1
|
Lee H, Li S, Liu L, Wang W, Ayupova T, Tibbs J, Kim C, Fang Y, Do MN, Cunningham BT. Physically grounded deep learning-enabled gold nanoparticle localization and quantification in photonic resonator absorption microscopy for digital resolution molecular diagnostics. Biosens Bioelectron 2025; 281:117455. [PMID: 40233489 DOI: 10.1016/j.bios.2025.117455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/31/2025] [Accepted: 04/04/2025] [Indexed: 04/17/2025]
Abstract
Accurate molecular biomarker detection with digital-resolution sensitivity is essential for applications such as disease diagnostics, therapeutic studies, and biomedical research. Here, we present LOCA-PRAM (LOcalization with Context Awareness), a deep learning-based method integrated with a Photonic Resonator Absorption Microscope (PRAM) to achieve digital-resolution detection of biomolecules using gold nanoparticles (AuNPs) as molecular tags. LOCA-PRAM leverages photonic crystal (PC)-AuNP resonant-coupling to enhance signal contrast, facilitating precise quantification of target molecules without partitioning the sample into droplets or enzymatic amplification. Through registration of PRAM images with Scanning Electron Microscopy (SEM) images, we empirically obtain the point spread function (PSF) of AuNP tags, enabling realistic training data generation for the deep learning framework. LOCA-PRAM surpasses conventional image processing method in accuracy and sensitivity, achieving reliable AuNP detection and localization even in high-density conditions, minimizing false-positive and false-negative quantifications and expending the dynamic range of assay. Benchmarking with SEM-derived ground truth confirms LOCA-PRAM's sub-pixel resolution and ability to accurately quantify AuNPs with overlapping PSF. Overall, the PRAM combined with LOCA-based AuNP digital counting enables real-time, high-precision detection of molecular biomarkers, advancing digital-resolution biosensing for biomedical research and diagnostics.
Collapse
Affiliation(s)
- Hankeun Lee
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Nick Holonyak Jr. Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Siyan Li
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Leyang Liu
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Nick Holonyak Jr. Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Weijing Wang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Nick Holonyak Jr. Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Takhmina Ayupova
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Nick Holonyak Jr. Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Joseph Tibbs
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Nick Holonyak Jr. Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Chansong Kim
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ying Fang
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Minh N Do
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Siebel School of Computing and Data Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA; VinUni-Illinois Smart Health Center, VinUniversity, Ha Noi, Viet Nam
| | - Brian T Cunningham
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Nick Holonyak Jr. Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Center for Genomic Diagnostics, Woese Institute for Genomic Biology, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
2
|
Fu B, Yuan Z, Fang G, Wang WJ, Xiong Z, Chen YC. Dielectric Nanocavity Enhanced Fluorescence Emission for Ultrasensitive Wavelength-Multiplexed Detection. NANO LETTERS 2025. [PMID: 40393953 DOI: 10.1021/acs.nanolett.5c01087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
This study demonstrates a novel biosensing platform utilizing a dielectric nanocavity to enhance fluorescence emission for the ultrasensitive detection of biomolecules. By coupling a silver (Ag) nanocube with a distributed Bragg reflector (DBR) mirror, we achieved a substantial fluorescence enhancement reaching a maximum enhancement factor of up to 855-fold and having quasi-single molecule sensitivity. The platform was successfully applied for multiplexed detection of four different miRNA biomarkers, showcasing its ability to detect multiple targets simultaneously with high sensitivity. The simplicity, rapid speed, and small detection volume (down to 0.5 μL) of this system make it suitable for high-throughput and large-area nanocavity imaging. Our findings offer a promising solution for ultrasensitive, multiplexed biosensing with potential applications in disease diagnosis, personalized medicine, and digital molecular diagnostics.
Collapse
Affiliation(s)
- Bowen Fu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921 Singapore
| | - Zhiyi Yuan
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
| | - Guocheng Fang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
| | - Wen-Jie Wang
- Key Lab of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Zhongshu Xiong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
| | - Yu-Cheng Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921 Singapore
| |
Collapse
|
3
|
Kume E, Almohammadi G, Duleba D, M Alotaibi AF, Gan R, Mamaeva K, Bradley AL, Johnson RP, Rice JH. Piezoelectric-Driven Amplification of Plasmon-Enhanced Fluorescence for Advanced Sensing Applications. ACS APPLIED MATERIALS & INTERFACES 2025; 17:28881-28893. [PMID: 40324944 PMCID: PMC12086765 DOI: 10.1021/acsami.5c03428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
Fluorescence based detection is applied across various fields, including medical diagnostics and environmental sensing. A key challenge in these technologies lies in optimizing sensitivity through enhancement of the fluorescence signal. In this study, we demonstrate that combining piezoelectric and plasmonic processes increases the fluorescence yield. Piezoelectric poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), is utilized as an external electric field modulator to produce a reliable and reproducible fluorescence enhancement of InP/ZnS quantum dots approaching the single nanoparticle level. The relationship between the applied force and the fluorescence response is both experimentally quantified and theoretically modeled and the dependence of the fluorescence enhancement on the excitation wavelength and on the PVDF-HFP substrate topography is elucidated. Furthermore, fluorescence enhancement by a magnitude of order for a DNA hybridization assay on the gold-coated PVDF-HFP substrate is demonstrated, highlighting the practical applicability of this approach in biosensing.
Collapse
Affiliation(s)
- Eni Kume
- School
of Physics, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland
| | - Ghadeer Almohammadi
- School
of Chemistry, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland
- Chemistry
Department, College of Science, University
of Hafar Al Batin, Hafar Al-Batin, 31991, Saudi Arabia
| | - Dominik Duleba
- School
of Chemistry, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland
| | - Aeshah Farhan M Alotaibi
- School
of Physics, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland
- Department
of Physics, College of Science and Humanities, Shaqra University, Shaqra, 11961, Kingdom
of Saudi Arabia
| | - Rongcheng Gan
- School
of Physics, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland
| | - Kseniia Mamaeva
- School
of Physics and AMBER, Trinity College Dublin, Dublin 2, D02 PN40, Ireland
- IPIC, Tyndall National Institute, Cork, T12 R5CP, Ireland
| | - A. Louise Bradley
- School
of Physics and AMBER, Trinity College Dublin, Dublin 2, D02 PN40, Ireland
- IPIC, Tyndall National Institute, Cork, T12 R5CP, Ireland
| | - Robert P. Johnson
- School
of Chemistry, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland
| | - James H. Rice
- School
of Physics, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland
| |
Collapse
|
4
|
Gao Q, Li J, Zhang W, Zhang Z, Huang R, Zang P, Li S, Li C, Yao J, Li C, Guo Z, Zhou L. a-SiC heteromorphic immersion nanocavities enabling wide-field real-time single-molecule detection. Biosens Bioelectron 2025; 270:116962. [PMID: 39579680 DOI: 10.1016/j.bios.2024.116962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/22/2024] [Accepted: 11/16/2024] [Indexed: 11/25/2024]
Abstract
Real-time single-molecule detection via fluorescence exhibits advantages of non-contact and specificity, especially in illustrating the dynamic heterogeneity of living substances. However, wide-field view and signal-to-noise ratio (SNR) are always contradictory in real-time single-molecule detection with fluorescence labels, owing to the limitation of the omnidirectional radiation characteristics of fluorophores. Herein, we propose a nano optical sensing device based on a-SiC heteromorphic immersion nanocavities (aHINCs), enabling wide-field real-time single-molecule imaging without sacrificing SNR. The characteristics of architectural aHINCs for far-field imaging are investigated, and the designed sensing device help adjust the emission direction of fluorescence in gold hot spots of nanocavities, allowing the fluorescence divergence angle to be adjusted to ±10°. The experimental results show the SNR reached 22, markedly strengthening the fluorescence collection efficiency. The simultaneous observation of nanocavity sites, within the same field of view of the chip, is 488 times the number of sites observed with classic detection method. Furthermore, the wide-field real-time detection of the single molecule-specific binding process of the oligo DNA complementary chain is successfully realized. The nano optical sensing device based on the aHINC shows potential for parallel real-time single-molecule detection applications.
Collapse
Affiliation(s)
- Qingxue Gao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026, Hefei, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163, Suzhou, China
| | - Jinze Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026, Hefei, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163, Suzhou, China
| | - Wei Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026, Hefei, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163, Suzhou, China; Suzhou CASENS Co., Ltd, 215163, Suzhou, China
| | - Zhiqi Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026, Hefei, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163, Suzhou, China; Suzhou CASENS Co., Ltd, 215163, Suzhou, China
| | - Runhu Huang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163, Suzhou, China
| | - Peilin Zang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026, Hefei, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163, Suzhou, China
| | - Shuli Li
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163, Suzhou, China
| | - Chao Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026, Hefei, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163, Suzhou, China
| | - Jia Yao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026, Hefei, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163, Suzhou, China
| | - Chuanyu Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026, Hefei, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163, Suzhou, China.
| | - Zhen Guo
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026, Hefei, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163, Suzhou, China.
| | - Lianqun Zhou
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026, Hefei, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163, Suzhou, China.
| |
Collapse
|
5
|
Che M, Chen X, Wu Z, Xu W, Suh YD, Wu S, Liu X, Huang W. Dynamic Modulation of Afterglow Emission in Polymeric Phosphors via Inverse Opal Photonic Structures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415835. [PMID: 39663735 DOI: 10.1002/adma.202415835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/23/2024] [Indexed: 12/13/2024]
Abstract
Tuning the afterglow of polymeric phosphors is critical for advancing their use in optical data storage and display technologies. Despite advancements in polymer matrix design and dopant engineering, achieving dynamic control over afterglow intensity remains a significant challenge. In this study, a novel approach is introduced for dynamically tuning the afterglow of polymeric phosphors by integrating them into an inverse opal photonic structure. By precisely aligning the photonic stopband of the inverse opal structure with the afterglow band of the polymer film, a remarkable 15-fold enhancement in afterglow intensity is achieved. This enhancement is tunable, decreasing from 15 to 1.2 by infiltrating the photonic structure with media of varying refractive indices ranging from 1.00 (air) to 1.37 (ethyl acetate). The tunability arises from reducing the mismatch between the stopband and the afterglow band, as the weighted refractive index shifts between 1.15 and 1.40. Additionally, the inverse opal photonic structure induces angle-dependent structural colors in the Janus polymeric phosphors, modulated by the refractive index of the infiltrating media. This integration of dynamically tunable afterglow with angle-dependent structural coloration unlocks new potential for advanced optoelectronic applications.
Collapse
Affiliation(s)
- Mengfen Che
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Xue Chen
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Zhongbin Wu
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Weidong Xu
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Yung Doug Suh
- Department of Chemistry and School of Energy and Chemical Engineering UNIST, Ulsan, 44919, Republic of South Korea
| | - Suli Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2nd Linggong Road, Dalian, 116024, China
| | - Xiaowang Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts &Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
| |
Collapse
|
6
|
Kim H, Yun H, Jeong S, Lee S, Cho E, Rho J. Optical Metasurfaces for Biomedical Imaging and Sensing. ACS NANO 2025; 19:3085-3114. [PMID: 39805079 DOI: 10.1021/acsnano.4c14751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Optical metasurfaces, arrays of nanostructures engineered to manipulate light, have emerged as a transformative technology in both research and industry due to their compact design and exceptional light control capabilities. Their strong light-matter interactions enable precise wavefront modulation, polarization control, and significant near-field enhancements. These unique properties have recently driven their application in biomedical fields. In particular, metasurfaces have led to breakthroughs in biomedical imaging technologies, such as achromatic imaging, phase imaging, and extended depth-of-focus imaging. They have also advanced cutting-edge biosensing technologies, featuring high-quality factor resonators and near-field enhancements. As the demand for device miniaturization and system integration increases, metasurfaces are expected to play a pivotal role in the development of next-generation biomedical devices. In this review, we explore the latest advancements in the use of metasurfaces for biomedical applications, with a particular focus on imaging and sensing. Additionally, we discuss future directions aimed at transforming the biomedical field by leveraging the full potential of metasurfaces to provide compact, high-performance solutions for a wide range of applications.
Collapse
Affiliation(s)
- Hongyoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Heechang Yun
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Sebin Jeong
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seokho Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Eunseo Cho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSCTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
| |
Collapse
|
7
|
Lee J, Jeong M, Jang J, Kim J, Mun J, Gong X, Fang R, Yang Y, Chae SH, Kim S, Rho J. Bound-States-in-the-Continuum-Induced Directional Photoluminescence with Polarization Singularity in WS 2 Monolayers. NANO LETTERS 2025; 25:861-867. [PMID: 39760918 DOI: 10.1021/acs.nanolett.4c05544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Monolayer transition metal dichalcogenides are promising materials that not only are atomically thin but also have direct bandgaps, making them highly regarded in optics and optoelectronics. However, their photoluminescence exhibits almost random polarization at room temperature. The emission is also omnidirectional and weak due to the low quantum yield. These limitations hamper the development of practical optoelectronic devices and solid-state single-photon sources for quantum technologies. Here, we demonstrate the spatial control of photoluminescence polarization by coupling monolayer tungsten disulfide with photonic bands having bound states in the continuum. We design a dielectric photonic crystal slab with bound states in the continuum that spectrally overlap with the excitonic resonance of the monolayer of tungsten disulfide. Integration with the photonic crystal slab modulates the directionality and improves the intensity of photoluminescence through extraction and excitation enhancement. Our results will enable the development of compact on-chip optoelectronic and quantum photonic devices based on two-dimensional materials.
Collapse
Affiliation(s)
- Jihae Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Minsu Jeong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jaehyuck Jang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Centre for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
| | - Joohoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jungho Mun
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Centre for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
| | - Xiangxin Gong
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Rouli Fang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Yuhui Yang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Sang Hoon Chae
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Sejeong Kim
- Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Junsuk Rho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Centre for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- National Institute of Nanomaterials Technology (NINT), Pohang 37673, Republic of Korea
| |
Collapse
|
8
|
Dai B, You S, Wang K, Long Y, Chen J, Upreti N, Peng J, Zheng L, Chang C, Huang TJ, Guan Y, Zhuang S, Zhang D. Deep learning-enabled filter-free fluorescence microscope. SCIENCE ADVANCES 2025; 11:eadq2494. [PMID: 39742468 DOI: 10.1126/sciadv.adq2494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 11/25/2024] [Indexed: 01/03/2025]
Abstract
Optical filtering is an indispensable part of fluorescence microscopy for selectively highlighting molecules labeled with a specific fluorophore and suppressing background noise. However, the utilization of optical filtering sets increases the complexity, size, and cost of microscopic systems, making them less suitable for multifluorescence channel, high-speed imaging. Here, we present filter-free fluorescence microscopic imaging enabled with deep learning-based digital spectral filtering. This approach allows for automatic fluorescence channel selection after image acquisition and accurate prediction of fluorescence by computing color changes due to spectral shifts with the presence of excitation scattering. Fluorescence prediction for cells and tissues labeled with various fluorophores was demonstrated under different magnification powers. The technique offers accurate identification of labeling with robust sensitivity and specificity, achieving consistent results with the reference standard. Beyond fluorescence microscopy, the deep learning-enabled spectral filtering strategy has the potential to drive the development of other biomedical applications, including cytometry and endoscopy.
Collapse
Affiliation(s)
- Bo Dai
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shaojie You
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Kan Wang
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Yan Long
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Junyi Chen
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Neil Upreti
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27709, USA
| | - Jing Peng
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Lulu Zheng
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chenliang Chang
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27709, USA
| | - Yangtai Guan
- Department of Neurology, Punan Branch of Renji Hospital, School of Medicine, Shanghai Jiaotong University (Punan Hospital in Pudong New District, Shanghai), Shanghai 200125, China
| | - Songlin Zhuang
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Dawei Zhang
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
9
|
Li S, Huang H, Wen X, Wang P, Lu Y. Enhanced and directional fluorescence emission regulated by dual resonant surface modes. OPTICS LETTERS 2025; 50:213-216. [PMID: 39718891 DOI: 10.1364/ol.543250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/26/2024] [Indexed: 12/26/2024]
Abstract
Fluorescence emission regulation is of great interest for its promising applications in various fields such as microscopy, chemical analysis, encryption, and sensing. Most studies focus on the regulation of the fluorescence emission process. However, the spectral separation of excitation and emission of fluorophores requires careful design of resonances to cover both emission and excitation wavelengths, which is a better choice to enhance fluorescence intensity. In this Letter, we engineer an efficient dielectric concentric ring grating on a dielectric multilayer film with two resonate modes to enhance the excitation and emission processes. By careful design of the structure, the two resonate modes occupy similar in-plane wave vector and overlap in the fluorescence area. Experimentally, fluorescence intensity enhancement about five times and the divergence of fluorescence into free space compressed to less than 5° are achieved. Our work provides what we believe to be a new strategy for the realization of high directional on-chip light emitter at room temperature.
Collapse
|
10
|
Chen J, Nasir A, Abazi A, Eich A, Sánchez-Postigo A, Takeda H, Mikami Y, Tate N, Oki Y, Yamamoto Y, Schuck C, Yoshioka H. Coexistence of the Radial-Guided Mode and WGM in Azimuthal-Grating-Integrated Microring Lasers. ACS PHOTONICS 2024; 11:5110-5117. [PMID: 39712396 PMCID: PMC11660697 DOI: 10.1021/acsphotonics.4c00956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 12/24/2024]
Abstract
Whispering-gallery mode (WGM) resonators, renowned for their high Q-factors and narrow line widths, are widely utilized in integrated photonics. Integrating diffraction gratings onto WGM cavities has gained significant attention because these gratings function as azimuthal refractive index modulators, enabling single-mode WGM emissions and supporting beams with orbital angular momentum (OAM). The introduction of curved grating structures facilitates guided mode resonances by coupling high-order diffracted waves with leaking modes from the waveguide. These gratings act as wavelength-selective mirrors and support concentric circular radial-guided modes. This study investigates the coexistence and interaction between OAM-carrying WGMs and radial-guided modes with Bessel beam characteristics in an active cladding grating-integrated microring laser. These phenomena are examined through both three-dimensional simulations and experiments. The active layer enhances the radial-guided modes at the microring's center, where cylindrical waves from the active cladding produce strong guided mode resonance at specific wavelengths corresponding to radial modes. Additionally, general WGMs are formed and confined within the microring. The effects of grating depth and microring size on radial-guided mode resonance are evaluated through two-dimensional simulations and experiments. These insights pave the way for integrating functional lasers into photonic circuits and advancing technologies for topological optical vortex emission and manipulation.
Collapse
Affiliation(s)
- Jinghan Chen
- Graduate
School and Faculty of Information Science and Electrical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395, Japan
| | - Abdul Nasir
- Graduate
School and Faculty of Information Science and Electrical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395, Japan
| | - Adrian Abazi
- Department
for Quantum Technology, University of Münster, Heisenbergstr. 11, Münster 48149, Germany
- Center
for Soft Nano Science (SoN), Busso-Peus-Str. 10, Münster 48149, Germany
- Center
for NanoTechnology (CeNTech), Heisenbergstr. 11, Münster 48149, Germany
| | - Alexander Eich
- Department
for Quantum Technology, University of Münster, Heisenbergstr. 11, Münster 48149, Germany
- Center
for Soft Nano Science (SoN), Busso-Peus-Str. 10, Münster 48149, Germany
- Center
for NanoTechnology (CeNTech), Heisenbergstr. 11, Münster 48149, Germany
| | - Alejandro Sánchez-Postigo
- Department
for Quantum Technology, University of Münster, Heisenbergstr. 11, Münster 48149, Germany
- Center
for Soft Nano Science (SoN), Busso-Peus-Str. 10, Münster 48149, Germany
- Center
for NanoTechnology (CeNTech), Heisenbergstr. 11, Münster 48149, Germany
| | - Harunobu Takeda
- Graduate
School and Faculty of Information Science and Electrical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yuya Mikami
- Graduate
School and Faculty of Information Science and Electrical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395, Japan
| | - Naoya Tate
- Graduate
School and Faculty of Information Science and Electrical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yuji Oki
- Graduate
School and Faculty of Information Science and Electrical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yohei Yamamoto
- Department
of Materials Science, Institute of Pure and Applied Sciences, and
Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Carsten Schuck
- Department
for Quantum Technology, University of Münster, Heisenbergstr. 11, Münster 48149, Germany
- Center
for Soft Nano Science (SoN), Busso-Peus-Str. 10, Münster 48149, Germany
- Center
for NanoTechnology (CeNTech), Heisenbergstr. 11, Münster 48149, Germany
| | - Hiroaki Yoshioka
- Graduate
School and Faculty of Information Science and Electrical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
11
|
Zhou L, Xiong Y, Dwivedy A, Zheng M, Cooper L, Shepherd S, Song T, Hong W, Le LTP, Chen X, Umrao S, Rong L, Wang T, Cunningham BT, Wang X. Bioinspired designer DNA NanoGripper for virus sensing and potential inhibition. Sci Robot 2024; 9:eadi2084. [PMID: 39602515 PMCID: PMC11750070 DOI: 10.1126/scirobotics.adi2084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/25/2024] [Indexed: 11/29/2024]
Abstract
DNA has shown great biocompatibility, programmable mechanical properties, and precise structural addressability at the nanometer scale, rendering it a material for constructing versatile nanorobots for biomedical applications. Here, we present the design principle, synthesis, and characterization of a DNA nanorobotic hand, called DNA NanoGripper, that contains a palm and four bendable fingers as inspired by naturally evolved human hands, bird claws, and bacteriophages. Each NanoGripper finger consists of three phalanges connected by three rotatable joints that are bendable in response to the binding of other entities. NanoGripper functions are enabled and driven by the interactions between moieties attached to the fingers and their binding partners. We demonstrate that the NanoGripper can be engineered to effectively interact with and capture nanometer-scale objects, including gold nanoparticles, gold NanoUrchins, and SARS-CoV-2 virions. With multiple DNA aptamer nanoswitches programmed to generate a fluorescent signal that is enhanced on a photonic crystal platform, the NanoGripper functions as a highly sensitive biosensor that selectively detects intact SARS-CoV-2 virions in human saliva with a limit of detection of ~100 copies per milliliter, providing a sensitivity equal to that of reverse transcription quantitative polymerase chain reaction (RT-qPCR). Quantified by flow cytometry assays, we demonstrated that the NanoGripper-aptamer complex can effectively block viral entry into the host cells, suggesting its potential for inhibiting virus infections. The design, synthesis, and characterization of a sophisticated nanomachine that can be tailored for specific applications highlight a promising pathway toward feasible and efficient solutions to the detection and potential inhibition of virus infections.
Collapse
Affiliation(s)
- Lifeng Zhou
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yanyu Xiong
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Abhisek Dwivedy
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Mengxi Zheng
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Laura Cooper
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Skye Shepherd
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tingjie Song
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Wei Hong
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Linh T. P. Le
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- VinUni-Illinois Smart Health Center, VinUniversity, Hanoi, Vietnam
| | - Xin Chen
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Saurabh Umrao
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Tong Wang
- Advanced Science Research Center at Graduate Center, City University of New York, New York, NY 10031, USA
| | - Brian T. Cunningham
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Xing Wang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
12
|
Liu Y, Peng Y, Zhang C, Chen R, Zhang K. Single-Molecule Detection of Serum MicroRNAs for Medulloblastoma with Biphasic Sandwich Hybridization-Assisted Plasmonic Resonant Scattering Imaging. Anal Chem 2024; 96:18655-18663. [PMID: 39534914 DOI: 10.1021/acs.analchem.4c02665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
MicroRNA (miRNA) dysregulation is closely related to the occurrence and progression of medulloblastoma (MB). However, the full potential of serum circulating miRNAs in MB diagnosis is restricted by their ultralow abundance in peripheral blood due to blood-brain barrier. Here, we report the direct preamplification-free detection of aberrant expression of oncogenic miRNAs in serum from MB patients by proposing a simple yet robust single-molecule assay that combines biphasic sandwich hybridization in nucleic acids and the dark-field single-particle plasmonic imaging (B2S2PI). In this strategy, signal DNA was prehybridized with target miRNA in homogeneous solution to form sDNA-RNA complexes. Then the captured DNA strands with rationally adjusted surface densities could efficiently capture the sDNA-RNA complexes to generate a well-separated DNA-RNA sandwich structure. The combination of homogeneous and heterogeneous reactions enabled interface-mediated hybridization reactions to maintain molecular stability with fewer bases, making it suitable for the direct amplification-free assays of short miRNA targets. Labeling the DNA-RNA hybrids with plasmatic gold nanotags allowed nondestructive recognition and imaging of individual miRNA targets under mild conditions with high signal-to-noise ratio. By digitally counting and analyzing the bright plasmonic resonant scattering spots, B2S2PI enabled both the measurement of a low femtomolar concentration of circulating miRNA-21 in 5 μL sample volume within a turnaround of 2 h and the discrimination of single base mismatches. Moreover, B2S2PI was universal for detecting miRNAs with different sequences and secondary structures. Further analysis of clinical serum samples revealed that B2S2PI was capable of accurately distinguishing MB patients from noncancer controls with an area under the curve (AUC) of 0.99, which was superior to that of qRT-PCR. B2S2PI holds promise as a novel alternative means for single-molecule miRNA assay and sheds light on the circulating nucleic acid-based liquid biopsy of intracranial malignant tumors.
Collapse
Affiliation(s)
- Yujie Liu
- Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Yijia Peng
- Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Chenran Zhang
- Department of Pediatric Neurosurgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ruoping Chen
- Department of Pediatric Neurosurgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Kun Zhang
- Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
13
|
Nguyen VA, Wu Y, Ha Do TT, Dieu Nguyen LT, Sergeev AA, Zhu D, Valuckas V, Pham D, Son Bui HX, Hoang DM, Tung BS, Khuyen BX, Nguyen TB, Nguyen HS, Lam VD, Rogach AL, Ha ST, Le-Van Q. Micrometer-Resolution Fluorescence and Lifetime Mappings of CsPbBr 3 Nanocrystal Films Coupled with a TiO 2 Grating. J Phys Chem Lett 2024; 15:11291-11299. [PMID: 39495752 DOI: 10.1021/acs.jpclett.4c02546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Enhancing light emission from perovskite nanocrystal (NC) films is essential in light-emitting devices, as their conventional stacks often restrict the escape of emitted light. This work addresses this challenge by employing a TiO2 grating to enhance light extraction and shape the emission of CsPbBr3 nanocrystal films. Angle-resolved photoluminescence (PL) demonstrated a 10-fold increase in emission intensity by coupling the Bloch resonances of the grating with the spontaneous emission of the perovskite NCs. Fluorescence lifetime imaging microscopy (FLIM) provided micrometer-resolution mapping of both PL intensity and lifetime across a large area, revealing a decrease in PL lifetime from 8.2 ns for NC films on glass to 6.1 ns on the TiO2 grating. Back focal plane (BFP) spectroscopy confirmed how the Bloch resonances transformed the unpolarized, spatially incoherent emission of NCs into polarized and directed light. These findings provide further insights into the interactions between dielectric nanostructures and perovskite NC films, offering possible pathways for designing better performing perovskite optoelectronic devices.
Collapse
Affiliation(s)
- Viet Anh Nguyen
- Center of Environmental Intelligence, College of Engineering and Computer Science, VinUniversity, Gia Lam district, Hanoi 14000, Vietnam
| | - Ye Wu
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, P. R. China
| | - Thi Thu Ha Do
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore
| | - Linh Thi Dieu Nguyen
- Center of Environmental Intelligence, College of Engineering and Computer Science, VinUniversity, Gia Lam district, Hanoi 14000, Vietnam
| | - Aleksandr A Sergeev
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong P. R. China
| | - Ding Zhu
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, P. R. China
| | - Vytautas Valuckas
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore
| | - Duong Pham
- Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan Street, Hanoi 11106, Vietnam
| | - Hai Xuan Son Bui
- Center of Environmental Intelligence, College of Engineering and Computer Science, VinUniversity, Gia Lam district, Hanoi 14000, Vietnam
- Graduate University of Science and Technology, 18 Hoang Quoc Viet Street, Hanoi 100000, Vietnam
| | - Duy Mai Hoang
- College of Health Science, VinUniversity, Gia Lam district, Hanoi 14000, Vietnam
| | - Bui Son Tung
- Graduate University of Science and Technology, 18 Hoang Quoc Viet Street, Hanoi 100000, Vietnam
| | - Bui Xuan Khuyen
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Hanoi 100000, Vietnam
| | - Thanh Binh Nguyen
- Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan Street, Hanoi 11106, Vietnam
| | - Hai Son Nguyen
- Univ Lyon, Ecole Centrale de Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, INL, UMR5270, Ecully 69130, France
- Institut Universitaire de France (IUF), 75231 Paris, France
| | - Vu Dinh Lam
- Graduate University of Science and Technology, 18 Hoang Quoc Viet Street, Hanoi 100000, Vietnam
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, P. R. China
| | - Son Tung Ha
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore
| | - Quynh Le-Van
- Center of Environmental Intelligence, College of Engineering and Computer Science, VinUniversity, Gia Lam district, Hanoi 14000, Vietnam
| |
Collapse
|
14
|
Das P, Ganguly S, Marvi PK, Sherazee M, Tang X(S, Srinivasan S, Rajabzadeh AR. Carbon Dots Infused 3D Printed Cephalopod Mimetic Bactericidal and Antioxidant Hydrogel for Uniaxial Mechano-Fluorescent Tactile Sensor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409819. [PMID: 39394767 PMCID: PMC11602684 DOI: 10.1002/adma.202409819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/14/2024] [Indexed: 10/14/2024]
Abstract
Cephalopods use stretchy skin and dynamic color-tuning organs for visual communication and camouflage. Inspired by these natural mechanisms, a fluorescent biomaterial for deformation-induced illumination and optical communication is proposed. This is the first report of 3D printed soft biomaterials infused with carbon dots hydrothermally derived from chitosan and benzalkonium chloride. These biomaterials exhibit a comprehensive array of properties, including significant uniaxial stretching, near-instantaneous response to tactile stimuli and pH, UV resistance, antibacterial, antioxidant, noncytotoxicity, and highlighting their potential as mechano-optical materials for biomedical applications. The hydrogel's durability is evaluated by cyclic stretching, folding, rolling, and twisting tests to ensure its integrity and good signal-to-noise ratio. The diffusion mechanism is determined by water imbibition kinetics, network parameters, and time-dependent breathing. Overcoming the common limitations of short lifespans and complex manufacturing processes in existing soft hybrids, this work demonstrates a straightforward method to produce durable, energy-independent, mechano-optical hydrogel. Combined with investigations, molecular dynamic modeling is used to understand the interactions of hydrogel components.
Collapse
Affiliation(s)
- Poushali Das
- School of Biomedical EngineeringMcMaster University1280 Main Street WestHamiltonONL8S 4L8Canada
| | - Sayan Ganguly
- Department of Chemistry & Waterloo Institute for Nanotechnology (WIN)University of Waterloo200 University Ave WestWaterlooOntarioN2L 3G1Canada
| | - Parham Khoshbakht Marvi
- School of Biomedical EngineeringMcMaster University1280 Main Street WestHamiltonONL8S 4L8Canada
| | - Masoomeh Sherazee
- School of Biomedical EngineeringMcMaster University1280 Main Street WestHamiltonONL8S 4L8Canada
| | - Xiaowu (Shirley) Tang
- Department of Chemistry & Waterloo Institute for Nanotechnology (WIN)University of Waterloo200 University Ave WestWaterlooOntarioN2L 3G1Canada
| | - Seshasai Srinivasan
- School of Biomedical EngineeringMcMaster University1280 Main Street WestHamiltonONL8S 4L8Canada
- W Booth School of Engineering Practice and TechnologyMcMaster University1280 Main Street WestHamiltonONL8S 4L7Canada
| | - Amin Reza Rajabzadeh
- School of Biomedical EngineeringMcMaster University1280 Main Street WestHamiltonONL8S 4L8Canada
- W Booth School of Engineering Practice and TechnologyMcMaster University1280 Main Street WestHamiltonONL8S 4L7Canada
| |
Collapse
|
15
|
Zhu Y, Li W, Yang J, Li Z, Li Q, Xiao L, Tan T, Li J. Photonic Microbead Array Digital Time-Resolved Fluorescence Ultrasensitive Platform for Simultaneous Detection of Multiple Mycotoxins. Anal Chem 2024; 96:16842-16853. [PMID: 39388602 DOI: 10.1021/acs.analchem.4c03589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Limitations in the sensitivity, linear detection range, and cross-reaction of lateral flow immunoassays mainly hamper their application in rapid screening for multiple targets. In this work, we designed a new time-resolved fluorescence immunoassay (TRFIA) platform to overcome these limitations. This platform uses europium chelate polystyrene (PS@Eu) nanoparticles conjugated with monoclonal antibodies to sense multiple mycotoxins. We employed a competitive TRFIA protocol in which the conjugated PS@Eu was used on the surfaces of photonic microbead arrays (PMAs). The TRFIA signal of PMAs on the pad was recorded with the digital time-resolved fluorescence reader. The developed TRFIA shows wide detection linear ranges (0.01-1000 ng/mL for DON, 0.1-100 ng/mL for OTA, and 0.01-100 ng/mL for AFB1), low limits of detection (LODs) (7.9 pg/mL for DON, 18 pg/mL for OTA, and 7.7 pg/mL for AFB1), good specificity, good recovery ratios (76.68-117.26%), and good reproducibility in grain samples. The simulated fluorescence enhancement effect of PMA indicated that the electric field distribution on the surface of PS@Eu on PMA is twice higher than that on the surface of PS@Eu. The new TRFIA for three kinds of mycotoxins was 1000-fold more sensitive than the classical TRFIA, and it has great potential application in rapid screening for multiple targets.
Collapse
Affiliation(s)
- Yuting Zhu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Wei Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jing Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Ziqiang Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Qianjin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Liwen Xiao
- Nanjing Microdetection Bio-Tech Co., Ltd., Nanjing 210031, China
| | - Ting Tan
- Nanjing Microdetection Bio-Tech Co., Ltd., Nanjing 210031, China
| | - Jianlin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
16
|
Cho H, Seo SE, Kwon OS, Kim HI. Photonic crystal-assisted sub-bandgap photocatalysis via triplet-triplet annihilation upconversion for the degradation of environmental organic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135208. [PMID: 39067295 DOI: 10.1016/j.jhazmat.2024.135208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/17/2024] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
This study explores novel approaches to enhance photocatalysis efficiency by introducing a photonic crystal (PC)-enhanced, multi-layered sub-bandgap photocatalytic reactor. The design aims to effectively utilize sub-bandgap photons that might otherwise go unused. The device consists of three types of layers: (1) two polymeric triplet-triplet annihilation upconversion (TTA-UC) layers converting low-energy green photons (λEx = 532 nm, 2.33 eV) to high-energy blue photons (λEm = 425 nm, 2.92 eV), (2) a platinum-decorated WO3 layer (Eg = 2.8 eV) serving as a visible-light photocatalyst, and (3) a PC layer optimizing both TTA-UC and photocatalysis. The integration of the PC layer resulted in a 1.9-fold increase in UC emission and a 7.9-fold enhancement in hydroxyl radical (•OH) generation, achieved under low-intensity sub-bandgap irradiation (17.6 mW cm-2). Consequently, the combined layered structure of TTA/Pt-WO3/TTA/PC achieved a remarkable 38.8-fold improvement in •OH production, leading to outstanding degradation capability for various organic pollutants (e.g., 4-chlorophenol, bisphenol A, and methylene blue). This multi-layered sub-bandgap photocatalytic structure, which uniquely combines TTA-UC and PC layers, offers valuable insights into designing efficient photocatalytic systems for future solar-driven environmental remediation.
Collapse
Affiliation(s)
- Haein Cho
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Koreaī
| | - Sung Eun Seo
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Koreaī; SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Oh Seok Kwon
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Nano Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Nano Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyoung-Il Kim
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Koreaī; Future City Open Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| |
Collapse
|
17
|
Liu S, Ma B, Qi L, Ping J, Che Y, Zhang Y, Su M, Song Y, Qi L, Jiang Y, Fang X. Ultrasensitive Detection of Cancer Biomarkers Using Photonic-Crystal-Enhanced Single-Molecule Imaging. Anal Chem 2024; 96:13719-13726. [PMID: 39120618 DOI: 10.1021/acs.analchem.4c02863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The rapid and sensitive quantification of low-abundance protein markers holds immense significance in early disease diagnosis and treatment. Single-molecule fluorescence imaging exhibits very high detection sensitivity and thus has great application potential in this area. The single-molecule signal, however, is often susceptible to interference from background noise due to its inherently weak intensity. A variety of signal amplification techniques based on cascading reactions have been developed to improve the signal-to-noise ratio of single-molecule imaging. Nevertheless, the operation of these methods is typically complicated and time-consuming, which limits the clinical application. Herein, we introduce an enzyme-free, photonic-crystal-based single-molecule (PC-SM) biochip for cost-effective, time-efficient, and ultrasensitive detection of disease markers. The PC-SM biochip can enhance the signal-to-noise ratio of single molecules by nearly 3-fold compared with unamplified samples, through coupling of the single-molecule photon energy with the optical band gap of the photonic crystal. We used the PC-SM biochip to detect the low-abundance leukemia inhibitory factor in the blood of pancreatic cancer patients and healthy people and achieved a detection limit of 2.0 pg/L and an AUC of 0.9067. The method exhibits exceptional sensitivity and specificity, showing great application potential in various clinical settings.
Collapse
Affiliation(s)
- Songlin Liu
- School of Chemistry and Materials, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Bochen Ma
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - LiQing Qi
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Jiantao Ping
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | - YuDong Che
- ZheJiang Cancer Hospital Hangzhou, Zhejiang 310022, P. R. China
| | - YiMin Zhang
- ZheJiang Cancer Hospital Hangzhou, Zhejiang 310022, P. R. China
| | - Meng Su
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - YanLin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - LuBin Qi
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Yifei Jiang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Xiaohong Fang
- School of Chemistry and Materials, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, P. R. China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, P. R. China
| |
Collapse
|
18
|
Pan X, Zhang Z, Yun Y, Zhang X, Sun Y, Zhang Z, Wang H, Yang X, Tan Z, Yang Y, Xie H, Bogdanov B, Zmaga G, Senyushkin P, Wei X, Song Y, Su M. Machine Learning-Assisted High-Throughput Identification and Quantification of Protein Biomarkers with Printed Heterochains. J Am Chem Soc 2024; 146:19239-19248. [PMID: 38949598 DOI: 10.1021/jacs.4c04460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Advanced in vitro diagnosis technologies are highly desirable in early detection, prognosis, and progression monitoring of diseases. Here, we engineer a multiplex protein biosensing strategy based on the tunable liquid confinement self-assembly of multi-material heterochains, which show improved sensitivity, throughput, and accuracy compared to standard ELISA kits. By controlling the material combination and the number of ligand nanoparticles (NPs), we observe robust near-field enhancement as well as both strong electromagnetic resonance in polymer-semiconductor heterochains. In particular, their optical signals show a linear response to the coordination number of the semiconductor NPs in a wide range. Accordingly, a visible nanophotonic biosensor is developed by functionalizing antibodies on central polymer chains that can identify target proteins attached to semiconductor NPs. This allows for the specific detection of multiple protein biomarkers from healthy people and pancreatic cancer patients in one step with an ultralow detection limit (1 pg/mL). Furthermore, rapid and high-throughput quantification of protein expression levels in diverse clinical samples such as buffer, urine, and serum is achieved by combining a neural network algorithm, with an average accuracy of 97.3%. This work demonstrates that the heterochain-based biosensor is an exemplary candidate for constructing next-generation diagnostic tools and suitable for many clinical settings.
Collapse
Affiliation(s)
- Xiangyu Pan
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Zeying Zhang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Yang Yun
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Xu Zhang
- Department of Clinical Laboratory, the first Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Yali Sun
- School of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia
| | - Zixuan Zhang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Huadong Wang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Xu Yang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Zhiyu Tan
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Yaqi Yang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Hongfei Xie
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Bogdan Bogdanov
- School of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia
| | - Georgii Zmaga
- School of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia
| | - Pavel Senyushkin
- School of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia
| | - Xuemei Wei
- Department of Clinical Laboratory, the first Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Meng Su
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| |
Collapse
|
19
|
Lu H, Zhu J, Chen J, Tao T, Shen Y, Zhou H. Synergetic surface enhancement of quantum dots-based electrochemiluminescence with photonic crystal light scattering and metal surface plasmon resonance for sensitive bioanalysis. Talanta 2024; 272:125773. [PMID: 38359720 DOI: 10.1016/j.talanta.2024.125773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Noble metal nanostructures and photonic crystals (PhCs) have been widely investigated as substrates for constructing surface enhanced electrochemiluminescence (SE-ECL) biosensors. However, their applications are hindered by the limited enhancement intensity of surface plasmon resonance (SPR) and an incomplete mechanism for the photonic enhancement effect. Hence, developing a novel SE-ECL strategy with better signal enhanced capability and enriching our understanding of the intrinsic mechanisms for efficient bioanalysis is extremely urgent. Here, a synergistic SE-ECL strategy was developed for the sensitive determination of prostate specific antigen (PSA) protein. The randomly arranged polystyrene (r-PS) spheres and PS PhC arrays were applied to enhance the ECL emission of cadmium sulfide quantum dots (CdS QDs) and the results suggested that the PhC arrays displayed superior intensity (0.22) than the r-PS interface (0.10). Au nanoparticles (NPs) were introduced onto the two kinds of surfaces and further boosted the ECL intensity. According to the ECL measurements, Au NPs modified at the r-PS surface exhibited only a slight increase (0.13), while the PhC arrays showed approximately 5-fold enhancement (0.92), benefiting from the synergistic enhancement. The finite-difference time-domain (FDTD) simulation indicated that the ECL enhancement was ascribed to the coupled electromagnetic (EM) field at the surfaces of PS PhCs and Au NPs. The SE-ECL could achieve a detection range from 1 pg/mL to 1 μg/mL with a detection limit of 0.41 pg/mL (S/N = 3). This study provides the first combination of PhC arrays and metal surface plasmon nanostructure for the synergetic enhancement of SE-ECL systems. It opens a new avenue for the rational design of advanced ECL biosensors and shows great perspective for clinical diagnosis.
Collapse
Affiliation(s)
- Haijie Lu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, 210044, Nanjing, China
| | - Junkai Zhu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, 210044, Nanjing, China
| | - Juncheng Chen
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, 210044, Nanjing, China
| | - Tao Tao
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, 210044, Nanjing, China.
| | - Yizhong Shen
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, 23009, China.
| | - Hong Zhou
- College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
20
|
Jeong M, Ko B, Jung C, Kim J, Jang J, Mun J, Lee J, Yun S, Kim S, Rho J. Printable Light-Emitting Metasurfaces with Enhanced Directional Photoluminescence. NANO LETTERS 2024; 24:5783-5790. [PMID: 38695397 DOI: 10.1021/acs.nanolett.4c00871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Nanoimprint lithography is gaining popularity as a cost-efficient way to reproduce nanostructures in large quantities. Recent advances in nanoimprinting lithography using high-index nanoparticles have demonstrated replication of photonic devices, but it is difficult to confer special properties on nanostructures beyond general metasurfaces. Here, we introduce a novel method for fabricating light-emitting metasurfaces using nanoimprinting lithography. By utilizing quantum dots embedded in resin, we successfully imprint dielectric metasurfaces that function simultaneously as both emitters and resonators. This approach to incorporating quantum dots into metasurfaces demonstrates an improvement in photoluminescence characteristics compared to the situation where quantum dots and metasurfaces are independently incorporated. Design of the metasurface is specifically tailored to support photonic modes within the emission band of quantum dots with a large enhancement of photoluminescence. This study indicates that nanoimprinting lithography has the capability to construct nanostructures using functionalized nanoparticles and could be used in various fields of nanophotonic applications.
Collapse
Affiliation(s)
- Minsu Jeong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Byoungsu Ko
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Chunghwan Jung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jaekyung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jaehyuck Jang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Centre for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
| | - Jungho Mun
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Centre for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
| | - Jihae Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Suhyeon Yun
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Sejeong Kim
- Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Centre for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
- National Institute of Nanomaterials Technology (NINT), Pohang 37673, Republic of Korea
| |
Collapse
|
21
|
Son Bui HX, Thi Doan T, Tri Luong NH, Khue Luu D, Thu Do HT, Ha Chu L, Pham D, Kim Vu OT, Tung Bui S, Tran Nguyen T, Khuyen Bui X, Lam Vu D, Son Nguyen H, Son Ha T, Le-Van Q. Spatial photoluminescence and lifetime mappings of quasi-2D perovskites coupled with a dielectric metasurface. OPTICS LETTERS 2024; 49:2465-2468. [PMID: 38691745 DOI: 10.1364/ol.517100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/01/2024] [Indexed: 05/03/2024]
Abstract
Light-matter interaction between quantum emitters and optical cavities plays a vital role in fundamental quantum photonics and the development of optoelectronics. Resonant metasurfaces are proven to be an efficient platform for tailoring the spontaneous emission (SE) of the emitters. In this work, we study the interplay between quasi-2D perovskites and dielectric TiO2 metasurfaces. The metasurface, functioning as an open cavity, enhances electric fields near its plane, thereby influencing the emissions of the perovskite. This is verified through angle-resolved photoluminescence (PL) studies. We also conducted reflectivity measurements and numerical simulations to validate the coupling between the quasi-2D perovskites and photonic modes. Notably, our work introduces a spatial mapping approach to study Purcell enhancement. Using fluorescence lifetime imaging microscopy (FLIM), we directly link the PL and lifetimes of the quasi-2D perovskites in spatial distribution when positioned on the metasurface. This correlation provides unprecedented insights into emitter distribution and emitter-resonator interactions. The methodology opens a new (to the best of our knowledge) approach for studies in quantum optics, optoelectronics, and medical imaging by enabling spatial mapping of both PL intensity and lifetime, differentiating between uncoupled quantum emitters and those coupled with different types of resonators.
Collapse
|
22
|
Jian X, Chen F, Wei W, Zhang X, Cheng N, Li J, Li F. Stretchable Photonic Crystal-Assisted Glycoprotein Identification for Ovarian Cancer Diagnosis. Anal Chem 2024; 96:6700-6706. [PMID: 38621112 DOI: 10.1021/acs.analchem.4c00269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Photonic crystals with specific wavelengths can realize surface-enhanced excitation and emission intensities of fluorophores and enhance the fluorescence signals of fluorescent molecules. Herein, stretchable photonic crystals with good mechanochromic properties provide continuously adjustable forbidden wavelengths by stretching to change the lattice spacing, with reflectance peaks blue-shifted up to 110 nm to match indicators of different wavelengths and produce differentiated optical enhancement effects. Glycoproteins are significantly identified as clinical markers. However, the wide participation of glycoproteins in various life processes poses enormous complexity and critical challenges for rapid, facile, high-throughput, and accurate clinical analysis or health assessment. In this work, we proposed a stretchable photonic crystal-assisted glycoprotein identification approach for early ovarian cancer diagnosis. Stretchable photonic crystals can provide rich optical information to efficiently identify glycoproteins in complex matrices. A double-indicator fluorescence sensor was designed to respond to the protein trunk and oligosaccharide segment of glycoproteins separately for improved recognition accuracy. Seven typical glycoproteins could be discriminated from proteins, saccharides, or mixture interferents. Clinical ovarian cancer samples for early, intermediate, and advanced ovarian cancer and healthy subjects were verified with 100% accuracy. This strategy of stretchable photonic crystal-assisted glycoprotein identification provides an effective method for accurate, rapid ovarian cancer diagnosis and timely clinical treatment.
Collapse
Affiliation(s)
- Xinyi Jian
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Speed Capability Research, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou 510632, China
| | - Fei Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Speed Capability Research, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou 510632, China
| | - Wei Wei
- Sun Yat-Sen University Cancer Center, Guangzhou 528403, China
| | - Xiaoyu Zhang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Speed Capability Research, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou 510632, China
| | - Nan Cheng
- Department of Cardiovascular Surgery, PLA General Hospital, Beijing 100853, P. R. China
| | - Jundong Li
- Sun Yat-Sen University Cancer Center, Guangzhou 528403, China
| | - Fengyu Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Speed Capability Research, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou 510632, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
23
|
Huang J, Hu S, Kos D, Xiong Y, Jakob LA, Sánchez-Iglesias A, Guo C, Liz-Marzán LM, Baumberg JJ. Enhanced Photocurrent and Electrically Pumped Quantum Dot Emission from Single Plasmonic Nanoantennas. ACS NANO 2024; 18:3323-3330. [PMID: 38215048 PMCID: PMC10832344 DOI: 10.1021/acsnano.3c10092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
Integrating cavity-enhanced colloidal quantum dots (QDs) into photonic chip devices would be transformative for advancing room-temperature optoelectronic and quantum photonic technologies. However, issues with efficiency, stability, and cost remain formidable challenges to reach the single antenna limit. Here, we present a bottom-up approach that delivers single QD-plasmonic nanoantennas with electrical addressability. These QD nanojunctions exhibit robust photoresponse characteristics, with plasmonically enhanced photocurrent spectra matching the QD solution absorption. We demonstrate electroluminescence from individual plasmonic nanoantennas, extending the device lifetime beyond 40 min by utilizing a 3 nm electron-blocking polymer layer. In addition, we reveal a giant voltage-dependent redshift of up to 62 meV due to the quantum-confined Stark effect and determine the exciton polarizability of the CdSe QD monolayer to be 4 × 10-5 meV/(kV/cm)2. These developments provide a foundation for accessing scalable quantum light sources and high-speed, tunable optoelectronic systems operating under ambient conditions.
Collapse
Affiliation(s)
- Junyang Huang
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, U.K.
| | - Shu Hu
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, U.K.
| | - Dean Kos
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, U.K.
| | - Yuling Xiong
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, U.K.
| | - Lukas A. Jakob
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, U.K.
| | - Ana Sánchez-Iglesias
- CIC
biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián 20014, Spain
| | - Chenyang Guo
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, U.K.
| | - Luis M. Liz-Marzán
- CIC
biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián 20014, Spain
- Ikerbasque,
Basque Foundation for Science, Bilbao 43009, Spain
| | - Jeremy J. Baumberg
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, U.K.
| |
Collapse
|
24
|
Wang Y, Luo C, Lou X, Li F, Huang Y, Xia F. Fluorescent Selectivity-Enhanced FRET Based on 3D Photonic Crystals for Multianalyte Sensing. Anal Chem 2024; 96:1630-1639. [PMID: 38217493 DOI: 10.1021/acs.analchem.3c04547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Fluorescence resonance energy transfer (FRET) finds widespread utility in biochemical sensing, single-molecule experiments, cell physiology, and various other domains due to its inherent simplicity and high sensitivity. Nevertheless, the efficiency of energy transfer between the FRET donor and acceptor is significantly contingent on the local photonic environment, a factor that limits its application in complex systems or multianalyte detections. Here, a fluorescent selectivity-enhanced acridine orange (AO)-aflatoxins (AFs) FRET system based on a range of 3D topological photonic crystals (PCs) was developed with the aim of enhancing the selectivity and discrimination capabilities of FRET. By exploring the angle-dependent characteristics of the photonic stopband, the stopband distribution across different 3D topological PCs pixels was investigated. This approach led to selective fluorescence enhancement in PCs that matched the stopbands, enabling the successful discrimination of six distinct aflatoxins and facilitating complex multianalysis of moldy food samples. In particular, the stopband, which was strategically positioned within the blue-purple structural color range, exhibited a strong alignment with the fluorescence peaks of both the FRET donor and acceptor. This alignment allowed the 3D three-pointed star PCs to be effectively employed for the identification of mixed samples containing six distinct aflatoxins as well as the detection of real aflatoxin samples present in moldy potatoes, bread, oats, and peanuts. Impressively, this approach achieved a remarkable accuracy rate of 100%. This innovative strategy not only presents a novel avenue for developing a multitarget discrimination analysis system but also offers a convenient pretreatment method for the quantitative detection of various aflatoxins.
Collapse
Affiliation(s)
- Yanyan Wang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Cihui Luo
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Fengyu Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Jinan University, Guangzhou 510632, China
| | - Yu Huang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
25
|
Tseng YT, Chiu YC, Pham VD, Wu WH, Le-Vu TT, Wang CH, Kuo SW, Chan MWY, Lin CH, Li SC, Li YD, Kan HC, Lin JY, Chau LK, Hsu CC. Ultrasensitive Upconversion Nanoparticle Immunoassay for Human Serum Cardiac Troponin I Detection Achieved with Resonant Waveguide Grating. ACS Sens 2024; 9:455-463. [PMID: 38234004 DOI: 10.1021/acssensors.3c02240] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Selective detection of biomarkers at low concentrations in blood is crucial for the clinical diagnosis of many diseases but remains challenging. In this work, we aimed to develop an ultrasensitive immunoassay that can detect biomarkers in serum with an attomolar limit of detection (LOD). We proposed a sandwich-type heterogeneous immunosensor in a 3 × 3 well array format by integrating a resonant waveguide grating (RWG) substrate with upconversion nanoparticles (UCNPs). UCNPs were used to label a target biomarker captured by capture antibody molecules immobilized on the surface of the RWG substrate, and the RWG substrate was used to enhance the upconversion luminescence (UCL) of UCNPs through excitation resonance. The LOD of the immunosensor was greatly reduced due to the increased UCL of UCNPs and the reduction of nonspecific adsorption of detection antibody-conjugated UCNPs on the RWG substrate surface by coating the RWG substrate surface with a carboxymethyl dextran layer. The immunosensor exhibited an extremely low LOD [0.24 fg/mL (9.1 aM)] and wide detection range (1 fg/mL to 100 pg/mL) in the detection of cardiac troponin I (cTnI). The cTnI concentrations in human serum samples collected at different times during cyclophosphamide, epirubicin, and 5-fluorouracil (CEF) chemotherapy in a breast cancer patient were measured by an immunosensor, and the results showed that the CEF chemotherapy did cause cardiotoxicity in the patient. Having a higher number of wells in such an array-based biosensor, the sensor can be developed as a high-throughput diagnostic tool for clinically important biomarkers.
Collapse
Affiliation(s)
- Yen-Ta Tseng
- Department of Physics, National Chung Cheng University, Ming-Hsiung, Chia-Yi 621, Taiwan
- Department of Chemistry and Biochemistry, National Chung Cheng University, Ming-Hsiung, Chia-Yi 621, Taiwan
| | - Yu-Chung Chiu
- Department of Physics, National Chung Cheng University, Ming-Hsiung, Chia-Yi 621, Taiwan
| | - Van-Dai Pham
- Department of Physics, National Chung Cheng University, Ming-Hsiung, Chia-Yi 621, Taiwan
| | - Wen-Hsuan Wu
- Department of Physics, National Chung Cheng University, Ming-Hsiung, Chia-Yi 621, Taiwan
| | - Thanh Thu Le-Vu
- Department of Physics, National Chung Cheng University, Ming-Hsiung, Chia-Yi 621, Taiwan
| | - Chih-Hsien Wang
- Department of Chemistry and Biochemistry, National Chung Cheng University, Ming-Hsiung, Chia-Yi 621, Taiwan
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, National Sun Yat Sen University, Kaohsiung 804, Taiwan
| | - Michael W Y Chan
- Center for Nano Bio-Detection, National Chung Cheng University, Ming-Hsiung, Chia-Yi 621, Taiwan
- Department of Biomedical Sciences, National Chung Cheng University, Ming-Hsiung, Chia-Yi 621, Taiwan
| | - Chun-Hung Lin
- Department of Surgery, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi 622, Taiwan
| | - Szu-Chin Li
- Department of Hematology and Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi 622, Taiwan
| | - Yi-Da Li
- Department of Cardiology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi 622, Taiwan
| | - Hung-Chih Kan
- Department of Physics, National Chung Cheng University, Ming-Hsiung, Chia-Yi 621, Taiwan
- Center for Nano Bio-Detection, National Chung Cheng University, Ming-Hsiung, Chia-Yi 621, Taiwan
| | - Jiunn-Yuan Lin
- Department of Physics, National Chung Cheng University, Ming-Hsiung, Chia-Yi 621, Taiwan
| | - Lai-Kwan Chau
- Department of Chemistry and Biochemistry, National Chung Cheng University, Ming-Hsiung, Chia-Yi 621, Taiwan
- Center for Nano Bio-Detection, National Chung Cheng University, Ming-Hsiung, Chia-Yi 621, Taiwan
| | - Chia-Chen Hsu
- Department of Physics, National Chung Cheng University, Ming-Hsiung, Chia-Yi 621, Taiwan
- Center for Nano Bio-Detection, National Chung Cheng University, Ming-Hsiung, Chia-Yi 621, Taiwan
| |
Collapse
|
26
|
Xu H, Wu X, Liu Q, Yang C, Shen M, Wang Y, Liu S, Zhao S, Xiao T, Sun M, Ding Z, Bao J, Chen M, Gao M. A Universal Strategy for Enhancing the Circulating miRNAs' Detection Performance of Rolling Circle Amplification by Using a Dual-Terminal Stem-Loop Padlock. ACS NANO 2024; 18:436-450. [PMID: 38149638 PMCID: PMC10786163 DOI: 10.1021/acsnano.3c07721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
Rolling circle amplification (RCA) is one of the most promising nucleic acid detection technologies and has been widely used in the molecular diagnosis of disease. Padlock probes are often used to form circular templates, which are the core of RCA. However, RCA often suffers from insufficient specificity and sensitivity. Here we report a reconstruction strategy for conventional padlock probes to promote their overall performance in nucleic acid detection while maintaining probe functions uncompromised. When two rationally designed stem-loops were strategically placed at the two terminals of linear padlock probes, the specificity of target recognition was enhanced and the negative signal was significantly delayed. Our design achieved the best single-base discrimination compared with other structures and over a 1000-fold higher sensitivity than that of the conventional padlock probe, validating the effectiveness of this reconstruction. In addition, the underlying mechanisms of our design were elucidated through molecular dynamics simulations, and the versatility was validated with longer and shorter padlocks targeting the same target, as well as five additional targets (four miRNAs and dengue virus - 2 RNA mimic (DENV-2)). Finally, clinical applicability in multiplex detection was demonstrated by testing real plasma samples. Our exploration of the structures of nucleic acids provided another perspective for developing high-performance detection systems, improving the efficacy of practical detection strategies, and advancing clinical diagnostic research.
Collapse
Affiliation(s)
- Hanqing Xu
- Department
of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
| | - Xianlan Wu
- Department
of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
| | - Qian Liu
- Department
of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
| | - Cheng Yang
- Department
of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
| | - Man Shen
- Department
of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
| | - Yingran Wang
- Department
of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
| | - Shuai Liu
- Department
of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
| | - Shuang Zhao
- Department
of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
| | - Ting Xiao
- Department
of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
| | - Minghui Sun
- Department
of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
| | - Zishan Ding
- Department
of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
| | - Jing Bao
- Department
of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
| | - Ming Chen
- Department
of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
- College
of Pharmacy and Laboratory Medicine, Third
Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing 400038, P. R. China
| | - Mingxuan Gao
- Department
of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
| |
Collapse
|
27
|
Ha ST, Lassalle E, Liang X, Do TTH, Foo I, Shendre S, Durmusoglu EG, Valuckas V, Adhikary S, Paniagua-Dominguez R, Demir HV, Kuznetsov AI. Dual-Resonance Nanostructures for Color Downconversion of Colloidal Quantum Emitters. NANO LETTERS 2023; 23:11802-11808. [PMID: 38085099 DOI: 10.1021/acs.nanolett.3c03786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
We present a dual-resonance nanostructure made of a titanium dioxide (TiO2) subwavelength grating to enhance the color downconversion efficiency of CdxZn1-xSeyS1-y colloidal quantum dots (QDs) emitting at ∼530 nm when excited with a blue light at ∼460 nm. A large mode volume can be created within the QD layer by the hybridization of the grating resonances and waveguide modes, resulting in large absorption and emission enhancements. Particularly, we achieved polarized light emission with a maximum photoluminescence enhancement of ∼140 times at a specific angular direction and a total enhancement of ∼34 times within a 0.55 numerical aperture (NA) of the collecting objective. The enhancement encompasses absorption, Purcell and outcoupling enhancements. We achieved a total absorption of 35% for green QDs with a remarkably thin color conversion layer of ∼400 nm. This work provides a guideline for designing large-volume cavities for absorption/fluorescence enhancement in microLED display, detector, or photovoltaic applications.
Collapse
Affiliation(s)
- Son Tung Ha
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Emmanuel Lassalle
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Xiao Liang
- LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, The Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Thi Thu Ha Do
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Ian Foo
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Sushant Shendre
- LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, The Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Emek G Durmusoglu
- LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, The Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Vytautas Valuckas
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Sourav Adhikary
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Ramon Paniagua-Dominguez
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Hilmi Volkan Demir
- LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, The Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- UNAM─Institute of Materials Science and Nanotechnology, The National Nanotechnology Research Center, Department of Electrical and Electronics Engineering, Department of Physics, Bilkent University, Bilkent, Ankara 06800, Turkey
| | - Arseniy I Kuznetsov
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| |
Collapse
|
28
|
Barya P, Xiong Y, Shepherd S, Gupta R, Akin LD, Tibbs J, Lee HK, Singamaneni S, Cunningham BT. Photonic-Plasmonic Coupling Enhanced Fluorescence Enabling Digital-Resolution Ultrasensitive Protein Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207239. [PMID: 37104850 PMCID: PMC10603207 DOI: 10.1002/smll.202207239] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/12/2023] [Indexed: 06/05/2023]
Abstract
Assays utilizing fluorophores are common throughout life science research and diagnostics, although detection limits are generally limited by weak emission intensity, thus requiring many labeled target molecules to combine their output to achieve higher signal-to-noise. We describe how the synergistic coupling of plasmonic and photonic modes can significantly boost the emission from fluorophores. By optimally matching the resonant modes of a plasmonic fluor (PF) nanoparticle and a photonic crystal (PC) with the absorption and emission spectrum of the fluorescent dye, a 52-fold improvement in signal intensity is observed, enabling individual PFs to be observed and digitally counted, where one PF tag represents one detected target molecule. The amplification can be attributed to the strong near-field enhancement due to the cavity-induced activation of the PF, PC band structure-mediated improvement in collection efficiency, and increased rate of spontaneous emission. The applicability of the method by dose-response characterization of a sandwich immunoassay for human interleukin-6, a biomarker used to assist diagnosis of cancer, inflammation, sepsis, and autoimmune disease is demonstrated. A limit of detection of 10 fg mL-1 and 100 fg mL-1 in buffer and human plasma respectively, is achieved, representing a capability nearly three orders of magnitude lower than standard immunoassays.
Collapse
Affiliation(s)
- Priyash Barya
- Department of Electrical and Computer Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois, 61801, USA
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, Ilinois, 61801, USA
| | - Yanyu Xiong
- Department of Electrical and Computer Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois, 61801, USA
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, Ilinois, 61801, USA
| | - Skye Shepherd
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Ilinois, 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Rohit Gupta
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Lucas D. Akin
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, Ilinois, 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Joseph Tibbs
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Ilinois, 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Han Keun Lee
- Department of Electrical and Computer Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois, 61801, USA
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, Ilinois, 61801, USA
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Brian T. Cunningham
- Department of Electrical and Computer Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois, 61801, USA
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, Ilinois, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Ilinois, 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| |
Collapse
|
29
|
Lin W, Yang C, Miao Y, Li S, Zhang L, Jiang XF, Lv Y, Poudel B, Wang K, Polavarapu L, Zhang C, Zhou G, Hu X. Toward Chiral Lasing from All-Solution-Processed Flexible Perovskite-Nanocrystal-Liquid-Crystal Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301573. [PMID: 37466259 DOI: 10.1002/adma.202301573] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/05/2023] [Accepted: 07/16/2023] [Indexed: 07/20/2023]
Abstract
Circularly polarized (CP) coherent light sources are of great potential for various advanced optical applications spanning displays/imaging to data processing/encryption and quantum communication. Here, the first demonstration of CP amplified spontaneous emission (ASE)/lasing from a free-standing and flexible membrane device is reported. The membrane device consists of perovskite nanocrystals (PNCs) and cholesteric liquid crystals (CLCs) layers sandwiched within a Fabry-Pérot (F-P) cavity architecture. The chiral liquid crystal cavity enables the generation of CP light from the device. The device is completely solution-processable and displays CP ASE with record dissymmetry factor (glum ) as high as 1.4, which is 3 orders of magnitude higher as compared with glum of CP luminescence of chiral ligand-capped colloidal PNCs. The device exhibits ultraflexibility as the ASE intensity remains unchanged after repeated 100 bending cycles and it is stable for more than 3 months with 80% of its original intensity. Furthermore, the ultraflexibility enables the generation of ASE from various objects of different geometric surfaces covered with the flexible perovskite membrane device. This work not only demonstrates the first CP ASE from a PNCs membrane with extremely high glum but also opens the door toward the fabrication of ultraflexible, extremely stable, and all solution-processable perovskite chiral laser devices.
Collapse
Affiliation(s)
- Weixi Lin
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
- Peng Cheng Laboratory (PCL), Shenzhen, 518055, P. R. China
| | - Chao Yang
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Yu Miao
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, 510006, Guangzhou, P. R. China
| | - Sen Li
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Limin Zhang
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Xiao-Fang Jiang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, 510006, Guangzhou, P. R. China
| | - Ying Lv
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
| | - Bed Poudel
- Material Research Institute, Pennsylvania State University, University Park, PA, 16802, USA
| | - Kai Wang
- Material Research Institute, Pennsylvania State University, University Park, PA, 16802, USA
| | - Lakshminarayana Polavarapu
- CINBIO, Universidad de Vigo, Materials Chemistry and Physics Group, Department of Physical Chemistry, Campus Universitario Lagoas Marcosende, Vigo, 36310, Spain
| | - Chen Zhang
- Peng Cheng Laboratory (PCL), Shenzhen, 518055, P. R. China
| | - Guofu Zhou
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Xiaowen Hu
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
30
|
Chen X, Wang Y, Peng C, Hu W, Wu Z, Xu W, Wu S, Luo Z, Suh YD, Atabaev TS, Li X, Liu X, Huang W. Pseudomorphic Synthesis of Monodisperse Afterglow Carbon Dot-Doped SiO 2 Microparticles for Photonic Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2307198. [PMID: 37821358 DOI: 10.1002/adma.202307198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/03/2023] [Indexed: 10/13/2023]
Abstract
Synthesizing monodisperse afterglow microparticles (MPs) is crucial for creating photonic crystal (PC) platforms with multiple optical states for optoelectronics. However, achieving high uniformity in both size and morphology is challenging for inorganic afterglow MPs using conventional methods. In this contribution, a novel approach for the synthesis of carbon dot (CD)-doped SiO2 MPs with tunable afterglow properties and size distributions is reported. These mechanism studies suggest that the pseudomorphic transformation of SiO2 MPs enables CD doping, providing a hydrogen bond-enriched environment for triplet state stabilization, which generates green afterglow while retaining the uniformity in size and morphology of the parent SiO2 MPs. Furthermore, the utility of CD-doped SiO2 MPs in the fabrication of rationally designed PC patterns is shown using a combined consecutive dip-coating and laser-assisted etching strategy. The pattern displays multiple optical responses under different lighting conditions, including angle-dependent structural colors and blue luminescence under daylight and upon 365-nm irradiation, respectively, as well as time-dependent green afterglow after ceasing UV excitation. The findings pave the way for further controlling the dynamics of spontaneous emissions by PCs to enable complicated optical states for advanced photonics.
Collapse
Affiliation(s)
- Xue Chen
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Yu Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2nd Linggong Road, Dalian, 116024, China
| | - Chenxi Peng
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Wenbo Hu
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Zhongbin Wu
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Weidong Xu
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Suli Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2nd Linggong Road, Dalian, 116024, China
| | - Zhi Luo
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yung Doug Suh
- Department of Chemistry and School of Energy and Chemical Engineering UNIST, Ulsan, 44919, Republic of South Korea
| | - Timur Sh Atabaev
- Department of Chemistry, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Xiyan Li
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Nankai University, Tianjin, 300350, China
| | - Xiaowang Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts &Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
| |
Collapse
|
31
|
Huang K, Li Q, Xue Y, Wang Q, Chen Z, Gu Z. Application of colloidal photonic crystals in study of organoids. Adv Drug Deliv Rev 2023; 201:115075. [PMID: 37625595 DOI: 10.1016/j.addr.2023.115075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 07/09/2023] [Accepted: 08/20/2023] [Indexed: 08/27/2023]
Abstract
As alternative disease models, other than 2D cell lines and patient-derived xenografts, organoids have preferable in vivo physiological relevance. However, both endogenous and exogenous limitations impede the development and clinical translation of these organoids. Fortunately, colloidal photonic crystals (PCs), which benefit from favorable biocompatibility, brilliant optical manipulation, and facile chemical decoration, have been applied to the engineering of organoids and have achieved the desirable recapitulation of the ECM niche, well-defined geometrical onsets for initial culture, in situ multiphysiological parameter monitoring, single-cell biomechanical sensing, and high-throughput drug screening with versatile functional readouts. Herein, we review the latest progress in engineering organoids fabricated from colloidal PCs and provide inputs for future research.
Collapse
Affiliation(s)
- Kai Huang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qiwei Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yufei Xue
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qiong Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu 215163, China.
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
32
|
Ganjalizadeh V, Hawkins AR, Schmidt H. Adaptive time modulation technique for multiplexed on-chip particle detection across scales. OPTICA 2023; 10:812-818. [PMID: 38818330 PMCID: PMC11138143 DOI: 10.1364/optica.489068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/15/2023] [Indexed: 06/01/2024]
Abstract
Integrated optofluidic biosensors have demonstrated ultrasensitivity down to single particle detection and attomolar target concentrations. However, a wide dynamic range is highly desirable in practice and can usually only be achieved by using multiple detection modalities or sacrificing linearity. Here, we demonstrate an analysis technique that uses temporal excitation at two different time scales to simultaneously enable digital and analog detection of fluorescent targets. We demonstrated the seamless detection of nanobeads across eight orders of magnitude from attomolar to nanomolar concentration. Furthermore, a combination of spectrally varying modulation frequencies and a closed-loop feedback system that provides rapid adjustment of excitation laser powers enables multiplex analysis in the presence of vastly different concentrations. We demonstrated this ability to detect across scales via an analysis of a mixture of fluorescent nanobeads at femtomolar and picomolar concentrations. This technique advances the performance and versatility of integrated biosensors, especially toward point-of-use applications.
Collapse
Affiliation(s)
- Vahid Ganjalizadeh
- School of Engineering, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California, 95064, USA
| | - Aaron R. Hawkins
- Electrical and Computer Engineering Department, Brigham Young University, Provo, Utah, 84602, USA
| | - Holger Schmidt
- School of Engineering, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California, 95064, USA
| |
Collapse
|
33
|
Chen LY, Hsu SM, Wang JC, Yang TH, Chuang HS. Photonic crystal enhanced immunofluorescence biosensor integrated with a lateral flow microchip: Toward rapid tear-based diabetic retinopathy screening. BIOMICROFLUIDICS 2023; 17:044102. [PMID: 37484814 PMCID: PMC10361775 DOI: 10.1063/5.0158780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023]
Abstract
Diabetic retinopathy (DR) has accounted for major loss of vision in chronic diabetes. Although clinical statistics have shown that early screening can procrastinate or improve the deterioration of the disease, the screening rate remains low worldwide because of the great inconvenience of conventional ophthalmoscopic examination. Instead, tear fluid that contains rich proteins caused by direct contact with eyeballs is an ideal substitute to monitor vision health. Herein, an immunofluorescence biosensor enhanced by a photonic crystal (PhC) is presented to handle the trace proteins suspended in the tear fluid. The PhC was constructed by self-assembled nanoparticles with a thin layer of gold coated on top of it. Then, the PC substrate was conjugated with antibodies and placed in a microchannel. When the capillary-driven tear sample flew over the PC substrate, the immunoassay enabled the formation of a sandwich antibody-antigen-antibody configuration for PhC-enhanced immunofluorescence. The use of PhC resulted in a concentration enhancement of more than tenfold compared to non-PhC, while achieving an equivalent signal intensity. The limit of detection for the target biomarker, lipocalin-1 (LCN-1), reached nearly 3 μg/ml, and the turnaround time of each detection was 15 min. Finally, a preclinical evaluation was conducted using ten tear samples. A clear trend was observed, showing that the concentrations of LCN-1 were at least twofold higher in individuals with chronic diabetes or DR than in healthy individuals. This trend was consistent with their medical conditions. The results provided a direct proof-of-concept for the proposed PhC biosensor in rapid tear-based DR screening.
Collapse
Affiliation(s)
- Li-Ying Chen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Min Hsu
- Department of Ophthalmology, National Cheng Kung University Hospital, Tainan 701, Taiwan
| | | | | | | |
Collapse
|
34
|
Abstract
There has been a recent surge of advances in biomolecular assays based on the measurement of discrete molecular targets as opposed to signals averaged across molecular ensembles. Many of these "digital" assay designs derive from now-mature technologies involving single-molecule imaging and microfluidics and provide an assortment of new modalities to quantify nucleic acids and proteins in biospecimens such as blood and tissue homogenates. A primary new benefit is the robust detection of trace analytes at attomolar to femtomolar concentrations for which many ensemble assays cannot distinguish signals above noise levels. In addition, multiple biomolecules can be differentiated within a mixture using optical barcodes, with much faster and simpler readouts compared with sequencing methods. In ideal digital assays, signals should, in theory, further represent absolute molecular counts, rather than relative levels, eliminating the need for calibration standards that are the mainstay of typical assays. Several digital assay platforms have now been commercialized but challenges hinder the adoption and diversification of these new formats, as there are broad needs to balance sensitivity and dynamic range of detection, increase analyte multiplexing, improve sample throughput, and reduce cost. Our lab and others have developed technologies to address these challenges by redesigning molecular probes and labels, improving molecular transport within detection focal volumes, and applying solution-based readout methods in flow.This Account describes the principles, formats, and design constraints of digital biomolecular assays that apply optical labels toward the goal of simple and routine target counting that may ultimately approach absolute readout standards. The primary challenges can be understood from fundamental concepts in thermodynamics and kinetics of association reactions, mass transport, and discrete statistics. Major advances include (1) new inorganic nanocrystal probes for more robust counting compared with dyes, (2) diverse molecular amplification tools that endow attachment of numerous labels to single targets, (3) specialized surfaces with patterned features for electromagnetic coupling to labels for signal amplification, (4) surface capture enhancement methods to concentrate targets through disruption of diffusion depletion zones, and (5) flow counting in which analytes are rapidly counted in solution without pull-down to a surface. Further progress and integration of these tools for biomolecular counting could improve the precision of laboratory measurements in life sciences research and benefit clinical diagnostic assays for low abundance biomarkers in limiting biospecimen volumes that are out of reach of traditional ensemble-level bioassays.
Collapse
Affiliation(s)
- Chia-Wei Kuo
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Andrew M Smith
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science & Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Carle Illinois College of Medicine, Urbana, Illinois 61801, United States
| |
Collapse
|
35
|
Zhou L, Xiong Y, Cooper L, Shepherd S, Song T, Dwivedy A, Rong L, Wang T, Cunningham BT, Wang X. Designer DNA NanoGripper. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538490. [PMID: 37162861 PMCID: PMC10168355 DOI: 10.1101/2023.04.26.538490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
DNA has shown great biocompatibility, programmable mechanical properties, and structural addressability at the nanometer scale, making it a versatile material for building high precision nanorobotics for biomedical applications. Herein, we present design principle, synthesis, and characterization of a DNA nanorobotic hand, called the "NanoGripper", that contains a palm and four bendable fingers as inspired by human hands, bird claws, and bacteriophages evolved in nature. Each NanoGripper finger has three phalanges connected by two flexible and rotatable joints that are bendable in response to binding to other entities. Functions of the NanoGripper have been enabled and driven by the interactions between moieties attached to the fingers and their binding partners. We showcase that the NanoGripper can be engineered to interact with and capture various objects with different dimensions, including gold nanoparticles, gold NanoUrchins, and SARS-CoV-2 virions. When carrying multiple DNA aptamer nanoswitches programmed to generate fluorescent signal enhanced on a photonic crystal platform, the NanoGripper functions as a sensitive viral biosensor that detects intact SARS-CoV-2 virions in human saliva with a limit of detection of ~ 100 copies/mL, providing RT-PCR equivalent sensitivity. Additionally, we use confocal microscopy to visualize how the NanoGripper-aptamer complex can effectively block viral entry into the host cells, indicating the viral inhibition. In summary, we report the design, synthesis, and characterization of a complex nanomachine that can be readily tailored for specific applications. The study highlights a path toward novel, feasible, and efficient solutions for the diagnosis and therapy of other diseases such as HIV and influenza.
Collapse
Affiliation(s)
- Lifeng Zhou
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yanyu Xiong
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Laura Cooper
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Skye Shepherd
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tingjie Song
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Abhisek Dwivedy
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Tong Wang
- Advanced Science Research Center at Graduate Center, City University of New York, New York, NY 10031, USA
| | - Brian T. Cunningham
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Xing Wang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
36
|
Lyu Y, An L, Zeng H, Zheng F, Guo J, Zhang P, Yang H, Li H. First-passage time analysis of diffusion-controlled reactions in single-molecule detection. Talanta 2023; 260:124569. [PMID: 37116360 DOI: 10.1016/j.talanta.2023.124569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/21/2023] [Accepted: 04/16/2023] [Indexed: 04/30/2023]
Abstract
Single-molecule detection (SMD) aims to achieve the ultimate limit-of-detection (LOD) in biosensing. This method detects a countable number of targeted analyte molecules in solution, where the dynamics of molecule diffusion, capturing, identification and delivery greatly impact the SMD's efficiency and accuracy. In this study, we adopt the first-passage time method to investigate the diffusion-controlled reaction process in SMD. We analyze the influence of detection conditions on incubation time and the expected coefficient of variation (CV) under three SMD molecule capturing strategies, including solid-phase capturing (one-dimensional solid-liquid interface fixation), liquid-phase magnetic bead (MB) capturing, and liquid-phase direct fluorescence pair labeling. We find that inside a finite-sized reaction chamber, a finite average reaction time exists in all three capturing strategies, while the liquid-phase strategies are in general more efficient than the solid-phase approaches. CV can be estimated by averaging first-passage time solely in all three strategies, and the CV reduction is achievable given an extended reaction time. To further enable zeptomolar detection, extra treatments, such as adopting liquid-phase fluorescence pairs with high diffusion rates to label the molecule, or designing specific sensing devices with large effective sensing areas would be required. This framework provides solid theoretical support to guide the design of SMD sensing strategies and sensor structures to achieve desired measurement time and CV.
Collapse
Affiliation(s)
- Yingkai Lyu
- National Innovation Center for Advanced Medical Devices, Shenzhen, China; Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lixiang An
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
| | - Huaiyang Zeng
- National Innovation Center for Advanced Medical Devices, Shenzhen, China; Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Feng Zheng
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
| | - Jiajia Guo
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Pengcheng Zhang
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hui Yang
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hao Li
- National Innovation Center for Advanced Medical Devices, Shenzhen, China.
| |
Collapse
|
37
|
Xiong Y, Shepherd S, Tibbs J, Bacon A, Liu W, Akin LD, Ayupova T, Bhaskar S, Cunningham BT. Photonic Crystal Enhanced Fluorescence: A Review on Design Strategies and Applications. MICROMACHINES 2023; 14:668. [PMID: 36985075 PMCID: PMC10059769 DOI: 10.3390/mi14030668] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/03/2023] [Accepted: 03/13/2023] [Indexed: 05/25/2023]
Abstract
Nanoscale fluorescence emitters are efficient for measuring biomolecular interactions, but their utility for applications requiring single-unit observations is constrained by the need for large numerical aperture objectives, fluorescence intermittency, and poor photon collection efficiency resulting from omnidirectional emission. Photonic crystal (PC) structures hold promise to address the aforementioned challenges in fluorescence enhancement. In this review, we provide a broad overview of PCs by explaining their structures, design strategies, fabrication techniques, and sensing principles. Furthermore, we discuss recent applications of PC-enhanced fluorescence-based biosensors incorporated with emerging technologies, including nucleic acids sensing, protein detection, and steroid monitoring. Finally, we discuss current challenges associated with PC-enhanced fluorescence and provide an outlook for fluorescence enhancement with photonic-plasmonics coupling and their promise for point-of-care biosensing as well monitoring analytes of biological and environmental relevance. The review presents the transdisciplinary applications of PCs in the broad arena of fluorescence spectroscopy with broad applications in photo-plasmonics, life science research, materials chemistry, cancer diagnostics, and internet of things.
Collapse
Affiliation(s)
- Yanyu Xiong
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, Urbana, IL 61801, USA
| | - Skye Shepherd
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph Tibbs
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Amanda Bacon
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Weinan Liu
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, Urbana, IL 61801, USA
| | - Lucas D. Akin
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Takhmina Ayupova
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Seemesh Bhaskar
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, Urbana, IL 61801, USA
| | - Brian T. Cunningham
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, Urbana, IL 61801, USA
- Cancer Center at Illinois, Urbana, IL 61801, USA
| |
Collapse
|
38
|
Herrera-Domínguez M, Morales-Luna G, Mahlknecht J, Cheng Q, Aguilar-Hernández I, Ornelas-Soto N. Optical Biosensors and Their Applications for the Detection of Water Pollutants. BIOSENSORS 2023; 13:bios13030370. [PMID: 36979582 PMCID: PMC10046542 DOI: 10.3390/bios13030370] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 05/14/2023]
Abstract
The correct detection and quantification of pollutants in water is key to regulating their presence in the environment. Biosensors offer several advantages, such as minimal sample preparation, short measurement times, high specificity and sensibility and low detection limits. The purpose of this review is to explore the different types of optical biosensors, focusing on their biological elements and their principle of operation, as well as recent applications in the detection of pollutants in water. According to our literature review, 33% of the publications used fluorescence-based biosensors, followed by surface plasmon resonance (SPR) with 28%. So far, SPR biosensors have achieved the best results in terms of detection limits. Although less common (22%), interferometers and resonators (4%) are also highly promising due to the low detection limits that can be reached using these techniques. In terms of biological recognition elements, 43% of the published works focused on antibodies due to their high affinity and stability, although they could be replaced with molecularly imprinted polymers. This review offers a unique compilation of the most recent work in the specific area of optical biosensing for water monitoring, focusing on both the biological element and the transducer used, as well as the type of target contaminant. Recent technological advances are discussed.
Collapse
Affiliation(s)
- Marcela Herrera-Domínguez
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
| | - Gesuri Morales-Luna
- Departamento de Física y Matemáticas, Universidad Iberoamericana, Prolongación Paseo de la Reforma 880, Mexico City 01219, Mexico
| | - Jürgen Mahlknecht
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
| | - Quan Cheng
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Iris Aguilar-Hernández
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
- Correspondence: (I.A.-H.); (N.O.-S.)
| | - Nancy Ornelas-Soto
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
- Correspondence: (I.A.-H.); (N.O.-S.)
| |
Collapse
|
39
|
Abstract
This paper reviews methods for detecting proteins based on molecular digitization, i.e., the isolation and detection of single protein molecules or singulated ensembles of protein molecules. The single molecule resolution of these methods has resulted in significant improvements in the sensitivity of immunoassays beyond what was possible using traditional "analog" methods: the sensitivity of some digital immunoassays approach those of methods for measuring nucleic acids, such as the polymerase chain reaction (PCR). The greater sensitivity of digital protein detection has resulted in immuno-diagnostics with high potential societal impact, e.g., the early diagnosis and therapeutic intervention of Alzheimer's Disease. In this review, we will first provide the motivation for developing digital protein detection methods given the limitations in the sensitivity of analog methods. We will describe the paradigm shift catalyzed by single molecule detection, and will describe in detail one digital approach - which we call digital bead assays (DBA) - based on the capture and labeling of proteins on beads, identifying "on" and "off" beads, and quantification using Poisson statistics. DBA based on the single molecule array (Simoa) technology have sensitivities down to attomolar concentrations, equating to ∼10 proteins in a 200 μL sample. We will describe the concept behind DBA, the different single molecule labels used, the ways of analyzing beads (imaging of arrays and flow), the binding reagents and substrates used, and integration of these technologies into fully automated and miniaturized systems. We provide an overview of emerging approaches to digital protein detection, including those based on digital detection of nucleic acids labels, single nanoparticle detection, measurements using nanopores, and methods that exploit the kinetics of single molecule binding. We outline the initial impact of digital protein detection on clinical measurements, highlighting the importance of customized assay development and translational clinical research. We highlight the use of DBA in the measurement of neurological protein biomarkers in blood, and how these higher sensitivity methods are changing the diagnosis and treatment of neurological diseases. We conclude by summarizing the status of digital protein detection and suggest how the lab-on-a-chip community might drive future innovations in this field.
Collapse
Affiliation(s)
- David C Duffy
- Quanterix Corporation, 900 Middlesex Turnpike, Billerica, MA 01821, USA.
| |
Collapse
|
40
|
Bhaskar S. Biosensing Technologies: A Focus Review on Recent Advancements in Surface Plasmon Coupled Emission. MICROMACHINES 2023; 14:mi14030574. [PMID: 36984981 PMCID: PMC10054051 DOI: 10.3390/mi14030574] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 05/14/2023]
Abstract
In the past decade, novel nano-engineering protocols have been actively synergized with fluorescence spectroscopic techniques to yield higher intensity from radiating dipoles, through the process termed plasmon-enhanced fluorescence (PEF). Consequently, the limit of detection of analytes of interest has been dramatically improvised on account of higher sensitivity rendered by augmented fluorescence signals. Recently, metallic thin films sustaining surface plasmon polaritons (SPPs) have been creatively hybridized with such PEF platforms to realize a substantial upsurge in the global collection efficiency in a judicious technology termed surface plasmon-coupled emission (SPCE). While the process parameters and conditions to realize optimum coupling efficiency between the radiating dipoles and the plasmon polaritons in SPCE framework have been extensively discussed, the utility of disruptive nano-engineering over the SPCE platform and analogous interfaces such as 'ferroplasmon-on-mirror (FPoM)' as well as an alternative technology termed 'photonic crystal-coupled emission (PCCE)' have been seldom reviewed. In light of these observations, in this focus review, the myriad nano-engineering protocols developed over the SPCE, FPoM and PCCE platform are succinctly captured, presenting an emphasis on the recently developed cryosoret nano-assembly technology for photo-plasmonic hotspot generation (first to fourth). These technologies and associated sensing platforms are expected to ameliorate the current biosensing modalities with better understanding of the biophysicochemical processes and related outcomes at advanced micro-nano-interfaces. This review is hence envisaged to present a broad overview of the latest developments in SPCE substrate design and development for interdisciplinary applications that are of relevance in environmental as well as biological heath monitoring.
Collapse
Affiliation(s)
- Seemesh Bhaskar
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
41
|
Angelini M, Manobianco E, Pellacani P, Floris F, Marabelli F. Refractive Index Dependence of Fluorescence Enhancement in a Nanostructured Plasmonic Grating. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1289. [PMID: 36770293 PMCID: PMC9920896 DOI: 10.3390/ma16031289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Plasmonic gratings are attracting huge interest in the context of realizing sensors based on surface-enhanced fluorescence. The grating features control the plasmonic modes and consequently have a strong effect on the fluorescence response. Within this framework, we focused on the use of a buffer solution flowing across the grating active surface to mimic a real measurement. The refractive index of the surrounding medium is therefore altered, with a consequent modification of the resonance conditions. The result is a shift in the spectral features of the fluorescence emission accompanied by a reshaping of the fluorescence emission in terms of spectral weight and direction.
Collapse
Affiliation(s)
| | | | - Paola Pellacani
- Plasmore S.r.l, Via Vittorio Emanuele II 4, 27100 Pavia, Italy
| | - Francesco Floris
- Department of Physics, University of Pavia, Via Bassi 6, 27100 Pavia, Italy
| | - Franco Marabelli
- Department of Physics, University of Pavia, Via Bassi 6, 27100 Pavia, Italy
| |
Collapse
|
42
|
Peng W, Lin S, Guan D, Chen Y, Wu H, Cao L, Huang Y, Li F. Cactus-Inspired Photonic Crystal Chip for Attomolar Fluorescence Multi-analysis. Anal Chem 2023; 95:2047-2053. [PMID: 36625729 DOI: 10.1021/acs.analchem.2c04729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Automation and efficiency requirements of environmental monitoring are the pursuit of spontaneous sampling and ultrasensitivity for current sensory systems or detection apparatuses. In this work, inspired by cactus hierarchical structures, we develop a cactus-inspired photonic crystal chip to integrate spontaneous droplet sampling and fluorescence enhancement for sensitive multi-analyte detection. A conical hydrophilic pattern on hydrophobic surfaces can give rise to unidirectional Laplace pressure, which drives droplet transport to the assigned photonic crystal site. The nanostructure of photonic crystals has bigger capillarity to drive the droplet wetting uniformly into the photonic crystal matrix while performing prominent fluorescence enhancement by their photonic bandgap. A low to attomolar (2.24 × 10-19 M) fluorescence limit of detection (LOD) sensitivity can be achieved by the synergy of spontaneous droplet sampling and fluorescence enhancement. Focused on eutrophic water problems and algae pollution monitoring, a femtomolar (1.83 × 10-15 M) LOD and identification of various microcystins in urban environmental water can be achieved. The suitable integration of the unidirectional droplet transport by Laplace pressure and fluorescence enhancement by photonic crystals can achieve the spontaneous sampling and signal enhancement for ultratrace detections and sample survey of environmental monitoring and disease diagnosis.
Collapse
Affiliation(s)
- Wenjing Peng
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, School of Physical Education, Jinan University, Guangzhou510632, China
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, PR China
| | - Suyu Lin
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, School of Physical Education, Jinan University, Guangzhou510632, China
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, PR China
| | - Diqin Guan
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, School of Physical Education, Jinan University, Guangzhou510632, China
| | - Yonghuan Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, School of Physical Education, Jinan University, Guangzhou510632, China
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, PR China
| | - Hao Wu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, School of Physical Education, Jinan University, Guangzhou510632, China
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, PR China
| | - Liwei Cao
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, School of Physical Education, Jinan University, Guangzhou510632, China
| | - Yu Huang
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, PR China
| | - Fengyu Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, School of Physical Education, Jinan University, Guangzhou510632, China
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, PR China
- College of Chemistry, Zhengzhou University, Zhengzhou450001, China
| |
Collapse
|
43
|
Sikder B, Nayem SH, Uddin SZ. Deep ultraviolet spontaneous emission enhanced by layer dependent black phosphorus plasmonics. OPTICS EXPRESS 2022; 30:47152-47167. [PMID: 36558651 DOI: 10.1364/oe.478735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Although graphene has been the primary material of interest recently for spontaneous emission engineering through the Purcell effect, it features isotropic and thickness-independent optical properties. In contrast, the optical properties of black Phosphorus (BP) are in-plane anisotropic; which supports plasmonic modes and are thickness-dependent, offering an additional degree of freedom for control. Here we investigate how the anisotropy and thickness of BP affect spontaneous emission from a Hydrogenic emitter. We find that the spontaneous emission enhancement rate i.e. Purcell factor (PF) depends on emitter orientation, and PF at a particular frequency and distance can be controlled by BP thickness. At lower frequencies, PF increases with increasing thickness due to infrared (IR) plasmons, which then enhances visible and UV far-field spectra, even at energies greater than 10 eV. By leveraging the thickness and distance-dependent PF, deep UV emission can be switched between 103 nm or 122 nm wavelength from a Hydrogenic emitter. Additionally, we find that doping can significantly tune the PF near BP and this alteration depends on the thickness of the BP. Our work shows that BP is a promising platform for studying strong plasmon-induced light-matter interactions tunable by varying doping levels, emitter orientation, and thickness.
Collapse
|
44
|
Angelini M, Manobianco E, Pellacani P, Floris F, Marabelli F. Plasmonic Modes and Fluorescence Enhancement Coupling Mechanism: A Case with a Nanostructured Grating. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4339. [PMID: 36500962 PMCID: PMC9736283 DOI: 10.3390/nano12234339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
The recent development and technological improvement in dealing with plasmonic metasurfaces has triggered a series of interesting applications related to sensing challenges. Fluorescence has been one of the most studied tools within such a context. With this in mind, we used some well characterized structures supporting plasmonic resonances to study their influence on the emission efficiency of a fluorophore. An extended optical analysis and a complementary investigation through finite-difference time-domain (FDTD) simulations have been combined to understand the coupling mechanism between the excitation of plasmonic modes and the fluorescence absorption and emission processes. The results provide evidence of the spectral shape dependence of fluorescence on the plasmonic field distribution together with a further relationship connected with the enhancement of its signal. It has made evident that the spectral region characterized by the largest relative enhancement closely corresponds to the strongest signatures of the plasmonic modes, as described by both the optical measurements and the FDTD findings.
Collapse
Affiliation(s)
| | | | - Paola Pellacani
- Plasmore S.r.l, Via Vittorio Emanuele II 4, 27100 Pavia, Italy
| | - Francesco Floris
- Department of Physics, University of Pavia, Via Bassi 6, 27100 Pavia, Italy
| | - Franco Marabelli
- Department of Physics, University of Pavia, Via Bassi 6, 27100 Pavia, Italy
| |
Collapse
|
45
|
Liu Y, Li B, Liu B, Zhang K. Single-Particle Optical Imaging for Ultrasensitive Bioanalysis. BIOSENSORS 2022; 12:1105. [PMID: 36551072 PMCID: PMC9775667 DOI: 10.3390/bios12121105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The quantitative detection of critical biomolecules and in particular low-abundance biomarkers in biofluids is crucial for early-stage diagnosis and management but remains a challenge largely owing to the insufficient sensitivity of existing ensemble-sensing methods. The single-particle imaging technique has emerged as an important tool to analyze ultralow-abundance biomolecules by engineering and exploiting the distinct physical and chemical property of individual luminescent particles. In this review, we focus and survey the latest advances in single-particle optical imaging (OSPI) for ultrasensitive bioanalysis pertaining to basic biological studies and clinical applications. We first introduce state-of-the-art OSPI techniques, including fluorescence, surface-enhanced Raman scattering, electrochemiluminescence, and dark-field scattering, with emphasis on the contributions of various metal and nonmetal nano-labels to the improvement of the signal-to-noise ratio. During the discussion of individual techniques, we also highlight their applications in spatial-temporal measurement of key biomarkers such as proteins, nucleic acids and extracellular vesicles with single-entity sensitivity. To that end, we discuss the current challenges and prospective trends of single-particle optical-imaging-based bioanalysis.
Collapse
Affiliation(s)
- Yujie Liu
- Shanghai Institute of Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Binxiao Li
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Kun Zhang
- Shanghai Institute of Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
46
|
Ren P, Chen X, Sun L, Lyu Q, Zhang L, Zhu J. Solvent-Responsive Invisible Photonic Patterns with High Contrast for Fluorescence Emission Regulation and Anti-Counterfeiting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50190-50198. [PMID: 36302040 DOI: 10.1021/acsami.2c15305] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Invisible photonic patterns (IPPs) are photonic materials that can display hidden patterns under external stimulation and are attractive in anti-counterfeiting devices and information storage. In this work, we report a solvent-responsive invisible photonic pattern (SRIPP) with high contrast by polymerizing two monomers of acrylamide (AAm) and poly(ethylene glycol) methacrylate (PEGMA) with different solubility parameters in different regions of poly(hydroxyethyl methacrylate) photonic gels. The two regions with different solvent responsiveness can shrink and swell in the same environment, thus causing the colors of different regions of photonic gel to shift in opposite directions from the initial state. As a result, the contrast of photonic patterns is significantly improved, increasing naked-eye visualization. In addition, by introducing fluorescent substances into the photonic gel and adjusting the photonic band gap (PBG) of photonic gels, we realize the regulation of fluorescence emission and display of fluorescence patterns by utilizing different PBGs on the SRIPP. Dynamic solvent responsiveness patterns and fluorescence patterns are integrated into a photonic gel, showing great potential in information storage and multiple-mode anti-counterfeiting applications.
Collapse
Affiliation(s)
- Peng Ren
- State Key Laboratory of Materials Processing and Die & Mould Technology and Key Laboratory of Material Chemistry for Energy Conversion & Storage of Ministry of Education (HUST), School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan430074, China
| | - Xiaodong Chen
- State Key Laboratory of Materials Processing and Die & Mould Technology and Key Laboratory of Material Chemistry for Energy Conversion & Storage of Ministry of Education (HUST), School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan430074, China
| | - Luetao Sun
- State Key Laboratory of Materials Processing and Die & Mould Technology and Key Laboratory of Material Chemistry for Energy Conversion & Storage of Ministry of Education (HUST), School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan430074, China
| | - Quanqian Lyu
- State Key Laboratory of Materials Processing and Die & Mould Technology and Key Laboratory of Material Chemistry for Energy Conversion & Storage of Ministry of Education (HUST), School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan430074, China
| | - Lianbin Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology and Key Laboratory of Material Chemistry for Energy Conversion & Storage of Ministry of Education (HUST), School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan430074, China
| | - Jintao Zhu
- State Key Laboratory of Materials Processing and Die & Mould Technology and Key Laboratory of Material Chemistry for Energy Conversion & Storage of Ministry of Education (HUST), School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan430074, China
| |
Collapse
|
47
|
Bhaskar S, Rai A, Ganesh KM, Reddy R, Reddy N, Ramamurthy SS. Sericin-Based Bio-Inspired Nano-Engineering of Heterometallic AgAu Nanocubes for Attomolar Mefenamic Acid Sensing in the Mobile Phone-Based Surface Plasmon-Coupled Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12035-12049. [PMID: 36122249 DOI: 10.1021/acs.langmuir.2c01894] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Engineering photo-plasmonic platforms with heterometallic nanohybrids are of paramount significance for realizing augmented sensitivity in fluorescence-based analytical detection. Although myriad nanomaterials with versatile functionalities have been explored in this regard in the surface plasmon-coupled emission (SPCE) interface, light harvesting using nano-antennas synthesized via sustainable bio-inspired routes still remains a high priority in current research. Our study provides a rational design for in situ fabrication of nanoparticles of silver, gold, and their plasmonic hybrids using biocompatible, non-hazardous sericin protein (obtained Bombyx mori) as the reducing and capping agent. The one-pot, user-eco-friendly technology demonstrated here utilizes UV irradiation to promote the photo-induced electron transfer mechanism, thereby yielding nanomaterials of tunable optoelectronic functionalities. The resulting homometallic and heterometallic nanohybrids with robust localized surface plasmon resonances (LSPR) showed strong light-confining attributes when interfaced with the propagating surface plasmon polaritons (SPPs) of the SPCE platform, thereby yielding tunable, highly directional, polarized, and amplified fluorescence emission. The experimentally obtained emission profiles displayed an excellent correlation with the theoretically obtained dispersion diagrams validating the spectro-plasmonic results. The abundant hotspots from AgAu nanocubes presented in excess of 1300-fold dequenched fluorescence enhancement and were utilized for cost-effective and real-time mobile phone-based sensing of biologically relevant mefenamic acid at an attomolar limit of detection. We believe that this superior biosensing performance accomplished using the frugal bioinspired nano-engineering at hybrid interfaces would open new doors for developing nanofabrication protocols with the quintessential awareness of the principles of green nanotechnology, consequently eliminating hazardous chemicals and solvents in the development of point-of-care diagnostic tools.
Collapse
Affiliation(s)
- Seemesh Bhaskar
- STAR Laboratory, Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi 515134 Anantapur, Andhra Pradesh, India
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Aayush Rai
- STAR Laboratory, Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi 515134 Anantapur, Andhra Pradesh, India
| | - Kalathur Mohan Ganesh
- STAR Laboratory, Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi 515134 Anantapur, Andhra Pradesh, India
| | - Roopa Reddy
- Center for Incubation Innovation Research and Consultancy, Jyothy Institute of Technology, Thathaguni Post, Bengaluru 560109, India
| | - Narendra Reddy
- Center for Incubation Innovation Research and Consultancy, Jyothy Institute of Technology, Thathaguni Post, Bengaluru 560109, India
| | - Sai Sathish Ramamurthy
- STAR Laboratory, Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi 515134 Anantapur, Andhra Pradesh, India
| |
Collapse
|