapy. Apparently, coiled N-snake, DOX/siPlk1-loaded ARTP, can specifically enter tumor cells, uncoil upon intracellular stimuli, and attack the cells from the inside, exerting precise cancer therapy.
Collapse
Affiliation(s)
- Congcong Li
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Ningde Road, Qingdao 266073, China
| | - Wenqing Lin
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Weijun Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jingting Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Shasha Luo
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Linhuan Chen
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Rong Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhifa Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Zai-Sheng Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
24
|
Wu S, Liu M, Wang X, Wang S. The histone lactylation of AIM2 influences the suppression of ferroptosis by ACSL4 through STAT5B and promotes the progression of lung cancer. FASEB J 2025; 39:e70308. [PMID: 39792364 DOI: 10.1096/fj.202402139r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/03/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025]
Abstract
Lung cancer progression is characterized by intricate epigenetic changes that impact critical metabolic processes and cell death pathways. In this study, we investigate the role of histone lactylation at the AIM2 locus and its downstream effects on ferroptosis regulation and lung cancer progression. We utilized a combination of biochemical assays, including chromatin immunoprecipitation (ChIP), quantitative real-time PCR (qRT-PCR), and western blotting to assess histone lactylation levels and gene expression. To evaluate the functional consequences, we employed gain- and loss-of-function approaches using shikonin treatment and siRNA knockdowns in lung cancer cell lines. Additionally, we assessed the impact of these interventions on ferroptosis markers and lung cancer cell viability. Our results reveal that increased histone lactylation at the AIM2 locus correlates with enhanced transcriptional activity of AIM2, leading to reduced ferroptosis through modulation of ACSL4 and STAT5B. Furthermore, we demonstrate that shikonin, a natural naphthoquinone derivative, effectively downregulates PKM2 and AIM2 expression, thereby inhibiting lung cancer progression by counteracting the effects of histone lactylation on AIM2 expression. These findings highlight the importance of histone lactylation in regulating AIM2 expression and ferroptosis in lung cancer cells. They also suggest that targeting PKM2 and AIM2, particularly through the use of shikonin, could be a promising strategy for developing novel therapies against lung cancer.
Collapse
Affiliation(s)
- Songze Wu
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China
| | - Man Liu
- Department of Cardiology, CCU, West China Hospital, Sichuan University, Chengdu, China
| | - Xu Wang
- Department of Hepatobiliary Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Hepatobiliary Surgery, Chinese Academy of Science Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Shan Wang
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Cardiovascular Ultrasound & Noninvasive Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
25
|
Liu Y, Tan H, Dai J, Lin J, Zhao K, Hu H, Zhong C. Targeting macrophages in cancer immunotherapy: Frontiers and challenges. J Adv Res 2025:S2090-1232(24)00622-2. [PMID: 39778768 DOI: 10.1016/j.jare.2024.12.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/28/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Cancer immunotherapy has emerged as a groundbreaking approach in cancer treatment, primarily realized through the manipulation of immune cells, notably T cell adoption and immune checkpoint blockade. Nevertheless, the manipulation of T cells encounters formidable hurdles. Macrophages, serving as the pivotal link between innate and adaptive immunity, play crucial roles in phagocytosis, cytokine secretion, and antigen presentation. Consequently, macrophage-targeted therapies have garnered significant attention. AIM OF REVIEW We aim to provide the most cutting-edge insights and future perspectives for macrophage-targeted therapies, fostering the development of novel and effective cancer treatments. KEY SCIENTIFIC CONCEPTS OF REVIEW To date, the forefront strategies for macrophage targeting encompass: altering their plasticity, harnessing CAR-macrophages, and targeting phagocytosis checkpoints. Macrophages are characterized by their remarkable diversity and plasticity, offering a unique therapeutic target. In this context, we critically analyze the innovative strategies aimed at transforming macrophages from their M2 (tumor-promoting) to M1 (tumor-suppressing) phenotype. Furthermore, we delve into the design principles, developmental progress, and advantages of CAR-macrophages. Additionally, we illuminate the challenges encountered in targeting phagocytosis checkpoints on macrophages and propose potential strategies to overcome these obstacles.
Collapse
Affiliation(s)
- Yu'e Liu
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Department of Pediatric Hematology-Oncology, Boston Children's Hospital, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Huabing Tan
- Department of Infectious Diseases, Hepatology Institute, Renmin Hospital, Hubei University of Medicine, Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, Hubei Province 442000, China; General internal medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430048, China
| | - Jingyuan Dai
- School of Computer Science and Information Systems, Northwest Missouri State University, Maryville, MO 64468, USA
| | - Jianghua Lin
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Kaijun Zhao
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China.
| | - Haibo Hu
- Department of Cardiothoracic Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, China.
| | - Chunlong Zhong
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China.
| |
Collapse
|
26
|
Lin ZY, Song Q, Xu K. Drug Delivery System for Cancer Immunotherapy: Potential Roles, Challenge and Recent Advances. Technol Cancer Res Treat 2025; 24:15330338251338390. [PMID: 40270096 PMCID: PMC12035301 DOI: 10.1177/15330338251338390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/08/2025] [Accepted: 04/11/2025] [Indexed: 04/25/2025] Open
Abstract
Immunotherapy has emerged as a pivotal advancement in oncological therapeutics, representing a paradigm shift from conventional treatment modalities including surgery, radiotherapy, and chemotherapy. This innovative approach demonstrates considerable clinical potential through its capacity to enhance systemic anti-tumor responses via active or passive immunomodulation. Compared to traditional therapies, immunotherapy offers distinct advantages such as broad applicability, rapid therapeutic onset, and reduced adverse effects. However, critical challenges persist in clinical implementation, particularly concerning treatment safety and efficacy optimization. Current limitations, including drug off-target effects and biological delivery barriers, frequently result in suboptimal therapeutic outcomes and severe complications such as autoimmune disorders and nonspecific inflammation. Recently advancements in drug delivery systems (DDS) present transformative solutions to these challenges. Sophisticated DDS platforms enable precise spatiotemporal delivery of tumor antigens, immunotherapeutic agents, and immunostimulatory molecules, thereby achieving targeted modulation of diverse immune cell populations. This technological innovation not only enhances therapeutic efficacy but also significantly mitigates adverse reactions, while facilitating synergistic combinations with conventional cancer treatments. In this review, we outline the application of new drug delivery platforms in major malignancies (including but not limited to melanoma, non-small cell lung cancer, hormone receptor-positive breast cancer, and hepatocellular carcinoma). We further propose evidence-based optimization strategies for next-generation delivery platforms, aiming to bridge the gap between preclinical development and clinical implementation in cancer immunotherapy.
Collapse
Affiliation(s)
- Zi-Yue Lin
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qian Song
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Kai Xu
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
27
|
Lan X, Wang X, Shao L, An J, Rong S, Yang X, Sun H, Liang Y, Wang R, Xie S, Li Y. Effect of Transferrin-Modified Fe 3O 4 Nanoparticle Targeted Delivery miR-15a-5p Combined With Photothermal Therapy on Lung Cancer. Thorac Cancer 2025; 16:e15497. [PMID: 39604129 PMCID: PMC11729913 DOI: 10.1111/1759-7714.15497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/18/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Existing studies have shown that transferrin receptor (TfR) is highly expressed on the surface of lung cancer cells, and nanoparticles (NPs) have been widely used as delivery vehicles. The aim of this study was to investigate the effect of the targeted delivery of Fe3O4 NPs modified with transferrin (Tf) compared with photothermal treatment for lung cancer. METHODS The morphology and properties of Fe3O4 NPs modified with Tf were tested by internal morphological characterization experiments including transmission electron microscopy, particle size meter infrared spectrometer and other experiments. The delivery of materials was investigated by cell proliferation and apoptosis experiments, and western blot experiment was used to detect yes-associated protein 1(YAP1) protein expression changes after delivering miR-15a-5p. In addition, animal models were constructed to further explore the targeting properties of the material. RESULTS The results demonstrated that the nanomaterial has good stability and targeting properties. Meanwhile, we also discovered that the miR-15a-5p carried by NPs can inhibit cell growth after its entry to the lung cancer cells. The effect became more evident when the nanomaterials were assisted with laser therapy, as verified by in vivo and in vitro experiments. In terms of the related mechanism, miR-15a-5p inhibited YAP1 expression, which affected cell proliferation and apoptosis. CONCLUSION In this study, Fe3O4 NPs modified with Tf delivered miR-15a-5p in combination with photothermal therapy for lung cancer. In future research, the targeted delivery of Tf and the photothermal synergy of nanomaterials will provide a theoretical basis for cancer treatment.
Collapse
Affiliation(s)
- Xiaoxu Lan
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiShandongPeople's Republic of China
| | - Xiao Wang
- College of Biological and Chemical Engineering, Qilu Institute of TechnologyJinanShandongPeople's Republic of China
| | - Liying Shao
- Central LaboratoryWeihai Municipal HospitalWeihaiShandongPeople's Republic of China
| | - Jiayue An
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiShandongPeople's Republic of China
| | - Simin Rong
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiShandongPeople's Republic of China
| | - Xiancong Yang
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiShandongPeople's Republic of China
| | - Hongfang Sun
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiShandongPeople's Republic of China
| | - Yan Liang
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiShandongPeople's Republic of China
| | - Ranran Wang
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical UniversityYantaiShandongPeople's Republic of China
| | - Shuyang Xie
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiShandongPeople's Republic of China
| | - Youjie Li
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiShandongPeople's Republic of China
| |
Collapse
|
28
|
Zhang S, Wang H. Targeting the lung tumour stroma: harnessing nanoparticles for effective therapeutic interventions. J Drug Target 2025; 33:60-86. [PMID: 39356091 DOI: 10.1080/1061186x.2024.2410462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/27/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024]
Abstract
Lung cancer remains an influential global health concern, necessitating the development of innovative therapeutic strategies. The tumour stroma, which is known as tumour microenvironment (TME) has a central impact on tumour expansion and treatment resistance. The stroma of lung tumours consists of numerous cells and molecules that shape an environment for tumour expansion. This environment not only protects tumoral cells against immune system attacks but also enables tumour stroma to attenuate the action of antitumor drugs. This stroma consists of stromal cells like cancer-associated fibroblasts (CAFs), suppressive immune cells, and cytotoxic immune cells. Additionally, the presence of stem cells, endothelial cells and pericytes can facilitate tumour volume expansion. Nanoparticles are hopeful tools for targeted drug delivery because of their extraordinary properties and their capacity to devastate biological obstacles. This review article provides a comprehensive overview of contemporary advancements in targeting the lung tumour stroma using nanoparticles. Various nanoparticle-based approaches, including passive and active targeting, and stimuli-responsive systems, highlighting their potential to improve drug delivery efficiency. Additionally, the role of nanotechnology in modulating the tumour stroma by targeting key components such as immune cells, extracellular matrix (ECM), hypoxia, and suppressive elements in the lung tumour stroma.
Collapse
Affiliation(s)
- Shushu Zhang
- Cancer Center (Oncology) Department, the Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Hui Wang
- Cancer Center (Oncology) Department, the Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
29
|
Sanati M, Figueroa-Espada CG, Han EL, Mitchell MJ, Yavari SA. Bioengineered Nanomaterials for siRNA Therapy of Chemoresistant Cancers. ACS NANO 2024; 18:34425-34463. [PMID: 39666006 DOI: 10.1021/acsnano.4c11259] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Chemoresistance remains a long-standing challenge after cancer treatment. Over the last two decades, RNA interference (RNAi) has emerged as a gene therapy modality to sensitize cancer cells to chemotherapy. However, the use of RNAi, specifically small-interfering RNA (siRNA), is hindered by biological barriers that limit its intracellular delivery. Nanoparticles can overcome these barriers by protecting siRNA in physiological environments and facilitating its delivery to cancer cells. In this review, we discuss the development of nanomaterials for siRNA delivery in cancer therapy, current challenges, and future perspectives for their implementation to overcome cancer chemoresistance.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand 97178, Iran
| | - Christian G Figueroa-Espada
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Emily L Han
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Saber Amin Yavari
- Department of Orthopedics, University Medical Center Utrecht, 3584 Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, 3584 Utrecht, The Netherlands
| |
Collapse
|
30
|
Peng F, Wang Z, Qiu Z, Zhang W, Zhao Y, Li C, Shi B. Nanomedicine in cardiology: Precision drug delivery for enhanced patient outcomes. Life Sci 2024; 358:123199. [PMID: 39488265 DOI: 10.1016/j.lfs.2024.123199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Cardiovascular diseases as a primary driver of global morbidity and mortality. Despite the array of therapeutic avenues in clinical practice, predominantly pharmaceutical and surgical interventions, they often fall short of fully addressing the clinical exigencies of cardiovascular patients. In recent years, nanocarriers have shown great potential in the treatment and diagnose of cardiovascular diseases. They can enhance drug targeting and bioavailability while reducing side effects. Additionally, by improving imaging and detection technologies, they enhance early diagnosis and disease monitoring capabilities. These advancements in technology offer new solutions for precision medicine in cardiovascular diseases, advancing treatment efficacy and disease management. Crafted from biomaterials, metals, or their amalgamations, these nanocarriers approximate the dimensions of biologically active molecules like proteins and DNA. Cardiovascular nanomedicine, in its infancy, has only recently burgeoned. Yet, with continual refinement in nanocarrier architecture, drug delivery mechanisms, and therapeutic outcomes, the potential of nanomedical technologies in clinical contexts becomes increasingly evident. This review aims to consolidate the strides made in nanocarrier research concerning the treatment and diagnose of cardiovascular diseases.
Collapse
Affiliation(s)
- Fengli Peng
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zimu Wang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Zhimei Qiu
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wei Zhang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yongchao Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Chaofu Li
- Department of cardiology, Chongqing University Central Hospital (Chongqing Emergency Medical Center), College of Bioengineering, Chongqing University, Chongqing, China.
| | - Bei Shi
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
31
|
Tanito K, Nii T, Wakuya K, Hamabe Y, Yoshimi T, Hosokawa T, Kishimura A, Mori T, Katayama Y. Inflammation-Triggering Engineered Macrophages (MacTriggers) Enhance Reactivity of Immune Checkpoint Inhibitor Only in Tumor Tissues. Cancers (Basel) 2024; 16:3787. [PMID: 39594742 PMCID: PMC11592725 DOI: 10.3390/cancers16223787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Background: We have previously reported engineered macrophages (MacTriggers) that can accelerate the release of tumor necrosis factor-α in response to M2 polarization. MacTriggers are characterized by two original characteristics of macrophages: (1) migration to tumors; and (2) polarization to the M2 phenotype in tumors. Intravenously administered MacTriggers efficiently accumulated in the tumors and induced tumor-specific inflammation. This study reports a novel methodology for enhancing the anti-tumor effects of immune checkpoint inhibitors (ICIs). Results: In this study, we newly found that the intravenously administered MacTriggers in BALB/c mouse models upregulated the expression levels of immune checkpoint proteins, such as programmed cell death (PD)-1 in CD8+ T cells and PD-ligand 1 (PD-L1) in cancer cells and macrophages. Consequently, in two ICI-resistant tumor-inoculated mouse models, the combined administration of MacTrigger and anti-PD-1 antibody (aPD-1) synergistically inhibited tumor growth, whereas monotherapy with aPD-1 did not exhibit anti-tumor effects. This synergistic effect was mainly from aPD-1 enhancing the tumor-attacking ability of CD8+ T cells, which could infiltrate into the tumors following MacTrigger treatment. Importantly, no side effects were observed in normal tissues, particularly in the liver and spleen, indicating that the MacTriggers did not enhance the aPD-1 reactivity in normal tissues. This specificity was from the MacTriggers not polarizing to the M2 phenotype in normal tissues, thereby avoiding inflammation and increased PD-1/PD-L1 expression. MacTriggers could enhance aPD-1 reactivity only in tumors following tumor-specific inflammation induction. Conclusions: Our findings suggest that the MacTrigger and aPD-1 combination therapy is a novel approach for potentially overcoming the current low ICI response rates while avoiding side effects.
Collapse
Affiliation(s)
- Kenta Tanito
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Teruki Nii
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kanae Wakuya
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yusuke Hamabe
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Toma Yoshimi
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takanatsu Hosokawa
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Akihiro Kishimura
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Research Center for Molecular Systems, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takeshi Mori
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshiki Katayama
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Research Center for Molecular Systems, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Biomedical Engineering, Chung Yuan Christian University, 200 Chung Pei Rd., Chung Li 32023, Taiwan
| |
Collapse
|
32
|
Lara P, Quiñonero F, Ortiz R, Prados J, Melguizo C. Nanoparticles Bounded to Interfering RNAs as a Therapy for Pancreatic Cancer: A Systematic Review. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2013. [PMID: 39510122 DOI: 10.1002/wnan.2013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 11/15/2024]
Abstract
Pancreatic cancer is one of the tumors with poor prognosis and low survival due to late diagnosis, high resistance, and very limited effective therapeutic options. Thus, new pharmacological treatments are necessary to improve the prognosis of patients. In this context, nanoparticles represent an efficient system for transporting and administering therapeutic molecules. Furthermore, siRNA can be used in cancer treatment to selectively inhibit the expression of any target gene. Therefore, nanoparticles associated with siRNA have been tested as a new therapeutic strategy to solve the pancreatic cancer treatment failure in the clinical setting. The current article presents a systematic revision of the literature of the last 10 years in which nanoparticles loading siRNA are used in pancreatic cancer. This research was carried out in three databases (PubMed, Scopus, and Web of Science) obtaining 164 articles from which 37 were selected. Our results show an overall view of the high effectiveness of this new therapy that combines nanoparticles with genetic therapy in pancreatic cancer suggesting that siRNA-based medicines will likely open up a new therapeutic era in the treatment of this type of tumors.
Collapse
Affiliation(s)
- Patricia Lara
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), Granada, Spain
| | - Francisco Quiñonero
- Instituto de Investigación Biosanitaria de Granada, (Ibs.GRANADA), Granada, Spain
| | - Raul Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, (Ibs.GRANADA), Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, (Ibs.GRANADA), Granada, Spain
- Department of Anatomy and Embryology, University of Granada, Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, (Ibs.GRANADA), Granada, Spain
- Department of Anatomy and Embryology, University of Granada, Granada, Spain
| |
Collapse
|
33
|
Liu H, Zhang T, Zheng M, Xie Z. Tumor associated antigens combined with carbon dots for inducing durable antitumor immunity. J Colloid Interface Sci 2024; 673:594-606. [PMID: 38897061 DOI: 10.1016/j.jcis.2024.06.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Although therapeutic nanovaccines have made a mark in cancer immunotherapy, the shortcomings such as poor homing ability of lymph nodes (LNs), low antigen presentation efficiency and low antitumor efficacy have hindered their clinical transformation. Accordingly, we prepared advanced nanovaccines (CMB and CMC) by integrating carbon dots (CDs) with tumor-associated antigens (B16F10 and CT26). These nanovaccines could forwardly target tumors harbouring LNs, induce strong immunogenicity for activating cytotoxic T cells (CTLs), thereby readily eliminating tumor cells and suppressing primary/distal tumor growth. This work provides a promising therapeutic vaccination strategy to enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Hongxin Liu
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun, Jilin 130012, PR China
| | - Tao Zhang
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, Jilin 130033, PR China
| | - Min Zheng
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun, Jilin 130012, PR China.
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, PR China.
| |
Collapse
|
34
|
Prabhakaran R, Thamarai R, Sivasamy S, Dhandayuthapani S, Batra J, Kamaraj C, Karthik K, Shah MA, Mallik S. Epigenetic frontiers: miRNAs, long non-coding RNAs and nanomaterials are pioneering to cancer therapy. Epigenetics Chromatin 2024; 17:31. [PMID: 39415281 PMCID: PMC11484394 DOI: 10.1186/s13072-024-00554-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024] Open
Abstract
Cancer has arisen from both genetic mutations and epigenetic changes, making epigenetics a crucial area of research for innovative cancer prevention and treatment strategies. This dual perspective has propelled epigenetics into the forefront of cancer research. This review highlights the important roles of DNA methylation, histone modifications and non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs) and long non-coding RNAs, which are key regulators of cancer-related gene expression. It explores the potential of epigenetic-based therapies to revolutionize patient outcomes by selectively modulating specific epigenetic markers involved in tumorigenesis. The review examines promising epigenetic biomarkers for early cancer detection and prognosis. It also highlights recent progress in oligonucleotide-based therapies, including antisense oligonucleotides (ASOs) and antimiRs, to precisely modulate epigenetic processes. Furthermore, the concept of epigenetic editing is discussed, providing insight into the future role of precision medicine for cancer patients. The integration of nanomedicine into cancer therapy has been explored and offers innovative approaches to improve therapeutic efficacy. This comprehensive review of recent advances in epigenetic-based cancer therapy seeks to advance the field of precision oncology, ultimately culminating in improved patient outcomes in the fight against cancer.
Collapse
Affiliation(s)
- Rajkumar Prabhakaran
- Central Research Facility, Santosh Deemed to be University, Ghaziabad, UP, India
| | - Rajkumar Thamarai
- UGC Dr. D.S. Kothari Postdoctoral Fellow, Department of Animal Science, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, 627012, India
| | - Sivabalan Sivasamy
- Central Research Facility, Santosh Deemed to be University, Ghaziabad, UP, India
| | | | - Jyoti Batra
- Central Research Facility, Santosh Deemed to be University, Ghaziabad, UP, India.
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine, Directorate of Research, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| | - Krishnasamy Karthik
- Department of Mechanical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, India
| | - Mohd Asif Shah
- Department of Economics, Kardan University, Parwane Du, 1001, Kabul, Afghanistan.
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, 144001, India.
- Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India.
| | - Saurav Mallik
- Department of Environmental Health, Harvard T H Chan School of Public Health, Boston, Massachusetts, 02115, United States.
- Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
35
|
Wang R, Kumar P, Reda M, Wallstrum AG, Crumrine NA, Ngamcherdtrakul W, Yantasee W. Nanotechnology Applications in Breast Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308639. [PMID: 38126905 PMCID: PMC11493329 DOI: 10.1002/smll.202308639] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Next-generation cancer treatments are expected not only to target cancer cells but also to simultaneously train immune cells to combat cancer while modulating the immune-suppressive environment of tumors and hosts to ensure a robust and lasting response. Achieving this requires carriers that can codeliver multiple therapeutics to the right cancer and/or immune cells while ensuring patient safety. Nanotechnology holds great potential for addressing these challenges. This article highlights the recent advances in nanoimmunotherapeutic development, with a focus on breast cancer. While immune checkpoint inhibitors (ICIs) have achieved remarkable success and lead to cures in some cancers, their response rate in breast cancer is low. The poor response rate in solid tumors is often associated with the low infiltration of anti-cancer T cells and an immunosuppressive tumor microenvironment (TME). To enhance anti-cancer T-cell responses, nanoparticles are employed to deliver ICIs, bispecific antibodies, cytokines, and agents that induce immunogenic cancer cell death (ICD). Additionally, nanoparticles are used to manipulate various components of the TME, such as immunosuppressive myeloid cells, macrophages, dendritic cells, and fibroblasts to improve T-cell activities. Finally, this article discusses the outlook, challenges, and future directions of nanoimmunotherapeutics.
Collapse
Affiliation(s)
- Ruijie Wang
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S Bond Ave, Portland, OR 97239, USA
| | - Pramod Kumar
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S Bond Ave, Portland, OR 97239, USA
| | - Moataz Reda
- PDX Pharmaceuticals, 3303 S Bond Ave, CH13B, Portland, OR 97239, USA
| | | | - Noah A. Crumrine
- PDX Pharmaceuticals, 3303 S Bond Ave, CH13B, Portland, OR 97239, USA
| | | | - Wassana Yantasee
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S Bond Ave, Portland, OR 97239, USA
- PDX Pharmaceuticals, 3303 S Bond Ave, CH13B, Portland, OR 97239, USA
| |
Collapse
|
36
|
Geng L, Liu F, Yang L, Liu Y, Wu G. USP18 promotes the proliferation, invasion, and migration of head and neck squamous cell carcinoma by deubiquitinating PLK1. Exp Cell Res 2024; 442:114284. [PMID: 39424095 DOI: 10.1016/j.yexcr.2024.114284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
The ubiquitin specific peptidase 18 (USP18), a well-established deubiquitinase, has been extensively implicated in the malignant progression of various human tumors. However, its role in head and neck squamous cell carcinoma (HNSC) requires further investigation. Here, we revealed that USP18 was significantly upregulated in HNSC and knockdown of USP18 markedly suppressed tumor growth in vivo. Furthermore, silencing USP18 attenuated HNSC cell proliferation, invasion, and migration, while overexpression of USP18 exerted converse effects. Mechanistically, USP18 diminished K48-linked ubiquitination of polo-like kinase 1 (PLK1) to stabilize the protein through its deubiquitinase activity. Subsequently, we validated that USP18 modulated PLK1 to activate the mTORC1 pathway, thereby facilitating HNSC cell proliferation, invasion, and migration. In conclusion, our findings demonstrate that elevated expression of USP18 in HNSC cells promotes tumorigenesis by regulating the PLK1-mTORC1 pathway.
Collapse
Affiliation(s)
- Liang Geng
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China; Department of Otolaryngology, Xuzhou First People's Hospital, Xuzhou, Jiangsu, China; Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fangfang Liu
- Department of Otolaryngology, Xuzhou First People's Hospital, Xuzhou, Jiangsu, China
| | - Liyun Yang
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
| | - Yan Liu
- Department of Respiratory and Critical Care Medicine, Xuzhou First People's Hospital, Xuzhou, Jiangsu, China. http://413183835qq.com
| | - Geping Wu
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
37
|
Mao W, Yoo HS. Inorganic Nanoparticle Functionalization Strategies in Immunotherapeutic Applications. Biomater Res 2024; 28:0086. [PMID: 39323561 PMCID: PMC11423863 DOI: 10.34133/bmr.0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/20/2024] [Accepted: 09/05/2024] [Indexed: 09/27/2024] Open
Abstract
Nanotechnology has been increasingly utilized in anticancer treatment owing to its ability of engineering functional nanocarriers that enhance therapeutic effectiveness while minimizing adverse effects. Inorganic nanoparticles (INPs) are prevalent nanocarriers to be customized for a wide range of anticancer applications, including theranostics, imaging, targeted drug delivery, and therapeutics, because they are advantageous for their superior biocompatibility, unique optical properties, and capacity of being modified via versatile surface functionalization strategies. In the past decades, the high adaptation of INPs in this emerging immunotherapeutic field makes them good carrier options for tumor immunotherapy and combination immunotherapy. Tumor immunotherapy requires targeted delivery of immunomodulating therapeutics to tumor locations or immunological organs to provoke immune cells and induce tumor-specific immune response while regulating immune homeostasis, particularly switching the tumor immunosuppressive microenvironment. This review explores various INP designs and formulations, and their employment in tumor immunotherapy and combination immunotherapy. We also introduce detailed demonstrations of utilizing surface engineering tactics to create multifunctional INPs. The generated INPs demonstrate the abilities of stimulating and enhancing the immune response, specific targeting, and regulating cancer cells, immune cells, and their resident microenvironment, sometimes along with imaging and tracking capabilities, implying their potential in multitasking immunotherapy. Furthermore, we discuss the promises of INP-based combination immunotherapy in tumor treatments.
Collapse
Affiliation(s)
- Wei Mao
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyuk Sang Yoo
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Kangwon Radiation Convergence Research Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
38
|
Lu RM, Hsu HE, Perez SJLP, Kumari M, Chen GH, Hong MH, Lin YS, Liu CH, Ko SH, Concio CAP, Su YJ, Chang YH, Li WS, Wu HC. Current landscape of mRNA technologies and delivery systems for new modality therapeutics. J Biomed Sci 2024; 31:89. [PMID: 39256822 PMCID: PMC11389359 DOI: 10.1186/s12929-024-01080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024] Open
Abstract
Realizing the immense clinical potential of mRNA-based drugs will require continued development of methods to safely deliver the bioactive agents with high efficiency and without triggering side effects. In this regard, lipid nanoparticles have been successfully utilized to improve mRNA delivery and protect the cargo from extracellular degradation. Encapsulation in lipid nanoparticles was an essential factor in the successful clinical application of mRNA vaccines, which conclusively demonstrated the technology's potential to yield approved medicines. In this review, we begin by describing current advances in mRNA modifications, design of novel lipids and development of lipid nanoparticle components for mRNA-based drugs. Then, we summarize key points pertaining to preclinical and clinical development of mRNA therapeutics. Finally, we cover topics related to targeted delivery systems, including endosomal escape and targeting of immune cells, tumors and organs for use with mRNA vaccines and new treatment modalities for human diseases.
Collapse
Affiliation(s)
- Ruei-Min Lu
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | - Hsiang-En Hsu
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | | | - Monika Kumari
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Taipei, 11529, Taiwan
| | - Guan-Hong Chen
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | - Ming-Hsiang Hong
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | - Yin-Shiou Lin
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | - Ching-Hang Liu
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | - Shih-Han Ko
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | | | - Yi-Jen Su
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Taipei, 11529, Taiwan
| | - Yi-Han Chang
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | - Wen-Shan Li
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan.
- Institute of Chemistry, Academia Sinica, No. 128, Academia Road, Section 2, Taipei, 11529, Taiwan.
| | - Han-Chung Wu
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Taipei, 11529, Taiwan.
| |
Collapse
|
39
|
Asada K, Kaneko S, Takasawa K, Shiraishi K, Shinkai N, Shimada Y, Takahashi S, Machino H, Kobayashi K, Bolatkan A, Komatsu M, Yamada M, Miyake M, Watanabe H, Tateishi A, Mizuno T, Okubo Y, Mukai M, Yoshida T, Yoshida Y, Horinouchi H, Watanabe SI, Ohe Y, Yatabe Y, Kohno T, Hamamoto R. Multi-omics and clustering analyses reveal the mechanisms underlying unmet needs for patients with lung adenocarcinoma and identify potential therapeutic targets. Mol Cancer 2024; 23:182. [PMID: 39218851 PMCID: PMC11367768 DOI: 10.1186/s12943-024-02093-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The cancer genome contains several driver mutations. However, in some cases, no known drivers have been identified; these remaining areas of unmet needs, leading to limited progress in cancer therapy. Whole-genome sequencing (WGS) can identify non-coding alterations associated with the disease. Consequently, exploration of non-coding regions using WGS and other omics data such as ChIP-sequencing (ChIP-seq) to discern novel alterations and mechanisms related to tumorigenesis have been attractive these days. METHODS Integrated multi-omics analyses, including WGS, ChIP-seq, DNA methylation, and RNA-sequencing (RNA-seq), were conducted on samples from patients with non-clinically actionable genetic alterations (non-CAGAs) in lung adenocarcinoma (LUAD). Second-level cluster analysis was performed to reinforce the correlations associated with patient survival, as identified by RNA-seq. Subsequent differential gene expression analysis was performed to identify potential druggable targets. RESULTS Differences in H3K27ac marks in non-CAGAs LUAD were found and confirmed by analyzing RNA-seq data, in which mastermind-like transcriptional coactivator 2 (MAML2) was suppressed. The down-regulated genes whose expression was correlated to MAML2 expression were associated with patient prognosis. WGS analysis revealed somatic mutations associated with the H3K27ac marks in the MAML2 region and high levels of DNA methylation in MAML2 were observed in tumor samples. The second-level cluster analysis enabled patient stratification and subsequent analyses identified potential therapeutic target genes and treatment options. CONCLUSIONS We overcome the persistent challenges of identifying alterations or driver mutations in coding regions related to tumorigenesis through a novel approach combining multi-omics data with clinical information to reveal the molecular mechanisms underlying non-CAGAs LUAD, stratify patients to improve patient prognosis, and identify potential therapeutic targets. This approach may be applicable to studies of other cancers with unmet needs.
Collapse
Affiliation(s)
- Ken Asada
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, 104-0045, Japan.
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan.
| | - Syuzo Kaneko
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan
| | - Ken Takasawa
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Norio Shinkai
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan
| | - Yoko Shimada
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Satoshi Takahashi
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan
| | - Hidenori Machino
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan
| | - Kazuma Kobayashi
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan
| | - Amina Bolatkan
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan
| | - Masaaki Komatsu
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan
| | - Masayoshi Yamada
- Department of Endoscopy, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Mototaka Miyake
- Department of Diagnostic Radiology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Hirokazu Watanabe
- Department of Diagnostic Radiology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Akiko Tateishi
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Takaaki Mizuno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Yu Okubo
- Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Masami Mukai
- Division of Medical Informatics, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Tatsuya Yoshida
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Yukihiro Yoshida
- Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Hidehito Horinouchi
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Shun-Ichi Watanabe
- Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Yuichiro Ohe
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Yasushi Yatabe
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, 104-0045, Japan.
| | - Ryuji Hamamoto
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, 104-0045, Japan.
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan.
| |
Collapse
|
40
|
Li C, Hu J, Jiang X, Tan H, Mao Y. Identification and validation of an immune-derived multiple programmed cell death index for predicting clinical outcomes, molecular subtyping, and drug sensitivity in lung adenocarcinoma. Clin Transl Oncol 2024; 26:2274-2295. [PMID: 38563847 DOI: 10.1007/s12094-024-03439-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/01/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVES Comprehensive cross-interaction of multiple programmed cell death (PCD) patterns in the patients with lung adenocarcinoma (LUAD) have not yet been thoroughly investigated. METHODS Here, we collected 19 different PCD patterns, including 1911 PCD-related genes, and developed an immune-derived multiple programmed cell death index (MPCDI) based on machine learning methods. RESULTS Using the median MPCDI scores, we categorized the LUAD patients into two groups: low-MPCDI and high-MPCDI. Our analysis of the TCGA-LUAD training cohort and three external GEO cohorts (GSE37745, GSE30219, and GSE68465) revealed that patients with high-MPCDI experienced a more unfavorable prognosis, whereas those with low-MPCDI had a better prognosis. Furthermore, the results of both univariate and multivariate Cox regression analyses further confirmed that MPCDI serves as a novel independent risk factor. By combining clinical characteristics with the MPCDI, we constructed a nomogram that provides an accurate and reliable quantitative tool for personalized clinical management of LUAD patients. The findings obtained from the analysis of C-index and the decision curve revealed that the nomogram outperformed various clinical variables in terms of net clinical benefit. Encouragingly, the low-MPCDI patients are more sensitive to commonly used chemotherapy drugs, which suggests that MPCDI scores have a guiding role in chemotherapy for LUAD patients. CONCLUSION Therefore, MPCDI can be used as a novel clinical diagnostic classifier, providing valuable insights into the clinical management and clinical decision-making for LUAD patients.
Collapse
Affiliation(s)
- Chunhong Li
- Central Laboratory, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, Guangxi, China.
- Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, Guangxi, China.
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, Guangxi, China.
| | - Jiahua Hu
- Central Laboratory, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, Guangxi, China
- Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Xiling Jiang
- School of Medical Laboratory Medicine, Guilin Medical University, Guilin, 541004, Guangxi, China
| | - Haiyin Tan
- School of Medical Laboratory Medicine, Guilin Medical University, Guilin, 541004, Guangxi, China
| | - Yiming Mao
- Department of Thoracic Surgery, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou, 215028, China.
| |
Collapse
|
41
|
Lara-Vega I. Upgrading Melanoma Treatment: Promising Immunotherapies Combinations
in the Preclinical Mouse Model. CURRENT CANCER THERAPY REVIEWS 2024; 20:489-509. [DOI: 10.2174/0115733947263244231002042219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/27/2023] [Accepted: 08/25/2023] [Indexed: 01/03/2025]
Abstract
Background:
Melanoma, known for its high metastatic potential, does not respond well to
existing treatments in advanced stages. As a solution, immunotherapy-based treatments, including
anti-PD-1/L1 and anti-CTLA-4, have been developed and evaluated in preclinical mouse models to
overcome resistance. Although these treatments display the potential to suppress tumor growth, there
remains a crucial requirement for a thorough assessment of long-term efficacy in preventing metastasis
or recurrence and improving survival rates.
Methods:
From 2016 onwards, a thorough examination of combined immunotherapies for the treatment
of cutaneous melanoma in preclinical mouse models was conducted. The search was conducted
using MeSH Terms algorithms in PubMed®, resulting in the identification of forty-five studies that
met the rigorous inclusion criteria for screening.
Results:
The C57 mouse model bearing B16-melanoma has been widely utilized to assess the efficacy
of immunotherapies. The combination of therapies has demonstrated a synergistic impact, leading
to potent antitumor activity. One extensively studied method for establishing metastatic models involves
the intravenous administration of malignant cells, with several combined therapies under investigation.
The primary focus of evaluation has been on combined immunotherapies utilizing PD-
1/L1 and CTLA-4 blockade, although alternative immunotherapies not involving PD-1/L1 and
CTLA-4 blockade have also been identified. Additionally, the review provides detailed treatment regimens
for each combined approach.
Conclusion:
The identification of techniques for generating simulated models of metastatic melanoma
and investigating various therapeutic combinations will greatly aid in evaluating the overall systemic
efficacy of immunotherapy. This will be especially valuable for conducting short-term preclinical
experiments that have the potential for clinical studies.
Collapse
Affiliation(s)
- Israel Lara-Vega
- National School of Biological Sciences, IPN. Av. Wilfrido Massieu s/n, Professional Unit Adolfo Lopez Mateos, Mexico
City, CP 07738, Mexico
| |
Collapse
|
42
|
Peng X, Fang J, Lou C, Yang L, Shan S, Wang Z, Chen Y, Li H, Li X. Engineered nanoparticles for precise targeted drug delivery and enhanced therapeutic efficacy in cancer immunotherapy. Acta Pharm Sin B 2024; 14:3432-3456. [PMID: 39220871 PMCID: PMC11365410 DOI: 10.1016/j.apsb.2024.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 09/04/2024] Open
Abstract
The advent of cancer immunotherapy has imparted a transformative impact on cancer treatment paradigms by harnessing the power of the immune system. However, the challenge of practical and precise targeting of malignant cells persists. To address this, engineered nanoparticles (NPs) have emerged as a promising solution for enhancing targeted drug delivery in immunotherapeutic interventions, owing to their small size, low immunogenicity, and ease of surface modification. This comprehensive review delves into contemporary research at the nexus of NP engineering and immunotherapy, encompassing an extensive spectrum of NP morphologies and strategies tailored toward optimizing tumor targeting and augmenting therapeutic effectiveness. Moreover, it underscores the mechanisms that NPs leverage to bypass the numerous obstacles encountered in immunotherapeutic regimens and probes into the combined potential of NPs when co-administered with both established and novel immunotherapeutic modalities. Finally, the review evaluates the existing limitations of NPs as drug delivery platforms in immunotherapy, which could shape the path for future advancements in this promising field.
Collapse
Affiliation(s)
- Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China
| | - Jianjun Fang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China
| | - Chuyuan Lou
- Department of Ophthalmology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an 710004, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China
| | - Shaobo Shan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 10050, China
| | - Zixian Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, China
| | - Yutong Chen
- Department of Pathology, Medical College, Jinan University, Guangzhou 510632, China
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China
| | - Xuexin Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm SE-17177, Sweden
| |
Collapse
|
43
|
Liu R, Zhou D, Yu B, Zhou Z. Phosphorylation of LZTS2 by PLK1 activates the Wnt pathway. Cell Signal 2024; 120:111226. [PMID: 38740232 DOI: 10.1016/j.cellsig.2024.111226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Lung adenocarcinoma (LUAD), responsible for nearly half of lung cancer cases, is one of the most prevalent and lethal malignant tumors globally. There is increasing evidence suggesting that the oncoprotein PLK1 plays a role in the onset and advancement of different types of cancer, including LUAD. Nonetheless, the precise mechanism by which PLK1 promotes tumorigenesis remains unclear. In this study, we demonstrate the upregulation of PLK1 in LUAD samples, which leads to a poor prognosis for LUAD patients. Intriguingly, PLK1 enables to bind to LZTS2 and promote its phosphorylation without affecting LZTS2 degradation. Furthermore, we identify that Ser451 is a key phosphorylation site in LZTS2 protein. LZTS2 exerts an anti-tumor effect by restricting the translocation of the transcription factor β-Catenin into the nucleus, thereby suppressing the Wnt pathway. PLK1 disrupts the interaction between LZTS2 and β-Catenin, resulting in the nuclear accumulation of β-Catenin and the activation of the Wnt pathway. Additionally, we reveal that LZTS2 inhibits the proliferation and migration of LUAD cells, which is rescued by PLK1. Finally, PLK1 inhibitors exhibit a dose-dependent suppression of LUAD cell proliferation and migration. Collectively, this study uncovers the pro-tumorigenic mechanism of PLK1, positioning it as a promising therapeutic target for Wnt-related LUAD.
Collapse
Affiliation(s)
- Ran Liu
- Department of Thoracic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi, 330006, China
| | - Dafa Zhou
- College of Life Sciences, Shandong Agricultural University, 271018 Tai'an, China
| | - Bentong Yu
- Department of Thoracic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi, 330006, China..
| | - Zizhang Zhou
- College of Life Sciences, Shandong Agricultural University, 271018 Tai'an, China; Key Laboratory of Biodiversity Conservation and Bioresource Utilization of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
44
|
Godakhindi V, Tarannum M, Dam SK, Vivero-Escoto JL. Mesoporous Silica Nanoparticles as an Ideal Platform for Cancer Immunotherapy: Recent Advances and Future Directions. Adv Healthc Mater 2024; 13:e2400323. [PMID: 38653190 PMCID: PMC11305940 DOI: 10.1002/adhm.202400323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/10/2024] [Indexed: 04/25/2024]
Abstract
Cancer immunotherapy recently transforms the traditional approaches against various cancer malignancies. Immunotherapy includes systemic and local treatments to enhance immune responses against cancer and involves strategies such as immune checkpoints, cancer vaccines, immune modulatory agents, mimetic antigen-presenting cells, and adoptive cell therapy. Despite promising results, these approaches still suffer from several limitations including lack of precise delivery of immune-modulatory agents to the target cells and off-target toxicity, among others, that can be overcome using nanotechnology. Mesoporous silica nanoparticles (MSNs) are investigated to improve various aspects of cancer immunotherapy attributed to the advantageous structural features of this nanomaterial. MSNs can be engineered to alter their properties such as size, shape, porosity, surface functionality, and adjuvanticity. This review explores the immunological properties of MSNs and the use of MSNs as delivery vehicles for immune-adjuvants, vaccines, and mimetic antigen-presenting cells (APCs). The review also details the current strategies to remodel the tumor microenvironment to positively reciprocate toward the anti-tumor immune cells and the use of MSNs for immunotherapy in combination with other anti-tumor therapies including photodynamic/thermal therapies to enhance the therapeutic effect against cancer. Last, the present demands and future scenarios for the use of MSNs for cancer immunotherapy are discussed.
Collapse
Affiliation(s)
- Varsha Godakhindi
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Mubin Tarannum
- Division of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Sudip Kumar Dam
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Juan L Vivero-Escoto
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| |
Collapse
|
45
|
Kim J, Maharjan R, Park J. Current Trends and Innovative Approaches in Cancer Immunotherapy. AAPS PharmSciTech 2024; 25:168. [PMID: 39044047 PMCID: PMC11573471 DOI: 10.1208/s12249-024-02883-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024] Open
Abstract
Immunotherapy is one of the most promising therapeutic approaches in the field of cancer treatment. As a tumor progresses, tumor cells employ an array of immune-regulatory mechanisms to suppress immune responses within the tumor microenvironment. Using our understanding of these mechanisms, cancer immunotherapy has been developed to enhance the immune system's effectiveness in treating cancer. Numerous cancer immunotherapies are currently in clinical use, yet many others are either in different stages of development or undergoing clinical studies. In this paper, we briefly discuss the features and current status of cancer immunotherapies. This includes the application of monoclonal antibodies, immune checkpoint inhibitors, adoptive cell therapy, cytokine therapy, cancer vaccines, and gene therapy, all of which have gained significant recognition in clinical practice. Additionally, we discuss limitations that may hinder successful clinical utilization and promising strategies, such as combining immunotherapy with nanotechnology.
Collapse
Affiliation(s)
- Jaechang Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY, 40506, USA
| | - Ruby Maharjan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY, 40506, USA
| | - Jonghyuck Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY, 40506, USA.
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, USA.
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
46
|
Xiang Y, Tang L, Pang H, Xu H, He Y, Feng Y, Ju L, Zhang L, Wang D. Ultrasound -Induced Thermal Effect Enhances the Efficacy of Chemotherapy and Immunotherapy in Tumor Treatment. Int J Nanomedicine 2024; 19:6677-6692. [PMID: 38975322 PMCID: PMC11227868 DOI: 10.2147/ijn.s464830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
Background The inadequate perfusion, frequently resulting from abnormal vascular configuration, gives rise to tumor hypoxia. The presence of this condition hinders the effective delivery of therapeutic drugs and the infiltration of immune cells into the tumor, thereby compromising the efficacy of treatments against tumors. The objective of this study is to exploit the thermal effect of ultrasound (US) in order to induce localized temperature elevation within the tumor, thereby facilitating vasodilation, augmenting drug delivery, and enhancing immune cell infiltration. Methods The selection of US parameters was based on intratumor temperature elevation and their impact on cell viability. Vasodilation and hypoxia improvement were investigated using enzyme-linked immunosorbent assay (ELISA) and immunofluorescence examination. The distribution and accumulation of commercial pegylated liposomal doxorubicin (PLD) and PD-L1 antibody (anti-PD-L1) in the tumor were analyzed through frozen section analysis, ELISA, and in vivo fluorescence imaging. The evaluation of tumor immune microenvironment was conducted using flow cytometry (FCM). The efficacy of US-enhanced chemotherapy in combination with immunotherapy was investigated by monitoring tumor growth and survival rate after various treatments. Results The US irradiation condition of 0.8 W/cm2 for 10 min effectively elevated the tumor temperature to approximately 40 °C without causing any cellular or tissue damage, and sufficiently induced vasodilation, thereby enhancing the distribution and delivery of PLD and anti-PD-L1 in US-treated tumors. Moreover, it effectively mitigated tumor hypoxia while significantly increasing M1-phenotype tumor-associated macrophages (TAMs) and CD8+ T cells, as well as decreasing M2-phenotype TAMs. By incorporating US irradiation, the therapeutic efficacy of PLD and anti-PD-L1 was substantially boosted, leading to effective suppression of tumor growth and prolonged survival in mice. Conclusion The application of US (0.8 W/cm2 for 10 min) can effectively induce vasodilation and enhance the delivery of PLD and anti-PD-L1 into tumors, thereby reshaping the immunosuppressive tumor microenvironment and optimizing therapeutic outcomes.
Collapse
Affiliation(s)
- Yuting Xiang
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Li Tang
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Hua Pang
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Han Xu
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yiman He
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yuyue Feng
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Linjun Ju
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Liang Zhang
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Dong Wang
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
47
|
Wang K, Jiang M, Li T, Liu Y, Zong Q, Xu Q, Ullah I, Chen Y, Xue W, Yuan Y. A Synergistic Chemoimmunotherapy System Leveraging PD-L1 Blocking and Bioorthogonal Prodrug Activation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402322. [PMID: 38718226 DOI: 10.1002/adma.202402322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/05/2024] [Indexed: 05/15/2024]
Abstract
Novel strategies to facilitate tumor-specific drug delivery and restore immune attacks remain challenging in overcoming the current limitations of chemoimmunotherapy. An antitumor chemoimmunotherapy system comprising bioorthogonal reaction-ready group tetrazine (TZ) modified with an anti-PD-L1 antibody (αPD-L1TZ) and TZ-activatable prodrug vinyl ether-doxorubicin (DOX-VE) for self-reinforced anti-tumor chemoimmunotherapy is proposed. The αPD-L1TZ effectively disrupts the PD-L1/PD-1 interaction and activates the DOX prodrug in situ through the bioorthogonal click reaction of TZ and VE. Conversely, the activated DOX upregulates PD-L1 on the surface of tumor cells, facilitating tumor accumulation of αPD-L1TZ and enhancing DOX-VE activation. Furthermore, the activated DOX-induced immunogenic cell death of tumor cells, substantially improving the response efficiency of αPD-L1 in an immune-suppressive tumor microenvironment. Thus, PD-L1 blocking and bioorthogonal in situ prodrug activation synergistically enhance the antitumor efficacy of the chemoimmunotherapy system. Therefore, the system significantly enhances αPD-L1 tumor accumulation and prodrug activation and induces a robust immunological memory effect to prevent tumor recurrence and metastasis. Thus, a feasible chemoimmunotherapy combination regimen is presented.
Collapse
Affiliation(s)
- Kewei Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering and MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, P. R. China
| | - Maolin Jiang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Tao Li
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Ye Liu
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Qingyu Zong
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Qing Xu
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Ihsan Ullah
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Yahui Chen
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering and MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, P. R. China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering and MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, P. R. China
| | - Youyong Yuan
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
48
|
Hou S, Song D, Hao R, Li L, Zhang Y, Zhu J. Prognostic relevance of prognostic nutritional indices in gastric or gastro-esophageal junction cancer patients receiving immune checkpoint inhibitors: a systematic review and meta-analysis. Front Immunol 2024; 15:1382417. [PMID: 38966640 PMCID: PMC11222392 DOI: 10.3389/fimmu.2024.1382417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024] Open
Abstract
Background The Prognostic Nutritional Index (PNI) has become an important predictive tool for assessing patients' nutritional status and immune competence. It is widely used in prognostic evaluations for various cancer patients. However, the prognostic relevance of the Prognostic Nutritional Index (PNI) in gastric or gastro-esophageal junction cancer patients (GC/GEJC) undergoing immune checkpoint inhibitors (ICIs) treatment remains unclear. This meta-analysis aimed to determine the prognostic impact of PNI in this specific patient cohort. Methods We conducted a thorough literature search, covering prominent databases such as PubMed, Embase, Web of Science, SpringerLink, and the Cochrane Library. The search spanned from the inception of these databases up to December 5, 2023. Employing the 95% confidence interval and Hazard Ratio (HR), the study systematically evaluated the relationship between PNI and key prognostic indicators, including the objective remission rate (ORR), disease control rate (DCR), overall survival (OS) and progression-free survival (PFS) in GC/GEJC patients undergoing ICI treatment. Results Eight studies comprising 813 eligible patients were selected. With 7 studies consistently demonstrating superior Overall Survival (OS) in the high-Prognostic Nutritional Index (PNI) group compared to their low-PNI counterparts (HR 0.58, 95% CI: 0.47-0.71, P<0.001). Furthermore, the results derived from 6 studies pointed out that the significant correlation between he low-PNI and poorer progression-free survival (PFS) (HR 0.58, 95% CI: 0.47-0.71, P<0.001). Subgroup analyses were performed to validate the robustness of the results. In addition, we conducted a meta-analysis of three studies examining the correlation between PNI and objective response rate/disease control rate (ORR/DCR) and found that the ORR/DCR was significantly superior in the high PNI group (ORR: RR: 1.24, P=0.002; DCR: RR: 1.43, P=0.008). Conclusion This meta-analysis indicates that the low-PNI in GC/GEJC patients undergoing ICI treatment is significantly linked to worse OS and PFS. Therefore, PNI can serve as a prognostic indicator of post-treatment outcomes in patients with GC receiving ICIs. Further prospective studies are required to assess the reliability of these findings. Systematic review registration https://inplasy.com/, identifier INPLASY202450133.
Collapse
Affiliation(s)
- Shufu Hou
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- Key Laboratory of Metabolism and Gastrointestinal Tumor, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Dandan Song
- Department of Neurology, Shandong Province Third Hospital, Jinan, China
| | - Ruiqi Hao
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- Key Laboratory of Metabolism and Gastrointestinal Tumor, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Linchuan Li
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- Key Laboratory of Metabolism and Gastrointestinal Tumor, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Yun Zhang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- Key Laboratory of Metabolism and Gastrointestinal Tumor, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Jiankang Zhu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- Key Laboratory of Metabolism and Gastrointestinal Tumor, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
49
|
Hou S, Song D, Zang Y, Hao R, Li L, Zhu J. Prognostic relevance of platelet lymphocyte ratio (PLR) in gastric cancer patients receiving immune checkpoint inhibitors: a systematic review and meta-analysis. Front Oncol 2024; 14:1367990. [PMID: 38912061 PMCID: PMC11190700 DOI: 10.3389/fonc.2024.1367990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/21/2024] [Indexed: 06/25/2024] Open
Abstract
Objectives The prognostic relevance of the platelet-to-lymphocyte ratio (PLR) in gastric cancer (GC) patients undergoing immune checkpoint inhibitor (ICI) treatment remains unclear. This meta-analysis aimed to determine the prognostic impact of PLR in this specific patient cohort. Methods We searched the PubMed, Cochrane Library, CNKI, and EMBASE databases, including literature published up to September 2023, to investigate the prognostic implications of PLR in patients with gastric cancer undergoing immune checkpoint inhibitor therapy. Outcome measures encompassed overall survival (OS), progression-free survival (PFS), objective response rate (ORR), and disease control rates (DCR). Results Nine studies from seven articles comprising 948 eligible patients were selected. The results revealed a significant correlation between elevated PLR and poorer OS and progression-free survival (PFS) (OS: HR 1.67, 95% CI 1.39-2.00, p < 0.001; PFS: HR 1.51, 95% CI 1.29-1.76, p < 0.001). Subgroup analyses were performed to validate the robustness of the results. Moreover, a meta-analysis of four studies investigating the correlation between the PLR in gastric cancer (GC) patients and the objective response rate/disease control rate (ORR/DCR), showed no significant association between the PLR and ORR/DCR (ORR: RR = 1.01, p = 0.960; DCR: RR = 0.96, p = 0.319). Conclusions This meta-analysis indicates that elevated PLR in GC patients undergoing ICI treatment is significantly linked to worse OS and PFS. Therefore, PLR can serve as a prognostic indicator of post-treatment outcomes in patients with GC receiving ICIs. Further prospective studies are required to assess the reliability of these findings. Systematic review registration https://inplasy.com/, identifier INPLASY2023120103.
Collapse
Affiliation(s)
- Shufu Hou
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- Key Laboratory of Metabolism and Gastrointestinal Tumor, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Dandan Song
- Department of Neurology, Shandong Province Third Hospital, Jinan, China
| | - Yelei Zang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- Key Laboratory of Metabolism and Gastrointestinal Tumor, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Ruiqi Hao
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- Key Laboratory of Metabolism and Gastrointestinal Tumor, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Linchuan Li
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- Key Laboratory of Metabolism and Gastrointestinal Tumor, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Jiankang Zhu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- Key Laboratory of Metabolism and Gastrointestinal Tumor, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
50
|
Kong Y, Li C, Liu J, Wu S, Zhang M, Allison DB, Hassan F, He D, Wang X, Mao F, Zhang Q, Zhang Y, Li Z, Wang C, Liu X. Single-cell analysis identifies PLK1 as a driver of immunosuppressive tumor microenvironment in LUAD. PLoS Genet 2024; 20:e1011309. [PMID: 38885192 PMCID: PMC11182521 DOI: 10.1371/journal.pgen.1011309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
PLK1 (Polo-like kinase 1) plays a critical role in the progression of lung adenocarcinoma (LUAD). Recent studies have unveiled that targeting PLK1 improves the efficacy of immunotherapy, highlighting its important role in the regulation of tumor immunity. Nevertheless, our understanding of the intricate interplay between PLK1 and the tumor microenvironment (TME) remains incomplete. Here, using genetically engineered mouse model and single-cell RNA-seq analysis, we report that PLK1 promotes an immunosuppressive TME in LUAD, characterized with enhanced M2 polarization of tumor associated macrophages (TAM) and dampened antigen presentation process. Mechanistically, elevated PLK1 coincides with increased secretion of CXCL2 cytokine, which promotes M2 polarization of TAM and diminishes expression of class II major histocompatibility complex (MHC-II) in professional antigen-presenting cells. Furthermore, PLK1 negatively regulates MHC-II expression in cancer cells, which has been shown to be associated with compromised tumor immunity and unfavorable patient outcomes. Taken together, our results reveal PLK1 as a novel modulator of TME in LUAD and provide possible therapeutic interventions.
Collapse
Affiliation(s)
- Yifan Kong
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Chaohao Li
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Jinpeng Liu
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Sai Wu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Min Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Derek B. Allison
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Faisal Hassan
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Daheng He
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Xinyi Wang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Fengyi Mao
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Qiongsi Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Yanquan Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Zhiguo Li
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, United States of America
| | - Xiaoqi Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, United States of America
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|