1
|
Wang S, Fang J, Wang M, Yu S, Xia Y, Liu G, Zhang Y, Li Y, Zhu T. Rewiring the methanol assimilation pathway in the methylotrophic yeast Pichia pastoris for high-level production of erythritol. BIORESOURCE TECHNOLOGY 2025; 427:132430. [PMID: 40118222 DOI: 10.1016/j.biortech.2025.132430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/10/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Methanol, which is non-food competing, abundant, inexpensive, and potentially renewable, serves as an ideal alternative feedstock for biomanufacturing. Although engineered methylotrophic yeasts have successfully achieved gram-scale production of C2 (acetyl-CoA), C3 (pyruvate), and C6 (fructose-6-phosphate) building blocks from methanol, the production of C4-based (i.e. erythrose-4-phosphate) chemicals remains unexplored. This study demonstrates high-level methanol-to-erythritol production by rewiring the methanol assimilation pathway of Pichia pastoris, achieved through trimming and strengthening the carbon rearrangement network (CRN). Notably, we introduced a bacterial ribulose monophosphate (RuMP) pathway in addition to the native xylulose monophosphate (XuMP) pathway of P. pastoris, creating a hybrid network that significantly improved erythritol production and reduced pentitol byproduct formation. Combining these strategies generated a high-producing recombinant strain, achieving titers up to 31.5 g/L in fermentor culture. This study validates the feasibility of engineering P. pastoris for the efficient conversion of methanol to valuable erythrose-4-phosphate (E4P)-based chemicals. The CRN rewiring strategies employed here offer a valuable reference for engineering methylotrophic cell factories for the production of a wide range of chemicals from methanol.
Collapse
Affiliation(s)
- Shuxian Wang
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayu Fang
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meiyu Wang
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Sijie Yu
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Xia
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guoxia Liu
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanping Zhang
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yin Li
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Taicheng Zhu
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
2
|
Liu D, Wang L, Gou L, Lu Y, Ma Y, Yao S, Fan TP, Deng H, Cai Y. Hybrid Methylotrophic Pathway in Serratia marcescens for Sustainable Terpenoid Biosynthesis. ACS Synth Biol 2025; 14:1766-1776. [PMID: 40207984 DOI: 10.1021/acssynbio.5c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Terpenoids are valuable chemicals used across industries. Methanol, a nonsugar-based feedstock, offers an eco-friendly approach to terpenoid production. In this study, a hybrid methylotrophic pathway was engineered in Serratia marcescens (S. marcescens) HBQA7, which is tolerant to both methanol and terpenoid compounds. The pathway utilizes bacterial methanol dehydrogenase (Mdh) and yeast dihydroxyacetone synthase (Das) to produce monoterpenes and sesquiterpenes from methanol and xylose. 13C labeling experiments identified the optimal enzyme pair: Mdh from Acinetobacter gerneri and Das from Pichia angusta, achieving 7.63% 13C enrichment of the central metabolic intermediate pyruvate. Deletion of pentose phosphate pathway genes (rpiAB) enhanced methanol utilization, achieving 22.99% 13C enrichment. Optimization of the mevalonate (MVA) biosynthetic pathway enabled the production of 5.12 g/L mevalonate in shake flask culture from methanol and xylose. Further construction of a haloarchaea-type MVA pathway enabled the production of geraniol (574.12 mg/L) and (-)-α-bisabolol (1256.41 mg/L) in shake flask cultures. This study demonstrates the first methanol conversion into valuable terpenoids in S. marcescens.
Collapse
Affiliation(s)
- Di Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Long Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Linbo Gou
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yao Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yongai Ma
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Songsong Yao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1T, U.K
- School of Health Sciences, Fuyao University of Science & Technology, Fuzhou 350300, China
| | - Huaxiang Deng
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- School of Health Sciences, Fuyao University of Science & Technology, Fuzhou 350300, China
| |
Collapse
|
3
|
Paredes-Barrada M, Mathissen A, van der Molen RA, Jiménez-Huesa PJ, Polano ME, Donati S, Abele M, Ludwig C, van Kranenburg R, Claassens NJ. Awakening of the RuMP cycle for partial methylotrophy in the thermophile Parageobacillus thermoglucosidasius. Metab Eng 2025; 91:145-157. [PMID: 40245979 DOI: 10.1016/j.ymben.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/19/2025]
Abstract
Given sustainability and scalability concerns of using sugar feedstocks for microbial bioproduction of bulk chemicals, widening the feedstock range for microbial cell factories is of high interest. Methanol is a one-carbon alcohol that stands out as an alternative feedstock for the bioproduction of chemicals, as it is electron-rich, water-miscible and can be produced from several renewable resources. Bioconversion of methanol into products under thermophilic conditions (>50 °C) could be highly advantageous for industrial biotechnology. Although progress is being made with natural, thermophilic methylotrophic microorganisms, they are not yet optimal for bioproduction and establishing alternative thermophilic methylotrophic bioproduction platforms can widen possibilities. Hence, we set out to implement methanol assimilation in the emerging thermophilic model organism Parageobacillus thermoglucosidasius. We engineered P. thermoglucosidasius to be strictly dependent for its growth on methanol assimilation via the core of the highly efficient ribulose monophosphate (RuMP) cycle, while co-assimilating ribose. Surprisingly, this did not require heterologous expression of RuMP enzymes. Instead, by laboratory evolution we awakened latent, native enzyme activities to form the core of the RuMP cycle. We obtained fast methylotrophic growth in which ∼17 % of biomass was strictly obtained from methanol. This work lays the foundation for developing a versatile thermophilic bioproduction platform based on renewable methanol.
Collapse
Affiliation(s)
- Miguel Paredes-Barrada
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Annemieke Mathissen
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Roland A van der Molen
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Pablo J Jiménez-Huesa
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Machiel Eduardo Polano
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Stefano Donati
- Novo Nordisk Foundation Center for Biosustainability, Søltofts Plads, 220, 212F, 2800, Kgs. Lyngby, Denmark
| | - Miriam Abele
- Technical University of Munich, Germany; TUM School of Life Sciences, Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Gregor-Mendel-Strasse 4, 85354, Freising, Germany
| | - Christina Ludwig
- Technical University of Munich, Germany; TUM School of Life Sciences, Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Gregor-Mendel-Strasse 4, 85354, Freising, Germany
| | - Richard van Kranenburg
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Nico J Claassens
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands.
| |
Collapse
|
4
|
Satanowski A, Marchal DG, Perret A, Petit JL, Bouzon M, Döring V, Dubois I, He H, Smith EN, Pellouin V, Petri HM, Rainaldi V, Nattermann M, Burgener S, Paczia N, Zarzycki J, Heinemann M, Bar-Even A, Erb TJ. Design and implementation of aerobic and ambient CO 2-reduction as an entry-point for enhanced carbon fixation. Nat Commun 2025; 16:3134. [PMID: 40169551 PMCID: PMC11961710 DOI: 10.1038/s41467-025-57549-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 02/25/2025] [Indexed: 04/03/2025] Open
Abstract
The direct reduction of CO2 into one-carbon molecules is key to highly efficient biological CO2-fixation. However, this strategy is currently restricted to anaerobic organisms and low redox potentials. In this study, we introduce the CORE cycle, a synthetic metabolic pathway that converts CO2 to formate at aerobic conditions and ambient CO2 levels, using only NADPH as a reductant. Combining theoretical pathway design and analysis, enzyme bioprospecting and high-throughput screening, modular assembly and adaptive laboratory evolution, we realize the CORE cycle in vivo and demonstrate that the cycle supports growth of E. coli by supplementing C1-metabolism and serine biosynthesis from CO2. We further analyze the theoretical potential of the CORE cycle as a new entry-point for carbon in photorespiration and autotrophy. Overall, our work expands the solution space for biological carbon reduction, offering a promising approach to enhance CO2 fixation processes such as photosynthesis, and opening avenues for synthetic autotrophy.
Collapse
Affiliation(s)
- Ari Satanowski
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, Germany.
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, Germany.
| | - Daniel G Marchal
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, Germany
| | - Alain Perret
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry-Courcouronnes, France
| | - Jean-Louis Petit
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry-Courcouronnes, France
| | - Madeleine Bouzon
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry-Courcouronnes, France
| | - Volker Döring
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry-Courcouronnes, France
| | - Ivan Dubois
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry-Courcouronnes, France
| | - Hai He
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, Germany
| | - Edward N Smith
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen, Netherlands
| | - Virginie Pellouin
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry-Courcouronnes, France
| | - Henrik M Petri
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, Germany
| | - Vittorio Rainaldi
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, Germany
| | - Maren Nattermann
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, Germany
| | - Simon Burgener
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, Germany
| | - Nicole Paczia
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, Germany
| | - Jan Zarzycki
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, Germany
| | - Matthias Heinemann
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen, Netherlands
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, Germany
| | - Tobias J Erb
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Straße 14, Marburg, Germany.
| |
Collapse
|
5
|
Orsi E, Schulz-Mirbach H, Cotton CAR, Satanowski A, Petri HM, Arnold SL, Grabarczyk N, Verbakel R, Jensen KS, Donati S, Paczia N, Glatter T, Küffner AM, Chotel T, Schillmüller F, De Maria A, He H, Lindner SN, Noor E, Bar-Even A, Erb TJ, Nikel PI. Computation-aided designs enable developing auxotrophic metabolic sensors for wide-range glyoxylate and glycolate detection. Nat Commun 2025; 16:2168. [PMID: 40038270 PMCID: PMC11880463 DOI: 10.1038/s41467-025-57407-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 02/18/2025] [Indexed: 03/06/2025] Open
Abstract
Auxotrophic metabolic sensors (AMS) are microbial strains modified so that biomass formation correlates with the availability of specific metabolites. These sensors are essential for bioengineering (e.g., in growth-coupled designs) but creating them is often a time-consuming and low-throughput process that can be streamlined by in silico analysis. Here, we present a systematic workflow for designing, implementing, and testing versatile AMS based on Escherichia coli. Glyoxylate, a key metabolite in (synthetic) CO2 fixation and carbon-conserving pathways, served as the test analyte. Through iterative screening of a compact metabolic model, we identify non-trivial growth-coupled designs that result in six AMS with a wide sensitivity range for glyoxylate, spanning three orders of magnitude in the detected analyte concentration. We further adapt these E. coli AMS for sensing glycolate and demonstrate their utility in both pathway engineering (testing a key metabolic module for carbon assimilation via glyoxylate) and environmental monitoring (quantifying glycolate produced by photosynthetic microalgae). Adapting this workflow to the sensing of different metabolites could facilitate the design and implementation of AMS for diverse biotechnological applications.
Collapse
Affiliation(s)
- Enrico Orsi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
| | | | | | - Ari Satanowski
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Henrik M Petri
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Susanne L Arnold
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Natalia Grabarczyk
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Rutger Verbakel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Karsten S Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Stefano Donati
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nicole Paczia
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Timo Glatter
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | - Tanguy Chotel
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | - Alberto De Maria
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Hai He
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Steffen N Lindner
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Department of Biochemistry, Charité Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität, Berlin, Germany
| | - Elad Noor
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Tobias J Erb
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
6
|
Wenk S, Rainaldi V, Schann K, He H, Bouzon M, Döring V, Lindner SN, Bar-Even A. Evolution-assisted engineering of E. coli enables growth on formic acid at ambient CO 2 via the Serine Threonine Cycle. Metab Eng 2025; 88:14-24. [PMID: 39447836 DOI: 10.1016/j.ymben.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/16/2024] [Accepted: 10/22/2024] [Indexed: 10/26/2024]
Abstract
Atmospheric CO2 poses a major threat to life on Earth by causing global warming and climate change. On the other hand, it can be considered as a resource that is scalable enough to establish a circular carbon economy. Accordingly, technologies to capture and convert CO2 into reduced one-carbon (C1) compounds (e.g. formic acid) are developing and improving fast. Driven by the idea of creating sustainable bioproduction platforms, natural and synthetic C1-utilization pathways are engineered into industrially relevant microbes. The realization of synthetic C1-assimilation cycles in living organisms is a promising but challenging endeavour. Here, we engineer the Serine Threonine Cycle, a synthetic C1-assimilation cycle in Escherichia coli to achieve growth on formic acid. Our stepwise engineering approach in tailored selection strains combined with adaptive laboratory evolution experiments enabled formatotrophic growth of the organism. Whole genome sequencing and reverse engineering allowed us to determine the key mutations linked to pathway activity. The Serine Threonine Cycle strains created in this work use formic acid as sole carbon and energy source and can grow at ambient CO2 cultivation conditions. This work sets an example for the engineering of complex C1-assimilation cycles in heterotrophic microbes.
Collapse
Affiliation(s)
- Sebastian Wenk
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| | - Vittorio Rainaldi
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany; Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Karin Schann
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Hai He
- Max Planck Institute of Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Madeleine Bouzon
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay-4, 91057, Evry-Courcouronnes, France
| | - Volker Döring
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay-4, 91057, Evry-Courcouronnes, France
| | - Steffen N Lindner
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany; Department of Biochemistry, Charité Universitätsmedizin, Virchowweg 6, 10117, Berlin, Germany
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| |
Collapse
|
7
|
Rasor BJ, Erb TJ. Cell-Free Systems to Mimic and Expand Metabolism. ACS Synth Biol 2025; 14:316-322. [PMID: 39878226 PMCID: PMC11852204 DOI: 10.1021/acssynbio.4c00729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/11/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025]
Abstract
Cell-free synthetic biology incorporates purified components and/or crude cell extracts to carry out metabolic and genetic programs. While protein synthesis has historically been the primary focus, more metabolism researchers are now turning toward cell-free systems either to prototype pathways for cellular implementation or to design new-to-nature reaction networks that incorporate environmentally relevant substrates or new energy sources. The ability to design, build, and test enzyme combinations in vitro has accelerated efforts to understand metabolic bottlenecks and engineer high-yielding pathways. However, only a small fraction of metabolic possibilities has been explored in cell-free systems, and extracts from model organisms remain the most common starting points. Expanding the scope of cell-free metabolism to include extracts from new organisms, alternative metabolic pathways, and non-natural chemistries will enhance our ability to understand and engineer bio-based chemical conversions.
Collapse
Affiliation(s)
- Blake J. Rasor
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Tobias J. Erb
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Center
for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
| |
Collapse
|
8
|
Daroch M, You D, Rasul F, Liu X, Jiang Y. C1 photochemotrophy - rethinking one-carbon metabolism in phototrophs. Trends Biotechnol 2025:S0167-7799(25)00003-4. [PMID: 39924356 DOI: 10.1016/j.tibtech.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 02/11/2025]
Abstract
Excessive CO2 emissions, caused by an imbalance between carbon oxidation and reduction, drive climate change. To address this, we propose photochemotrophic metabolism as an alternative to both canonical photosynthesis and synthetic one-carbon (C1) metabolism in heterotrophs. In photochemotrophy, naturally phototrophic microorganisms such as cyanobacteria serve as the chassis to assimilate chemically reduced and soluble C1 compounds such as formate or methanol by using carbon fixation cycles that are more efficient than the native Calvin cycle. Key potential advantages of photochemotrophy include enhanced carbon fixation efficiency, utilization of storable carbon compounds, retention of energy from the original CO2 reduction, and decoupling of carbon delivery and electron source. This proposed strategy positions photochemotrophic cyanobacteria as a promising tool for advancing the bioeconomy.
Collapse
Affiliation(s)
- Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China.
| | - Dawei You
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
| | - Faiz Rasul
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
| | - Xiangjian Liu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
| | - Ying Jiang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
| |
Collapse
|
9
|
Puiggené Ò, Favoino G, Federici F, Partipilo M, Orsi E, Alván-Vargas MVG, Hernández-Sancho JM, Dekker NK, Ørsted EC, Bozkurt EU, Grassi S, Martí-Pagés J, Volke DC, Nikel PI. Seven critical challenges in synthetic one-carbon assimilation and their potential solutions. FEMS Microbiol Rev 2025; 49:fuaf011. [PMID: 40175298 PMCID: PMC12010959 DOI: 10.1093/femsre/fuaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/04/2025] Open
Abstract
Synthetic C1 assimilation holds the promise of facilitating carbon capture while mitigating greenhouse gas emissions, yet practical implementation in microbial hosts remains relatively limited. Despite substantial progress in pathway design and prototyping, most efforts stay at the proof-of-concept stage, with frequent failures observed even under in vitro conditions. This review identifies seven major barriers constraining the deployment of synthetic C1 metabolism in microorganisms and proposes targeted strategies for overcoming these issues. A primary limitation is the low catalytic activity of carbon-fixing enzymes, particularly carboxylases, which restricts the overall pathway performance. In parallel, challenges in expressing multiple heterologous genes-especially those encoding metal-dependent or oxygen-sensitive enzymes-further hinder pathway functionality. At the systems level, synthetic C1 pathways often exhibit poor flux distribution, limited integration with the host metabolism, accumulation of toxic intermediates, and disruptions in redox and energy balance. These factors collectively reduce biomass formation and compromise product yields in biotechnological setups. Overcoming these interconnected challenges is essential for moving synthetic C1 assimilation beyond conceptual stages and enabling its application in scalable, efficient bioprocesses towards a circular bioeconomy.
Collapse
Affiliation(s)
- Òscar Puiggené
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Giusi Favoino
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Filippo Federici
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Michele Partipilo
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Enrico Orsi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Maria V G Alván-Vargas
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Javier M Hernández-Sancho
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Nienke K Dekker
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Emil C Ørsted
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Eray U Bozkurt
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Sara Grassi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Julia Martí-Pagés
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
10
|
Meng X, Hu G, Li X, Gao C, Song W, Wei W, Wu J, Liu L. A synthetic methylotroph achieves accelerated cell growth by alleviating transcription-replication conflicts. Nat Commun 2025; 16:31. [PMID: 39747058 PMCID: PMC11695965 DOI: 10.1038/s41467-024-55502-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
Microbial utilization of methanol for valorization is an effective way to advance green bio-manufacturing technology. Although synthetic methylotrophs have been developed, strategies to enhance their cell growth rate and internal regulatory mechanism remain underexplored. In this study, we design a synthetic methanol assimilation (SMA) pathway containing only six enzymes linked to central carbon metabolism, which does not require energy and carbon emissions. Through rational design and laboratory evolution, E. coli harboring with the SMA pathway is converted into a synthetic methylotroph. By self-adjusting the expression of TOPAI (topoisomerase I inhibitor) to alleviate transcriptional-replication conflicts (TRCs), the doubling time of methylotrophic E. coli is reduced to 4.5 h, approaching that of natural methylotrophs. This work has the potential to overcome the growth limitation of C1-assimilating microbes and advance the development of a circular carbon economy.
Collapse
Affiliation(s)
- Xin Meng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wux, China
| | - Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Xiaomin Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wux, China
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wux, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Wanqing Wei
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wux, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Liming Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wux, China.
| |
Collapse
|
11
|
Park W, Cha S, Hahn JS. Advancements in Biological Conversion of C1 Feedstocks: Sustainable Bioproduction and Environmental Solutions. ACS Synth Biol 2024; 13:3788-3798. [PMID: 39610332 DOI: 10.1021/acssynbio.4c00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
The use of one-carbon (C1) feedstocks, including carbon dioxide (CO2), carbon monoxide (CO), formate (HCO2H), methanol (CH3OH), and methane (CH4), presents a significant opportunity for sustainable bioproduction and environmental conservation. This Perspective explores the development of biological methods for converting C1 feedstocks into valuable products, emphasizing major progress from engineering native C1 assimilation pathways to the creation of synthetic autotrophs and methylotrophs that utilize these carbon sources. Additionally, we discuss hybrid approaches that merge biological and electrochemical systems, particularly for the conversion of CO2. This Perspective underscores the importance of C1 bioconversion in promoting sustainable biotechnological strategies for a low-carbon future.
Collapse
Affiliation(s)
- Wooyoung Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seungwoo Cha
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ji-Sook Hahn
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
12
|
Orsi E, Hernández-Sancho JM, Remeijer MS, Kruis AJ, Volke DC, Claassens NJ, Paul CE, Bruggeman FJ, Weusthuis RA, Nikel PI. Harnessing noncanonical redox cofactors to advance synthetic assimilation of one-carbon feedstocks. Curr Opin Biotechnol 2024; 90:103195. [PMID: 39288659 DOI: 10.1016/j.copbio.2024.103195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024]
Abstract
One-carbon (C1) feedstocks, such as carbon monoxide (CO), formate (HCO2H), methanol (CH3OH), and methane (CH4), can be obtained either through stepwise electrochemical reduction of CO2 with renewable electricity or via processing of organic side streams. These C1 substrates are increasingly investigated in biotechnology as they can contribute to a circular carbon economy. In recent years, noncanonical redox cofactors (NCRCs) emerged as a tool to generate synthetic electron circuits in cell factories to maximize electron transfer within a pathway of interest. Here, we argue that expanding the use of NCRCs in the context of C1-driven bioprocesses will boost product yields and facilitate challenging redox transactions that are typically out of the scope of natural cofactors due to inherent thermodynamic constraints.
Collapse
Affiliation(s)
- Enrico Orsi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Javier M Hernández-Sancho
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Maaike S Remeijer
- Amsterdam Institute for Life and Environment and Institute of Molecular and Life Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | | | - Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nico J Claassens
- Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Caroline E Paul
- Department of Biotechnology, Delft University of Technology, the Netherlands
| | - Frank J Bruggeman
- Amsterdam Institute for Life and Environment and Institute of Molecular and Life Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | - Ruud A Weusthuis
- Bioprocess Engineering, Wageningen University and Research, Wageningen, the Netherlands
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
13
|
Nieh LY, Chen FYH, Jung HW, Su KY, Tsuei CY, Lin CT, Lee YQ, Liao JC. Evolutionary engineering of methylotrophic E. coli enables fast growth on methanol. Nat Commun 2024; 15:8840. [PMID: 39397031 PMCID: PMC11471845 DOI: 10.1038/s41467-024-53206-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024] Open
Abstract
As methanol can be derived from either CO2 or methane, methanol economy can play an important role in combating climate change. In this scenario, rapid utilization of methanol by an industrial microorganism is the first and crucial step for efficient utilization of the C1 feedstock chemical. Here, we report the development of a methylotrophic E. coli strain with a doubling time of 3.5 hours under optimal conditions, comparable or faster than native model methylotrophs Methylorubrum extorquens AM1 (Td~4hr) and Bacillus methanolicus at 37°C (Td~5hr). To accomplish this, we develop a bacterial artificial chromosome (BAC) with dynamic copy number variation (CNV) to facilitate overcoming the formaldehyde-induced DNA-protein cross-linking (DPC) problem in the evolution process. We track the genome variations of 75 cultures along the evolution process by next-generation sequencing, and identified the features of the fast-growing strain. After stabilization, the final strain (SM8) grows to 20 g/L of cell mass within 77 hrs in a bioreactor. This study illustrates the potential of dynamic CNV as an evolution tool and synthetic methylotrophs as a platform for sustainable biotechnological applications.
Collapse
Affiliation(s)
- Liang-Yu Nieh
- Institute of Biological Chemistry, Academia Sinica, Taipei City, Taiwan, ROC
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan, ROC
| | - Frederic Y-H Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei City, Taiwan, ROC
| | - Hsin-Wei Jung
- Institute of Biological Chemistry, Academia Sinica, Taipei City, Taiwan, ROC
| | - Kuan-Yu Su
- Institute of Biological Chemistry, Academia Sinica, Taipei City, Taiwan, ROC
| | - Chao-Yin Tsuei
- Institute of Biological Chemistry, Academia Sinica, Taipei City, Taiwan, ROC
| | - Chun-Ting Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei City, Taiwan, ROC
| | - Yue-Qi Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei City, Taiwan, ROC
| | - James C Liao
- Institute of Biological Chemistry, Academia Sinica, Taipei City, Taiwan, ROC.
| |
Collapse
|
14
|
Kwon MS, Lee J, Kim HU. A machine learning framework for extracting information from biological pathway images in the literature. Metab Eng 2024; 86:1-11. [PMID: 39233197 DOI: 10.1016/j.ymben.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/03/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
There have been significant advances in literature mining, allowing for the extraction of target information from the literature. However, biological literature often includes biological pathway images that are difficult to extract in an easily editable format. To address this challenge, this study aims to develop a machine learning framework called the "Extraction of Biological Pathway Information" (EBPI). The framework automates the search for relevant publications, extracts biological pathway information from images within the literature, including genes, enzymes, and metabolites, and generates the output in a tabular format. For this, this framework determines the direction of biochemical reactions, and detects and classifies texts within biological pathway images. Performance of EBPI was evaluated by comparing the extracted pathway information with manually curated pathway maps. EBPI will be useful for extracting biological pathway information from the literature in a high-throughput manner, and can be used for pathway studies, including metabolic engineering.
Collapse
Affiliation(s)
- Mun Su Kwon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Junkyu Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyun Uk Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; Graduate School of Engineering Biology and BioProcess Engineering Research Center, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
15
|
Zhang C, Zhou DF, Wang MY, Song YZ, Zhang C, Zhang MM, Sun J, Yao L, Mo XH, Ma ZX, Yuan XJ, Shao Y, Wang HR, Dong SH, Bao K, Lu SH, Sadilek M, Kalyuzhnaya MG, Xing XH, Yang S. Phosphoribosylpyrophosphate synthetase as a metabolic valve advances Methylobacterium/Methylorubrum phyllosphere colonization and plant growth. Nat Commun 2024; 15:5969. [PMID: 39013920 PMCID: PMC11252147 DOI: 10.1038/s41467-024-50342-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 07/06/2024] [Indexed: 07/18/2024] Open
Abstract
The proficiency of phyllosphere microbiomes in efficiently utilizing plant-provided nutrients is pivotal for their successful colonization of plants. The methylotrophic capabilities of Methylobacterium/Methylorubrum play a crucial role in this process. However, the precise mechanisms facilitating efficient colonization remain elusive. In the present study, we investigate the significance of methanol assimilation in shaping the success of mutualistic relationships between methylotrophs and plants. A set of strains originating from Methylorubrum extorquens AM1 are subjected to evolutionary pressures to thrive under low methanol conditions. A mutation in the phosphoribosylpyrophosphate synthetase gene is identified, which converts it into a metabolic valve. This valve redirects limited C1-carbon resources towards the synthesis of biomass by up-regulating a non-essential phosphoketolase pathway. These newly acquired bacterial traits demonstrate superior colonization capabilities, even at low abundance, leading to increased growth of inoculated plants. This function is prevalent in Methylobacterium/Methylorubrum strains. In summary, our findings offer insights that could guide the selection of Methylobacterium/Methylorubrum strains for advantageous agricultural applications.
Collapse
Affiliation(s)
- Cong Zhang
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Di-Fei Zhou
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Meng-Ying Wang
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Ya-Zhen Song
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Chong Zhang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, PR China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, PR China
| | - Ming-Ming Zhang
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Jing Sun
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Lu Yao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, PR China
| | - Xu-Hua Mo
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Zeng-Xin Ma
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Xiao-Jie Yuan
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Yi Shao
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Hao-Ran Wang
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Si-Han Dong
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Kai Bao
- School of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Shu-Huan Lu
- CABIO Biotech (Wuhan) Co. Ltd., Wuhan, Hubei, PR China
| | - Martin Sadilek
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | | | - Xin-Hui Xing
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, PR China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, PR China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, PR China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, PR China
| | - Song Yang
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China.
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China.
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China.
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, PR China.
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, PR China.
| |
Collapse
|
16
|
Schann K, Bakker J, Boinot M, Kuschel P, He H, Nattermann M, Paczia N, Erb T, Bar‐Even A, Wenk S. Design, construction and optimization of formaldehyde growth biosensors with broad application in biotechnology. Microb Biotechnol 2024; 17:e14527. [PMID: 39031508 PMCID: PMC11259041 DOI: 10.1111/1751-7915.14527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 07/02/2024] [Indexed: 07/22/2024] Open
Abstract
Formaldehyde is a key metabolite in natural and synthetic one-carbon metabolism. To facilitate the engineering of formaldehyde-producing enzymes, the development of sensitive, user-friendly, and cost-effective detection methods is required. In this study, we engineered Escherichia coli to serve as a cellular biosensor capable of detecting a broad range of formaldehyde concentrations. Using both natural and promiscuous formaldehyde assimilation enzymes, we designed three distinct E. coli growth biosensor strains that depend on formaldehyde for cell growth. These strains were engineered to be auxotrophic for one or several essential metabolites that could be produced through formaldehyde assimilation. The respective assimilating enzyme was expressed from the genome to compensate the auxotrophy in the presence of formaldehyde. We first predicted the formaldehyde dependency of the biosensors by flux balance analysis and then analysed it experimentally. Subsequent to strain engineering, we enhanced the formaldehyde sensitivity of two biosensors either through adaptive laboratory evolution or modifications at metabolic branch points. The final set of biosensors demonstrated the ability to detect formaldehyde concentrations ranging approximately from 30 μM to 13 mM. We demonstrated the application of the biosensors by assaying the in vivo activity of different methanol dehydrogenases in the most sensitive strain. The fully genomic nature of the biosensors allows them to be deployed as "plug-and-play" devices for high-throughput screenings of extensive enzyme libraries. The formaldehyde growth biosensors developed in this study hold significant promise for advancing the field of enzyme engineering, thereby supporting the establishment of a sustainable one-carbon bioeconomy.
Collapse
Affiliation(s)
- Karin Schann
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Jenny Bakker
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Maximilian Boinot
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Pauline Kuschel
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Hai He
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
| | | | - Nicole Paczia
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
| | - Tobias Erb
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
| | - Arren Bar‐Even
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Sebastian Wenk
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| |
Collapse
|
17
|
Jones EM, Marken JP, Silver PA. Synthetic microbiology in sustainability applications. Nat Rev Microbiol 2024; 22:345-359. [PMID: 38253793 DOI: 10.1038/s41579-023-01007-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/24/2024]
Abstract
Microorganisms are a promising means to address many societal sustainability challenges owing to their ability to thrive in diverse environments and interface with the microscale chemical world via diverse metabolic capacities. Synthetic biology can engineer microorganisms by rewiring their regulatory networks or introducing new functionalities, enhancing their utility for target applications. In this Review, we provide a broad, high-level overview of various research efforts addressing sustainability challenges through synthetic biology, emphasizing foundational microbiological research questions that can accelerate the development of these efforts. We introduce an organizational framework that categorizes these efforts along three domains - factory, farm and field - that are defined by the extent to which the engineered microorganisms interface with the natural external environment. Different application areas within the same domain share many fundamental challenges, highlighting productive opportunities for cross-disciplinary collaborations between researchers working in historically disparate fields.
Collapse
Affiliation(s)
- Ethan M Jones
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - John P Marken
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Resnick Sustainability Institute, California Institute of Technology, Pasadena, CA, USA
| | - Pamela A Silver
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
18
|
Yu Y, Shi Y, Kwon YW, Choi Y, Kim Y, Na JG, Huh J, Lee J. A rationally designed miniature of soluble methane monooxygenase enables rapid and high-yield methanol production in Escherichia coli. Nat Commun 2024; 15:4399. [PMID: 38782897 PMCID: PMC11116448 DOI: 10.1038/s41467-024-48671-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Soluble methane monooxygenase (sMMO) oxidizes a wide range of carbon feedstocks (C1 to C8) directly using intracellular NADH and is a useful means in developing green routes for industrial manufacturing of chemicals. However, the high-throughput biosynthesis of active recombinant sMMO and the ensuing catalytic oxidation have so far been unsuccessful due to the structural and functional complexity of sMMO, comprised of three functionally complementary components, which remains a major challenge for its industrial applications. Here we develop a catalytically active miniature of sMMO (mini-sMMO), with a turnover frequency of 0.32 s-1, through an optimal reassembly of minimal and modified components of sMMO on catalytically inert and stable apoferritin scaffold. We characterise the molecular characteristics in detail through in silico and experimental analyses and verifications. Notably, in-situ methanol production in a high-cell-density culture of mini-sMMO-expressing recombinant Escherichia coli resulted in higher yield and productivity (~ 3.0 g/L and 0.11 g/L/h, respectively) compared to traditional methanotrophic production.
Collapse
Affiliation(s)
- Yeonhwa Yu
- Department of Chemical and Biological Engineering, Korea University, Anam-Dong 5-1, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Yongfan Shi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Young Wan Kwon
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Anam-Dong 5-1, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Yoobin Choi
- Department of Chemical and Biological Engineering, Korea University, Anam-Dong 5-1, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Yusik Kim
- Department of Chemical and Biological Engineering, Korea University, Anam-Dong 5-1, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Jeong-Geol Na
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - June Huh
- Department of Chemical and Biological Engineering, Korea University, Anam-Dong 5-1, Seongbuk-Gu, Seoul, 02841, Republic of Korea.
| | - Jeewon Lee
- Department of Chemical and Biological Engineering, Korea University, Anam-Dong 5-1, Seongbuk-Gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
19
|
Reiter MA, Bradley T, Büchel LA, Keller P, Hegedis E, Gassler T, Vorholt JA. A synthetic methylotrophic Escherichia coli as a chassis for bioproduction from methanol. Nat Catal 2024; 7:560-573. [PMID: 38828428 PMCID: PMC11136667 DOI: 10.1038/s41929-024-01137-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 02/29/2024] [Indexed: 06/05/2024]
Abstract
Methanol synthesized from captured greenhouse gases is an emerging renewable feedstock with great potential for bioproduction. Recent research has raised the prospect of methanol bioconversion to value-added products using synthetic methylotrophic Escherichia coli, as its metabolism can be rewired to enable growth solely on the reduced one-carbon compound. Here we describe the generation of an E. coli strain that grows on methanol at a doubling time of 4.3 h-comparable to many natural methylotrophs. To establish bioproduction from methanol using this synthetic chassis, we demonstrate biosynthesis from four metabolic nodes from which numerous bioproducts can be derived: lactic acid from pyruvate, polyhydroxybutyrate from acetyl coenzyme A, itaconic acid from the tricarboxylic acid cycle and p-aminobenzoic acid from the chorismate pathway. In a step towards carbon-negative chemicals and valorizing greenhouse gases, our work brings synthetic methylotrophy in E. coli within reach of industrial applications.
Collapse
Affiliation(s)
- Michael A. Reiter
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Timothy Bradley
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Lars A. Büchel
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Philipp Keller
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Emese Hegedis
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Thomas Gassler
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Julia A. Vorholt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Wang K, Liu X, Hu KKY, Haritos VS. Artificial Methylotrophic Cells via Bottom-Up Integration of a Methanol-Utilizing Pathway. ACS Synth Biol 2024; 13:888-900. [PMID: 38359048 DOI: 10.1021/acssynbio.3c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Methanol has gained substantial attention as a substrate for biomanufacturing due to plentiful stocks and nonreliance on agriculture, and it can be sourced renewably. However, due to inevitable complexities in cell metabolism, microbial methanol conversion requires further improvement before industrial applicability. Here, we present a novel, parallel strategy using artificial cells to provide a simplified and well-defined environment for methanol utilization as artificial methylotrophic cells. We compartmentalized a methanol-utilizing enzyme cascade, including NAD-dependent methanol dehydrogenase (Mdh) and pyruvate-dependent aldolase (KHB aldolase), in cell-sized lipid vesicles using the inverted emulsion method. The reduction of cofactor NAD+ to NADH was used to quantify the conversion of methanol within individual artificial methylotrophic cells via flow cytometry. Compartmentalization of the reaction cascade in liposomes led to a 4-fold higher NADH production compared with bulk enzyme experiments, and the incorporation of KHB aldolase facilitated another 2-fold increase above the Mdh-only reaction. This methanol-utilizing platform can serve as an alternative route to speed up methanol biological conversion, eventually shifting sugar-based bioproduction toward a sustainable methanol bioeconomy.
Collapse
Affiliation(s)
- Ke Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton 3800, Australia
| | - Xueqing Liu
- Department of Chemical and Biological Engineering, Monash University, Clayton 3800, Australia
| | - Kevin K Y Hu
- Department of Chemical and Biological Engineering, Monash University, Clayton 3800, Australia
| | - Victoria S Haritos
- Department of Chemical and Biological Engineering, Monash University, Clayton 3800, Australia
| |
Collapse
|
21
|
Schulz-Mirbach H, Dronsella B, He H, Erb TJ. Creating new-to-nature carbon fixation: A guide. Metab Eng 2024; 82:12-28. [PMID: 38160747 DOI: 10.1016/j.ymben.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Synthetic biology aims at designing new biological functions from first principles. These new designs allow to expand the natural solution space and overcome the limitations of naturally evolved systems. One example is synthetic CO2-fixation pathways that promise to provide more efficient ways for the capture and conversion of CO2 than natural pathways, such as the Calvin Benson Bassham (CBB) cycle of photosynthesis. In this review, we provide a practical guideline for the design and realization of such new-to-nature CO2-fixation pathways. We introduce the concept of "synthetic CO2-fixation", and give a general overview over the enzymology and topology of synthetic pathways, before we derive general principles for their design from their eight naturally evolved analogs. We provide a comprehensive summary of synthetic carbon-assimilation pathways and derive a step-by-step, practical guide from the theoretical design to their practical implementation, before ending with an outlook on new developments in the field.
Collapse
Affiliation(s)
- Helena Schulz-Mirbach
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Beau Dronsella
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany; Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Hai He
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Tobias J Erb
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany; Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Str. 16, D-35043, Marburg, Germany.
| |
Collapse
|
22
|
Ben Nissan R, Milshtein E, Pahl V, de Pins B, Jona G, Levi D, Yung H, Nir N, Ezra D, Gleizer S, Link H, Noor E, Milo R. Autotrophic growth of Escherichia coli is achieved by a small number of genetic changes. eLife 2024; 12:RP88793. [PMID: 38381041 PMCID: PMC10942610 DOI: 10.7554/elife.88793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
Synthetic autotrophy is a promising avenue to sustainable bioproduction from CO2. Here, we use iterative laboratory evolution to generate several distinct autotrophic strains. Utilising this genetic diversity, we identify that just three mutations are sufficient for Escherichia coli to grow autotrophically, when introduced alongside non-native energy (formate dehydrogenase) and carbon-fixing (RuBisCO, phosphoribulokinase, carbonic anhydrase) modules. The mutated genes are involved in glycolysis (pgi), central-carbon regulation (crp), and RNA transcription (rpoB). The pgi mutation reduces the enzyme's activity, thereby stabilising the carbon-fixing cycle by capping a major branching flux. For the other two mutations, we observe down-regulation of several metabolic pathways and increased expression of native genes associated with the carbon-fixing module (rpiB) and the energy module (fdoGH), as well as an increased ratio of NADH/NAD+ - the cycle's electron-donor. This study demonstrates the malleability of metabolism and its capacity to switch trophic modes using only a small number of genetic changes and could facilitate transforming other heterotrophic organisms into autotrophs.
Collapse
Affiliation(s)
- Roee Ben Nissan
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Eliya Milshtein
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Vanessa Pahl
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen, University of TübingenTübingenGermany
| | - Benoit de Pins
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Ghil Jona
- Department of Life Sciences Core Facilities, Weizmann Institute of ScienceRehovotIsrael
| | - Dikla Levi
- Department of Life Sciences Core Facilities, Weizmann Institute of ScienceRehovotIsrael
| | - Hadas Yung
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Noga Nir
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Dolev Ezra
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Shmuel Gleizer
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Hannes Link
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen, University of TübingenTübingenGermany
| | - Elad Noor
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Ron Milo
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
23
|
Wang Z, Dai Y, Azi F, Wang Z, Xu W, Wang D, Dong M, Xia X. Engineering Escherichia coli for cost-effective production of medium-chain fatty acids from soy whey using an optimized galactose-based autoinduction system. BIORESOURCE TECHNOLOGY 2024; 393:130145. [PMID: 38042430 DOI: 10.1016/j.biortech.2023.130145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
Medium-chain fatty acids (MCFAs) are essential chemical feedstocks. Microbial production of MCFAs offers an attractive alternative to conventional methods, but the costly media and external inducers limit its practical application. To address this issue and make MCFA production more cost-effective, an E.coli platform was developed using soy whey as a medium and galactose as an autoinducer. We first designed an efficient, stringent, homogeneous, and robust galactose-based autoinduction system for the expression of pathway enzymes by rationally engineering the promoter of the galactose-proton symporter (GalP). Subsequently, the intracellular acetyl-CoA availability and NADH regeneration were enhanced to improve the reversal of the β-oxidation cycle. The resulting strain yielded 8.20 g/L and 16.42 g/L MCFA in pH-controlled batch fermentation and fed-batch fermentation with glucose added using soy whey as medium, respectively. This study provided a cost-effective and promising platform for MCFA production, as well as future strain development for other value-added chemicals production.
Collapse
Affiliation(s)
- Zhe Wang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiqiang Dai
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fidelis Azi
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Weimin Xu
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
| | - Daoying Wang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiudong Xia
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
24
|
Chen W, Zuo J, Sang K, Qian G, Zhang J, Chen D, Zhou X, Yuan W, Duan X. Leveraging the Proximity and Distribution of Cu-Cs Sites for Direct Conversion of Methanol to Esters/Aldehydes. Angew Chem Int Ed Engl 2024; 63:e202314288. [PMID: 37988201 DOI: 10.1002/anie.202314288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
Methanol serves as a versatile building-block for various commodity chemicals, and the development of industrially promising strategies for its conversion remains the ultimate goal in methanol chemistry. In this study, we design a dual Cu-Cs catalytic system that enables a one-step direct conversion of methanol and methyl acetate/ethanol into high value-added esters/aldehydes, with customized chain length and saturation by leveraging the proximity and distribution of Cu-Cs sites. Cu-Cs at a millimeter-scale intimacy triggers methanol dehydrogenation and condensation, involving proton transfer, aldol formation, and aldol condensation, to obtain unsaturated esters and aldehydes with selectivities of 76.3 % and 31.1 %, respectively. Cu-Cs at a micrometer-scale intimacy significantly promotes mass transfer of intermediates across catalyst interfaces and their subsequent hydrogenation to saturated esters and aldehydes with selectivities of 67.6 % and 93.1 %, respectively. Conversely, Cu-Cs at a nanometer-scale intimacy alters reaction pathway with a similar energy barrier for the rate-determining step, but blocks the acidic-basic sites and diverts the reaction to byproducts. More importantly, an unprecedented quadruple tandem catalytic production of methyl methacrylate (MMA) is achieved by further tailoring Cu and Cs distribution across the reaction bed in the configuration of Cu-Cs||Cs, outperforming the existing industrial processes and saving at least 15 % of production costs.
Collapse
Affiliation(s)
- Wenyao Chen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ji Zuo
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Keng Sang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Gang Qian
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jing Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - De Chen
- Department of Chemical Engineering, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Weikang Yuan
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xuezhi Duan
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
25
|
Yang X, Zhang Y, Zhao G. Artificial carbon assimilation: From unnatural reactions and pathways to synthetic autotrophic systems. Biotechnol Adv 2024; 70:108294. [PMID: 38013126 DOI: 10.1016/j.biotechadv.2023.108294] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/26/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Synthetic biology is being increasingly used to establish novel carbon assimilation pathways and artificial autotrophic strains that can be used in low-carbon biomanufacturing. Currently, artificial pathway design has made significant progress from advocacy to practice within a relatively short span of just over ten years. However, there is still huge scope for exploration of pathway diversity, operational efficiency, and host suitability. The accelerated research process will bring greater opportunities and challenges. In this paper, we provide a comprehensive summary and interpretation of representative one-carbon assimilation pathway designs and artificial autotrophic strain construction work. In addition, we propose some feasible design solutions based on existing research results and patterns to promote the development and application of artificial autotrophy.
Collapse
Affiliation(s)
- Xue Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; Haihe Laboratory of Synthetic Biology, Tianjin 300308, China
| | - Yanfei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.
| | - Guoping Zhao
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
26
|
Wu T, Gómez-Coronado PA, Kubis A, Lindner SN, Marlière P, Erb TJ, Bar-Even A, He H. Engineering a synthetic energy-efficient formaldehyde assimilation cycle in Escherichia coli. Nat Commun 2023; 14:8490. [PMID: 38123535 PMCID: PMC10733421 DOI: 10.1038/s41467-023-44247-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
One-carbon (C1) substrates, such as methanol or formate, are attractive feedstocks for circular bioeconomy. These substrates are typically converted into formaldehyde, serving as the entry point into metabolism. Here, we design an erythrulose monophosphate (EuMP) cycle for formaldehyde assimilation, leveraging a promiscuous dihydroxyacetone phosphate dependent aldolase as key enzyme. In silico modeling reveals that the cycle is highly energy-efficient, holding the potential for high bioproduct yields. Dissecting the EuMP into four modules, we use a stepwise strategy to demonstrate in vivo feasibility of the modules in E. coli sensor strains with sarcosine as formaldehyde source. From adaptive laboratory evolution for module integration, we identify key mutations enabling the accommodation of the EuMP reactions with endogenous metabolism. Overall, our study demonstrates the proof-of-concept for a highly efficient, new-to-nature formaldehyde assimilation pathway, opening a way for the development of a methylotrophic platform for a C1-fueled bioeconomy in the future.
Collapse
Affiliation(s)
- Tong Wu
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Biochemistry, Charitéplatz 1, 10117, Berlin, Germany
| | - Paul A Gómez-Coronado
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Armin Kubis
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Steffen N Lindner
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Biochemistry, Charitéplatz 1, 10117, Berlin, Germany
| | - Philippe Marlière
- TESSSI, The European Syndicate of Synthetic Scientists and Industrialists, 81 rue Réaumur, 75002, Paris, France
| | - Tobias J Erb
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Hai He
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany.
| |
Collapse
|
27
|
Wagner N, Wen L, Frazão CJR, Walther T. Next-generation feedstocks methanol and ethylene glycol and their potential in industrial biotechnology. Biotechnol Adv 2023; 69:108276. [PMID: 37918546 DOI: 10.1016/j.biotechadv.2023.108276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/13/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023]
Abstract
Microbial fermentation processes are expected to play an important role in reducing dependence on fossil-based raw materials for the production of everyday chemicals. In order to meet the growing demand for biotechnological products in the future, alternative carbon sources that do not compete with human nutrition must be exploited. The chemical conversion of the industrially emitted greenhouse gas CO2 into microbially utilizable platform chemicals such as methanol represents a sustainable strategy for the utilization of an abundant carbon source and has attracted enormous scientific interest in recent years. A relatively new approach is the microbial synthesis of products from the C2-compound ethylene glycol, which can also be synthesized from CO2 and non-edible biomass and, in addition, can be recovered from plastic waste. Here we summarize the main chemical routes for the synthesis of methanol and ethylene glycol from sustainable resources and give an overview of recent metabolic engineering work for establishing natural and synthetic microbial assimilation pathways. The different metabolic routes for C1 and C2 alcohol-dependent bioconversions were compared in terms of their theoretical maximum yields and their oxygen requirements for a wide range of value-added products. Assessment of the process engineering challenges for methanol and ethylene glycol-based fermentations underscores the theoretical advantages of new synthetic metabolic routes and advocates greater consideration of ethylene glycol, a C2 substrate that has received comparatively little attention to date.
Collapse
Affiliation(s)
- Nils Wagner
- TU Dresden, Institute of Natural Materials Technology, Bergstraße 120, 01062 Dresden, Germany
| | - Linxuan Wen
- TU Dresden, Institute of Natural Materials Technology, Bergstraße 120, 01062 Dresden, Germany
| | - Cláudio J R Frazão
- TU Dresden, Institute of Natural Materials Technology, Bergstraße 120, 01062 Dresden, Germany
| | - Thomas Walther
- TU Dresden, Institute of Natural Materials Technology, Bergstraße 120, 01062 Dresden, Germany.
| |
Collapse
|
28
|
Mitic BM, Troyer C, Lutz L, Baumschabl M, Hann S, Mattanovich D. The oxygen-tolerant reductive glycine pathway assimilates methanol, formate and CO 2 in the yeast Komagataella phaffii. Nat Commun 2023; 14:7754. [PMID: 38012236 PMCID: PMC10682033 DOI: 10.1038/s41467-023-43610-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023] Open
Abstract
The current climatic change is predominantly driven by excessive anthropogenic CO2 emissions. As industrial bioprocesses primarily depend on food-competing organic feedstocks or fossil raw materials, CO2 co-assimilation or the use of CO2-derived methanol or formate as carbon sources are considered pathbreaking contributions to solving this global problem. The number of industrially-relevant microorganisms that can use these two carbon sources is limited, and even fewer can concurrently co-assimilate CO2. Here, we search for alternative native methanol and formate assimilation pathways that co-assimilate CO2 in the industrially-relevant methylotrophic yeast Komagataella phaffii (Pichia pastoris). Using 13C-tracer-based metabolomic techniques and metabolic engineering approaches, we discover and confirm a growth supporting pathway based on native enzymes that can perform all three assimilations: namely, the oxygen-tolerant reductive glycine pathway. This finding paves the way towards metabolic engineering of formate and CO2 utilisation to produce proteins, biomass, or chemicals in yeast.
Collapse
Affiliation(s)
- Bernd M Mitic
- University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Muthgasse 18, 1190, Vienna, Austria
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Analytical Chemistry, Muthgasse 18, 1190, Vienna, Austria
| | - Christina Troyer
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Analytical Chemistry, Muthgasse 18, 1190, Vienna, Austria
| | - Lisa Lutz
- University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Muthgasse 18, 1190, Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190, Vienna, Austria
| | - Michael Baumschabl
- University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Muthgasse 18, 1190, Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190, Vienna, Austria
| | - Stephan Hann
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Analytical Chemistry, Muthgasse 18, 1190, Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190, Vienna, Austria
| | - Diethard Mattanovich
- University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Muthgasse 18, 1190, Vienna, Austria.
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190, Vienna, Austria.
| |
Collapse
|
29
|
Bachleitner S, Ata Ö, Mattanovich D. The potential of CO 2-based production cycles in biotechnology to fight the climate crisis. Nat Commun 2023; 14:6978. [PMID: 37914683 PMCID: PMC10620168 DOI: 10.1038/s41467-023-42790-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/21/2023] [Indexed: 11/03/2023] Open
Abstract
Rising CO2 emissions have pushed scientists to develop new technologies for a more sustainable bio-based economy. Microbial conversion of CO2 and CO2-derived carbon substrates into valuable compounds can contribute to carbon neutrality and sustainability. Here, we discuss the potential of C1 carbon sources as raw materials to produce energy, materials, and food and feed using microbial cell factories. We provide an overview of potential microbes, natural and synthetic C1 utilization pathways, and compare their metabolic driving forces. Finally, we sketch a future in which C1 substrates replace traditional feedstocks and we evaluate the costs associated with such an endeavor.
Collapse
Affiliation(s)
- Simone Bachleitner
- University of Natural Resources and Life Sciences, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Vienna, 1190, Austria
| | - Özge Ata
- University of Natural Resources and Life Sciences, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Vienna, 1190, Austria
- Austrian Centre of Industrial Biotechnology, Vienna, 1190, Austria
| | - Diethard Mattanovich
- University of Natural Resources and Life Sciences, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Vienna, 1190, Austria.
- Austrian Centre of Industrial Biotechnology, Vienna, 1190, Austria.
| |
Collapse
|
30
|
Orsi E, Nikel PI, Nielsen LK, Donati S. Synergistic investigation of natural and synthetic C1-trophic microorganisms to foster a circular carbon economy. Nat Commun 2023; 14:6673. [PMID: 37865689 PMCID: PMC10590403 DOI: 10.1038/s41467-023-42166-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/02/2023] [Indexed: 10/23/2023] Open
Abstract
A true circular carbon economy must upgrade waste greenhouse gases. C1-based biomanufacturing is an attractive solution, in which one carbon (C1) molecules (e.g. CO2, formate, methanol, etc.) are converted by microbial cell factories into value-added goods (i.e. food, feed, and chemicals). To render C1-based biomanufacturing cost-competitive, we must adapt microbial metabolism to perform chemical conversions at high rates and yields. To this end, the biotechnology community has undertaken two (seemingly opposing) paths: optimizing natural C1-trophic microorganisms versus engineering synthetic C1-assimilation de novo in model microorganisms. Here, we pose how these approaches can instead create synergies for strengthening the competitiveness of C1-based biomanufacturing as a whole.
Collapse
Affiliation(s)
- Enrico Orsi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Pablo Ivan Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Lars Keld Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, 4072, Brisbane, QLD, Australia
| | - Stefano Donati
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
31
|
Krüsemann JL, Rainaldi V, Cotton CA, Claassens NJ, Lindner SN. The cofactor challenge in synthetic methylotrophy: bioengineering and industrial applications. Curr Opin Biotechnol 2023; 82:102953. [PMID: 37320962 DOI: 10.1016/j.copbio.2023.102953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/03/2023] [Accepted: 05/14/2023] [Indexed: 06/17/2023]
Abstract
Methanol is a promising feedstock for industrial bioproduction: it can be produced renewably and has high solubility and limited microbial toxicity. One of the key challenges for its bio-industrial application is the first enzymatic oxidation step to formaldehyde. This reaction is catalysed by methanol dehydrogenases (MDH) that can use NAD+, O2 or pyrroloquinoline quinone (PQQ) as an electron acceptor. While NAD-dependent MDH are simple to express and have the highest energetic efficiency, they exhibit mediocre kinetics and poor thermodynamics at ambient temperatures. O2-dependent methanol oxidases require high oxygen concentrations, do not conserve energy and thus produce excessive heat as well as toxic H2O2. PQQ-dependent MDH provide a good compromise between energy efficiency and good kinetics that support fast growth rates without any drawbacks for process engineering. Therefore, we argue that this enzyme class represents a promising solution for industry and outline engineering strategies for the implementation of these complex systems in heterologous hosts.
Collapse
Affiliation(s)
- Jan L Krüsemann
- Charité - Universitätsmedizin Berlin, Department of Biochemistry, Charitéplatz 1, 10117 Berlin, Germany; Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany; Max Planck Institute for Terrestrial Microbiology, Department of Biochemistry and Synthetic Metabolism, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Vittorio Rainaldi
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | | | - Nico J Claassens
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Steffen N Lindner
- Charité - Universitätsmedizin Berlin, Department of Biochemistry, Charitéplatz 1, 10117 Berlin, Germany; Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany.
| |
Collapse
|
32
|
Nattermann M, Wenk S, Pfister P, He H, Lee SH, Szymanski W, Guntermann N, Zhu F, Nickel L, Wallner C, Zarzycki J, Paczia N, Gaißert N, Franciò G, Leitner W, Gonzalez R, Erb TJ. Engineering a new-to-nature cascade for phosphate-dependent formate to formaldehyde conversion in vitro and in vivo. Nat Commun 2023; 14:2682. [PMID: 37160875 PMCID: PMC10170137 DOI: 10.1038/s41467-023-38072-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 04/14/2023] [Indexed: 05/11/2023] Open
Abstract
Formate can be envisioned at the core of a carbon-neutral bioeconomy, where it is produced from CO2 by (electro-)chemical means and converted into value-added products by enzymatic cascades or engineered microbes. A key step in expanding synthetic formate assimilation is its thermodynamically challenging reduction to formaldehyde. Here, we develop a two-enzyme route in which formate is activated to formyl phosphate and subsequently reduced to formaldehyde. Exploiting the promiscuity of acetate kinase and N-acetyl-γ-glutamyl phosphate reductase, we demonstrate this phosphate (Pi)-based route in vitro and in vivo. We further engineer a formyl phosphate reductase variant with improved formyl phosphate conversion in vivo by suppressing cross-talk with native metabolism and interface the Pi route with a recently developed formaldehyde assimilation pathway to enable C2 compound formation from formate as the sole carbon source in Escherichia coli. The Pi route therefore offers a potent tool in expanding the landscape of synthetic formate assimilation.
Collapse
Affiliation(s)
- Maren Nattermann
- Department of Biochemistry & Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Sebastian Wenk
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Pascal Pfister
- Department of Biochemistry & Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Hai He
- Department of Biochemistry & Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Seung Hwan Lee
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, FL, USA
| | - Witold Szymanski
- Institute of Translational Proteomics, Philipps University, Marburg, Germany
| | - Nils Guntermann
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany
| | - Fayin Zhu
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, FL, USA
| | | | | | - Jan Zarzycki
- Department of Biochemistry & Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Nicole Paczia
- Core Facility for Metabolomics and Small Molecule Mass Spectrometry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | - Giancarlo Franciò
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany
| | - Walter Leitner
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - Ramon Gonzalez
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, FL, USA
| | - Tobias J Erb
- Department of Biochemistry & Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany.
| |
Collapse
|
33
|
Ba F, Ji X, Huang S, Zhang Y, Liu WQ, Liu Y, Ling S, Li J. Engineering Escherichia coli to Utilize Erythritol as Sole Carbon Source. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207008. [PMID: 36938858 DOI: 10.1002/advs.202207008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/16/2023] [Indexed: 05/18/2023]
Abstract
Erythritol, one of the natural sugar alcohols, is widely used as a sugar substitute sweetener in food industries. Humans themselves are not able to catabolize erythritol and their gut microbes lack related catabolic pathways either to metabolize erythritol. Here, Escherichia coli (E. coli) is engineered to utilize erythritol as sole carbon source aiming for defined applications. First, the erythritol metabolic gene cluster is isolated and the erythritol-binding transcriptional repressor and its DNA-binding site are experimentally characterized. Transcriptome analysis suggests that carbohydrate metabolism-related genes in the engineered E. coli are overall upregulated. In particular, the enzymes of transaldolase (talA and talB) and transketolase (tktA and tktB) are notably overexpressed (e.g., the expression of tktB is improved by nearly sixfold). By overexpression of the four genes, cell growth can be increased as high as three times compared to the cell cultivation without overexpression. Finally, engineered E. coli strains can be used as a living detector to distinguish erythritol-containing soda soft drinks and can grow in the simulated intestinal fluid supplemented with erythritol. This work is expected to inspire the engineering of more hosts to respond and utilize erythritol for broad applications in metabolic engineering, synthetic biology, and biomedical engineering.
Collapse
Affiliation(s)
- Fang Ba
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Xiangyang Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Shuhui Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Yufei Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Wan-Qiu Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Yifan Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| |
Collapse
|
34
|
Bruinsma L, Wenk S, Claassens NJ, Martins Dos Santos VAP. Paving the way for synthetic C1 - Metabolism in Pseudomonas putida through the reductive glycine pathway. Metab Eng 2023; 76:215-224. [PMID: 36804222 DOI: 10.1016/j.ymben.2023.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
One-carbon (C1) compounds such as methanol, formate, and CO2 are alternative, sustainable microbial feedstocks for the biobased production of chemicals and fuels. In this study, we engineered the carbon metabolism of the industrially important bacterium Pseudomonas putida to modularly assimilate these three substrates through the reductive glycine pathway. First, we demonstrated the functionality of the C1-assimilation module by coupling the growth of auxotrophic strains to formate assimilation. Next, we extended the module in the auxotrophic strains from formate to methanol-dependent growth using both NAD and PQQ-dependent methanol dehydrogenases. Finally, we demonstrated, for the first time, engineered CO2-dependent formation of part of the biomass through CO2 reduction to formate by the native formate dehydrogenase, which required short-term evolution to rebalance the cellular NADH/NAD + ratio. This research paves the way to further engineer P. putida towards full growth on formate, methanol, and CO2 as sole feedstocks, thereby substantially expanding its potential as a sustainable and versatile cell factory.
Collapse
Affiliation(s)
- Lyon Bruinsma
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708, WE, the Netherlands
| | - Sebastian Wenk
- Systems and Synthetic Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Nico J Claassens
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, 6708, WE, the Netherlands.
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708, WE, the Netherlands; LifeGlimmer GmbH, Berlin, 12163, Germany; Bioprocess Engineering, Wageningen University & Research, Wageningen, 6708, WE, the Netherlands.
| |
Collapse
|
35
|
Wagner N, Bade F, Straube E, Rabe K, Frazão CJR, Walther T. In vivo implementation of a synthetic metabolic pathway for the carbon-conserving conversion of glycolaldehyde to acetyl-CoA. Front Bioeng Biotechnol 2023; 11:1125544. [PMID: 36845174 PMCID: PMC9947464 DOI: 10.3389/fbioe.2023.1125544] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Ethylene glycol (EG) derived from plastic waste or CO2 can serve as a substrate for microbial production of value-added chemicals. Assimilation of EG proceeds though the characteristic intermediate glycolaldehyde (GA). However, natural metabolic pathways for GA assimilation have low carbon efficiency when producing the metabolic precursor acetyl-CoA. In alternative, the reaction sequence catalyzed by EG dehydrogenase, d-arabinose 5-phosphate aldolase, d-arabinose 5-phosphate isomerase, d-ribulose 5-phosphate 3-epimerase (Rpe), d-xylulose 5-phosphate phosphoketolase, and phosphate acetyltransferase may enable the conversion of EG into acetyl-CoA without carbon loss. We investigated the metabolic requirements for in vivo function of this pathway in Escherichia coli by (over)expressing constituting enzymes in different combinations. Using 13C-tracer experiments, we first examined the conversion of EG to acetate via the synthetic reaction sequence and showed that, in addition to heterologous phosphoketolase, overexpression of all native enzymes except Rpe was required for the pathway to function. Since acetyl-CoA could not be reliably quantified by our LC/MS-method, the distribution of isotopologues in mevalonate, a stable metabolite that is exclusively derived from this intermediate, was used to probe the contribution of the synthetic pathway to biosynthesis of acetyl-CoA. We detected strong incorporation of 13C carbon derived from labeled GA in all intermediates of the synthetic pathway. In presence of unlabeled co-substrate glycerol, 12.4% of the mevalonate (and therefore acetyl-CoA) was derived from GA. The contribution of the synthetic pathway to acetyl-CoA production was further increased to 16.1% by the additional expression of the native phosphate acyltransferase enzyme. Finally, we demonstrated that conversion of EG to mevalonate was feasible albeit at currently extremely small yields.
Collapse
Affiliation(s)
- Nils Wagner
- TU Dresden, Institute of Natural Materials Technology, Dresden, Germany
| | - Frederik Bade
- TU Dresden, Institute of Natural Materials Technology, Dresden, Germany
| | - Elly Straube
- TU Dresden, Institute of Natural Materials Technology, Dresden, Germany
| | - Kenny Rabe
- TU Dresden, Institute of Natural Materials Technology, Dresden, Germany
| | | | | |
Collapse
|
36
|
Ricci L, Seifert A, Bernacchi S, Fino D, Pirri CF, Re A. Leveraging substrate flexibility and product selectivity of acetogens in two-stage systems for chemical production. Microb Biotechnol 2023; 16:218-237. [PMID: 36464980 PMCID: PMC9871533 DOI: 10.1111/1751-7915.14172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 12/09/2022] Open
Abstract
Carbon dioxide (CO2 ) stands out as sustainable feedstock for developing a circular carbon economy whose energy supply could be obtained by boosting the production of clean hydrogen from renewable electricity. H2 -dependent CO2 gas fermentation using acetogenic microorganisms offers a viable solution of increasingly demonstrated value. While gas fermentation advances to achieve commercial process scalability, which is currently limited to a few products such as acetate and ethanol, it is worth taking the best of the current state-of-the-art technology by its integration within innovative bioconversion schemes. This review presents multiple scenarios where gas fermentation by acetogens integrate into double-stage biotechnological production processes that use CO2 as sole carbon feedstock and H2 as energy carrier for products' synthesis. In the integration schemes here reviewed, the first stage can be biotic or abiotic while the second stage is biotic. When the first stage is biotic, acetogens act as a biological platform to generate chemical intermediates such as acetate, formate and ethanol that become substrates for a second fermentation stage. This approach holds the potential to enhance process titre/rate/yield metrics and products' spectrum. Alternatively, when the first stage is abiotic, the integrated two-stage scheme foresees, in the first stage, the catalytic transformation of CO2 into C1 products that, in the second stage, can be metabolized by acetogens. This latter scheme leverages the metabolic flexibility of acetogens in efficient utilization of the products of CO2 abiotic hydrogenation, namely formate and methanol, to synthesize multicarbon compounds but also to act as flexible catalysts for hydrogen storage or production.
Collapse
Affiliation(s)
- Luca Ricci
- Department of Applied Science and TechnologyPolitecnico di TorinoTurinItaly
- Centre for Sustainable Future TechnologiesFondazione Istituto Italiano di TecnologiaTurinItaly
| | | | | | - Debora Fino
- Department of Applied Science and TechnologyPolitecnico di TorinoTurinItaly
- Centre for Sustainable Future TechnologiesFondazione Istituto Italiano di TecnologiaTurinItaly
| | - Candido Fabrizio Pirri
- Department of Applied Science and TechnologyPolitecnico di TorinoTurinItaly
- Centre for Sustainable Future TechnologiesFondazione Istituto Italiano di TecnologiaTurinItaly
| | - Angela Re
- Department of Applied Science and TechnologyPolitecnico di TorinoTurinItaly
- Centre for Sustainable Future TechnologiesFondazione Istituto Italiano di TecnologiaTurinItaly
| |
Collapse
|
37
|
Sun Q, Liu D, Chen Z. Engineering and adaptive laboratory evolution of Escherichia coli for improving methanol utilization based on a hybrid methanol assimilation pathway. Front Bioeng Biotechnol 2023; 10:1089639. [PMID: 36704306 PMCID: PMC9871363 DOI: 10.3389/fbioe.2022.1089639] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Engineering Escherichia coli for efficient methanol assimilation is important for developing methanol as an emerging next-generation feedstock for industrial biotechnology. While recent attempts to engineer E. coli as a synthetic methylotroph have achieved great success, most of these works are based on the engineering of the prokaryotic ribulose monophosphate (RuMP) pathway. In this study, we introduced a hybrid methanol assimilation pathway which consists of prokaryotic methanol dehydrogenase (Mdh) and eukaryotic xylulose monophosphate (XuMP) pathway enzyme dihydroxyacetone synthase (Das) into E. coli and reprogrammed E. coli metabolism to improve methanol assimilation by combining rational design and adaptive laboratory evolution. By deletion and down-regulation of key genes in the TCA cycle and glycolysis to increase the flux toward the cyclic XuMP pathway, methanol consumption and the assimilation of methanol to biomass were significantly improved. Further improvements in methanol utilization and cell growth were achieved via adaptive laboratory evolution and a final evolved strain can grow on methanol with only 0.1 g/L yeast extract as co-substrate. 13C-methanol labeling assay demonstrated significantly higher labeling in intracellular metabolites in glycolysis, TCA cycle, pentose phosphate pathway, and amino acids. Transcriptomics analysis showed that the expression of fba, dhak, and part of pentose phosphate pathway genes were highly up-regulated, suggesting that the rational engineering strategies and adaptive evolution are effective for activating the cyclic XuMP pathway. This study demonstrated the feasibility and provided new strategies to construct synthetic methylotrophy of E. coli based on the hybrid methanol assimilation pathway with Mdh and Das.
Collapse
Affiliation(s)
- Qing Sun
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Dehua Liu
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing, China,Tsinghua Innovation Center in Dongguan, Dongguan, China,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| | - Zhen Chen
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing, China,Tsinghua Innovation Center in Dongguan, Dongguan, China,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China,*Correspondence: Zhen Chen,
| |
Collapse
|
38
|
Recent progress in the engineering of C1-utilizing microbes. Curr Opin Biotechnol 2022; 78:102836. [PMID: 36334444 DOI: 10.1016/j.copbio.2022.102836] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
The global climate crisis has led to the transition toward the sustainable production of chemicals and fuels with a low carbon footprint. Microbial utilization of one-carbon (C1) substrates, such as carbon dioxide, carbon monoxide, methane, formate, and methanol, may be a promising replacement for the current fossil fuel-based industry. However, natural C1-utilizing microbes are currently unsuitable for industrial applications because of their slow growth and low carbon conversion efficiency, which results in low productivity and yield. Here, we review the recent achievements in engineering C1-utilizing microbes with improved carbon assimilation efficiency and describe the development of synthetic microorganisms by introducing natural C1 assimilation pathways in non-C1-utilizing microbes. Finally, we outline the future directions for realizing the industrial potential of C1-utilizing microbes.
Collapse
|
39
|
Singh HB, Kang MK, Kwon M, Kim SW. Developing methylotrophic microbial platforms for a methanol-based bioindustry. Front Bioeng Biotechnol 2022; 10:1050740. [PMID: 36507257 PMCID: PMC9727194 DOI: 10.3389/fbioe.2022.1050740] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022] Open
Abstract
Methanol, a relatively cheap and renewable single-carbon feedstock, has gained considerable attention as a substrate for the bio-production of commodity chemicals. Conventionally produced from syngas, along with emerging possibilities of generation from methane and CO2, this C1 substrate can serve as a pool for sequestering greenhouse gases while supporting a sustainable bio-economy. Methylotrophic organisms, with the inherent ability to use methanol as the sole carbon and energy source, are competent candidates as platform organisms. Accordingly, methanol bioconversion pathways have been an attractive target for biotechnological and bioengineering interventions in developing microbial cell factories. This review summarizes the recent advances in methanol-based production of various bulk and value-added chemicals exploiting the native and synthetic methylotrophic organisms. Finally, the current challenges and prospects of streamlining these methylotrophic platforms are discussed.
Collapse
Affiliation(s)
- Hawaibam Birla Singh
- Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju, South Korea
| | - Min-Kyoung Kang
- Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju, South Korea
| | - Moonhyuk Kwon
- Division of Life Science, ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju, South Korea,*Correspondence: Moonhyuk Kwon, ; Seon-Won Kim,
| | - Seon-Won Kim
- Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju, South Korea,*Correspondence: Moonhyuk Kwon, ; Seon-Won Kim,
| |
Collapse
|
40
|
Efficient fatty acid synthesis from methanol in methylotrophic yeast. Synth Syst Biotechnol 2022; 7:1183-1184. [PMID: 36262715 PMCID: PMC9574570 DOI: 10.1016/j.synbio.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 11/24/2022] Open
Abstract
Methanol is an attractive C1 feedstock with high abundance and low cost in bio-manufacturing. However, the metabolic construction of cell factories to utilize methanol for chemicals production remains a challenge due to the toxic intermediates and complicated metabolic pathways. The group of Zhou rescued methylotrophic yeast from cell death and achieved high-level production of free fatty acids from methanol through a combination of adaptive laboratory evolution, rational metabolic engineering and multi-omics analysis.
Collapse
|