1
|
Chen S, Xu G, Chen J, Zhang H, Jiang X, Liu Z, Lin Z, Zhang C, Xu L, Zhang J. Predicting the environmental fate of biodegradable mulch films: A machine learning approach for sustainable agriculture. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138277. [PMID: 40245707 DOI: 10.1016/j.jhazmat.2025.138277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/28/2025] [Accepted: 04/11/2025] [Indexed: 04/19/2025]
Abstract
Biodegradable plastic mulch films (BDM) have been proposed as one of the dominant strategies for plastic pollution prevention in agriculture. As the BDM degradation is a complex process affected by multiple factors, the degradation cycle of BDM has significant regional differences ranging from months to years, resulting in its mismatch to the crop cycle. Existing works focus on only a few influencing factors as it is too laborious to elaborate on all the factors by experiments, limiting our comprehensive understanding of BDM degradation. Here, we integrated meta-analysis with a machine-learning approach to quantify the impacts of multiple factors and develop a prediction model on BDM degradation. 24 influencing factors, including material composition, weather, soil properties, microbial activity, and other factors, were reorganized systematically and quantified for the first time. The established machine learning model enables the prediction of the regional BDM degradation rate for over 2800 counties/districts in China, which has a vast geographical distribution and diverse climatic characteristics. In this work, our study provides deeper insights into current understanding of BDM degradation and paves the way for future investigations into the environmental degradation of biodegradable materials, offering critical insights for environmental management and policy-making in agriculture.
Collapse
Affiliation(s)
- Shan Chen
- Institute of Agricultural Facilities and Engineering Technology Research Center of Biomass Composites and Addictive Manufacturing, Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Guohailin Xu
- Institute of Agricultural Facilities and Engineering Technology Research Center of Biomass Composites and Addictive Manufacturing, Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Jingwen Chen
- Institute of Agricultural Facilities and Engineering Technology Research Center of Biomass Composites and Addictive Manufacturing, Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Hui Zhang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xizhi Jiang
- Institute of Agricultural Facilities and Engineering Technology Research Center of Biomass Composites and Addictive Manufacturing, Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Ziwen Liu
- Institute of Agricultural Facilities and Engineering Technology Research Center of Biomass Composites and Addictive Manufacturing, Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Zhiwei Lin
- Institute of Agricultural Facilities and Engineering Technology Research Center of Biomass Composites and Addictive Manufacturing, Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Congzhi Zhang
- Fengqiu Experimental Station of National Ecosystem Research Network of China, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Lei Xu
- Institute of Agricultural Facilities and Engineering Technology Research Center of Biomass Composites and Addictive Manufacturing, Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China.
| | - Jiabao Zhang
- Fengqiu Experimental Station of National Ecosystem Research Network of China, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China.
| |
Collapse
|
2
|
Zhao T, Xu Y, Bi M, Li H, Li G, Rillig MC. Soil properties explain the variability in tire wear particle effects in soil based on a laboratory test with 59 soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126271. [PMID: 40252749 DOI: 10.1016/j.envpol.2025.126271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/11/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Tire wear particles (TWPs) are among the most prevalent microplastics in the environment, with potential detrimental effects on ecosystem health and functionality. While little is known how the effects of TWPs on soil physicochemical and microbial properties vary across different soil types, and if so, which factors contribute to this variability. To address this knowledge gap, we conducted a laboratory experiment involving soils from 59 grassland plots across two sampling regions in Germany, each experienced varying land-use intensities. These soils were treated with (at a concentration of 10 mg g-1) and without TWPs. At harvest, we measured soil water-stable aggregates (WSA), pH, respiration, and decomposition rate. Our results revealed that TWPs negatively, neutrally, or positively impacted these parameters depending on soil types. Random forest analysis indicated that the variability in TWP effects was significantly explained by grazing frequency for WSA (14.5 %), by clay content for pH (9 %), by bulk density for respiration (7.9 %), and by silt content for decomposition rate (12 %). Partial dependence analysis and piecewise regression further suggested that low-intensity grazing (∼0.7-1.2) reduced TWP effects on WSA; clay content (420-550 g kg-1) increased TWP effects on pH; bulk density (0.75-0.88) decreased TWP effects, and silt content (460-620 g kg-1) enhanced TWP effects on decomposition rate, with the identified thresholds of 1.45, 353 g kg-1, 0.84, and 327 353 g kg-1, respectively. These results highlighted the context-dependent nature of TWP pollution, with significant variability observed across different sampling points. Additionally, our findings suggest that TWP pollution is particularly of concern in soils with high clay, silt, high bulk density, and areas with intensive land-use intensity. Our study contributes to a better understanding of the mechanisms by which TWPs impact soil, and how these effects are regulated by environmental factors.
Collapse
Affiliation(s)
- Tingting Zhao
- Plant Ecology, Institute of Biology, Freie Universität Berlin, D-14195, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research, 14195, Berlin, Germany.
| | - Yaqi Xu
- Plant Ecology, Institute of Biology, Freie Universität Berlin, D-14195, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research, 14195, Berlin, Germany.
| | - Mohan Bi
- Plant Ecology, Institute of Biology, Freie Universität Berlin, D-14195, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research, 14195, Berlin, Germany.
| | - Huiying Li
- Plant Ecology, Institute of Biology, Freie Universität Berlin, D-14195, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research, 14195, Berlin, Germany.
| | - Guanlin Li
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China.
| | - Matthias C Rillig
- Plant Ecology, Institute of Biology, Freie Universität Berlin, D-14195, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research, 14195, Berlin, Germany.
| |
Collapse
|
3
|
Kong X, Xu B, Orr JA, Meidl P, Rillig MC, Yang G. Ecosystems have multiple interacting processes that buffer against co-occurring stressors. Trends Ecol Evol 2025; 40:479-488. [PMID: 40155304 DOI: 10.1016/j.tree.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 03/02/2025] [Accepted: 03/04/2025] [Indexed: 04/01/2025]
Abstract
There are multiple processes that buffer the effects of anthropogenic stressors. Much is known about how single buffering processes (e.g., biodiversity, adaptation) mitigate the effects of stressors on ecosystem properties and functions, but how multiple buffering processes combine to mitigate the effects of multiple co-occurring stressors is poorly understood. We outline how single processes (e.g., cross-tolerance) can buffer the effects of multiple stressors, whereas multiple buffering processes can act jointly across ecological and temporal scales to reduce the effects of single or multiple stressors. Synergistic interactions between multiple buffering processes can further enhance ecosystem resistance to multiple stressors. A wider awareness of interacting buffering processes in ecosystems will enhance our understanding of ecosystem stability in the face of multiple stressors.
Collapse
Affiliation(s)
- Xiang Kong
- College of Grassland Science and Technology, China Agricultural University, 100193 Beijing, China
| | - Baile Xu
- Institute of Biology, Freie Universität Berlin, 14195 Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany
| | - James A Orr
- Department of Biology, University of Oxford, Oxford, UK; School of the Environment, University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Peter Meidl
- Institute of Biology, Freie Universität Berlin, 14195 Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany
| | - Matthias C Rillig
- Institute of Biology, Freie Universität Berlin, 14195 Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany
| | - Gaowen Yang
- College of Grassland Science and Technology, China Agricultural University, 100193 Beijing, China.
| |
Collapse
|
4
|
Yang H, Cao Y, Zhang W, Pacheco JP, Liu T, Zheng Y, Jeppesen E, Wang L. Prokaryotic and eukaryotic periphyton responses to warming, nutrient enrichment and small omnivorous fish: A shallow lake mesocosms experiment. ENVIRONMENTAL RESEARCH 2025; 269:120942. [PMID: 39870344 DOI: 10.1016/j.envres.2025.120942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/31/2024] [Accepted: 01/22/2025] [Indexed: 01/29/2025]
Abstract
Global change stressors, including climate warming, eutrophication, and small-sized omnivorous fish, may exert interactive effects on the food webs and functioning of shallow lakes. Periphyton plays a central role in the primary production and nutrient cycling of shallow lakes but constitutes a complex community composed of eukaryotes and prokaryotes that may exhibit different responses to multiple environmental stressors with implications for the projections of the effects of global change on shallow lakes. We analyzed the effects of warming, nutrient enrichment, small omnivorous fish and their interactions on eukaryotic and prokaryotic periphyton structures in shallow lake mesocosms. We performed 16S and 18S rRNA high-throughput sequencing to elucidate the effect of the abovementioned stressors. We found that warming promoted periphytic alpha diversity and network complexity, with multi-tolerant genera becoming dominating (e.g. Spirosomaceae and Azospirillaceae). Contrastingly, nutrient enrichment led to reduced prokaryotic diversity and network complexity and stability, with weak disruption of the eukaryotic structure. Small omnivorous fish were major drivers of changes eukaryotic periphyton, facilitating diversity and network complexity, and increasing prokaryotic and eukaryotic biomarker diversity. Omnivorous fish reduced the grazing pressure on periphyton mainly through selective grazing on zooplankton, contributing to periphytic structural stability and functional diversity, especially the proliferation of prokaryotic biomarkers. Nutrient enrichment counteracted the positive effects of warming on periphyton, while concerted action with omnivorous fish led to high TN and TP concentrations and accelerated the negative development of periphytic alpha diversity and network structure. The co-occurrence of the three environmental pressures ultimately resulted in a disruption of periphytic biodiversity and community structure and weakened connectivity with the environment. Our study provided new insights into the understanding of the response of prokaryotic and eukaryotic community structure and ecological functions of freshwater periphyton to global environmental change.
Collapse
Affiliation(s)
- Han Yang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China
| | - Yu Cao
- Research Center of Aquatic Plant, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Wei Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China.
| | - Juan Pablo Pacheco
- Department of Ecology and Environmental Management, CURE - University of the Republic, Maldonado, 20000, Uruguay; Department of Ecoscience, Aarhus University, Aarhus, 8000, Denmark
| | - Tong Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China
| | - Yaqi Zheng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China
| | - Erik Jeppesen
- Department of Ecoscience, Aarhus University, Aarhus, 8000, Denmark; Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing, 100049, China; Limnology Laboratory and EKOSAM, Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Liqing Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
5
|
Zhang X, Yang Y, Yuan W, Ruess L. The response of microbial communities to environmental factors in bank soil and river sediment: A case study along the mainstream of the Yangtze River. ENVIRONMENTAL RESEARCH 2025; 269:120903. [PMID: 39842759 DOI: 10.1016/j.envres.2025.120903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/07/2025] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
Microbial communities, which are crucial for ecosystem function and sustainability, are under environmental pressure. Using phospholipid fatty acids (PLFAs) as a measure of microbial biomass and community structure, the responses of microorganisms to environmental drivers were studied in bank soil and sediment alongside the Yangtze River in China. Thirty-eight sites were investigated over a length of 5500 km, ranging from the plateau to the estuary. Redundancy analysis revealed that microbial community composition in the bank soil was affected by MP (7.8%), geography (19.2%), and physicochemical properties (23.1%), while in the sediment, relevant factors were MP additives (12.8%), metals (21.1%), and physicochemical properties (23.3%). Variations in climate conditions along the course of the river had no effect on the microbial communities in the two habitats. Linear discriminant analysis of the PLFAs profiles showed changes in microbial community composition due to land use (forest, grass, cropland and built land), site class (up-, mid- and downstream) and MPs pollution level in both bank soil and sediment. The increased Gram-positive to negative bacteria (g+/g-) ratio and decreased iso-to anteiso-fatty acid (i/a) ratio indicated greater stress, such as caused by MP pollution (g+/g-: 12.6 to 19.3; i/a: 1.9 to 1.6). In bank soil, total microbial biomass was influenced by urbanization rate and nutrient availability. Specifically, total carbon (TC), total phosphorus (TP), and ammonium nitrogen (NH4+-N) had a positive impact, while inorganic phosphorus (IP), total potassium (TK) and nitrate nitrogen (NO3--N) had a negative impact. In contrast, in sediment only TC had a negative effect on biomass. This study applied PLFA to explore microbial communities and structures responses to environmental drivers in riverine habitats, revealing that anthropogenic factors (e.g. MP pollution and nutrient enrichment) alter microbial communities with urbanization.
Collapse
Affiliation(s)
- Xuchao Zhang
- Humboldt-Universität zu Berlin, Institute of Biology, Ecology, Berlin, 10115, Germany.
| | - Yuyi Yang
- Chinese Academy of Sciences, Wuhan Botanical Garden, Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan, 430074, China; Chinese Academy of Sciences & Hubei Province, Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Wuhan, 430074, China; Chinese Academy of Sciences, Wuhan Botanical Garden, Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan, 430074, China
| | - Wenke Yuan
- Chinese Academy of Sciences, Wuhan Botanical Garden, Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan, 430074, China; Chinese Academy of Sciences & Hubei Province, Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Wuhan, 430074, China; Chinese Academy of Sciences, Wuhan Botanical Garden, Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan, 430074, China.
| | - Liliane Ruess
- Humboldt-Universität zu Berlin, Institute of Biology, Ecology, Berlin, 10115, Germany
| |
Collapse
|
6
|
Delgado-Baquerizo M, Eldridge DJ, Liu YR, Liu ZW, Coleine C, Trivedi P. Soil biodiversity and function under global change. PLoS Biol 2025; 23:e3003093. [PMID: 40146744 DOI: 10.1371/journal.pbio.3003093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/28/2025] [Indexed: 03/29/2025] Open
Abstract
Soil organisms represent the most abundant and diverse organisms on the planet and support almost every ecosystem function we know, and thus impact our daily lives. Some of these impacts have been well-documented, such as the role of soil organisms in regulating soil fertility and carbon sequestration; processes that have direct implications for essential ecosystem services including food security and climate change mitigation. Moreover, soil biodiversity also plays a critical role in supporting other aspects from One Health-the combined health of humans, animals, and the environment-to the conservation of historic structures such as monuments. Unfortunately, soil biodiversity is also highly vulnerable to a growing number of stressors associated with global environmental change. Understanding how and when soil biodiversity supports these functions, and how it will adapt to changing environmental conditions, is crucial for conserving soils and maintaining soil processes for future generations. In this Essay, we discuss the fundamental importance of soil biodiversity for supporting multiple ecosystem services and One Health, and further highlight essential knowledge gaps that need to be addressed to conserve soil biodiversity for the next generations.
Collapse
Affiliation(s)
- Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - David J Eldridge
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Yu-Rong Liu
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Zhong-Wen Liu
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Pankaj Trivedi
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, Texas, United States of America
| |
Collapse
|
7
|
Yang R, Wang J, Fang H, Xia J, Huang G, Huang R, Zhang H, Zhu L, Zhang L, Yuan J. High concentrations of polyethylene microplastics restrain the growth of Cinnamomum camphora seedling by reducing soil water holding capacity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117583. [PMID: 39709707 DOI: 10.1016/j.ecoenv.2024.117583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
The accumulation of microplastics (MPs) in soils due to anthropogenic activities affects the growth and development of plants and thereby endangering the diversity and function of ecosystems. Although there is an increasing number of studies exploring the effects of MPs on plants in recent days, most of them focus on crops only. However, few studies have been conducted on woody plants that play a prominent role in ecosystems, while crucial edaphic factors which potentially restrain plant growth in MP-contaminated soils are yet to be revealed. In the current study, a 6-month pot experiment was conducted to investigate the inhibitory effect of soil polyethylene microplastics (PE-MPs) (average size of 6.5 µm) with increasing concentrations (0, 0.1 %, 0.5 %, 1 %, and 2 % w/w) on the growth of Cinnamomum camphora seedlings. The relationships between seedling growth and soil properties were also explored. The results showed that low concentrations of PE-MPs (not larger than 0.5 % in soils) did not restrain seedling growth, while the PE-MP concentrations of 1 % and 2 % decreased the net growth of ground diameter by 38.8 % (p < 0.05) and biomass by 29.6 % (p < 0.05), respectively. Similarly, the concentration of PE-MPs in soils not larger than 0.5 % showed little effect on soil physical properties, while the 1 % and 2 % MP accumulations decreased the soil capillary porosity by 8.9 % and 22.2 % (p < 0.05), respectively, thereby reducing the soil water content by 29.8 % (p < 0.05) and 34.1 % (p < 0.05) accordingly. Furthermore, high concentrations of PE-MPs (1 % and 2 %) greatly decreased soil alkali-hydrolysable nitrogen content and decreased bacterial diversity. The structural equation model clearly indicated that the inhibitory effect of soil PE-MPs with high concentrations on seedling growth was mainly derived from the decrement of soil water holding capacity. Our findings help replenish the regulation mechanism of MPs on plant growth and suggest that C. camphora is a potentially good candidate for the phytoremediation of the low-level PE-MP-contaminated soil.
Collapse
Affiliation(s)
- Run Yang
- Jiangxi Key Laboratory for Intelligent Monitoring and Integrated Restoration of Watershed Ecosystem, Nanchang Institute of Technology, Nanchang 330099, China
| | - Jinping Wang
- Jiangxi Key Laboratory for Intelligent Monitoring and Integrated Restoration of Watershed Ecosystem, Nanchang Institute of Technology, Nanchang 330099, China.
| | - Huanying Fang
- Jiangxi Key Laboratory for Intelligent Monitoring and Integrated Restoration of Watershed Ecosystem, Nanchang Institute of Technology, Nanchang 330099, China
| | - Jinwen Xia
- Jiangxi Key Laboratory for Intelligent Monitoring and Integrated Restoration of Watershed Ecosystem, Nanchang Institute of Technology, Nanchang 330099, China
| | - Guomin Huang
- Jiangxi Key Laboratory for Intelligent Monitoring and Integrated Restoration of Watershed Ecosystem, Nanchang Institute of Technology, Nanchang 330099, China
| | - Rongzhen Huang
- Jiangxi Key Laboratory for Intelligent Monitoring and Integrated Restoration of Watershed Ecosystem, Nanchang Institute of Technology, Nanchang 330099, China
| | - Hong Zhang
- Jiangxi Key Laboratory for Intelligent Monitoring and Integrated Restoration of Watershed Ecosystem, Nanchang Institute of Technology, Nanchang 330099, China
| | - Liqin Zhu
- Jiangxi Key Laboratory for Intelligent Monitoring and Integrated Restoration of Watershed Ecosystem, Nanchang Institute of Technology, Nanchang 330099, China
| | - Lichao Zhang
- Jiangxi Key Laboratory for Intelligent Monitoring and Integrated Restoration of Watershed Ecosystem, Nanchang Institute of Technology, Nanchang 330099, China
| | - Jihong Yuan
- Wetland Ecological Resources Research Center, Jiangxi Academy of Forestry, Nanchang 330032, China.
| |
Collapse
|
8
|
Jiménez DJ, Chaparro D, Sierra F, Custer GF, Feuerriegel G, Chuvochina M, Diaz-Garcia L, Mendes LW, Ortega Santiago YP, Rubiano-Labrador C, Salcedo Galan F, Streit WR, Dini-Andreote F, Reyes A, Rosado AS. Engineering the mangrove soil microbiome for selection of polyethylene terephthalate-transforming bacterial consortia. Trends Biotechnol 2025; 43:162-183. [PMID: 39304351 DOI: 10.1016/j.tibtech.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024]
Abstract
Mangroves are impacted by multiple environmental stressors, including sea level rise, erosion, and plastic pollution. Thus, mangrove soil may be an excellent source of as yet unknown plastic-transforming microorganisms. Here, we assess the impact of polyethylene terephthalate (PET) particles and seawater intrusion on the mangrove soil microbiome and report an enrichment culture experiment to artificially select PET-transforming microbial consortia. The analysis of metagenome-assembled genomes of two bacterial consortia revealed that PET catabolism can be performed by multiple taxa, of which particular species harbored putative novel PET-active hydrolases. A key member of these consortia (Mangrovimarina plasticivorans gen. nov., sp. nov.) was found to contain two genes encoding monohydroxyethyl terephthalate hydrolases. This study provides insights into the development of strategies for harnessing soil microbiomes, thereby advancing our understanding of the ecology and enzymology involved in microbial-mediated PET transformations in marine-associated systems.
Collapse
Affiliation(s)
- Diego Javier Jiménez
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
| | - Dayanne Chaparro
- Microbiomes and Bioenergy Research Group, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia; Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Felipe Sierra
- Microbiomes and Bioenergy Research Group, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia; Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Gordon F Custer
- Department of Plant Science and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA; The One Health Microbiome Center, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Golo Feuerriegel
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Maria Chuvochina
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Brisbane, Queensland, Australia
| | - Laura Diaz-Garcia
- Department of Chemical and Biological Engineering, Advanced Biomanufacturing Centre, University of Sheffield, Sheffield, UK
| | - Lucas William Mendes
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba, SP, Brazil
| | - Yina Paola Ortega Santiago
- Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, Colombia; Research Management, Agroindustrial Production and Transformation Research Group (GIPTA), Department of Agroindustrial Sciences, Universidad Popular del Cesar, Aguachica, Cesar, Colombia
| | - Carolina Rubiano-Labrador
- Chemical and Biological Studies Group, Basic Sciences Faculty, Universidad Tecnológica de Bolívar, Cartagena de Indias, Colombia
| | - Felipe Salcedo Galan
- Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Francisco Dini-Andreote
- Department of Plant Science and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA; The One Health Microbiome Center, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Alejandro Reyes
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Alexandre Soares Rosado
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
| |
Collapse
|
9
|
Miao L, Zhang J, Luo D, Adyel TM, Ao Y, Li C, Yao Y, Wu J, You G, Hou J. Distinct effects of flow intermittency on the benthic microbial diversity and their denitrification on different substrates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177394. [PMID: 39528219 DOI: 10.1016/j.scitotenv.2024.177394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/14/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Global climate change has significantly increased the duration of droughts in intermittent rivers, impacting benthic microbial-mediated biogeochemical processes. However, the response mechanisms of biofilms on different substrate types to alternating dry and wet conditions and their related ecosystem functions remain poorly understood. This study uses high-throughput sequencing and enzyme assays to investigate the impact of gradient drought stress on microbial diversity and functional changes of biofilm communities inhabiting on gravel, cobblestone, and sediment. Results showed that the duration of drought significantly affects microbial diversity, with algal and bacterial α-diversity declining under extended drought across gravel, cobblestone, and sediment substrates. At the same time, fungal diversity was less affected, likely due to their distinct ecological niches and reproductive strategies. β-diversity analysis revealed significant changes in community heterogeneity, with algae and bacteria showing increased Bray-Curtis dissimilarities, indicating distinct adaptation strategies that may affect ecosystem functioning. Fungal communities, however, were less impacted by drought-induced heterogeneity changes. Network analysis showed that drought altered microbial network connectivity, with algal networks displaying decreased path distances, while bacterial networks remained stable, suggesting greater resilience to drought stress. Functional enzyme assays revealed significantly reduced denitrification rates across all substrates post-drought, with distinct denitrifying enzyme activity responses depending on substrate type. Partial least squares path modeling revealed that algal biodiversity were closely linked to the maintaining of enzyme activities, particularly denitrification rates of biofilms on cobblestone and gravel. These findings indicated the critical role of substrate types in shaping microbial responses to drought stress, with distinct microbial groups and diversity indices playing key roles in maintaining ecosystem functions. This study highlights the importance of understanding the interactions between microbial community dynamics and ecosystem functions under varying environmental stressors in river ecosystems.
Collapse
Affiliation(s)
- Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Junling Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Dan Luo
- Tibet Research Academy of Eco-environmental Sciences, No.26, Jinzhu Middle Road, Chengguan District, Lhasa 850030, Tibet Autonomous Region, People's Republic of China
| | - Tanveer M Adyel
- Biosciences and Food Technology Discipline, RMIT University, Melbourne, VIC 3000, Australia
| | - Yanhui Ao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Chaoran Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Yu Yao
- School of Environment, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|
10
|
Zhu D, Liu SY, Sun MM, Yi XY, Duan GL, Ye M, Gillings MR, Zhu YG. Adaptive expression of phage auxiliary metabolic genes in paddy soils and their contribution toward global carbon sequestration. Proc Natl Acad Sci U S A 2024; 121:e2419798121. [PMID: 39602267 PMCID: PMC11626168 DOI: 10.1073/pnas.2419798121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Habitats with intermittent flooding, such as paddy soils, are crucial reservoirs in the global carbon pool; however, the effect of phage-host interactions on the biogeochemical cycling of carbon in paddy soils remains unclear. Hence, this study applied multiomics and global datasets integrated with validation experiments to investigate phage-host community interactions and the potential of phages to impact carbon sequestration in paddy soils. The results demonstrated that paddy soil phages harbor a diverse and abundant repertoire of auxiliary metabolic genes (AMGs) associated with carbon fixation, comprising 23.7% of the identified AMGs. The successful annotation of protein structures and promoters further suggested an elevated expression potential of these genes within their bacterial hosts. Moreover, environmental stressors, such as heavy metal contamination, cause genetic variation in paddy phages and up-regulate the expression of carbon fixation AMGs, as demonstrated by the significant enrichment of related metabolites (P < 0.05). Notably, the findings indicate that lysogenic phages infecting carbon-fixing hosts increased by 10.7% under heavy metal stress. In addition, in situ isotopic labeling experiments induced by mitomycin-C revealed that by increasing heavy metal concentrations, 13CO2 emissions from the treatment with added lysogenic phage decreased by approximately 17.9%. In contrast, 13C-labeled microbial biomass carbon content increased by an average of 35.4% compared to the control. These results suggest that paddy soil phages prominently influence the global carbon cycle, particularly under global change conditions. This research enhances our understanding of phage-host cooperation in driving carbon sequestration in paddy soils amid evolving environmental conditions.
Collapse
Affiliation(s)
- Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen361021, People’s Republic of China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Chinese Academy of Sciences Haixi Industrial Technology Innovation Center in Beilun, Ningbo315830, People’s Republic of China
| | - Shu-Yue Liu
- National Engineering Research Center for Soil Nutrient Management and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing210008, People’s Republic of China
| | - Ming-Ming Sun
- Soil Ecology Laboratory, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, People’s Republic of China
| | - Xing-Yun Yi
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, People’s Republic of China
| | - Gui-Lan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, People’s Republic of China
| | - Mao Ye
- National Engineering Research Center for Soil Nutrient Management and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing210008, People’s Republic of China
| | - Michael R. Gillings
- Department of Biological Sciences, Macquarie University, Sydney, NSW2109, Australia
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, People’s Republic of China
| |
Collapse
|
11
|
Yan M, Peng T, Zhao L, Li Q, Wu R, Wang Y, Wu Y, Teng Y, Xiang X, Zeng J, Lin X. The roles of organic amendments and plant treatments in soil polychlorinated biphenyl dissipation under oxic and sequential anoxic-oxic conditions. ENVIRONMENTAL RESEARCH 2024; 262:119943. [PMID: 39276835 DOI: 10.1016/j.envres.2024.119943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
Understanding polychlorinated biphenyl (PCB) degradation in sequential anaerobic-aerobic remediation is crucial for effective remediation strategies. In this study, microcosm and greenhouse experiments were conducted to dissect the effects of organic amendments (carbon-based) and plant treatments (ryegrass) on soil PCB dissipation under oxic and sequential anoxic-oxic conditions. We analyzed the soil bacterial community in greenhouse experiments using high-throughput sequencing to explore plant-pollutant-microbe interactions. Microcosm results showed that organic amendments alone did not facilitate aerobic PCB removal, but significantly accelerated PCB dechlorination under anoxic conditions altering the profiles of PCB congeners. In standard greenhouses, plant treatments substantially increased PCB dissipation to 50.8 ± 3.9%, while organic amendments aided phytoremediation by promoting plant growth, increasing PCB removal to 65.9 ± 3.2%. In sequential anaerobic-aerobic greenhouses, plant growth was inhibited by flooding treatment while flooding stress was markedly alleviated by organic amendments. Plant treatments alone during sequential treatments did not lead to PCB dissipation; however, dissipation was significantly promoted following organic amendments, achieving a removal of 41.2 ± 5.7%. This PCB removal was primarily due to anaerobic dechlorination during flooding (27.8 ± 0.5% removal), rather than from plant growth stimulation in subsequent planting phase. Co-occurrence network and functional prediction analyses revealed that organic amendments recruited specific bacterial clusters with distinct functions under different conditions, especially stimulating plant-microbe interactions and xenobiotics biodegradation pathways in planted systems. The findings provide valuable guidance for the design of practical remediation strategies under various remedy scenarios, such as in arable or paddy fields.
Collapse
Affiliation(s)
- Meng Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.298 Chuangyou Road, Nanjing, 211135, PR China; Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, PR China
| | - Tingting Peng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.298 Chuangyou Road, Nanjing, 211135, PR China; Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, PR China
| | - Ling Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.298 Chuangyou Road, Nanjing, 211135, PR China
| | - Qigang Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.298 Chuangyou Road, Nanjing, 211135, PR China
| | - Ruini Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.298 Chuangyou Road, Nanjing, 211135, PR China
| | - Yiming Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.298 Chuangyou Road, Nanjing, 211135, PR China
| | - Yucheng Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.298 Chuangyou Road, Nanjing, 211135, PR China
| | - Ying Teng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.298 Chuangyou Road, Nanjing, 211135, PR China
| | - Xingjia Xiang
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, PR China.
| | - Jun Zeng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.298 Chuangyou Road, Nanjing, 211135, PR China.
| | - Xiangui Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.298 Chuangyou Road, Nanjing, 211135, PR China
| |
Collapse
|
12
|
Wang YF, Liu YJ, Fu YM, Xu JY, Zhang TL, Cui HL, Qiao M, Rillig MC, Zhu YG, Zhu D. Microplastic diversity increases the abundance of antibiotic resistance genes in soil. Nat Commun 2024; 15:9788. [PMID: 39532872 PMCID: PMC11557862 DOI: 10.1038/s41467-024-54237-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
The impact of microplastics on antibiotic resistance has attracted widespread attention. However, previous studies primarily focused on the effects of individual microplastics. In reality, diverse microplastic types accumulate in soil, and it remains less well studied whether microplastic diversity (i.e., variations in color, shape or polymer type) can be an important driver of increased antibiotic resistance gene (ARG) abundance. Here, we employed microcosm studies to investigate the effects of microplastic diversity on soil ARG dynamics through metagenomic analysis. Additionally, we evaluated the associated potential health risks by profiling virulence factor genes (VFGs) and mobile genetic elements (MGEs). Our findings reveal that as microplastic diversity increases, there is a corresponding rise in the abundance of soil ARGs, VFGs and MGEs. We further identified microbial adaptive strategies involving genes (changed genetic diversity), community (increased specific microbes), and functions (enriched metabolic pathways) that correlate with increased ARG abundance and may thus contribute to ARG dissemination. Additional global change factors, including fungicide application and plant diversity reduction, also contributed to elevated ARG abundance. Our findings suggest that, in addition to considering contamination levels, it is crucial to monitor microplastic diversity in ecosystems due to their potential role in driving the dissemination of antibiotic resistance through multiple pathways.
Collapse
Affiliation(s)
- Yi-Fei Wang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
| | - Yan-Jie Liu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- Ecology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Yan-Mei Fu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Jia-Yang Xu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tian-Lun Zhang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui-Ling Cui
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Min Qiao
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
| | - Matthias C Rillig
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China.
| |
Collapse
|
13
|
Jin J, Zhao D, Wang J, Wang Y, Zhu H, Wu Y, Fang L, Bing H. Fungal community determines soil multifunctionality during vegetation restoration in metallic tailing reservoir. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135438. [PMID: 39116750 DOI: 10.1016/j.jhazmat.2024.135438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Microorganisms are pivotal in sustaining soil functions, yet the specific contributions of bacterial and fungal succession on the functions during vegetation restoration in metallic tailing reservoirs remains elusive. Here, we explored bacterial and fungal succession and their impacts on soil multifunctionality along a ∼50-year vegetation restoration chronosequence in China's largest vanadium titano-magnetite tailing reservoir. We found a significant increase in soil multifunctionality, an index comprising factors pertinent to soil fertility and microbially mediated nutrient cycling, along the chronosequence. Despite increasing heavy metal levels, both bacterial and fungal communities exhibited significant increase in richness and network complexity over time. However, fungi demonstrated a slower succession rate and more consistent composition than bacteria, indicating their relatively higher resilience to environmental changes. Soil multifunctionality was intimately linked to bacterial and fungal richness or complexity. Nevertheless, when scrutinizing both richness and complexity concurrently, the correlations disappeared for bacteria but remained robust for fungi. This persistence reveals the critical role of the fungal community resilience in sustaining soil multifunctionality, particularly through their stable interactions with powerful core taxa. Our findings highlight the importance of fungal succession in enhancing soil multifunctionality during vegetation restoration in metallic tailing reservoirs, and manipulating fungal community may expedite ecological recovery of areas polluted with heavy metals.
Collapse
Affiliation(s)
- Jiyuan Jin
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China; School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210093, China
| | - Dongyan Zhao
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Jipeng Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yuhan Wang
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China; Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wuhan 430070, China
| | - He Zhu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China
| | - Yanhong Wu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China
| | - Linchuan Fang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wuhan 430070, China
| | - Haijian Bing
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China.
| |
Collapse
|
14
|
Han C, Cheng Q, Du X, Liang L, Fan G, Xie J, Wang X, Tang Y, Zhang H, Hu C, Zhao X. Selenium in soil enhances resistance of oilseed rape to Sclerotinia sclerotiorum by optimizing the plant microbiome. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5768-5789. [PMID: 38809805 DOI: 10.1093/jxb/erae238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/28/2024] [Indexed: 05/31/2024]
Abstract
Plants can recruit beneficial microbes to enhance their ability to resist disease. It is well established that selenium is beneficial in plant growth, but its role in mediating microbial disease resistance remains poorly understood. Here, we investigated the correlation between selenium, oilseed rape rhizosphere microbes, and Sclerotinia sclerotiorum. Soil application of 0.5 and 1.0 mg kg-1 selenium [selenate Na2SeO4, Se(VI) or selenite Na2SeO3, Se(IV)] significantly increased the resistance of oilseed rape to Sclerotinia sclerotiorum compared with no selenium application, with a disease inhibition rate higher than 20% in Se(VI)0.5, Se(IV)0.5 and Se(IV)1.0 mg kg-1 treatments. The disease resistance of oilseed rape was related to the presence of rhizosphere microorganisms and beneficial bacteria isolated from the rhizosphere inhibited Sclerotinia stem rot. Burkholderia cepacia and the synthetic community consisting of Bacillus altitudinis, Bacillus megaterium, Bacillus cereus, Bacillus subtilis, Bacillus velezensis, Burkholderia cepacia, and Flavobacterium anhui enhanced plant disease resistance through transcriptional regulation and activation of plant-induced systemic resistance. In addition, inoculation of isolated bacteria optimized the bacterial community structure of leaves and enriched beneficial microorganisms such as Bacillus, Pseudomonas, and Sphingomonas. Bacillus isolated from the leaves were sprayed on detached leaves, and it also performed a significant inhibition effect on Sclerotinia sclerotiorum. Overall, our results indicate that selenium improves plant rhizosphere microorganisms and increase resistance to Sclerotinia sclerotiorum in oilseed rape.
Collapse
Affiliation(s)
- Chuang Han
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs/ National-Local Joint Engineering Laboratory of Se-enriched Food Development, Ankang 725000, China
| | - Qin Cheng
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoping Du
- Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs/ National-Local Joint Engineering Laboratory of Se-enriched Food Development, Ankang 725000, China
| | - Lianming Liang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Guocheng Fan
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou 350013, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yanni Tang
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Huan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengxiao Hu
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaohu Zhao
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs/ National-Local Joint Engineering Laboratory of Se-enriched Food Development, Ankang 725000, China
| |
Collapse
|
15
|
Bi M, Li H, Meidl P, Zhu Y, Ryo M, Rillig MC. Number and dissimilarity of global change factors influences soil properties and functions. Nat Commun 2024; 15:8188. [PMID: 39294171 PMCID: PMC11410830 DOI: 10.1038/s41467-024-52511-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024] Open
Abstract
Soil biota and functions are impacted by various anthropogenic stressors, including climate change, chemical pollution or microplastics. These stressors do not occur in isolation, and soil properties and functions appear to be directionally driven by the number of global change factors acting simultaneously. Building on this insight, we here hypothesize that co-acting factors with more diverse effect mechanisms, or higher dissimilarity, have greater impacts on soil properties and functions. We created a factor pool of 12 factors and calculated dissimilarity indices of randomly-chosen co-acting factors based on the measured responses of soil properties and functions to the single factors. Results show that not only was the number of factors important, but factor dissimilarity was also key for predicting factor joint effects. By analyzing deviations of soil properties and functions from three null model predictions, we demonstrate that higher factor dissimilarity and a larger number of factors could drive larger deviations from null models and trigger more frequent occurrence of synergistic factor net interactions on soil functions (decomposition rate, cellulase, and β-glucosidase activity), which provides mechanistic insights for understanding high-dimensional effects of factors. Our work highlights the importance of considering factor similarity in future research on interacting factors.
Collapse
Affiliation(s)
- Mohan Bi
- Freie Universität Berlin, Institute of Biology, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Huiying Li
- Freie Universität Berlin, Institute of Biology, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Peter Meidl
- Freie Universität Berlin, Institute of Biology, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Yanjie Zhu
- Freie Universität Berlin, Institute of Biology, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Masahiro Ryo
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
- Brandenburg University of Technology Cottbus-Senftenberg, Platz der Deutschen Einheit 1, Cottbus, Germany
| | - Matthias C Rillig
- Freie Universität Berlin, Institute of Biology, Berlin, Germany.
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany.
| |
Collapse
|
16
|
Bashir Z, Raj D, Selvasembian R. A combined bibliometric and sustainable approach of phytostabilization towards eco-restoration of coal mine overburden dumps. CHEMOSPHERE 2024; 363:142774. [PMID: 38969231 DOI: 10.1016/j.chemosphere.2024.142774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/22/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
Extraction of coal through opencast mining leads to the buildup of heaps of overburden (OB) material, which poses a significant risk to production safety and environmental stability. A systematic bibliometric analysis to identify research trends and gaps, and evaluate the impact of studies and authors in the field related to coal OB phytostabilization was conducted. Key issues associated with coal extraction include land degradation, surface and groundwater contamination, slope instability, erosion and biodiversity loss. Handling coal OB material intensifies such issues, initiating additional environmental and physical challenges. The conventional approach such as topsoiling for OB restoration fails to restore essential soil properties crucial for sustainable vegetation cover. Phytostabilization approach involves establishing a self-sustaining plant cover over OB dump surfaces emerges as a viable strategy for OB restoration. This method enhanced by the supplement of organic amendments boosts the restoration of OB dumps by improving rhizosphere properties conducive to plant growth and contaminant uptake. Criteria essential for plant selection in phytostabilization are critically evaluated. Native plant species adapted to local climatic and ecological conditions are identified as key agents in stabilizing contaminants, reducing soil erosion, and enhancing ecosystem functions. Applicable case studies of successful phytostabilization of coal mines using native plants, offering practical recommendations for species selection in coal mine reclamation projects are provided. This review contributes to sustainable approaches for mitigating the environmental consequences of coal mining and facilitates the ecological recovery of degraded landscapes.
Collapse
Affiliation(s)
- Zahid Bashir
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522240, India
| | - Deep Raj
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522240, India.
| | - Rangabhashiyam Selvasembian
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522240, India.
| |
Collapse
|
17
|
Xu Z, Wang S, Li R, Li H, Zhang C, Zhang Y, Zhang X, Quan F, Wang F. Enhancement of microbial community dynamics and metabolism in compost through ammonifying cultures inoculation. ENVIRONMENTAL RESEARCH 2024; 255:119188. [PMID: 38795950 DOI: 10.1016/j.envres.2024.119188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024]
Abstract
The efficient use of livestock and poultry manure waste has become a global challenge, with microorganisms playing an important role. To investigate the impact of novel ammonifying microorganism cultures (NAMC) on microbial community dynamics and carbon and nitrogen metabolism, five treatments [5% (v/w) sterilized distilled water, Amm-1, Amm-2, Amm-3, and Amm-4] were applied to cow manure compost. Inoculation with NAMC improved the structure of bacterial and fungal communities, enriched the populations of the functional microorganisms, enhanced the role of specific microorganisms, and promoted the formation of tight modularity within the microbial network. Further functional predictions indicated a significant increase in both carbon metabolism (CMB) and nitrogen metabolism (NMB). During the thermophilic phase, inoculated NAMC treatments boosted carbon metabolism annotation by 10.55%-33.87% and nitrogen metabolism annotation by 26.69%-63.11. Structural equation modeling supported the NAMC-mediated enhancement of NMB and CMB. In conclusion, NAMC inoculation, particularly with Amm-4, enhanced the synergistic interaction between bacteria and fungi. This collaboration promoted enzymatic catabolic and synthetic processes, resultng in positive feedback loops with the endogenous microbial community. Understanding these mechanisms not only unravels how ammonifying microorganisms influence microbial communities but also paves the way for the development of the composting industry and global waste management practices.
Collapse
Affiliation(s)
- Zhiming Xu
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Yangling, 712100, China
| | - Shaowen Wang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Yangling, 712100, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Huijia Li
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Yangling, 712100, China
| | - Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A*STAR), 31 Biopolis Way, Level 6 Nanos Building, Singapore 138669, Singapore
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Yangling, 712100, China
| | - Xiu Zhang
- North Minzu University Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan, 750021, China.
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Yangling, 712100, China.
| | - Faming Wang
- Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, Leuven, 3001, Belgium
| |
Collapse
|
18
|
Wang B, Wang S, Wu L, Wu Y, Wang S, Bai Y, Chen D. Temporal asynchrony of plant and soil biota determines ecosystem multifunctional stability. GLOBAL CHANGE BIOLOGY 2024; 30:e17483. [PMID: 39171768 DOI: 10.1111/gcb.17483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024]
Abstract
The role of plant biodiversity in stabilizing ecosystem multifunctionality has been extensively studied; however, the impact of soil biota biodiversity on ecosystem multifunctional stability, particularly under multiple environmental changes, remains unexplored. By conducting an experiment with environmental changes (adding water and nitrogen to a long-term grazing experiment) and an experiment without environmental changes (an undisturbed site) in semi-arid grasslands, our research revealed that environmental changes-induced changes in temporal stability of both above- and belowground multifunctionality were mainly impacted by plant and soil biota asynchrony, rather than by species diversity. Furthermore, changes in temporal stability of above- and belowground multifunctionality, under both experiments with and without environmental changes, were mainly associated with plant and soil biota asynchrony, respectively, suggesting that the temporal asynchrony of plant and soil biota has independent and non-substitutable effects on multifunctional stability. Our findings emphasize the importance of considering both above- and belowground biodiversity or functions when evaluating the stabilizing effects of biodiversity on ecosystem functions.
Collapse
Affiliation(s)
- Bing Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, China Three Gorges University, Yichang, China
| | - Shuaifei Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Liji Wu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Ying Wu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Yongfei Bai
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dima Chen
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| |
Collapse
|
19
|
Jiang P, Wang Y, Zhang Y, Fei J, Rong X, Peng J, Yin L, Luo G. Intercropping enhances maize growth and nutrient uptake by driving the link between rhizosphere metabolites and microbiomes. THE NEW PHYTOLOGIST 2024; 243:1506-1521. [PMID: 38874414 DOI: 10.1111/nph.19906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
Intercropping leads to different plant roots directly influencing belowground processes and has gained interest for its promotion of increased crop yields and resource utilization. However, the precise mechanisms through which the interactions between rhizosphere metabolites and the microbiome contribute to plant production remain ambiguous, thus impeding the understanding of the yield-enhancing advantages of intercropping. This study conducted field experiments (initiated in 2013) and pot experiments, coupled with multi-omics analysis, to investigate plant-metabolite-microbiome interactions in the rhizosphere of maize. Field-based data revealed significant differences in metabolite and microbiome profiles between the rhizosphere soils of maize monoculture and intercropping. In particular, intercropping soils exhibited higher microbial diversity and metabolite chemodiversity. The chemodiversity and composition of rhizosphere metabolites were significantly related to the diversity, community composition, and network complexity of soil microbiomes, and this relationship further impacted plant nutrient uptake. Pot-based findings demonstrated that the exogenous application of a metabolic mixture comprising key components enriched by intercropping (soyasapogenol B, 6-hydroxynicotinic acid, lycorine, shikimic acid, and phosphocreatine) significantly enhanced root activity, nutrient content, and biomass of maize in natural soil, but not in sterilized soil. Overall, this study emphasized the significance of rhizosphere metabolite-microbe interactions in enhancing yields in intercropping systems. It can provide new insights into rhizosphere controls within intensive agroecosystems, aiming to enhance crop production and ecosystem services.
Collapse
Affiliation(s)
- Pan Jiang
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Yizhe Wang
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Yuping Zhang
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha, 410128, China
| | - Jiangchi Fei
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha, 410128, China
| | - Xiangmin Rong
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha, 410128, China
| | - Jianwei Peng
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha, 410128, China
| | - Lichu Yin
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China
| | - Gongwen Luo
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha, 410128, China
| |
Collapse
|
20
|
Wang D, Candry P, Hunt KA, Flinkstrom Z, Shi Z, Liu Y, Wofford NQ, McInerney MJ, Tanner RS, De Leόn KB, Zhou J, Winkler MKH, Stahl DA, Pan C. Metaproteomics-informed stoichiometric modeling reveals the responses of wetland microbial communities to oxygen and sulfate exposure. NPJ Biofilms Microbiomes 2024; 10:55. [PMID: 38961111 PMCID: PMC11222425 DOI: 10.1038/s41522-024-00525-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/07/2024] [Indexed: 07/05/2024] Open
Abstract
Climate changes significantly impact greenhouse gas emissions from wetland soil. Specifically, wetland soil may be exposed to oxygen (O2) during droughts, or to sulfate (SO42-) as a result of sea level rise. How these stressors - separately and together - impact microbial food webs driving carbon cycling in the wetlands is still not understood. To investigate this, we integrated geochemical analysis, proteogenomics, and stoichiometric modeling to characterize the impact of elevated SO42- and O2 levels on microbial methane (CH4) and carbon dioxide (CO2) emissions. The results uncovered the adaptive responses of this community to changes in SO42- and O2 availability and identified altered microbial guilds and metabolic processes driving CH4 and CO2 emissions. Elevated SO42- reduced CH4 emissions, with hydrogenotrophic methanogenesis more suppressed than acetoclastic. Elevated O2 shifted the greenhouse gas emissions from CH4 to CO2. The metabolic effects of combined SO42- and O2 exposures on CH4 and CO2 emissions were similar to those of O2 exposure alone. The reduction in CH4 emission by increased SO42- and O2 was much greater than the concomitant increase in CO2 emission. Thus, greater SO42- and O2 exposure in wetlands is expected to reduce the aggregate warming effect of CH4 and CO2. Metaproteomics and stoichiometric modeling revealed a unique subnetwork involving carbon metabolism that converts lactate and SO42- to produce acetate, H2S, and CO2 when SO42- is elevated under oxic conditions. This study provides greater quantitative resolution of key metabolic processes necessary for the prediction of CH4 and CO2 emissions from wetlands under future climate scenarios.
Collapse
Affiliation(s)
- Dongyu Wang
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA
| | - Pieter Candry
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Kristopher A Hunt
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Zachary Flinkstrom
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Zheng Shi
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Yunlong Liu
- School of Computer Science, University of Oklahoma, Norman, OK, USA
| | - Neil Q Wofford
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA
| | | | - Ralph S Tanner
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA
| | - Kara B De Leόn
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA
| | - Jizhong Zhou
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
- School of Computer Science, University of Oklahoma, Norman, OK, USA
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - David A Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Chongle Pan
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA.
- School of Computer Science, University of Oklahoma, Norman, OK, USA.
| |
Collapse
|
21
|
Tang B, Man J, Lehmann A, Rillig MC. Arbuscular mycorrhizal fungi attenuate negative impact of drought on soil functions. GLOBAL CHANGE BIOLOGY 2024; 30:e17409. [PMID: 38978455 DOI: 10.1111/gcb.17409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024]
Abstract
Although positive effects of arbuscular mycorrhizal (AM) fungi on plant performance under drought have been well documented, how AM fungi regulate soil functions and multifunctionality requires further investigation. In this study, we first performed a meta-analysis to test the potential role of AM fungi in maintaining soil functions under drought. Then, we conducted a greenhouse experiment, using a pair of hyphal ingrowth cores to spatially separate the growth of AM fungal hyphae and plant roots, to further investigate the effects of AM fungi on soil multifunctionality and its resistance against drought. Our meta-analysis showed that AM fungi promote multiple soil functions, including soil aggregation, microbial biomass and activities of soil enzymes related to nutrient cycling. The greenhouse experiment further demonstrated that AM fungi attenuate the negative impact of drought on these soil functions and thus multifunctionality, therefore, increasing their resistance against drought. Moreover, this buffering effect of AM fungi persists across different frequencies of water supply and plant species. These findings highlight the unique role of AM fungi in maintaining multiple soil functions by mitigating the negative impact of drought. Our study highlights the importance of AM fungi as a nature-based solution to sustaining multiple soil functions in a world where drought events are intensifying.
Collapse
Affiliation(s)
- Bo Tang
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Jing Man
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Anika Lehmann
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Matthias C Rillig
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
22
|
Liu S, Stoof-Leichsenring KR, Harms L, Schulte L, Mischke S, Kruse S, Zhang C, Herzschuh U. Tibetan terrestrial and aquatic ecosystems collapsed with cryosphere loss inferred from sedimentary ancient metagenomics. SCIENCE ADVANCES 2024; 10:eadn8490. [PMID: 38781339 PMCID: PMC11114237 DOI: 10.1126/sciadv.adn8490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024]
Abstract
Glacier and permafrost shrinkage and land-use intensification threaten mountain wildlife and affect nature conservation strategies. Here, we present paleometagenomic records of terrestrial and aquatic taxa from the southeastern Tibetan Plateau covering the last 18,000 years to help understand the complex alpine ecosystem dynamics. We infer that steppe-meadow became woodland at 14 ka (cal BP) controlled by cryosphere loss, further driving a herbivore change from wild yak to deer. These findings weaken the hypothesis of top-down control by large herbivores in the terrestrial ecosystem. We find a turnover in the aquatic communities at 14 ka, transitioning from glacier-related (blue-green) algae to abundant nonglacier-preferring picocyanobacteria, macrophytes, fish, and otters. There is no evidence for substantial effects of livestock herding in either ecosystem. Using network analysis, we assess the stress-gradient hypothesis and reveal that root hemiparasitic and cushion plants are keystone taxa. With ongoing cryosphere loss, the protection of their habitats is likely to be of conservation benefit on the Tibetan Plateau.
Collapse
Affiliation(s)
- Sisi Liu
- Polar Terrestrial Environmental Systems, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam 14473, Germany
- Institute of Environmental Science and Geography, University of Potsdam, Potsdam 14469, Germany
| | - Kathleen R. Stoof-Leichsenring
- Polar Terrestrial Environmental Systems, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam 14473, Germany
| | - Lars Harms
- Computing and Data Centre, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven 27570, Germany
| | - Luise Schulte
- Polar Terrestrial Environmental Systems, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam 14473, Germany
| | - Steffen Mischke
- Institute of Earth Sciences, University of Iceland, Reykjavík 102, Iceland
| | - Stefan Kruse
- Polar Terrestrial Environmental Systems, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam 14473, Germany
| | - Chengjun Zhang
- School of Earth Sciences, Lanzhou University, Lanzhou 73000, China
| | - Ulrike Herzschuh
- Polar Terrestrial Environmental Systems, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam 14473, Germany
- Institute of Environmental Science and Geography, University of Potsdam, Potsdam 14469, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
| |
Collapse
|
23
|
Mo L, Zanella A, Squartini A, Ranzani G, Bolzonella C, Concheri G, Pindo M, Visentin F, Xu G. Anthropogenic vs. natural habitats: Higher microbial biodiversity pays the trade-off of lower connectivity. Microbiol Res 2024; 282:127651. [PMID: 38430888 DOI: 10.1016/j.micres.2024.127651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/23/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024]
Abstract
Climate change and anthropogenic disturbances are known to influence soil biodiversity. The objectives of this study were to compare the community composition, species coexistence patterns, and ecological assembly processes of soil microbial communities in a paired setting featuring a natural and an anthropogenic ecosystem facing each other at identical climatic, pedological, and vegetational conditions. A transect gradient from forest to seashore allowed for sampling across different habitats within both sites. The field survey was carried out at two adjacent strips of land within the Po River delta lagoon system (Veneto, Italy) one of which is protected within a natural preserve and the other has been converted for decades into a tourist resort. The anthropogenic pressure interestingly led to an increase in the α-diversity of soil microbes but was accompanied by a reduction in β-diversity. The community assembly mechanisms of microbial communities differentiate in natural and anthropic ecosystems: for bacteria, in natural ecosystems deterministic variables and homogeneous selection play a main role (51.92%), while stochastic dispersal limitation (52.15%) is critical in anthropized ecosystems; for fungi, stochastic dispersal limitation increases from 38.1% to 66.09% passing from natural to anthropized ecosystems. We are on calcareous sandy soils and in more natural ecosystems a variation of topsoil pH favors the deterministic selection of bacterial communities, while a divergence of K availability favors stochastic selection. In more anthropized ecosystems, the deterministic variable selection is influenced by the values of SOC. Microbial networks in the natural system exhibited higher numbers of nodes and network edges, as well as higher averages of path length, weighted degree, clustering coefficient, and density than its equivalent sites in the more anthropically impacted environment. The latter on the other hand presented a stronger modularity. Although the influence of stochastic processes increases in anthropized habitats, niche-based selection also proves to impose constraints on communities. Overall, the functionality of the relationships between groups of microorganisms co-existing in communities appeared more relevant to the concept of functional biodiversity in comparison to the plain number of their different taxa. Fewer but functionally more organized lineages displayed traits underscoring a better use of the resources than higher absolute numbers of taxa when those are not equally interconnected in their habitat exploitation. However, considering that network complexity can have important implications for microbial stability and ecosystem multifunctionality, the extinction of complex ecological interactions in anthropogenic habitats may impair important ecosystem services that soils provide us.
Collapse
Affiliation(s)
- Lingzi Mo
- School of Geography and Remote Sensing, Guangzhou University, Guangzhou, Guangdong 510006, China.
| | - Augusto Zanella
- Department Land Environment Agriculture and Forestry, University of Padua, Viale dell'Università 16, Legnaro 35020, Italy.
| | - Andrea Squartini
- Department Agronomy, Food, Natural Resources, Animals, Environment, University of Padua, Viale dell'Università 16, Legnaro 35020, Italy.
| | - Giulia Ranzani
- Department Land Environment Agriculture and Forestry, University of Padua, Viale dell'Università 16, Legnaro 35020, Italy.
| | - Cristian Bolzonella
- Department Land Environment Agriculture and Forestry, University of Padua, Viale dell'Università 16, Legnaro 35020, Italy.
| | - Giuseppe Concheri
- Department Agronomy, Food, Natural Resources, Animals, Environment, University of Padua, Viale dell'Università 16, Legnaro 35020, Italy.
| | - Massimo Pindo
- Fondazione Edmund Mach, San Michele all'Adige 38098, Italy.
| | - Francesca Visentin
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy.
| | - Guoliang Xu
- School of Geography and Remote Sensing, Guangzhou University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
24
|
Pan C, Sun C, Qu X, Yu W, Guo J, Yu Y, Li X. Microbial community interactions determine the mineralization of soil organic phosphorus in subtropical forest ecosystems. Microbiol Spectr 2024; 12:e0135523. [PMID: 38334388 PMCID: PMC10913379 DOI: 10.1128/spectrum.01355-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
In subtropical forest ecosystems with few phosphorus (P) inputs, P availability and forest productivity depend on soil organic P (Po) mineralization. However, the mechanisms by which the microbial community determines the status and fate of soil Po mineralization remain unclear. In the present study, soils were collected from three typical forest types: secondary natural forest (SNF), mixed planting, and monoculture forest of Chinese fir. The P fractions, Po-mineralization ability, and microbial community in the soils of different forest types were characterized. In addition, we defined Po-mineralizing taxa with the potential to interact with the soil microbial community to regulate Po mineralization. We found that a higher labile P content persisted in SNF and was positively associated with the Po-mineralization capacity of the soil microbial community. In vitro cultures of soil suspensions revealed that soil Po mineralization of three forest types was distinguished by differences in the composition of fungal communities. We further identified broad phylogenetic lineages of Po-mineralizing fungi with a high intensity of positive interactions with the soil microbial community, implying that the facilitation of Po-mineralizing taxa is crucial for soil P availability. Our dilution experiments to weaken microbial interactions revealed that in SNF soil, which had the highest interaction intensity of Po-mineralizing taxa with the community, Po-mineralization capacity was irreversibly lost after dilution, highlighting the importance of microbial diversity protection in forest soils. In summary, this study demonstrates that the interactions of Po-mineralizing microorganisms with the soil microbial community are critical for P availability in subtropical forests.IMPORTANCEIn subtropical forest ecosystems with few phosphorus inputs, phosphorus availability and forest productivity depend on soil organic phosphorus mineralization. However, the mechanisms by which the microbial community interactions determine the mineralization of soil organic phosphorus remain unclear. In the present study, soils were collected from three typical forest types: secondary natural forest, mixed planting, and monoculture forest of Chinese fir. We found that a higher soil labile phosphorus content was positively associated with the organic phosphorus mineralization capacity of the soil microbial community. Soil organic phosphorus mineralization of three forest types was distinguished by the differences in the composition of fungal communities. The positive interactions between organic phosphorus-mineralizing fungi and the rest of the soil microbial community facilitated organic phosphorus mineralization. This study highlights the importance of microbial diversity protection in forest soils and reveals the microbial mechanism of phosphorus availability maintenance in subtropical forest ecosystems.
Collapse
Affiliation(s)
- Chang Pan
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
- School of Life Sciences, Anqing Normal University, Anqing, China
| | - Chenchen Sun
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Xinjing Qu
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Wenruinan Yu
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Jiahuan Guo
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Yuanchun Yu
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xiaogang Li
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
25
|
Wu H, Gao T, Hu A, Wang J. Network Complexity and Stability of Microbes Enhanced by Microplastic Diversity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4334-4345. [PMID: 38382548 DOI: 10.1021/acs.est.3c08704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Microplastic mixtures are ubiquitously distributed in global ecosystems and include varying types. However, it remains unknown how microplastic diversity affects the biotic interactions of microbes. Here, we developed novel experiments of 600 microcosms with microplastic diversity ranging from 1 to 6 types and examined ecological networks for microbial communities in lake sediments after 2 months of incubation at 15 and 20 °C. We found that microplastic diversity generally enhanced the complexity of microbial networks at both temperatures, such as increasing network connectance and reducing average path length. This phenomenon was further confirmed by strengthened species interactions toward high microplastic diversity except for the negative interactions at 15 °C. Interestingly, increasing temperatures further exaggerated the effects of microplastic diversity on network structures, resulting in higher network connectivity and species interactions. Consistently, using species extinction simulations, we found that higher microplastic diversity and temperature led to more robust networks, and their effects were additionally and positively mediated by the presence of biodegradable microplastics. Our findings provide the first evidence that increasing microplastic diversity could unexpectedly promote the complexity and stability of microbial networks and that future warming could amplify this effect.
Collapse
Affiliation(s)
- Hao Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
- College of Oceanography, Hohai University, Nanjing 210098, China
| | - Tianheng Gao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Ang Hu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
26
|
Xu Z, Li R, Zhang X, Wang S, Xu X, Ho Daniel Tang K, Emmanuel Scriber K, Zhang Z, Quan F. Molecular mechanisms of humus formation mediated by new ammonifying microorganisms in compost. CHEMICAL ENGINEERING JOURNAL 2024; 483:149341. [DOI: 10.1016/j.cej.2024.149341] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
27
|
Zandalinas SI, Peláez-Vico MÁ, Sinha R, Pascual LS, Mittler R. The impact of multifactorial stress combination on plants, crops, and ecosystems: how should we prepare for what comes next? THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1800-1814. [PMID: 37996968 DOI: 10.1111/tpj.16557] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/27/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
The complexity of environmental conditions encountered by plants in the field, or in nature, is gradually increasing due to anthropogenic activities that promote global warming, climate change, and increased levels of pollutants. While in the past it seemed sufficient to study how plants acclimate to one or even two different stresses affecting them simultaneously, the complex conditions developing on our planet necessitate a new approach of studying stress in plants: Acclimation to multiple stress conditions occurring concurrently or consecutively (termed, multifactorial stress combination [MFSC]). In an initial study of the plant response to MFSC, conducted with Arabidopsis thaliana seedlings subjected to an MFSC of six different abiotic stresses, it was found that with the increase in the number and complexity of different stresses simultaneously impacting a plant, plant growth and survival declined, even if the effects of each stress involved in such MFSC on the plant was minimal or insignificant. In three recent studies, conducted with different crop plants, MFSC was found to have similar effects on a commercial rice cultivar, a maize hybrid, tomato, and soybean, causing significant reductions in growth, biomass, physiological parameters, and/or yield traits. As the environmental conditions on our planet are gradually worsening, as well as becoming more complex, addressing MFSC and its effects on agriculture and ecosystems worldwide becomes a high priority. In this review, we address the effects of MFSC on plants, crops, agriculture, and different ecosystems worldwide, and highlight potential avenues to enhance the resilience of crops to MFSC.
Collapse
Affiliation(s)
- Sara I Zandalinas
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Av. de Vicent Sos Baynat, s/n, Castelló de la Plana, 12071, Spain
| | - María Ángeles Peláez-Vico
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
| | - Ranjita Sinha
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
| | - Lidia S Pascual
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Av. de Vicent Sos Baynat, s/n, Castelló de la Plana, 12071, Spain
| | - Ron Mittler
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
- Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, Missouri, 65201, USA
| |
Collapse
|
28
|
Peláez-Vico MÁ, Sinha R, Induri SP, Lyu Z, Venigalla SD, Vasireddy D, Singh P, Immadi MS, Pascual LS, Shostak B, Mendoza-Cózatl D, Joshi T, Fritschi FB, Zandalinas SI, Mittler R. The impact of multifactorial stress combination on reproductive tissues and grain yield of a crop plant. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1728-1745. [PMID: 38050346 DOI: 10.1111/tpj.16570] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023]
Abstract
Global warming, climate change, and industrial pollution are altering our environment subjecting plants, microbiomes, and ecosystems to an increasing number and complexity of abiotic stress conditions, concurrently or sequentially. These conditions, termed, "multifactorial stress combination" (MFSC), can cause a significant decline in plant growth and survival. However, the impacts of MFSC on reproductive tissues and yield of major crop plants are largely unknown. We subjected soybean (Glycine max) plants to a MFSC of up to five different stresses (water deficit, salinity, low phosphate, acidity, and cadmium), in an increasing level of complexity, and conducted integrative transcriptomic-phenotypic analysis of their reproductive and vegetative tissues. We reveal that MFSC has a negative cumulative effect on soybean yield, that each set of MFSC condition elicits a unique transcriptomic response (that is different between flowers and leaves), and that selected genes expressed in leaves or flowers of soybean are linked to the effects of MFSC on different vegetative, physiological, and/or reproductive parameters. Our study identified networks and pathways associated with reactive oxygen species, ascorbic acid and aldarate, and iron/copper signaling/metabolism as promising targets for future biotechnological efforts to augment the resilience of reproductive tissues of major crop plants to MFSC. In addition, we provide unique phenotypic and transcriptomic datasets for dissecting the mechanistic effects of MFSC on the vegetative, physiological, and reproductive processes of a crop plant.
Collapse
Affiliation(s)
- María Ángeles Peláez-Vico
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
| | - Ranjita Sinha
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
| | - Sai Preethi Induri
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, 65211, USA
| | - Zhen Lyu
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, 65211, USA
| | - Sai Darahas Venigalla
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, 65211, USA
| | - Dinesh Vasireddy
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, 65211, USA
| | - Pallav Singh
- MU Institute for Data Science and Informatics and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
| | - Manish Sridhar Immadi
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, 65211, USA
| | - Lidia S Pascual
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Av. de Vicent Sos Baynat s/n, Castelló de la Plana, 12071, Spain
| | - Benjamin Shostak
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
| | - David Mendoza-Cózatl
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
| | - Trupti Joshi
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, 65211, USA
- MU Institute for Data Science and Informatics and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
- Department of Health Management and Informatics, and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65211, USA
| | - Felix B Fritschi
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
| | - Sara I Zandalinas
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Av. de Vicent Sos Baynat s/n, Castelló de la Plana, 12071, Spain
| | - Ron Mittler
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
- Department of Surgery, School of Medicine, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65201, USA
| |
Collapse
|
29
|
Pradhoshini KP, Santhanabharathi B, Priyadharshini M, Ahmed MS, Murugan K, Sivaperumal P, Alam L, Duong VH, Musthafa MS. Microbial consortium and impact of industrial mining on the Natural High Background Radiation Area (NHBRA), India - Characteristic role of primordial radionuclides in influencing the community structure and extremophiles pattern. ENVIRONMENTAL RESEARCH 2024; 244:118000. [PMID: 38128601 DOI: 10.1016/j.envres.2023.118000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/26/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023]
Abstract
The present investigation is the first of its kind which aims to study the characteristics of microbial consortium inhabiting one of the natural high background radiation areas of the world, Chavara Coast in Kerala, India. The composition of the microbial community and their structural changes were evaluated under the natural circumstances with exorbitant presence of radionuclides in the sediments and after the radionuclide's recession due to mining effects. For this purpose, the concentration of radionuclides, heavy metals, net radioactivity estimation via gross alpha and beta emitters and other physiochemical characteristics were assessed in the sediments throughout the estuarine stretch. According to the results, the radionuclides had a significant effect in shaping the community structure and composition, as confirmed by the bacterial heterogeneity achieved between the samples. The results indicate that high radioactivity in the background environment reduced the abundance and growth of normal microbial fauna and favoured only the growth of certain extremophiles belonging to families of Piscirickettsiacea, Rhodobacteriacea and Thermodesulfovibrionaceae, which were able to tolerate and adapt towards the ionizing radiation present in the environment. In contrast, communities from Comamondacea, Sphingomonadacea, Moraxellacea and Erythrobacteracea were present in the sediments collected from industrial outlet, reinforcing the potent role of radionuclides in governing the community pattern of microbes present in the natural environment. The study confirms the presence of these novel and unidentified bacterial communities and further opens the possibility of utilizing their usefulness in future prospects.
Collapse
Affiliation(s)
- Kumara Perumal Pradhoshini
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai, Tamil Nadu, 600 014, India; Institute for Environment and Development (LESTARI), Research Centre for Sustainability Science and Governance (SGK), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Bharathi Santhanabharathi
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai, Tamil Nadu, 600 014, India
| | - Marckasagayam Priyadharshini
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai, Tamil Nadu, 600 014, India
| | - Munawar Suhail Ahmed
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai, Tamil Nadu, 600 014, India
| | - Karuvelan Murugan
- Department of Microbiology, Vels Institute of Science, Technology and Advanced Sciences (VISTAS), Pallavaram, Chennai, Tamilnadu, 600117, India
| | - Pitchiah Sivaperumal
- Marine Biomedical Research Lab & Environmental Toxicology Unit, Cellular and Molecular Research Centre, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamilnadu, 600077, India
| | - Lubna Alam
- Fisheries Economics Research Unit, Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, Canada
| | - Van-Hao Duong
- VNU School of Interdisciplinary Studies, Vietnam National University, Hanoi, Viet Nam
| | - Mohamed Saiyad Musthafa
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai, Tamil Nadu, 600 014, India; Institute for Environment and Development (LESTARI), Research Centre for Sustainability Science and Governance (SGK), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
30
|
Meidl P, Lehmann A, Bi M, Breitenreiter C, Benkrama J, Li E, Riedo J, Rillig MC. Combined application of up to ten pesticides decreases key soil processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11995-12004. [PMID: 38227255 PMCID: PMC11289034 DOI: 10.1007/s11356-024-31836-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
Natural systems are under increasing pressure by a range of anthropogenic global change factors. Pesticides represent a nearly ubiquitously occurring global change factor and have the potential to affect soil functions. Currently the use of synthetic pesticides is at an all-time high with over 400 active ingredients being utilized in the EU alone, with dozens of these pesticides occurring concurrently in soil. However, we presently do not understand the impacts of the potential interaction of multiple pesticides when applied simultaneously. Using soil collected from a local grassland, we utilize soil microcosms to examine the role of both rate of change and number of a selection of ten currently used pesticides on soil processes, including litter decomposition, water stable aggregates, aggregate size, soil pH, and EC. Additionally, we used null models to enrich our analyses to examine potential patterns caused by interactions between pesticide treatments. We find that both gradual and abrupt pesticide application have negative consequences for soil processes. Notably, pesticide number plays a significant role in affecting soil health. Null models also reveal potential synergistic behavior between pesticides which can further their consequences on soil processes. Our research highlights the complex impacts of pesticides, and the need for environmental policy to address the threats posed by pesticides.
Collapse
Affiliation(s)
- Peter Meidl
- Institut Für Biologie, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Anika Lehmann
- Institut Für Biologie, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Mohan Bi
- Institut Für Biologie, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Carla Breitenreiter
- Institut Für Biologie, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Jasmina Benkrama
- Institut Für Biologie, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Erqin Li
- Institut Für Biologie, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Judith Riedo
- Institut Für Biologie, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Matthias C Rillig
- Institut Für Biologie, Freie Universität Berlin, Berlin, Germany.
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany.
| |
Collapse
|
31
|
Xiao Y, Zhou G, Qiu X, Liu F, Chen L, Zhang J. Biodiversity of network modules drives ecosystem functioning in biochar-amended paddy soil. Front Microbiol 2024; 15:1341251. [PMID: 38328424 PMCID: PMC10847562 DOI: 10.3389/fmicb.2024.1341251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Introduction Soil microbes are central in governing soil multifunctionality and driving ecological processes. Despite biochar application has been reported to enhance soil biodiversity, its impacts on soil multifunctionality and the relationships between soil taxonomic biodiversity and ecosystem functioning remain controversial in paddy soil. Methods Herein, we characterized the biodiversity information on soil communities, including bacteria, fungi, protists, and nematodes, and tested their effects on twelve ecosystem metrics (including functions related to enzyme activities, nutrient provisioning, and element cycling) in biochar-amended paddy soil. Results The biochar amendment augmented soil multifunctionality by 20.1 and 35.7% in the early stage, while the effects were diminished in the late stage. Moreover, the soil microbial diversity and core modules were significantly correlated with soil multifunctionality. Discussion Our analysis revealed that not just soil microbial diversity, but specifically the biodiversity within the identified microbial modules, had a more pronounced impact on ecosystem functions. These modules, comprising diverse microbial taxa, especially protists, played key roles in driving ecosystem functioning in biochar-amended paddy soils. This highlights the importance of understanding the structure and interactions within microbial communities to fully comprehend the impact of biochar on soil ecosystem functioning in the agricultural ecosystem.
Collapse
Affiliation(s)
- Yu Xiao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guixiang Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Xiuwen Qiu
- College of Landscape Architecture, Jiangsu Vocational College of Agriculture and Forestry, Jurong, China
| | - Fangming Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lin Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Jiabao Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
32
|
Zhai C, Han L, Xiong C, Ge A, Yue X, Li Y, Zhou Z, Feng J, Ru J, Song J, Jiang L, Yang Y, Zhang L, Wan S. Soil microbial diversity and network complexity drive the ecosystem multifunctionality of temperate grasslands under changing precipitation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167217. [PMID: 37751844 DOI: 10.1016/j.scitotenv.2023.167217] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
Soil microbiomes play a critical role in regulating ecosystem multifunctionality. However, whether and how soil protists and microbiome interactions affect ecosystem multifunctionality under climate change is unclear. Here, we transplanted 54 soil monoliths from three typical temperate grasslands (i.e., desert, typical, and meadow steppes) along a precipitation gradient in the Mongolian Plateau and examined their response to nighttime warming, decreased, and increased precipitation. Across the three steppes, nighttime warming only stimulated protistan diversity by 15.61 (absolute change, phylogenetic diversity) but had no effect on ecosystem multifunctionality. Decreased precipitation reduced bacterial (8.78) and fungal (22.28) diversity, but significantly enhanced soil microbiome network complexity by 1.40. Ecosystem multifunctionality was reduced by 0.23 under decreased precipitation, which could be largely attributed to the reduced soil moisture that negatively impacted bacterial and fungal communities. In contrast, increased precipitation had little impact on soil microbial communities. Overall, both bacterial and fungal diversity and network complexity play a fundamental role in maintaining ecosystem multifunctionality in response to drought stress. Protists alter ecosystem multifunctionality by indirectly affecting microbial network complexity. Therefore, not only microbial diversity but also their interactions (regulated by soil protists) should be considered in evaluating the responses of ecosystem multifunctionality, which has important implications for predicting changes in ecosystem functioning under future climate change scenarios.
Collapse
Affiliation(s)
- Changchun Zhai
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lili Han
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chao Xiong
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Anhui Ge
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaojing Yue
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Ying Li
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Zhenxing Zhou
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jiayin Feng
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Jingyi Ru
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Jian Song
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Lin Jiang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Limei Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shiqiang Wan
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China.
| |
Collapse
|
33
|
Liu J, Peng Z, Tu H, Qiu Y, Liu Y, Li X, Gao H, Pan H, Chen B, Liang C, Chen S, Qi J, Wang Y, Wei G, Jiao S. Oligotrophic microbes are recruited to resist multiple global change factors in agricultural subsoils. ENVIRONMENT INTERNATIONAL 2024; 183:108429. [PMID: 38219540 DOI: 10.1016/j.envint.2024.108429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/13/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
An increasing number of anthropogenic pressures can have negative effects on biodiversity and ecosystem functioning. However, our understanding of how soil microbial communities and functions in response to multiple global change factors (GCFs) is still incomplete, particularly in less frequently disturbed subsoils. In this study, we examined the impact of different levels of GCFs (0-9) on soil functions and bacterial communities in both topsoils (0-20 cm) and subsoils (20-40 cm) of an agricultural ecosystem, and characterized the intrinsic factors influencing community resistance based on microbial life history strategy. Our experimental results showed a decline in soil multifunctionality, bacterial diversity, and community resistance as the number of GCFs increased, with a more drastic reduction in community resistance of subsoils. Specifically, we observed a significantly positive relationship between the oligotroph/copiotroph ratio and community resistance in subsoils, which was also verified by the negative correlation between 16S rRNA operon (rrn) copy number and community resistance. Structural equation modeling further revealed the direct effects of community resistance in promoting the ecosystem functioning, regardless of top- and subsoils. Therefore, these results suggested that subsoils may recruit more oligotrophic microbes to enhance their originally weaker community resistance under multiple GCFs, which was essential for maintaining sustainable agroecological functions and services. Overall, our study represents a significant advance in linking microbial life history strategy to the resistance of belowground microbial community and functionality.
Collapse
Affiliation(s)
- Jiai Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Ziheng Peng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Hairong Tu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yu Qiu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yu Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiaomeng Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Hang Gao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Haibo Pan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Beibei Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Chunling Liang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Shi Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jiejun Qi
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yihe Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Gehong Wei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Shuo Jiao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
34
|
Tang B, Man J, Lehmann A, Rillig MC. Arbuscular mycorrhizal fungi benefit plants in response to major global change factors. Ecol Lett 2023; 26:2087-2097. [PMID: 37794719 DOI: 10.1111/ele.14320] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023]
Abstract
Land plants play a key role in global carbon cycling, but the potential role of arbuscular mycorrhizal fungi (AMF) in the responses of a wide range of plant species to global change factors (GCFs) remains limited. Based on 1100 paired observations from 181 plant species, we conducted a meta-analysis to test the role of AMF in plant responses to four GCFs: drought, warming, nitrogen (N) addition and elevated CO2 . We show that AMF significantly ameliorate the negative effects of drought on plant performance. The GCFs N addition and elevated CO2 significantly enhance the performance of AM plants but not of non-inoculated plants. AM plants show better performance than their non-inoculated counterparts under warming, although neither of them showed a significant response to this GCF. These results suggest that AMF benefit plants in response to GCFs. Our study highlights the importance of AMF in enhancing plant performance under ongoing global change.
Collapse
Affiliation(s)
- Bo Tang
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Jing Man
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Anika Lehmann
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Matthias C Rillig
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
35
|
Song Z, Hautier Y, Wang C. Grassland stability decreases with increasing number of global change factors: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165651. [PMID: 37474043 DOI: 10.1016/j.scitotenv.2023.165651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Experiments manipulating a single global change factor (GCF) have provided increasing evidence that global environmental changes, such as eutrophication, precipitation change, and warming, generally affect the temporal stability of grassland productivity. Whether the combined impact of global changes on grassland stability increases as the number of global changes increases remains unknown. Using a meta-analysis of 673 observations from 143 sites worldwide, including 7 different GCFs, we examined the responses of grassland temporal stability of productivity to increasing numbers of GCFs. We quantified the links between community stability, biotic factors (i.e., species richness, species stability, and species asynchrony), and abiotic factors (i.e., aridity index, experimental duration, and experimental intensity). Although inconsistent responses of community stability were found with different GCF types and combinations, when integrating existing GCFs studies and ignoring the identity of GCFs, we found a general decrease in community stability as the number of GCFs increases, but the main drivers of community stability varied with the numbers of GCFs. Specifically, one GCF mainly reduced species stability through species richness and thus weakened community stability. Two GCFs weakened community stability via independently weakening species stability and species asynchrony. Three GCFs reduce community stability mainly via independently weakening species asynchrony. Moreover, for single factor, the impact of GCFs on community stability was weaker under dryer conditions, but stronger when two or three factors were manipulated. In addition, the negative effect of GCFs on community stability was weaker with increasing experimental duration. Our study reveals that reduced community stability with increasing numbers of GCFs is caused by a shift from reduced species stability to reduced species asynchrony, suggesting that persistent global changes will destabilize grassland productivity by reducing asynchronous dynamics among species in response to natural environmental fluctuations.
Collapse
Affiliation(s)
- Zhaobin Song
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Chao Wang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
36
|
Du S, Li XQ, Feng J, Huang Q, Liu YR. Soil core microbiota drive community resistance to mercury stress and maintain functional stability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:165056. [PMID: 37348729 DOI: 10.1016/j.scitotenv.2023.165056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Soil microbial communities have resistance to environmental stresses and thus can maintain ecosystem functions such as decomposition, nutrient provisioning, and plant pathogen control. However, predominant factors driving community resistance of soil microbiome to heavy metal pollution stresses and ecosystem functional stability are still unclear, limiting our ability to forecast how soil pollution might affect ecosystem sustainability. Here, we conducted microcosm experiments to estimate the importance of soil microbiome in predicting community resistance to heavy metal mercury (Hg) stress in paired paddy and upland fields. We found that community resistance of soil microbiome was strongly correlated with ecosystem functional stability, so were the individual groups of organisms such as bacteria, saprotrophic fungi, and phototrophic protists. The core phylotypes within soil microbiome had a major contribution to community resistance, which was essential for the maintenance of functional stability. Co-occurrence network further confirmed that community resistances of main ecological clusters were positively correlated with ecosystem functional stability. Together, our results provide new insights into the link between community resistance and functional stability, and highlight the importance of core microbiota in driving community resistance to environmental stresses and maintain functional stability.
Collapse
Affiliation(s)
- Shuai Du
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin-Qi Li
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiao Feng
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Rong Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
37
|
Xu Z, Liang W, Zhang X, Yang X, Zhou S, Li R, Syed A, Bahkali AH, Kumar Awasthi M, Zhang Z. Effects of magnesite on nitrogen conversion and bacterial community during pig manure composting. BIORESOURCE TECHNOLOGY 2023; 384:129325. [PMID: 37315627 DOI: 10.1016/j.biortech.2023.129325] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
The objective of this research was to elucidate the effect of varying proportions of magnesite (MS) addition - 0% (T1), 2.5% (T2), 5% (T3), 7.5% (T4), and 10% (T5) - on nitrogen transformation and bacterial community dynamics during pig manure composting. In comparison to T1 (control), MS treatments amplified the abundance of Firmicutes, Actinobacteriota, and Halanaerobiaeota, bolstered the metabolic functionality of associated microorganisms, and enhanced the nitrogenous substance metabolic pathway. A complementary effect in core bacillus species played a key role in nitrogen preservation. Compared to T1, 10% MS demonstrated the most substantial influence on composting because Total Kjeldahl Nitrogen increased by 58.31% and NH3 emission decreased by 41.52%. In conclusion, 10% MS appears to be optimal for pig manure composting, as it can augment microbial abundance and mitigate nitrogen loss. This study offers a more ecologically sound and economically viable method for curtailing nitrogen loss during composting.
Collapse
Affiliation(s)
- Zhiming Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Wen Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xiu Zhang
- North Minzu University Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan 750021, China
| | - Xu Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Shunxi Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
38
|
Osburn ED, Yang G, Rillig MC, Strickland MS. Evaluating the role of bacterial diversity in supporting soil ecosystem functions under anthropogenic stress. ISME COMMUNICATIONS 2023; 3:66. [PMID: 37400524 PMCID: PMC10318037 DOI: 10.1038/s43705-023-00273-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
Ecosystem functions and services are under threat from anthropogenic global change at a planetary scale. Microorganisms are the dominant drivers of nearly all ecosystem functions and therefore ecosystem-scale responses are dependent on responses of resident microbial communities. However, the specific characteristics of microbial communities that contribute to ecosystem stability under anthropogenic stress are unknown. We evaluated bacterial drivers of ecosystem stability by generating wide experimental gradients of bacterial diversity in soils, applying stress to the soils, and measuring responses of several microbial-mediated ecosystem processes, including C and N cycling rates and soil enzyme activities. Some processes (e.g., C mineralization) exhibited positive correlations with bacterial diversity and losses of diversity resulted in reduced stability of nearly all processes. However, comprehensive evaluation of all potential bacterial drivers of the processes revealed that bacterial α diversity per se was never among the most important predictors of ecosystem functions. Instead, key predictors included total microbial biomass, 16S gene abundance, bacterial ASV membership, and abundances of specific prokaryotic taxa and functional groups (e.g., nitrifying taxa). These results suggest that bacterial α diversity may be a useful indicator of soil ecosystem function and stability, but that other characteristics of bacterial communities are stronger statistical predictors of ecosystem function and better reflect the biological mechanisms by which microbial communities influence ecosystems. Overall, our results provide insight into the role of microorganisms in supporting ecosystem function and stability by identifying specific characteristics of bacterial communities that are critical for understanding and predicting ecosystem responses to global change.
Collapse
Affiliation(s)
- Ernest D Osburn
- Department of Soil and Water Systems, University of Idaho, Moscow, ID, USA.
| | - Gaowen Yang
- College of Grassland Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Matthias C Rillig
- Institute of Biology, Freie Universität Berlin, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195, Berlin, Germany
| | | |
Collapse
|
39
|
Zhang Z, Sun J, Li T, Shao P, Ma J, Dong K. Plants changed the response of bacterial community to the nitrogen and phosphorus addition ratio. FRONTIERS IN PLANT SCIENCE 2023; 14:1168111. [PMID: 37051075 PMCID: PMC10083283 DOI: 10.3389/fpls.2023.1168111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION Human activities have increased the nitrogen (N) and phosphorus (P) supply ratio of the natural ecosystem, which affects the growth of plants and the circulation of soil nutrients. However, the effect of the N and P supply ratio and the effect of plant on the soil microbial community are still unclear. METHODS In this study, 16s rRNA sequencing was used to characterize the response of bacterial communities in Phragmites communis (P.communis) rhizosphere and non-rhizosphere soil to N and P addition ratio. RESULTS The results showed that the a-diversity of the P.communis rhizosphere soil bacterial community increased with increasing N and P addition ratio, which was caused by the increased salt and microbially available C content by the N and P ratio. N and P addition ratio decreased the pH of non-rhizosphere soil, which consequently decreased the a-diversity of the bacterial community. With increasing N and P addition ratio, the relative abundance of Proteobacteria and Bacteroidetes increased, while that of Actinobacteria and Acidobacteria decreased, which reflected the trophic strategy of the bacterial community. The bacterial community composition of the non-rhizosphere soil was significantly affected by salt, pH and total carbon (TC) content. Salt limited the relative abundance of Actinobacteria, and increased the relative abundance of Bacteroidetes. The symbiotic network of the rhizosphere soil bacterial community had lower robustness. This is attributed to the greater selective effect of plants on the bacterial community influenced by nutrient addition. DISCUSSION Plants played a regulatory role in the process of N and P addition affecting the bacterial community, and nutrient uptake by the root system reduced the negative impact of N and P addition on the bacterial community. The variations in the rhizosphere soil bacterial community were mainly caused by the response of the plant to the N and P addition ratio.
Collapse
Affiliation(s)
- Zehao Zhang
- Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, China
- College of Forestry, Shandong Agricultural University, Taian, China
| | - Jingkuan Sun
- Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, China
| | - Tian Li
- Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, China
| | - Pengshuai Shao
- Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, China
| | - Jinzhao Ma
- Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, China
| | - Kaikai Dong
- Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, China
| |
Collapse
|
40
|
Li C, Miao L, Adyel TM, Huang W, Wang J, Wu J, Hou J, Wang Z. Eukaryotes contribute more than bacteria to the recovery of freshwater ecosystem functions under different drought durations. Environ Microbiol 2023. [PMID: 36916068 DOI: 10.1111/1462-2920.16370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023]
Abstract
Global climate change mostly impacts river ecosystems by affecting microbial biodiversity and ecological functions. Considering the high functional redundancy of microorganisms, the unknown relationship between biodiversity and ecosystem functions obstructs river ecological research, especially under the influence of increasing weather extremes, such as in intermittent rivers and ephemeral streams (IRES). Herein, dry-wet alternation experiments were conducted in artificial stream channels for 25 and 90 days of drought, both followed by 20 days of rewetting. The dynamic recovery of microbial biodiversity and ecosystem functions (represented by ecosystem metabolism and denitrification rate) were determined to analyse biodiversity-ecosystem-function (BEF) relationships after different drought durations. There was a significant difference between bacterial and eukaryotic biodiversity recovery after drought. Eukaryotic biodiversity was more sensitive to drought duration than bacterial, and the eukaryotic network was more stable under dry-wet alternations. Based on the establishment of partial least squares path models, we found that eukaryotic biodiversity has a stronger effect on ecosystem functions than bacteria after long-term drought. Indeed, this work represents a significant step forward for further research on the ecosystem functions of IRES, especially emphasizing the importance of eukaryotic biodiversity in the BEF relationship.
Collapse
Affiliation(s)
- Chaoran Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 210098, Nanjing, People's Republic of China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 210098, Nanjing, People's Republic of China
| | - Tanveer M Adyel
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Melbourne, Victoria, Australia
- STEM, University of South Australia, Mawson Lakes Campus, 5095, Mawson, Australia
| | - Wei Huang
- China Institute of Water Resources and Hydropower Research, 100038, Beijing, People's Republic of China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 210098, Nanjing, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 210098, Nanjing, People's Republic of China
| | - Zhiyuan Wang
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, National Energy Administration, Ministry of Transport, Ministry of Water Resources, 210029, Nanjing, China
| |
Collapse
|
41
|
Distinct Responses of Abundant and Rare Soil Bacteria to Nitrogen Addition in Tropical Forest Soils. Microbiol Spectr 2023; 11:e0300322. [PMID: 36622236 PMCID: PMC9927163 DOI: 10.1128/spectrum.03003-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Soil microbial responses to anthropogenic nitrogen (N) enrichment at the overall community level has been extensively studied. However, the responses of community dynamics and assembly processes of the abundant versus rare bacterial taxa to N enrichment have rarely been assessed. Here, we present a study in which the effects of short- (2 years) and long-term (13 years) N additions to two nearby tropical forest sites on abundant and rare soil bacterial community composition and assembly were documented. The N addition, particularly in the long-term experiment, significantly decreased the bacterial α-diversity and shifted the community composition toward copiotrophic and N-sensitive species. The α-diversity and community composition of the rare taxa were more affected, and they were more closely clustered phylogenetically under N addition compared to the abundant taxa, suggesting the community assembly of the rare taxa was more governed by deterministic processes (e.g., environmental filtering). In contrast, the abundant taxa exhibited higher community abundance, broader environmental thresholds, and stronger phylogenetic signals under environmental changes than the rare taxa. Overall, these findings illustrate that the abundant and rare bacterial taxa respond distinctly to N addition in tropical forests, with higher sensitivity of the rare taxa, but potentially broader environmental acclimation of the abundant taxa. IMPORTANCE Atmospheric nitrogen (N) deposition is a worldwide environmental problem and threatens biodiversity and ecosystem functioning. Understanding the responses of community dynamics and assembly processes of abundant and rare soil bacterial taxa to anthropogenic N enrichment is vital for the management of N-polluted forest soils. Our sequence-based data revealed distinct responses in bacterial diversity, community composition, environmental acclimation, and assembly processes between abundant and rare taxa under N-addition soils in tropical forests. These findings provide new insight into the formation and maintenance of bacterial diversity and offer a way to better predict bacterial responses to the ongoing atmospheric N deposition in tropical forests.
Collapse
|
42
|
Ding L, Tian L, Li J, Zhang Y, Wang M, Wang P. Grazing lowers soil multifunctionality but boosts soil microbial network complexity and stability in a subtropical grassland of China. Front Microbiol 2023; 13:1027097. [PMID: 36687566 PMCID: PMC9849757 DOI: 10.3389/fmicb.2022.1027097] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/17/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction Long-term grazing profoundly affects grassland ecosystems, whereas how the soil microbiome and multiple soil ecosystem functions alter in response to two-decades of grazing, especially how soil microbiome (diversity, composition, network complexity, and stability) forms soil multifunctionality is rarely addressed. Methods We used a long-term buffalo grazing grassland to measure the responses of soil physicochemical attributes, stoichiometry, enzyme activities, soil microbial niche width, structure, functions, and networks to grazing in a subtropical grassland of Guizhou Plateau, China. Results The evidence from this work suggested that grazing elevated the soil hardness, available calcium content, and available magnesium content by 6.5, 1.9, and 1.9 times (p = 0.00015-0.0160) and acid phosphatase activity, bulk density, pH by 59, 8, and 0.5 unit (p = 0.0014-0.0370), but decreased the soil water content, available phosphorus content, and multifunctionality by 47, 73, and 9-21% (p = 0.0250-0.0460), respectively. Grazing intensified the soil microbial carbon limitation (+78%, p = 0.0260) as indicated by the increased investment in the soil β-glucosidase activity (+90%, p = 0.0120). Grazing enhanced the complexity and stability of the bacterial and fungal networks but reduced the bacterial Simpson diversity (p < 0.05). The bacterial diversity, network complexity, and stability had positive effects, while bacterial and fungal compositions had negative effects on multifunctionality. Discussions This work is an original attempt to show that grazing lowered multifunctionality via the reduced bacterial diversity and shifted soil bacterial and fungal compositions rather than the enhanced bacterial and fungal network complexities and stability by grazing. Protecting the bacterial diversity from decreasing, optimizing the composition of bacteria and fungi, and enhancing the complexity and stability of bacterial network may be conducive to improving the soil multifunction of grazing grassland, on a subtropical grassland.
Collapse
Affiliation(s)
- Leilei Ding
- Guizhou Institute of Prataculture, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Lili Tian
- College of Life Science, Guizhou University, Guiyang, Guizhou, China
| | - Jingyi Li
- Guizhou Institute of Prataculture, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Yujun Zhang
- Guizhou Institute of Prataculture, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Mengya Wang
- College of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Puchang Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| |
Collapse
|
43
|
Number of simultaneously acting global change factors affects composition, diversity and productivity of grassland plant communities. Nat Commun 2022; 13:7811. [PMID: 36535931 PMCID: PMC9763497 DOI: 10.1038/s41467-022-35473-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Plant communities experience impacts of increasing numbers of global change factors (e.g., warming, eutrophication, pollution). Consequently, unpredictable global change effects could arise. However, information about multi-factor effects on plant communities is scarce. To test plant-community responses to multiple global change factors (GCFs), we subjected sown and transplanted-seedling communities to increasing numbers (0, 1, 2, 4, 6) of co-acting GCFs, and assessed effects of individual factors and increasing numbers of GCFs on community composition and productivity. GCF number reduced species diversity and evenness of both community types, whereas none of the individual factors alone affected these measures. In contrast, GCF number positively affected the productivity of the transplanted-seedling community. Our findings show that simultaneously acting GCFs can affect plant communities in ways differing from those expected from single factor effects, which may be due to biological effects, sampling effects, or both. Consequently, exploring the multifactorial nature of global change is crucial to better understand ecological impacts of global change.
Collapse
|
44
|
Qu Y, Liu Q, Zhao W, Cheng H, Chen H, Tian Y, Ma S, Chen Y, Ma J. Characters and environmental driving factors of bacterial community in soil of Beijing urban parks. ENVIRONMENTAL RESEARCH 2022; 215:114178. [PMID: 36087773 DOI: 10.1016/j.envres.2022.114178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/06/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
In an era of unprecedented human influence, different human activities have different degrees of impact on specific bacteria, resulting in the regional biological homogenization of soil bacteria. However, the contribution of the impact that a large number of anthropogenic activities on bacteria remains unknown. Here, by high-throughput amplicon sequencing, we characterized the composition, diversity and influencing factors of soil microbes in Beijing urban parks at geographic space and park management aspect. It is the first time to quantify and compare the importance of the impact of up to 15 human activities on soil bacterial communities. The results show that the dominant bacterial phyla in Beijing urban parks were Actinobacteria, Proteobacteria, Acidobacteria and Chloroflexi. The environmental management of different park types, as well as the land use history and development conditions of different regions, had significant differences in soil bacterial community structure. Soil bacteria in urban parks were disturbed by direct human interference far more than natural causes. The most important factors were related to the number of tourists and residents, industrial production and land use patterns. These factors may also be related to the abundance of unknown bacteria in urban parks. This also directly shows that human activities have a non-negligible impact on soil bacteria. The ways in which different human activities brought by global urbanization and their impacting mechanisms are used should be the starting point of future research.
Collapse
Affiliation(s)
- Yajing Qu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Qiyuan Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wenhao Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Hongguang Cheng
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Haiyan Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yuxin Tian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Saiyan Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ying Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jin Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|