1
|
Madsen NH, Nielsen BS, Skandorff I, Rodriguez-Pardo C, Hadrup SR, Ormhøj M, Holmstrøm K, Larsen J, Gad M. Novel approaches to 3D cancer heterospheroid culture and assay development for immunotherapy screening. Exp Cell Res 2025; 449:114604. [PMID: 40379236 DOI: 10.1016/j.yexcr.2025.114604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/14/2025] [Accepted: 05/13/2025] [Indexed: 05/19/2025]
Abstract
Advanced 3D heterospheroids, composed of cancer, fibroblast, and immune cells, serve as more physiologically relevant models for anticancer drug screening and immunotherapy research compared to traditional 2D cultures. This study aimed to optimize the culturing, dissociation, and analysis of heterospheroids, addressing limitations that restrict their broader use in immunotherapy research. Our study revealed significant effects of Human Plasma-Like culture medium on cell viability, necrotic core formation, and the spatial organization of cancer and fibroblast cells within heterospheroids compared to DMEM and RPMI media. In HT-29 heterospheroids, cell viability decreased from 75 % in DMEM to 20 % in HPLM, which was accompanied by increased necrotic core formation and elevated PD-L1 expression. TrypLE™ effectively dissociated heterospheroids but compromised immune cell viability and surface marker detection. In comparison, Accutase™ significantly reduced cell yield, while collagenase I preserved immune cell markers but affected those on cancer cells. Furthermore, we developed a luciferase-based assay to measure immune-mediated cancer cell killing in heterospheroids, excluding signals from non-target cells, such as dying fibroblasts and immune cells, without requiring spheroid lysis or dissociation. Our findings highlight the importance of tailoring experimental conditions to reflect specific tumor characteristics, thus enhancing the utility of heterospheroids in drug discovery and immunotherapy research.
Collapse
Affiliation(s)
- Natasha Helleberg Madsen
- Department of Cellular Engineering & Disease Modeling, Bioneer A/S, Kogle Allé 2, 2970, Hørsholm, Denmark.
| | - Boye Schnack Nielsen
- Department of Cellular Engineering & Disease Modeling, Bioneer A/S, Kogle Allé 2, 2970, Hørsholm, Denmark
| | - Isabella Skandorff
- Department of Cellular Engineering & Disease Modeling, Bioneer A/S, Kogle Allé 2, 2970, Hørsholm, Denmark
| | | | - Sine Reker Hadrup
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Maria Ormhøj
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Kim Holmstrøm
- Department of Cellular Engineering & Disease Modeling, Bioneer A/S, Kogle Allé 2, 2970, Hørsholm, Denmark
| | - Jesper Larsen
- Department of Cellular Engineering & Disease Modeling, Bioneer A/S, Kogle Allé 2, 2970, Hørsholm, Denmark
| | - Monika Gad
- Department of Cellular Engineering & Disease Modeling, Bioneer A/S, Kogle Allé 2, 2970, Hørsholm, Denmark
| |
Collapse
|
2
|
Boeker V, Kalluri R. Fibroblast dynamics during mammary oncogenesis: senescence, Wnt9a and beyond. EMBO J 2025:10.1038/s44318-025-00446-9. [PMID: 40312497 DOI: 10.1038/s44318-025-00446-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Accepted: 04/16/2025] [Indexed: 05/03/2025] Open
Affiliation(s)
- Viktoria Boeker
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Raghu Kalluri
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Bioengineering, Rice University, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
3
|
Hermawan A, Pamungkas Putri DD, Fatimah N, Rhamandana Putra IM, Lestari IA. α-chaconine increases the sensitivity of HER2+ breast cancer cells to trastuzumab by targeting acetylcholinesterase. Comput Biol Med 2025; 188:109809. [PMID: 39955879 DOI: 10.1016/j.compbiomed.2025.109809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 01/20/2025] [Accepted: 02/04/2025] [Indexed: 02/18/2025]
Abstract
BACKGROUND Trastuzumab (TRZ) is the first drug used to treat HER2-positive breast cancer, but some patients become resistant to it because of the PI3K/Akt pathway and other pathways that counteract it. TRZ, in conjunction with other therapeutic agents, is needed to overcome resistance. α-chaconine (CHA), a glycoalkaloid from the Solanaceae family, can suppress lung cancer cell proliferation in vitro by inhibiting PI3K/Akt signaling, one of the key regulatory pathways in TRZ resistance. METHODS This study used integrative bioinformatics analysis to screen for possible targets of CHA that can help fight breast cancer that is resistant to TRZ. In vitro experiments were used to confirm the target genes using TRZ-resistant HCC-1954 (HCC-TRZ) cells for cytotoxicity, gene expression studies, and enzymatic assay. RESULTS We identified several potential target genes of CHA, including EGFR, VEGF, ACHE, and ADORA. We generated HCC1954-TRZ cells, which showed an increase in cell viability after sequential treatment of the parental HCC1954 cells with TRZ. Further experiments showed the high sensitivity of HCC-TRZ toward TRZ when TRZ was combined with CHA. The combination of CHA and TRZ significantly increased the mRNA expression levels of various genes compared to a single TRZ treatment. Additionally, CHA alone and combined with CHA-TRZ inhibited acetylcholinesterase (AChE) activity in HCC-TRZ cells. CONCLUSION CHA increased the sensitivity of HCC-TRZ cells to TRZ by targeting several potential target genes and AChE activity. This study highlights the potential of using CHA in combination with TRZ to overcome TRZ resistance in HER2+ breast cancer cells.
Collapse
Affiliation(s)
- Adam Hermawan
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia; Laboratory of Advanced Pharmaceutical Sciences, APSLC Building, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia.
| | - Dyaningtyas Dewi Pamungkas Putri
- Laboratory of Pharmacology and Toxicology, Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia; Laboratory of Advanced Pharmaceutical Sciences, APSLC Building, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
| | - Nurul Fatimah
- Laboratory of Advanced Pharmaceutical Sciences, APSLC Building, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
| | - I Made Rhamandana Putra
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
| | - Intan Ayu Lestari
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
| |
Collapse
|
4
|
Li F, Gao C, Huang Y, Qiao Y, Xu H, Liu S, Wu H. Unraveling the breast cancer tumor microenvironment: crucial factors influencing natural killer cell function and therapeutic strategies. Int J Biol Sci 2025; 21:2606-2628. [PMID: 40303301 PMCID: PMC12035885 DOI: 10.7150/ijbs.108803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/04/2025] [Indexed: 05/02/2025] Open
Abstract
Natural killer (NK) cells have emerged as a novel and effective treatment for breast cancer. Nevertheless, the breast cancer tumor microenvironment (TME) manifests multiple immunosuppressive mechanisms, impeding the proper execution of NK cell functions. This review summarizes recent research on the influence of the TME on the functionality of NK cells in breast cancer. It delves into the effects of the internal environment of the TME on NK cells and elucidates the roles of diverse stromal components, immune cells, and signaling molecules in regulating NK cell activity within the TME. It also summarizes therapeutic strategies based on small-molecule inhibitors, antibody therapies, and natural products, as well as the progress of research in preclinical and clinical trials. By enhancing our understanding of the immunosuppressive TME and formulating strategies to counteract its effects, we could fully harness the therapeutic promise of NK cells in breast cancer treatment.
Collapse
Affiliation(s)
- Feifei Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Integrated Traditional Chinese and Western Medicine Breast Department, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunfang Gao
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Huang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Yu Qiao
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Hongxiao Xu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sheng Liu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Integrated Traditional Chinese and Western Medicine Breast Department, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huangan Wu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| |
Collapse
|
5
|
Easwaran VB, Pai KMS, Pai KSR. Mesenchymal Stem Cell-Derived Exosomes in Cancer Resistance Against Therapeutics. Cancers (Basel) 2025; 17:831. [PMID: 40075675 PMCID: PMC11898417 DOI: 10.3390/cancers17050831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/10/2025] [Accepted: 02/22/2025] [Indexed: 03/14/2025] Open
Abstract
Mesenchymal stem cells (MSCs) are specialized cells that can differentiate into various types of cells. MSCs can be utilized to treat cancer. However, a MSC is considered a double-edged sword, because it can promote tumor progression and support cancer cell growth. Likewise, MSC-derived exosomes (MSC-Exos) carry various intracellular materials and transfer them to other cells. MSC-Exos could also cause tumor progression, including brain cancer, breast cancer, hepatic cancer, lung cancer, and colorectal cancer, and develop resistance against therapies, mainly chemotherapy, radiotherapy, and immunotherapy. An MSC-Exo promotes tumor development and causes drug resistance in various cancer types. The mechanisms involved in cancer drug resistance vary depending on the cancer cell heterogeneity and complexity. In this article, we have explained the various biomarkers and mechanisms involved in the tumor and resistance development through MSC-Exos in different cancer types.
Collapse
Affiliation(s)
- Vignesh Balaji Easwaran
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India;
| | - K Maya S Pai
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India;
| | - K. Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India;
| |
Collapse
|
6
|
Garate-Soraluze E, Serrano-Mendioroz I, Fernández-Rubio L, De Andrea CE, Barrio-Alonso C, Herrero CDP, Teijeira A, Luri-Rey C, Claus C, Tanos T, Klein C, Umana P, Rullan A, Simón JA, Collantes M, Sánchez-Mateos P, Melero I, Rodriguez-Ruiz ME. 4-1BB agonist targeted to fibroblast activation protein α synergizes with radiotherapy to treat murine breast tumor models. J Immunother Cancer 2025; 13:e009852. [PMID: 39933836 PMCID: PMC11815443 DOI: 10.1136/jitc-2024-009852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/01/2024] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Ionizing radiation (IR) is a double-edged sword for immunotherapy as it may have both immunosuppressive and immunostimulatory effects. The biological effects of IR on the tumor microenvironment (TME) are a key factor for this balance. Fibroblast activation protein (FAP) is expressed on the surface of cancer-associated fibroblasts (CAF) in many cancer types and its abundance is associated with the poor immune response to immune-checkpoint-blockade in patients. We hypothesized that IR increases FAP expression in CAFs, therefore the combination of IR with targeted immunomodulators such as an agonistic anti-FAP-4-1BBL fusion protein could enhance the immune-mediated antitumoral effects of these treatments. METHODS The murine transplantable TS/A tumor-cell-line co-engrafted with CAFs was used to investigate increases in FAP expression in tumors following irradiation using immunohistochemistry, real-time polymerase chain reaction (RT-PCR) and multiplex tissue immunofluorescence. One lesion of bilateral tumor-bearing mice was only locally irradiated or combined with weekly injections of the bispecific muFAP-4-1BBL fusion protein (a mouse surrogate for RG7826). Tumor sizes were followed over time and TME was assessed by flow cytometry. Selective monoclonal antibody (mAb)-mediated depletions of immune cell populations, neutralizing interferon alpha/beta receptor 1 (IFNAR-I) IFNAR and interferon (IFN)-γ mAbs and gene-modified mice (4-1BB-/-) were used to delineate the immune cell subsets and mechanisms required for efficacy. 67Ga labeled muFAP-4-1BBL tracked by SPECT-CT was used to study biodistribution. In human colorectal carcinoma samples, the inducibility of FAP expression following radiotherapy was explored by multiplex immunofluorescence. RESULTS Irradiation of TS/A+CAF tumors in mice showed an increase in FAP levels after local irradiation. A suboptimal radiotherapy regimen in combination with muFAP-4-1BBL attained primary tumor control and measurable abscopal effects. Immune TME landscape analyses showed post-treatment increased infiltration of activated immune cells associated with the combined radioimmunotherapy treatment. Efficacy depended on CD8+ T cells, type I IFN, IFN-γ and ability to express 4-1BB. Biodistribution studies of muFAP-4-1BBL indicated enriched tumor targeting to irradiated tumors. Human colorectal cancer samples pre and post irradiation showed enhanced FAP expression after radiotherapy. CONCLUSION Increased FAP expression in the TME as a result of radiotherapy can be exploited to target agonist 4-1BB immunotherapy to malignant tumor lesions using an FAP-4-1BBL antibody fusion protein.
Collapse
Affiliation(s)
- Eneko Garate-Soraluze
- Department of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Irantzu Serrano-Mendioroz
- Department of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Leticia Fernández-Rubio
- Department of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Carlos E De Andrea
- Department of Pathology, Cancer Center Clinica Universidad de Navarra, Pamplona, Spain
| | | | | | - Alvaro Teijeira
- Department of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Carlos Luri-Rey
- Department of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Christina Claus
- Roche Innovation Centre Zurich, Roche Pharma Research and Early Development (pRED), Schlieren, Switzerland
| | - Tamara Tanos
- Roche Innovation Centre Zurich, Roche Pharma Research and Early Development (pRED), Schlieren, Switzerland
| | - Christian Klein
- Roche Innovation Centre Zurich, Roche Pharma Research and Early Development (pRED), Schlieren, Switzerland
| | - Pablo Umana
- Roche Innovation Centre Zurich, Roche Pharma Research and Early Development (pRED), Schlieren, Switzerland
| | - Antonio Rullan
- Institute of Immunology and Transplantation, University College London, London, UK
| | - Jon Ander Simón
- Department of Nuclear Medicine, Clinica Universidad de Navarra, Pamplona, Spain
| | - María Collantes
- Department of Nuclear Medicine, Clinica Universidad de Navarra, Pamplona, Spain
| | | | - Ignacio Melero
- Department of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Departments of Immunology-Immunotherapy and Radiation Oncology, Cancer Center Clinica Universidad de Navarra, Pamplona, Navarra, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Institute for Health Research (IDISNA), Pamplona, Spain
| | - Maria E Rodriguez-Ruiz
- Department of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Departments of Immunology-Immunotherapy and Radiation Oncology, Cancer Center Clinica Universidad de Navarra, Pamplona, Navarra, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Institute for Health Research (IDISNA), Pamplona, Spain
| |
Collapse
|
7
|
Jiang Y, Qiu J, Ye N, Xu Y. Current status of cytokine-induced killer cells and combination regimens in breast cancer. Front Immunol 2025; 16:1476644. [PMID: 39981243 PMCID: PMC11839775 DOI: 10.3389/fimmu.2025.1476644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/23/2025] [Indexed: 02/22/2025] Open
Abstract
Breast cancer remains a significant health challenge worldwide, with substantial efforts aimed at understanding its pathogenesis, biological characteristics, and clinical triggers. Recently, immunotherapy such as the cytokine-induced killer cells combined with other drug therapies has offered new hope for patients with advanced breast cancer. However, the specific pathogenesis of combination regimens involving cytokine-induced killer cells remains elusive. Besides, the combination of immunotherapy with cytokine-induced killer cells might represent a novel breakthrough. This review outlines the current status of cytokine-induced killer cell therapies and their combination strategies, especially the combination of chemotherapy with molecularly targeted treatments, for the management of breast cancer.
Collapse
Affiliation(s)
- Yuancong Jiang
- Department of Breast and Thyroid Surgery, Shaoxing People’s Hospital, Shaoxing, China
| | - Jie Qiu
- Department of Breast and Thyroid Surgery, Shaoxing People’s Hospital, Shaoxing, China
| | - Nanwei Ye
- Department of Medical Research Center, Shaoxing People’s Hospital, Shaoxing, China
| | - Yingchun Xu
- Department of Breast and Thyroid Surgery, Shaoxing People’s Hospital, Shaoxing, China
| |
Collapse
|
8
|
Perucca A, Llonín AG, Benach OM, Hallopeau C, Rivas EI, Linares J, Garrido M, Sallent-Aragay A, Golde T, Colombelli J, Dalaka E, Linacero J, Cazorla M, Galan T, Pastor Viel J, Badenas X, Recort-Bascuas A, Comerma L, Fernandez-Nogueira P, Rovira A, Roca-Cusachs P, Albanell J, Trepat X, Calon A, Labernadie A. Micro Immune Response On-chip (MIRO) models the tumour-stroma interface for immunotherapy testing. Nat Commun 2025; 16:1279. [PMID: 39900918 PMCID: PMC11790944 DOI: 10.1038/s41467-025-56275-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 01/13/2025] [Indexed: 02/05/2025] Open
Abstract
Immunotherapies are beneficial for a considerable proportion of cancer patients, but ineffective in others. In vitro modelling of the complex interactions between cancer cells and their microenvironment could provide a path to understanding immune therapy sensitivity and resistance. Here we develop MIRO, a fully humanised in vitro platform to model the spatial organisation of the tumour/stroma interface and its interaction with immune cells. We find that stromal barriers are associated with immune exclusion and protect cancer cells from antibody-dependent cellular cytotoxicity, elicited by targeted therapy. We demonstrate that IL2-driven immunomodulation increases immune cell velocity and spreading to overcome stromal immunosuppression and restores anti-cancer response in refractory tumours. Collectively, our study underscores the translational value of MIRO as a powerful tool for exploring how the spatial organisation of the tumour microenvironment shapes the immune landscape and influences the responses to immunomodulating therapies.
Collapse
Affiliation(s)
- Alice Perucca
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Andrea Gómez Llonín
- Cancer Research Program, Hospital del Mar Research Institute (HMRIB), Barcelona, Spain
- Biomaterials, Drug Delivery & Nanotechnology Unit, Centre for Biomedical & Biomaterials Research (CBBR), University of Mauritius, Réduit, Mauritius
| | - Oriol Mañé Benach
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Clement Hallopeau
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Elisa I Rivas
- Cancer Research Program, Hospital del Mar Research Institute (HMRIB), Barcelona, Spain
| | - Jenniffer Linares
- Cancer Research Program, Hospital del Mar Research Institute (HMRIB), Barcelona, Spain
| | - Marta Garrido
- Cancer Research Program, Hospital del Mar Research Institute (HMRIB), Barcelona, Spain
| | - Anna Sallent-Aragay
- Cancer Research Program, Hospital del Mar Research Institute (HMRIB), Barcelona, Spain
| | - Tom Golde
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Julien Colombelli
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Eleni Dalaka
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Judith Linacero
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Marina Cazorla
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Teresa Galan
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Jordi Pastor Viel
- Unitat de Tecnologia Mecànica, Centres Científics i Tecnològics, Universitat de Barcelona, Barcelona, Spain
| | - Xavier Badenas
- Unitat de Tecnologia Mecànica, Centres Científics i Tecnològics, Universitat de Barcelona, Barcelona, Spain
| | - Alba Recort-Bascuas
- Cancer Research Program, Hospital del Mar Research Institute (HMRIB), Barcelona, Spain
| | - Laura Comerma
- Cancer Research Program, Hospital del Mar Research Institute (HMRIB), Barcelona, Spain
- Pathology Department, Hospital del Mar, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Oncología (CIBERONC-ISCIII), Madrid, Spain
| | | | - Ana Rovira
- Cancer Research Program, Hospital del Mar Research Institute (HMRIB), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Oncología (CIBERONC-ISCIII), Madrid, Spain
- Medical Oncology Department, Hospital del Mar, Barcelona, Spain
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Unitat de Biofisica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Joan Albanell
- Cancer Research Program, Hospital del Mar Research Institute (HMRIB), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Oncología (CIBERONC-ISCIII), Madrid, Spain
- Medical Oncology Department, Hospital del Mar, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain.
- Unitat de Biofisica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.
- Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona, Spain.
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain.
| | - Alexandre Calon
- Cancer Research Program, Hospital del Mar Research Institute (HMRIB), Barcelona, Spain.
| | - Anna Labernadie
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain.
- Centro de Investigacion Principe Felipe, Valencia, Spain.
| |
Collapse
|
9
|
Adler FR, Griffiths JI. Mathematical models of intercellular signaling in breast cancer. Semin Cancer Biol 2025; 109:91-100. [PMID: 39890041 PMCID: PMC11858920 DOI: 10.1016/j.semcancer.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 01/03/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND AND OBJECTIVES The development and regulation of healthy and cancerous breast tissue is guided by communication between cells. Diverse signals are exchanged between cancer cells and non-cancerous cells of the tumor microenvironment (TME), influencing all stages of tumor progression. Mathematical models are essential for understanding how this complex network determines cancer progression and the effectiveness of treatment. METHODOLOGY We reviewed the current dynamical mathematical models of intercellular signaling in breast cancer, examining models with cancer cells only, fibroblasts, endothelial cells, macrophages and the immune system as whole. We categorized the goals and complexity of these models, to highlight how they can explain many features of cancer emergence and progression. RESULTS We found that dynamical models of intercellular signaling can elucidate tissue-level dysregulation in cancer by explaining: i) maintenance of non-heritable intratumor phenotypic heterogeneity, ii) transitions between tumor dormancy and accelerated invasive growth, iii) stromal support of tumor vascularization and growth factor enrichment and iv) suppression of immune infiltration and cancer surveillance. These models also provide a framework to propose novel TME-targeting treatment strategies. However, most models were focused on a highly selected and small set of signaling interactions between a few cell types, and their translational applicability were severely limited by the availability of tumor-specific data for personalized model calibration. CONCLUSIONS AND IMPLICATIONS Mathematical models of breast cancer have many challenges and opportunities to incorporate signaling. The four key challenges are: 1) finding ways to treat signaling networks as a context-dependent language that incorporates non-linear and non-additive responses, 2) identifying the key cell phenotypes that signals control and understanding the feedbacks between signals and phenotype that determine the progression of cancer, (3) estimating parameters of specific patient tumors early in treatment, 4) linking models with novel data collection methods that have single cell and spatial resolution. As our approaches advance, it is our hope that dynamical mathematical models of inter-cellular signaling can play a central role in identifying and testing new treatment strategies as well as forecasting impacts of disease treatment.
Collapse
Affiliation(s)
- Frederick R Adler
- Department of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City, UT 84112, USA; School of Biological Sciences, 257 South 1400 East, University of Utah, Salt Lake City, UT, 84112 USA..
| | - Jason I Griffiths
- Department of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City, UT 84112, USA; Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
10
|
Marei HE, Bedair K, Hasan A, Al-Mansoori L, Caratelli S, Sconocchia G, Gaiba A, Cenciarelli C. Current status and innovative developments of CAR-T-cell therapy for the treatment of breast cancer. Cancer Cell Int 2025; 25:3. [PMID: 39755633 PMCID: PMC11700463 DOI: 10.1186/s12935-024-03615-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/12/2024] [Indexed: 01/06/2025] Open
Abstract
Breast cancer will overtake all other cancers in terms of diagnoses in 2024. Breast cancer counts highest among women in terms of cancer incidence and death rates. Innovative treatment approaches are desperately needed because treatment resistance brought on by current clinical drugs impedes therapeutic efficacy. The T cell-based immunotherapy known as chimeric antigen receptor (CAR) T cell treatment, which uses the patient's immune cells to fight cancer, has demonstrated remarkable efficacy in treating hematologic malignancies; nevertheless, the treatment effects in solid tumors, like breast cancer, have not lived up to expectations. We discuss in detail the role of tumor-associated antigens in breast cancer, current clinical trials, barriers to the intended therapeutic effects of CAR-T cell therapy, and potential ways to increase treatment efficacy. Finally, our review aims to stimulate readers' curiosity by summarizing the most recent advancements in CAR-T cell therapy for breast cancer.
Collapse
Affiliation(s)
- Hany E Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35116, Egypt.
| | - Khaled Bedair
- Department of Social Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
| | - Layla Al-Mansoori
- Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Sara Caratelli
- Institute of Translational Pharmacology-CNR, Rome, Italy
| | | | - Alice Gaiba
- Institute of Translational Pharmacology-CNR, Rome, Italy
| | | |
Collapse
|
11
|
Verma A, Pandey V, Sherry C, Humphrey T, James C, Matteson K, Smith JT, Rudkouskaya A, Intes X, Barroso M. Fluorescence Lifetime Imaging for Quantification of Targeted Drug Delivery in Varying Tumor Microenvironments. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2403253. [PMID: 39600235 PMCID: PMC11744649 DOI: 10.1002/advs.202403253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/13/2024] [Indexed: 11/29/2024]
Abstract
Trastuzumab (TZM) is a monoclonal antibody that targets the human epidermal growth factor receptor 2 (HER2) and is clinically used for the treatment of HER2-positive breast tumors. However, the tumor microenvironment can limit the access of TZM to the HER2 targets across the whole tumor and thereby compromising TZM's therapeutic efficacy. An imaging methodology that can non-invasively quantify the binding of TZM-HER2, which is required for therapeutic action, and distribution within tumors with varying tumor microenvironments is much needed. Near-infrared (NIR) fluorescence lifetime (FLI) Forster Resonance Energy Transfer (FRET) is performed to measure TZM-HER2 binding, using in vitro microscopy and in vivo widefield macroscopy, in HER2 overexpressing breast and ovarian cancer cells and tumor xenografts, respectively. Immunohistochemistry is used to validate in vivo imaging results. NIR FLI FRET in vitro microscopy data show variations in intracellular distribution of bound TZM in HER2-positive breast AU565 and AU565 tumor-passaged XTM cell lines in comparison to SKOV-3 ovarian cancer cells. Macroscopy FLI (MFLI) FRET in vivo imaging data show that SKOV-3 tumors display reduced TZM binding compared to AU565 and XTM tumors, as validated by ex vivo immunohistochemistry. Moreover, AU565/XTM and SKOV-3 tumor xenografts display different amounts and distributions of TME components, such as collagen and vascularity. Therefore, these results suggest that SKOV-3 tumors are refractory to TZM delivery due to their disrupted vasculature and increased collagen content. The study demonstrates that FLI is a powerful analytical tool to monitor the delivery of antibodydrugs both in cell cultures and in vivo live systems. Especially, MFLI FRET is a unique imaging modality that can directly quantify target engagement with the potential to elucidate the role of the TME in drug delivery efficacy in intact live tumor xenografts.
Collapse
Affiliation(s)
- Amit Verma
- Department of Molecular and Cellular PhysiologyAlbany Medical CollegeAlbanyNY12208USA
| | - Vikas Pandey
- Department of Biomedical EngineeringRensselaer Polytechnic InstituteTroyNY12180USA
| | - Catherine Sherry
- Department of Molecular and Cellular PhysiologyAlbany Medical CollegeAlbanyNY12208USA
| | - Taylor Humphrey
- Department of Molecular and Cellular PhysiologyAlbany Medical CollegeAlbanyNY12208USA
| | - Christopher James
- Department of Molecular and Cellular PhysiologyAlbany Medical CollegeAlbanyNY12208USA
| | - Kailie Matteson
- Department of Molecular and Cellular PhysiologyAlbany Medical CollegeAlbanyNY12208USA
- Present address:
Division of Hematology and OncologyDepartment of MedicineIcahn School of Medicine at Mount SinaiTisch Cancer InstituteNew YorkNY10029USA
| | - Jason T. Smith
- Department of Biomedical EngineeringRensselaer Polytechnic InstituteTroyNY12180USA
- Present address:
Booz Allen HamiltonMcLeanVA22102USA
| | - Alena Rudkouskaya
- Department of Molecular and Cellular PhysiologyAlbany Medical CollegeAlbanyNY12208USA
| | - Xavier Intes
- Department of Biomedical EngineeringRensselaer Polytechnic InstituteTroyNY12180USA
| | - Margarida Barroso
- Department of Molecular and Cellular PhysiologyAlbany Medical CollegeAlbanyNY12208USA
| |
Collapse
|
12
|
Imai M, Nakamura Y, Shin S, Okamoto W, Kato T, Esaki T, Kato K, Komatsu Y, Yuki S, Masuishi T, Nishina T, Sawada K, Sato A, Kuwata T, Yamashita R, Fujisawa T, Bando H, Ock CY, Fujii S, Yoshino T. Artificial Intelligence-Powered Human Epidermal Growth Factor Receptor 2 and Tumor Microenvironment Analysis in Human Epidermal Growth Factor Receptor 2-Amplified Metastatic Colorectal Cancer: Exploratory Analysis of Phase II TRIUMPH Trial. JCO Precis Oncol 2025; 9:e2400385. [PMID: 39823559 PMCID: PMC11753463 DOI: 10.1200/po-24-00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/24/2024] [Accepted: 11/27/2024] [Indexed: 01/19/2025] Open
Abstract
PURPOSE Human epidermal growth factor receptor 2 (HER2)-targeted therapies have shown promise in treating HER2-amplified metastatic colorectal cancer (mCRC). Identifying optimal biomarkers for treatment decisions remains challenging. This study explores the potential of artificial intelligence (AI) in predicting treatment responses to trastuzumab plus pertuzumab (TP) in patients with HER2-amplified mCRC from the phase II TRIUMPH trial. MATERIALS AND METHODS AI-powered HER2 quantification continuous score (QCS) and tumor microenvironment (TME) analysis were applied to the prescreening cohort (n = 143) and the TRIUMPH cohort (n = 30). AI analyzers determined the proportions of tumor cells (TCs) with HER2 staining intensity and the densities of various cells in TME, examining their associations with clinical outcomes of TP. RESULTS The AI-powered HER2 QCS for HER2 immunohistochemistry (IHC) achieved an accuracy of 86.7% against pathologist evaluations, with a 100% accuracy for HER2 IHC 3+ patients. Patients with ≥50% of TCs showing HER2 3+ staining intensity (AI-H3-high) exhibited significantly prolonged progression-free survival (PFS; median PFS, 4.4 v 1.4 months; hazard ratio [HR], 0.12 [95% CI, 0.04 to 0.38]) and overall survival (OS; median OS, 16.5 v 4.1 months; HR, 0.13 [95% CI, 0.05 to 0.38]) compared with the AI-H3-low (<50% group). Stratification among patients with AI-H3-high included TME-high (all lymphocyte, fibroblast, and macrophage densities in the cancer stroma above the median) and TME-low (anything below the median), showing a median PFS of 1.3 and 5.6 months for TME-high and TME-low respectively, with an HR of 0.04 (95% CI, 0.01 to 0.19) for AI-H3-high with TME-low compared with AI-H3-low. CONCLUSION AI-powered HER2 QCS and TME analysis demonstrated potential in enhancing treatment response predictions in patients with HER2-amplified mCRC undergoing TP therapy.
Collapse
Affiliation(s)
- Mitsuho Imai
- Translational Research Support Office, National Cancer Center Hospital East, Chiba, Japan
- Department of Genetic Medicine and Services, National Cancer Center Hospital East, Chiba, Japan
| | - Yoshiaki Nakamura
- Translational Research Support Office, National Cancer Center Hospital East, Chiba, Japan
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba, Japan
| | | | - Wataru Okamoto
- Department of Clinical Oncology, Hiroshima University Hospital, Hiroshima, Japan
| | - Takeshi Kato
- Department of Surgery, NHO Osaka National Hospital, Osaka, Japan
| | - Taito Esaki
- Department of Gastrointestinal and Medical Oncology, NHO Kyushu Cancer Center, Fukuoka, Japan
| | - Ken Kato
- Department of Head and Neck, Esophageal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshito Komatsu
- Department of Cancer Center, Hokkaido University Hospital, Hokkaido, Japan
| | - Satoshi Yuki
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Hokkaido, Japan
| | - Toshiki Masuishi
- Department of Clinical Oncology, Aichi Cancer Center, Nagoya, Japan
| | - Tomohiro Nishina
- Gastrointestinal Medical Oncology, NHO Shikoku Cancer Center, Ehime, Japan
| | - Kentaro Sawada
- Department of Medical Oncology, Kushiro Rosai Hospital, Kushiro, Japan
| | - Akihiro Sato
- Clinical Research Support Office, National Cancer Center Hospital East, Chiba, Japan
| | - Takeshi Kuwata
- Department of Genetic Medicine and Services, National Cancer Center Hospital East, Chiba, Japan
| | - Riu Yamashita
- Division of Translational Informatics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Takao Fujisawa
- Translational Research Support Office, National Cancer Center Hospital East, Chiba, Japan
- Department of Head and Neck Medical Oncology/Translational Research Support Office, National Cancer Center East Hospital, Chiba, Japan
| | - Hideaki Bando
- Translational Research Support Office, National Cancer Center Hospital East, Chiba, Japan
- Department of Genetic Medicine and Services, National Cancer Center Hospital East, Chiba, Japan
| | | | - Satoshi Fujii
- Department of Molecular Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takayuki Yoshino
- Translational Research Support Office, National Cancer Center Hospital East, Chiba, Japan
- Department for the Promotion of Drug and Diagnostic Development, National Cancer Center Hospital East, Chiba, Japan
| |
Collapse
|
13
|
Veeraraghavan J, De Angelis C, Gutierrez C, Liao FT, Sabotta C, Rimawi MF, Osborne CK, Schiff R. HER2-Positive Breast Cancer Treatment and Resistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:495-525. [PMID: 39821040 DOI: 10.1007/978-3-031-70875-6_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
HER2-positive (+) breast cancer is an aggressive disease with poor prognosis, a narrative that changed drastically with the advent and approval of trastuzumab, the first humanized monoclonal antibody targeting HER2. In addition to another monoclonal antibody, more classes of HER2-targeted agents, including tyrosine kinase inhibitors, and antibody-drug conjugates were developed in the years that followed. While these potent therapies have substantially improved the outcome of patients with HER2+ breast cancer, resistance has prevailed as a clinical challenge ever since the arrival of targeted agents. Efforts to develop new treatment regimens to treat/overcome resistance is futile without a primary understanding of the mechanistic underpinnings of resistance. Resistance could be attributed to mechanisms that are either specific to the tumor epithelial cells or those that emerge through changes in the tumor microenvironment. Reactivation of the HER receptor layer due to incomplete blockade of the HER receptor layer or due to alterations in the HER receptors is one of the major mechanisms. In other instances, resistance may occur due to deregulations in key downstream signaling such as the PI3K/AKT or RAS/MEK/ERK pathways or due to the emergence of compensatory pathways such as ER, other RTKs, or metabolic pathways. Potent new targeted agents and approaches to target key actionable drivers of resistance have already been identified, many of which are in early clinical development or under preclinical evaluation. Ongoing and future translational research will continue to uncover additional therapeutic vulnerabilities, as well as new targeted agents and approaches to treat and/or overcome anti-HER2 treatment resistance.
Collapse
Affiliation(s)
- Jamunarani Veeraraghavan
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Carmine De Angelis
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Carolina Gutierrez
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Fu-Tien Liao
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Caroline Sabotta
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Mothaffar F Rimawi
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - C Kent Osborne
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Rachel Schiff
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
14
|
Wang L, Wang Y, Li Y, Zhou L, Du J, Wang J, Liu S, Cao Y, Li Y, Yang W, Zhu T. Resistance mechanisms and prospects of trastuzumab. Front Oncol 2024; 14:1389390. [PMID: 39655080 PMCID: PMC11625751 DOI: 10.3389/fonc.2024.1389390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Breast cancer that overexpresses Human Epidermal Growth Factor Receptor 2 (HER2+) due to gene amplification or overexpression constitutes 15-20% of all breast cancer cases. Trastuzumab, the first FDA-approved monoclonal antibody targeting HER2, serves as the standard first-line treatment for HER2-positive advanced breast cancer, as recommended by multiple clinical guidelines.Currently, accumulated clinical evidence reveals a considerable degree of variability in the response of HER2+ breast cancer to trastuzumab treatment. Specifically, over 50% of patients either do not respond to or develop resistance against trastuzumab.The specific mechanisms of resistance to trastuzumab are currently unclear. This paper aims to review the existing research on the resistance mechanisms of trastuzumab, based on its target, from aspects such as genetic loci, molecular structure, signaling pathways, and the tumor microenvironment and to outline current research progress and new strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Ting Zhu
- The Third Affiliated Hospital of Anhui Medical University, Hefei first people’s
Hospital, Hefei, China
| |
Collapse
|
15
|
Tanaka T, Suzuki H, Ohishi T, Kaneko MK, Kato Y. A Cancer-Specific Anti-Podoplanin Monoclonal Antibody, PMab-117-mG 2a Exerts Antitumor Activities in Human Tumor Xenograft Models. Cells 2024; 13:1833. [PMID: 39594582 PMCID: PMC11593084 DOI: 10.3390/cells13221833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/24/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Podoplanin (PDPN) overexpression is associated with poor clinical outcomes in various tumors. PDPN is involved in malignant tumor progression by promoting invasiveness and metastasis. Therefore, PDPN is considered a promising target of monoclonal antibody (mAb)-based therapy. Because PDPN also plays an essential role in normal cells such as kidney podocytes, cancer specificity is required to reduce adverse effects on normal cells. We developed a cancer-specific mAb (CasMab) against PDPN, PMab-117 (rat IgM, kappa), by immunizing rats with PDPN-overexpressed glioblastoma cells. The recombinant mouse IgG2a-type PMab-117 (PMab-117-mG2a) reacted with the PDPN-positive tumor PC-10 and LN319 cells but not with PDPN-knockout LN319 cells in flow cytometry. PMab-117-mG2a did not react with normal kidney podocytes and normal epithelial cells from the lung bronchus, mammary gland, and corneal. In contrast, one of the non-CasMabs against PDPN, NZ-1, showed high reactivity to PDPN in both tumor and normal cells. Moreover, PMab-117-mG2a exerted antibody-dependent cellular cytotoxicity in the presence of effector splenocytes. In the human tumor xenograft models, PMab-117-mG2a exhibited potent antitumor effects. These results indicated that PMab-117-mG2a could be applied to antibody-based therapy against PDPN-expressing human tumors while reducing the adverse effects.
Collapse
Affiliation(s)
- Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (T.T.); (M.K.K.)
| | - Hiroyuki Suzuki
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (T.T.); (M.K.K.)
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, 18-24 Miyamoto, Numazu-shi 410-0301, Shizuoka, Japan;
- Institute of Microbial Chemistry (BIKAKEN), Laboratory of Oncology, Microbial Chemistry Research Foundation, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (T.T.); (M.K.K.)
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (T.T.); (M.K.K.)
| |
Collapse
|
16
|
Poskus MD, McDonald J, Laird M, Li R, Norcoss K, Zervantonakis IK. Rational Design of HER2-Targeted Combination Therapies to Reverse Drug Resistance in Fibroblast-Protected HER2+ Breast Cancer Cells. Cell Mol Bioeng 2024; 17:491-506. [PMID: 39513002 PMCID: PMC11538110 DOI: 10.1007/s12195-024-00823-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/23/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction Fibroblasts, an abundant cell type in the breast tumor microenvironment, interact with cancer cells and orchestrate tumor progression and drug resistance. However, the mechanisms by which fibroblast-derived factors impact drug sensitivity remain poorly understood. Here, we develop rational combination therapies that are informed by proteomic profiling to overcome fibroblast-mediated therapeutic resistance in HER2+ breast cancer cells. Methods Drug sensitivity to the HER2 kinase inhibitor lapatinib was characterized under conditions of monoculture and exposure to breast fibroblast-conditioned medium. Protein expression was measured using reverse phase protein arrays. Candidate targets for combination therapy were identified using differential expression and multivariate regression modeling. Follow-up experiments were performed to evaluate the effects of HER2 kinase combination therapies in fibroblast-protected cancer cell lines and fibroblasts. Results Compared to monoculture, fibroblast-conditioned medium increased the expression of plasminogen activator inhibitor-1 (PAI1) and cell cycle regulator polo like kinase 1 (PLK1) in lapatinib-treated breast cancer cells. Combination therapy of lapatinib with inhibitors targeting either PAI1 or PLK1, eliminated fibroblast-protected cancer cells, under both conditions of direct coculture with fibroblasts and protection by fibroblast-conditioned medium. Analysis of publicly available, clinical transcriptomic datasets revealed that HER2-targeted therapy fails to suppress PLK1 expression in stroma-rich HER2+ breast tumors and that high PAI1 gene expression associates with high stroma density. Furthermore, we showed that an epigenetics-directed approach using a bromodomain and extraterminal inhibitor to globally target fibroblast-induced proteomic adaptions in cancer cells, also restored lapatinib sensitivity. Conclusions Our data-driven framework of proteomic profiling in breast cancer cells identified the proteolytic degradation regulator PAI1 and the cell cycle regulator PLK1 as predictors of fibroblast-mediated treatment resistance. Combination therapies targeting HER2 kinase and these fibroblast-induced signaling adaptations eliminates fibroblast-protected HER2+ breast cancer cells. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00823-0.
Collapse
Affiliation(s)
- Matthew D. Poskus
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA USA
| | - Jacob McDonald
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA USA
| | - Matthew Laird
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA USA
| | - Ruxuan Li
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA USA
| | - Kyle Norcoss
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA USA
| | - Ioannis K. Zervantonakis
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA USA
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA USA
| |
Collapse
|
17
|
Liu Q, Yao F, Wu L, Xu T, Na J, Shen Z, Liu X, Shi W, Zhao Y, Liao Y. Heterogeneity and interplay: the multifaceted role of cancer-associated fibroblasts in the tumor and therapeutic strategies. Clin Transl Oncol 2024; 26:2395-2417. [PMID: 38602644 DOI: 10.1007/s12094-024-03492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/31/2024] [Indexed: 04/12/2024]
Abstract
The journey of cancer development is a multifaceted and staged process. The array of treatments available for cancer varies significantly, dictated by the disease's type and stage. Cancer-associated fibroblasts (CAFs), prevalent across various cancer types and stages, play a pivotal role in tumor genesis, progression, metastasis, and drug resistance. The strategy of concurrently targeting cancer cells and CAFs holds great promise in cancer therapy. In this review, we focus intently on CAFs, delving into their critical role in cancer's progression. We begin by exploring the origins, classification, and surface markers of CAFs. Following this, we emphasize the key cytokines and signaling pathways involved in the interplay between cancer cells and CAFs and their influence on the tumor immune microenvironment. Additionally, we examine current therapeutic approaches targeting CAFs. This article underscores the multifarious roles of CAFs within the tumor microenvironment and their potential applications in cancer treatment, highlighting their importance as key targets in overcoming drug resistance and enhancing the efficacy of tumor therapies.
Collapse
Affiliation(s)
- Qiaoqiao Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Fei Yao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Liangliang Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Tianyuan Xu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Zhen Shen
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Wei Shi
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China.
- Department of Oncology, The First Affiliated Tumor Hospital, Guangxi University of Chinese Medicine, Nanning, 530021, Guangxi, China.
| | - Yongxiang Zhao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China.
| | - Yuan Liao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
18
|
Liu Y, Wang C, Chen G, Chen J, Chen W, Lei K, Li J, Pan Y, Li Y, Tang D, Li B, Zhao J, Zeng L. Patient derived cancer organoids model the response to HER2-CD3 bispecific antibody (BsAbHER2) generated from hydroxyapatite gene delivery system. Cancer Lett 2024; 597:217043. [PMID: 38876386 DOI: 10.1016/j.canlet.2024.217043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/13/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
HER2-positive cancer is a prevalent subtype of malignancy with poor prognosis, yet current targeted therapies, like Trastuzumab and pyrotinib, have resulted in remission in patients with HER2-positive cancer. This study provides a novel approach for immunotherapy based on a hydroxyapatite (HA) gene delivery system producing a bispecific antibody for HER2-positive cancer treatment. An HA nanocarrier has been synthesized by the classical hydrothermal method. Particularly, the HA-nanoneedle system was able to mediate stable gene expression of minicircle DNA (MC) encoding a humanized anti-CD3/anti-HER2 bispecific antibody (BsAbHER2) in vivo. The produced BsAbs exhibited a potent killing effect not only in HER2-positive cancer cells but also in patient-derived organoids in vitro. This HA-nanoneedle gene delivery system features simple large-scale preparation and clinical applicability. Hence, the HA-nanoneedle gene delivery system combined with minicircle DNA vector encoding BsAbHER2 reported here provides a potential immunotherapy strategy for HER2-positive tumors.
Collapse
Affiliation(s)
- Yuhong Liu
- General Surgery, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China; The Biobank, Scientific Research Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China
| | - Chen Wang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China
| | - Guochuang Chen
- Syno Minicircle Biotechnology, Shenzhen, 518055, PR China
| | - Junzong Chen
- General Surgery, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China
| | - Wei Chen
- The Biobank, Scientific Research Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China
| | - Kefeng Lei
- General Surgery, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China
| | - Jia Li
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China
| | - Yihang Pan
- The Biobank, Scientific Research Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China
| | - You Li
- General Surgery, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China
| | - Di Tang
- General Surgery, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China.
| | - Binbin Li
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China.
| | - Jing Zhao
- General Surgery, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China.
| | - Leli Zeng
- The Biobank, Scientific Research Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China.
| |
Collapse
|
19
|
Parisel E, Prudhomme L, Pol J. [The immunocytokine FAP-IL2v : a potent co-therapy for preventing resistance to trastuzumab in HER2 + breast cancer]. Med Sci (Paris) 2024; 40:569-572. [PMID: 38986105 DOI: 10.1051/medsci/2024072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Abstract
Dans le cadre de leur module d’analyse scientifique, des étudiants des promotions 2022-2023 et 2023-2024 des Master 2 « Immunologie Translationnelle et Biothérapies » (ITB) et « Immunologie Intégrative et Systémique » (I2S) (Mention Biologie Moléculaire et Cellulaire, Parcours Immunologie, Sorbonne Université) se sont penchés sur la littérature et ont pris la plume pour partager avec les lecteurs de m/s quelques-uns des faits marquants de l’actualité en immunologie. Voici une sélection de quelques-unes de ces nouvelles, illustrant la large palette des axes de recherche en cours sur les mécanismes physiopathologiques des maladies infectieuses, auto-immunes, inflammatoires et tumorales et sur le développement d’immunothérapies pour le traitement de ces pathologies.
On y découvre ainsi de nouvelles avancées sur l’analyse transcriptomique du microenvironnement inflammatoire de pathologies autoimmunes, sur des aspects mécanistiques impliqués dans la survie des cellules cancéreuses et la réponse immunitaire anti-tumorale des cellules NK, l’interconnexion entre le système immunitaire et le système nerveux périphérique, le développement de nouvelles immunothérapies permettant de cibler préférentiellement le microenvironnement tumoral et la prise en charge des effets secondaires autoimmuns cardiaques induits par les immunothérapies.
Toute l’équipe pédagogique remercie également chaleureusement les différents tuteurs, experts dans le domaine en lien avec les nouvelles, qui ont accompagné avec bienveillance et enthousiasme le travail de nos étudiants !
Collapse
Affiliation(s)
- Eléonore Parisel
- Master Biologie Moléculaire et Cellulaire (BMC), Parcours Immunologie, M2 Immunologie Translationnelle et Biothérapies, Sorbonne Université, Paris, France
| | - Laura Prudhomme
- Master Biologie Moléculaire et Cellulaire (BMC), Parcours Immunologie, M2 Immunologie Translationnelle et Biothérapies, Sorbonne Université, Paris, France
| | - Jonathan Pol
- Centre de recherche des Cordeliers, Inserm U1138, Université Paris Cité, Sorbonne Université, Paris, France - Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
20
|
Poskus MD, McDonald J, Laird M, Li R, Norcoss K, Zervantonakis IK. Rational design of HER2-targeted combination therapies to reverse drug resistance in fibroblast-protected HER2+ breast cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.18.594826. [PMID: 38798591 PMCID: PMC11118562 DOI: 10.1101/2024.05.18.594826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Introduction Fibroblasts, an abundant cell type in the breast tumor microenvironment, interact with cancer cells and orchestrate tumor progression and drug resistance. However, the mechanisms by which fibroblast-derived factors impact drug sensitivity remain poorly understood. Here, we develop rational combination therapies that are informed by proteomic profiling to overcome fibroblast-mediated therapeutic resistance in HER2+ breast cancer cells. Methods Drug sensitivity to the HER2 kinase inhibitor lapatinib was characterized under conditions of monoculture and exposure to breast fibroblast-conditioned medium. Protein expression was measured using reverse phase protein arrays. Candidate targets for combination therapy were identified using differential expression and multivariate regression modeling. Follow-up experiments were performed to evaluate the effects of HER2 kinase combination therapies in fibroblast-protected cancer cell lines and fibroblasts. Results Compared to monoculture, fibroblast-conditioned medium increased the expression of plasminogen activator inhibitor-1 (PAI1) and cell cycle regulator polo like kinase 1 (PLK1) in lapatinib-treated breast cancer cells. Combination therapy of lapatinib with inhibitors targeting either PAI1 or PLK1, eliminated fibroblast-protected cancer cells, under both conditions of direct coculture with fibroblasts and protection by fibroblast-conditioned medium. Analysis of publicly available, clinical transcriptomic datasets revealed that HER2-targeted therapy fails to suppress PLK1 expression in stroma-rich HER2+ breast tumors and that high PAI1 gene expression associates with high stroma density. Furthermore, we showed that an epigenetics-directed approach using a bromodomain and extraterminal inhibitor to globally target fibroblast-induced proteomic adaptions in cancer cells, also restored lapatinib sensitivity. Conclusions Our data-driven framework of proteomic profiling in breast cancer cells identified the proteolytic degradation regulator PAI1 and the cell cycle regulator PLK1 as predictors of fibroblast-mediated treatment resistance. Combination therapies targeting HER2 kinase and these fibroblast-induced signaling adaptations eliminates fibroblast-protected HER2+ breast cancer cells.
Collapse
|
21
|
Kundu M, Butti R, Panda VK, Malhotra D, Das S, Mitra T, Kapse P, Gosavi SW, Kundu GC. Modulation of the tumor microenvironment and mechanism of immunotherapy-based drug resistance in breast cancer. Mol Cancer 2024; 23:92. [PMID: 38715072 PMCID: PMC11075356 DOI: 10.1186/s12943-024-01990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 04/02/2024] [Indexed: 05/12/2024] Open
Abstract
Breast cancer, the most frequent female malignancy, is often curable when detected at an early stage. The treatment of metastatic breast cancer is more challenging and may be unresponsive to conventional therapy. Immunotherapy is crucial for treating metastatic breast cancer, but its resistance is a major limitation. The tumor microenvironment (TME) is vital in modulating the immunotherapy response. Various tumor microenvironmental components, such as cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs), are involved in TME modulation to cause immunotherapy resistance. This review highlights the role of stromal cells in modulating the breast tumor microenvironment, including the involvement of CAF-TAM interaction, alteration of tumor metabolism leading to immunotherapy failure, and other latest strategies, including high throughput genomic screening, single-cell and spatial omics techniques for identifying tumor immune genes regulating immunotherapy response. This review emphasizes the therapeutic approach to overcome breast cancer immune resistance through CAF reprogramming, modulation of TAM polarization, tumor metabolism, and genomic alterations.
Collapse
Affiliation(s)
- Moumita Kundu
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, 751024, India
- Department of Pharmaceutical Technology, Brainware University, West Bengal, 700125, India
| | - Ramesh Butti
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Venketesh K Panda
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, 751024, India
| | - Diksha Malhotra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, 751024, India
| | - Sumit Das
- National Centre for Cell Sciences, Savitribai Phule Pune University Campus, Pune, 411007, India
| | - Tandrima Mitra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, 751024, India
| | - Prachi Kapse
- School of Basic Medical Sciences, Savitribai Phule Pune University, Pune, 411007, India
| | - Suresh W Gosavi
- School of Basic Medical Sciences, Savitribai Phule Pune University, Pune, 411007, India
| | - Gopal C Kundu
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, 751024, India.
- Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to be University, Bhubaneswar, 751024, India.
| |
Collapse
|
22
|
Niu Z, Wu J, Zhao Q, Zhang J, Zhang P, Yang Y. CAR-based immunotherapy for breast cancer: peculiarities, ongoing investigations, and future strategies. Front Immunol 2024; 15:1385571. [PMID: 38680498 PMCID: PMC11045891 DOI: 10.3389/fimmu.2024.1385571] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/27/2024] [Indexed: 05/01/2024] Open
Abstract
Surgery, chemotherapy, and endocrine therapy have improved the overall survival and postoperative recurrence rates of Luminal A, Luminal B, and HER2-positive breast cancers but treatment modalities for triple-negative breast cancer (TNBC) with poor prognosis remain limited. The effective application of the rapidly developing chimeric antigen receptor (CAR)-T cell therapy in hematological tumors provides new ideas for the treatment of breast cancer. Choosing suitable and specific targets is crucial for applying CAR-T therapy for breast cancer treatment. In this paper, we summarize CAR-T therapy's effective targets and potential targets in different subtypes based on the existing research progress, especially for TNBC. CAR-based immunotherapy has resulted in advancements in the treatment of breast cancer. CAR-macrophages, CAR-NK cells, and CAR-mesenchymal stem cells (MSCs) may be more effective and safer for treating solid tumors, such as breast cancer. However, the tumor microenvironment (TME) of breast tumors and the side effects of CAR-T therapy pose challenges to CAR-based immunotherapy. CAR-T cells and CAR-NK cells-derived exosomes are advantageous in tumor therapy. Exosomes carrying CAR for breast cancer immunotherapy are of immense research value and may provide a treatment modality with good treatment effects. In this review, we provide an overview of the development and challenges of CAR-based immunotherapy in treating different subtypes of breast cancer and discuss the progress of CAR-expressing exosomes for breast cancer treatment. We elaborate on the development of CAR-T cells in TNBC therapy and the prospects of using CAR-macrophages, CAR-NK cells, and CAR-MSCs for treating breast cancer.
Collapse
Affiliation(s)
- Zhipu Niu
- Clinical Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jingyuan Wu
- Clinical Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qiancheng Zhao
- Department of Cell Biology and Medical Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jinyu Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Pengyu Zhang
- Clinical Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yiming Yang
- Department of Cell Biology and Medical Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
23
|
Shi B, Lou X, Ma F, Nie Y, Chen H, Huang Y, Zhang W, Wang T. Perylene-Mediated Cytoskeletal Dysfunction Remodels Cancer-Associated Fibroblasts to Augment Antitumor Immunotherapy. Adv Healthc Mater 2024; 13:e2303837. [PMID: 38183408 DOI: 10.1002/adhm.202303837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/18/2023] [Indexed: 01/08/2024]
Abstract
Targeted reprogramming of cancer-associated fibroblasts (CAFs) is one of the most essential cancer therapies. However, how to reprogram active CAFs toward deactivated state still remains immense challenge. To tackle this challenge, herein, one perylene N, N'-bis(2-((dimethylammonium)ethylene)-2-(methoxylethyl))-1, 6, 7, 12-tetrachloroperylene-3, 4, 9, 10-tetracarboxylic diimide (PDIC-OC) is prepared, which can trigger endogenous reactive oxygen species (ROS) burst to result in cytoskeletal dysfunction and cell apoptosis so that suppress transforming growth factor β (TGF-β) production. As a result, PDIC-OC can reprogram the activated CAFs and relieve immunosuppressive tumor microenvironment by efficient polarization of M2-typed macrophages into M1-typed ones, downregulation of alpha-smooth muscle actin (α-SMA), alleviation of hypoxic state to promote infiltration of cytotoxic T lymphocytes, and ultimately realizes outstanding antitumor performance on B16F10 tumor-xenografted and lung-metastatic mouse model even at low concentration of 1 mg kg-1 body weight. This work thus presents a novel strategy that cytoskeleton dysfunction and cell apoptosis cooperatively suppress the secretion of TGF-β to reprogram CAFs and meanwhile clarifies intrinsic mechanism for perylene-triggered chemo-immunotherapy against hypoxic tumors.
Collapse
Affiliation(s)
- Bing Shi
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Zhengzhou, Henan, 475001, P. R. China
| | - Xue Lou
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Zhengzhou, Henan, 475001, P. R. China
| | - Feiyan Ma
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Zhengzhou, Henan, 475001, P. R. China
| | - Yanling Nie
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Zhengzhou, Henan, 475001, P. R. China
| | - Haoxing Chen
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Zhengzhou, Henan, 475001, P. R. China
| | - Yongwei Huang
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Zhengzhou, Henan, 475001, P. R. China
| | - Wei Zhang
- Life and Health Intelligent Research Institute, Tianjin Key Laboratory of Life and Health Detection, Tianjin University of Technology, Tianjin, 300387, P. R. China
| | - Tie Wang
- Life and Health Intelligent Research Institute, Tianjin Key Laboratory of Life and Health Detection, Tianjin University of Technology, Tianjin, 300387, P. R. China
| |
Collapse
|
24
|
Verma A, Pandey V, Sherry C, James C, Matteson K, Smith JT, Rudkouskaya A, Intes X, Barroso M. Fluorescence Lifetime Imaging for Quantification of Targeted Drug Delivery in Varying Tumor Microenvironments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575453. [PMID: 38293105 PMCID: PMC10827127 DOI: 10.1101/2024.01.12.575453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Rationale Trastuzumab (TZM) is a monoclonal antibody that targets the human epidermal growth factor receptor (HER2) and is clinically used for the treatment of HER2-positive breast tumors. However, the tumor microenvironment can limit the access of TZM to the HER2 targets across the whole tumor and thereby compromise TZM's therapeutic efficacy. An imaging methodology that can non-invasively quantify the binding of TZM-HER2, which is required for therapeutic action, and distribution within tumors with varying tumor microenvironments is much needed. Methods We performed near-infrared (NIR) fluorescence lifetime (FLI) Forster Resonance Energy Transfer (FRET) to measure TZM-HER2 binding, using in vitro microscopy and in vivo widefield macroscopy, in HER2 overexpressing breast and ovarian cancer cells and tumor xenografts, respectively. Immunohistochemistry was used to validate in vivo imaging results. Results NIR FLI FRET in vitro microscopy data show variations in intracellular distribution of bound TZM in HER2-positive breast AU565 and AU565 tumor-passaged XTM cell lines in comparison to SKOV-3 ovarian cancer cells. Macroscopy FLI (MFLI) FRET in vivo imaging data show that SKOV-3 tumors display reduced TZM binding compared to AU565 and XTM tumors, as validated by ex vivo immunohistochemistry. Moreover, AU565/XTM and SKOV-3 tumor xenografts display different amounts and distributions of TME components, such as collagen and vascularity. Therefore, these results suggest that SKOV-3 tumors are refractory to TZM delivery due to their disrupted vasculature and increased collagen content. Conclusion Our study demonstrates that FLI is a powerful analytical tool to monitor the delivery of antibody drug tumor both in cell cultures and in vivo live systems. Especially, MFLI FRET is a unique imaging modality that can directly quantify target engagement with potential to elucidate the role of the TME in drug delivery efficacy in intact live tumor xenografts.
Collapse
Affiliation(s)
- Amit Verma
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Vikas Pandey
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Catherine Sherry
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Christopher James
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Kailie Matteson
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
- Current address: Division of Hematology and Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jason T. Smith
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Current address: Booz Allen Hamilton, McLean, VA, 22102, USA
| | - Alena Rudkouskaya
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Xavier Intes
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Margarida Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
25
|
Akinsipe T, Mohamedelhassan R, Akinpelu A, Pondugula SR, Mistriotis P, Avila LA, Suryawanshi A. Cellular interactions in tumor microenvironment during breast cancer progression: new frontiers and implications for novel therapeutics. Front Immunol 2024; 15:1302587. [PMID: 38533507 PMCID: PMC10963559 DOI: 10.3389/fimmu.2024.1302587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/16/2024] [Indexed: 03/28/2024] Open
Abstract
The breast cancer tumor microenvironment (TME) is dynamic, with various immune and non-immune cells interacting to regulate tumor progression and anti-tumor immunity. It is now evident that the cells within the TME significantly contribute to breast cancer progression and resistance to various conventional and newly developed anti-tumor therapies. Both immune and non-immune cells in the TME play critical roles in tumor onset, uncontrolled proliferation, metastasis, immune evasion, and resistance to anti-tumor therapies. Consequently, molecular and cellular components of breast TME have emerged as promising therapeutic targets for developing novel treatments. The breast TME primarily comprises cancer cells, stromal cells, vasculature, and infiltrating immune cells. Currently, numerous clinical trials targeting specific TME components of breast cancer are underway. However, the complexity of the TME and its impact on the evasion of anti-tumor immunity necessitate further research to develop novel and improved breast cancer therapies. The multifaceted nature of breast TME cells arises from their phenotypic and functional plasticity, which endows them with both pro and anti-tumor roles during tumor progression. In this review, we discuss current understanding and recent advances in the pro and anti-tumoral functions of TME cells and their implications for developing safe and effective therapies to control breast cancer progress.
Collapse
Affiliation(s)
- Tosin Akinsipe
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, AL, United States
| | - Rania Mohamedelhassan
- Department of Chemical Engineering, College of Engineering, Auburn University, Auburn, AL, United States
| | - Ayuba Akinpelu
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Satyanarayana R. Pondugula
- Department of Chemical Engineering, College of Engineering, Auburn University, Auburn, AL, United States
| | - Panagiotis Mistriotis
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - L. Adriana Avila
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, AL, United States
| | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|
26
|
Jiang F, Hu SY, Tian W, Wang NN, Yang N, Dong SS, Song HM, Zhang DJ, Gao HW, Wang C, Wu H, He CY, Zhu DL, Chen XF, Guo Y, Yang Z, Yang TL. A landscape of gene expression regulation for synovium in arthritis. Nat Commun 2024; 15:1409. [PMID: 38360850 PMCID: PMC10869817 DOI: 10.1038/s41467-024-45652-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 01/29/2024] [Indexed: 02/17/2024] Open
Abstract
The synovium is an important component of any synovial joint and is the major target tissue of inflammatory arthritis. However, the multi-omics landscape of synovium required for functional inference is absent from large-scale resources. Here we integrate genomics with transcriptomics and chromatin accessibility features of human synovium in up to 245 arthritic patients, to characterize the landscape of genetic regulation on gene expression and the regulatory mechanisms mediating arthritic diseases predisposition. We identify 4765 independent primary and 616 secondary cis-expression quantitative trait loci (cis-eQTLs) in the synovium and find that the eQTLs with multiple independent signals have stronger effects and heritability than single independent eQTLs. Integration of genome-wide association studies (GWASs) and eQTLs identifies 84 arthritis related genes, revealing 38 novel genes which have not been reported by previous studies using eQTL data from the GTEx project or immune cells. We further develop a method called eQTac to identify variants that could affect gene expression by affecting chromatin accessibility and identify 1517 regions with potential regulatory function of chromatin accessibility. Altogether, our study provides a comprehensive synovium multi-omics resource for arthritic diseases and gains new insights into the regulation of gene expression.
Collapse
Affiliation(s)
- Feng Jiang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Shou-Ye Hu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, P.R. China
| | - Wen Tian
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Nai-Ning Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Ning Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Shan-Shan Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Hui-Miao Song
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Da-Jin Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Hui-Wu Gao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Chen Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Hao Wu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Chang-Yi He
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Dong-Li Zhu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Xiao-Feng Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Yan Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Zhi Yang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, P.R. China.
| | - Tie-Lin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China.
| |
Collapse
|
27
|
Zhou J, Li P, Zhao X, Zhao Y, Luo J, Deng Y, Jiang N, Xiao Z, Zhang W, Zhou Y, Zhao J, Li P, Li Y, Tian Z. Circ_16601 facilitates Hippo pathway signaling via the miR-5580-5p/FGB axis to promote my-CAF recruitment in the TME and LUAD progression. Respir Res 2023; 24:276. [PMID: 37953225 PMCID: PMC10642073 DOI: 10.1186/s12931-023-02566-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Lung cancer represents a significant public health issue in China, given its high incidence and mortality rates. Circular RNAs (circRNAs) have been recently proposed to participate in the development and progression of tumors. Nevertheless, their particular roles in the pathogenesis of lung adenocarcinoma (LUAD), the tumor microenvironment (TME), and the underlying molecular mechanisms are still not well understood. METHODS High-throughput sequencing was used to analyze the circRNAs expression profiles in 7 pairs of human LUAD tissues. shRNA was used to knockdown the YAP1 and FGB genes. RNA sequencing and RT-qPCR were performed to classify the regulatory effects of circ_16601 in LUAD cells. The progression effect of circ_16601 on lung cancer was investigated in vitro and in vivo. RESULTS The circ_16601 is significantly elevated in LUAD tissues compared to adjacent normal lung tissues, and its high expression is positively associated with poor prognosis in LUAD patients. Additionally, circ_16601 overexpression promotes LUAD cell proliferation in vitro and increases xenograft tissue growth in mice in vivo; circ_16601 also could recruit fibroblasts to cancer associate fibroblasts. Mechanistically, circ_16601 can directly bind to miR-5580-5p, preventing its ability to degrade FGB mRNA and enhancing its stability. Subsequently, circ_16601 promotes the activation of the Hippo pathway in a YAP1-dependent manner, leading to LUAD progression. CONCLUSIONS Our findings shed valuable insights into the regulatory role of circ_16601 in LUAD progression and highlight its potential as a diagnostic and therapeutic target in LUAD. Overall, this study provides theoretical support to improve the prognosis and quality of life of patients suffering from this devastating disease.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Interventional Medicine, The Second Hospital, Cheello College of Medicine, Shandong University, Jinan, Shandong, China
| | - Peiwei Li
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Province Key Laboratory of Fundamental Research and Clinical Translation in Thoracic Cancer, Jinan, Shandong, China
| | - Yuanhao Zhao
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Junwen Luo
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yupeng Deng
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ning Jiang
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhaohua Xiao
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wenhao Zhang
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yongjia Zhou
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jiangfeng Zhao
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Peichao Li
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yuliang Li
- Department of Interventional Medicine, The Second Hospital, Cheello College of Medicine, Shandong University, Jinan, Shandong, China.
- Institute of Interventional Oncology, Shandong University, Jinan, Shandong, China.
| | - Zhongxian Tian
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
- Shandong Province Key Laboratory of Fundamental Research and Clinical Translation in Thoracic Cancer, Jinan, Shandong, China.
| |
Collapse
|
28
|
Batalha S, Gomes CM, Brito C. Immune microenvironment dynamics of HER2 overexpressing breast cancer under dual anti-HER2 blockade. Front Immunol 2023; 14:1267621. [PMID: 38022643 PMCID: PMC10643871 DOI: 10.3389/fimmu.2023.1267621] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction The clinical prognosis of the HER2-overexpressing (HER2-OE) subtype of breast cancer (BC) is influenced by the immune infiltrate of the tumor. Specifically, monocytic cells, which are promoters of pro-tumoral immunosuppression, and NK cells, whose basal cytotoxic function may be enhanced with therapeutic antibodies. One of the standards of care for HER2+ BC patients includes the combination of the anti-HER2 antibodies trastuzumab and pertuzumab. This dual combination was a breakthrough against trastuzumab resistance; however, this regimen does not yield complete clinical benefit for a large fraction of patients. Further therapy refinement is still hampered by the lack of knowledge on the immune mechanism of action of this antibody-based dual HER2 blockade. Methods To explore how the dual antibody challenge influences the phenotype and function of immune cells infiltrating the HER2-OE BC microenvironment, we developed in vitro 3D heterotypic cell models of this subtype. The models comprised aggregates of HER2+ BC cell lines and human peripheral blood mononuclear cells. Cells were co-encapsulated in a chemically inert alginate hydrogel and maintained in agitation-based culture system for up to 7 days. Results The 3D models of the HER2-OE immune microenvironment retained original BC molecular features; the preservation of the NK cell compartment was achieved upon optimization of culture time and cytokine supplementation. Challenging the models with the standard-of-care combination of trastuzumab and pertuzumab resulted in enhanced immune cytotoxicity compared with trastuzumab alone. Features of the response to therapy within the immune tumor microenvironment were recapitulated, including induction of an immune effector state with NK cell activation, enhanced cell apoptosis and decline of immunosuppressive PD-L1+ immune cells. Conclusions This work presents a unique human 3D model for the study of immune effects of anti-HER2 biologicals, which can be used to test novel therapy regimens and improve anti-tumor immune function.
Collapse
Affiliation(s)
- Sofia Batalha
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Catarina Monteiro Gomes
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Catarina Brito
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
29
|
Suzuki H, Ohishi T, Kaneko MK, Kato Y. A Humanized and Defucosylated Antibody against Podoplanin (humLpMab-23-f) Exerts Antitumor Activities in Human Lung Cancer and Glioblastoma Xenograft Models. Cancers (Basel) 2023; 15:5080. [PMID: 37894446 PMCID: PMC10605305 DOI: 10.3390/cancers15205080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/20/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
A cancer-specific anti-PDPN mAb, LpMab-23 (mouse IgG1, kappa), was established in our previous study. We herein produced a humanized IgG1 version (humLpMab-23) and defucosylated form (humLpMab-23-f) of an anti-PDPN mAb to increase ADCC activity. humLpMab-23 recognized PDPN-overexpressed Chinese hamster ovary (CHO)-K1 (CHO/PDPN), PDPN-positive PC-10 (human lung squamous cell carcinoma), and LN319 (human glioblastoma) cells via flow cytometry. We then demonstrated that humLpMab-23-f induced ADCC and complement-dependent cytotoxicity against CHO/PDPN, PC-10, and LN319 cells in vitro and exerted high antitumor activity in mouse xenograft models, indicating that humLpMab-23-f could be useful as an antibody therapy against PDPN-positive lung squamous cell carcinomas and glioblastomas.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan;
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, 18-24 Miyamoto, Numazu-shi 410-0301, Shizuoka, Japan;
- Institute of Microbial Chemistry (BIKAKEN), Laboratory of Oncology, Microbial Chemistry Research Foundation, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Mika K. Kaneko
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan;
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan;
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| |
Collapse
|
30
|
Zhang H, Yue X, Chen Z, Liu C, Wu W, Zhang N, Liu Z, Yang L, Jiang Q, Cheng Q, Luo P, Liu G. Define cancer-associated fibroblasts (CAFs) in the tumor microenvironment: new opportunities in cancer immunotherapy and advances in clinical trials. Mol Cancer 2023; 22:159. [PMID: 37784082 PMCID: PMC10544417 DOI: 10.1186/s12943-023-01860-5] [Citation(s) in RCA: 136] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/13/2023] [Indexed: 10/04/2023] Open
Abstract
Despite centuries since the discovery and study of cancer, cancer is still a lethal and intractable health issue worldwide. Cancer-associated fibroblasts (CAFs) have gained much attention as a pivotal component of the tumor microenvironment. The versatility and sophisticated mechanisms of CAFs in facilitating cancer progression have been elucidated extensively, including promoting cancer angiogenesis and metastasis, inducing drug resistance, reshaping the extracellular matrix, and developing an immunosuppressive microenvironment. Owing to their robust tumor-promoting function, CAFs are considered a promising target for oncotherapy. However, CAFs are a highly heterogeneous group of cells. Some subpopulations exert an inhibitory role in tumor growth, which implies that CAF-targeting approaches must be more precise and individualized. This review comprehensively summarize the origin, phenotypical, and functional heterogeneity of CAFs. More importantly, we underscore advances in strategies and clinical trials to target CAF in various cancers, and we also summarize progressions of CAF in cancer immunotherapy.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xinghai Yue
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhe Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chao Liu
- Department of Neurosurgery, Central Hospital of Zhuzhou, Zhuzhou, China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liping Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qing Jiang
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Peng Luo
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Guodong Liu
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
31
|
Li M, Wu B, Li L, Lv C, Tian Y. Reprogramming of cancer-associated fibroblasts combined with immune checkpoint inhibitors: A potential therapeutic strategy for cancers. Biochim Biophys Acta Rev Cancer 2023; 1878:188945. [PMID: 37356739 DOI: 10.1016/j.bbcan.2023.188945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023]
Abstract
Activated fibroblasts, namely cancer-associated fibroblasts (CAFs), are highly heterogeneous in phenotypes, functions, and origins. CAFs originated from varieties of cell types, including local resident fibroblasts, epithelial cells, mesenchymal stromal cells, or others. These cells participate in tumor angiogenesis, mechanics, drug access, and immune suppression, with the latter being particularly important. It was difficult to distinguish CAFs by subsets due to their complex origins until the use of scRNA-seq. Reprogramming CAFs with TGFβ-RI inhibitor, a CXCR4 blocker, or other methods increases T cells activation and infiltration, together with a decrease in CAFs recruitment, thus improving the prognosis. As depletion of CAFs can't bring clinical benefit, the combination of reprogramming CAFs and immune checkpoint inhibitors (ICIs) come into consideration. It has shown better outcomes compared with monotherapy respectively in basic/preclinical researches, and needs more data on clinical trials. Combination therapy may be a promising and expecting method for treatment of cancer.
Collapse
Affiliation(s)
- Min Li
- Department of Mammary Gland, Dalian Women and Children's Medical Center(Group), No. 1 Dunhuang Road, Dalian 116000, Liaoning Province, China; Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao Street, Shenyang 110004, Liaoning Province, China
| | - Baokang Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao Street, Shenyang 110004, Liaoning Province, China
| | - Lunxu Li
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao Street, Shenyang 110004, Liaoning Province, China
| | - Chao Lv
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao Street, Shenyang 110004, Liaoning Province, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao Street, Shenyang 110004, Liaoning Province, China.
| |
Collapse
|
32
|
Salemme V, Centonze G, Avalle L, Natalini D, Piccolantonio A, Arina P, Morellato A, Ala U, Taverna D, Turco E, Defilippi P. The role of tumor microenvironment in drug resistance: emerging technologies to unravel breast cancer heterogeneity. Front Oncol 2023; 13:1170264. [PMID: 37265795 PMCID: PMC10229846 DOI: 10.3389/fonc.2023.1170264] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Breast cancer is a highly heterogeneous disease, at both inter- and intra-tumor levels, and this heterogeneity is a crucial determinant of malignant progression and response to treatments. In addition to genetic diversity and plasticity of cancer cells, the tumor microenvironment contributes to tumor heterogeneity shaping the physical and biological surroundings of the tumor. The activity of certain types of immune, endothelial or mesenchymal cells in the microenvironment can change the effectiveness of cancer therapies via a plethora of different mechanisms. Therefore, deciphering the interactions between the distinct cell types, their spatial organization and their specific contribution to tumor growth and drug sensitivity is still a major challenge. Dissecting intra-tumor heterogeneity is currently an urgent need to better define breast cancer biology and to develop therapeutic strategies targeting the microenvironment as helpful tools for combined and personalized treatment. In this review, we analyze the mechanisms by which the tumor microenvironment affects the characteristics of tumor heterogeneity that ultimately result in drug resistance, and we outline state of the art preclinical models and emerging technologies that will be instrumental in unraveling the impact of the tumor microenvironment on resistance to therapies.
Collapse
Affiliation(s)
- Vincenzo Salemme
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center (MBC) “Guido Tarone”, Turin, Italy
| | - Giorgia Centonze
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center (MBC) “Guido Tarone”, Turin, Italy
| | - Lidia Avalle
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center (MBC) “Guido Tarone”, Turin, Italy
| | - Dora Natalini
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center (MBC) “Guido Tarone”, Turin, Italy
| | - Alessio Piccolantonio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center (MBC) “Guido Tarone”, Turin, Italy
| | - Pietro Arina
- UCL, Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
| | - Alessandro Morellato
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center (MBC) “Guido Tarone”, Turin, Italy
| | - Ugo Ala
- Department of Veterinary Sciences, University of Turin, Grugliasco, TO, Italy
| | - Daniela Taverna
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center (MBC) “Guido Tarone”, Turin, Italy
| | - Emilia Turco
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Paola Defilippi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center (MBC) “Guido Tarone”, Turin, Italy
| |
Collapse
|
33
|
Gordon JAR, Evans MF, Ghule PN, Lee K, Vacek P, Sprague BL, Weaver DL, Stein GS, Stein JL. Identification of molecularly unique tumor-associated mesenchymal stromal cells in breast cancer patients. PLoS One 2023; 18:e0282473. [PMID: 36940196 PMCID: PMC10027225 DOI: 10.1371/journal.pone.0282473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/16/2023] [Indexed: 03/21/2023] Open
Abstract
The tumor microenvironment is a complex mixture of cell types that bi-directionally interact and influence tumor initiation, progression, recurrence, and patient survival. Mesenchymal stromal cells (MSCs) of the tumor microenvironment engage in crosstalk with cancer cells to mediate epigenetic control of gene expression. We identified CD90+ MSCs residing in the tumor microenvironment of patients with invasive breast cancer that exhibit a unique gene expression signature. Single-cell transcriptional analysis of these MSCs in tumor-associated stroma identified a distinct subpopulation characterized by increased expression of genes functionally related to extracellular matrix signaling. Blocking the TGFβ pathway reveals that these cells directly contribute to cancer cell proliferation. Our findings provide novel insight into communication between breast cancer cells and MSCs that are consistent with an epithelial to mesenchymal transition and acquisition of competency for compromised control of proliferation, mobility, motility, and phenotype.
Collapse
Affiliation(s)
- Jonathan A. R. Gordon
- Department of Biochemistry, Larner College of Medicine at the University of Vermont, Burlington, VT, United States of America
| | - Mark F. Evans
- Department of Pathology and Laboratory Medicine, Larner College of Medicine at the University of Vermont, Burlington, VT, United States of America
| | - Prachi N. Ghule
- Department of Biochemistry, Larner College of Medicine at the University of Vermont, Burlington, VT, United States of America
| | - Kyra Lee
- Department of Biochemistry, Larner College of Medicine at the University of Vermont, Burlington, VT, United States of America
| | - Pamela Vacek
- Department of Surgery, Larner College of Medicine at the University of Vermont, Burlington, VT, United States of America
| | - Brian L. Sprague
- Department of Surgery, Larner College of Medicine at the University of Vermont, Burlington, VT, United States of America
| | - Donald L. Weaver
- Department of Pathology and Laboratory Medicine, Larner College of Medicine at the University of Vermont, Burlington, VT, United States of America
| | - Gary S. Stein
- Department of Biochemistry, Larner College of Medicine at the University of Vermont, Burlington, VT, United States of America
| | - Janet L. Stein
- Department of Biochemistry, Larner College of Medicine at the University of Vermont, Burlington, VT, United States of America
| |
Collapse
|
34
|
Nolan E, Lindeman GJ, Visvader JE. Deciphering breast cancer: from biology to the clinic. Cell 2023; 186:1708-1728. [PMID: 36931265 DOI: 10.1016/j.cell.2023.01.040] [Citation(s) in RCA: 274] [Impact Index Per Article: 137.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/14/2023] [Accepted: 01/30/2023] [Indexed: 03/17/2023]
Abstract
Breast cancer remains a leading cause of cancer-related mortality in women, reflecting profound disease heterogeneity, metastasis, and therapeutic resistance. Over the last decade, genomic and transcriptomic data have been integrated on an unprecedented scale and revealed distinct cancer subtypes, critical molecular drivers, clonal evolutionary trajectories, and prognostic signatures. Furthermore, multi-dimensional integration of high-resolution single-cell and spatial technologies has highlighted the importance of the entire breast cancer ecosystem and the presence of distinct cellular "neighborhoods." Clinically, a plethora of new targeted therapies has emerged, now being rapidly incorporated into routine care. Resistance to therapy, however, remains a crucial challenge for the field.
Collapse
Affiliation(s)
- Emma Nolan
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand
| | - Geoffrey J Lindeman
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC 3050, Australia; Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Jane E Visvader
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
35
|
Long-term platinum-based drug accumulation in cancer-associated fibroblasts promotes colorectal cancer progression and resistance to therapy. Nat Commun 2023; 14:746. [PMID: 36765091 PMCID: PMC9918738 DOI: 10.1038/s41467-023-36334-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
A substantial proportion of cancer patients do not benefit from platinum-based chemotherapy (CT) due to the emergence of drug resistance. Here, we apply elemental imaging to the mapping of CT biodistribution after therapy in residual colorectal cancer and achieve a comprehensive analysis of the genetic program induced by oxaliplatin-based CT in the tumor microenvironment. We show that oxaliplatin is largely retained by cancer-associated fibroblasts (CAFs) long time after the treatment ceased. We determine that CT accumulation in CAFs intensifies TGF-beta activity, leading to the production of multiple factors enhancing cancer aggressiveness. We establish periostin as a stromal marker of chemotherapeutic activity intrinsically upregulated in consensus molecular subtype 4 (CMS4) tumors and highly expressed before and/or after treatment in patients unresponsive to therapy. Collectively, our study underscores the ability of CT-retaining CAFs to support cancer progression and resistance to treatment.
Collapse
|
36
|
The Stockholm Syndrome of Cancer: Fibroblasts as a Powerful Shield against Colorectal Cancer Therapy. Cancers (Basel) 2023; 15:cancers15020491. [PMID: 36672440 PMCID: PMC9857006 DOI: 10.3390/cancers15020491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Fibroblasts are incredible cells [...].
Collapse
|
37
|
Xu A, Xu XN, Luo Z, Huang X, Gong RQ, Fu DY. Identification of prognostic cancer-associated fibroblast markers in luminal breast cancer using weighted gene co-expression network analysis. Front Oncol 2023; 13:1191660. [PMID: 37207166 PMCID: PMC10191114 DOI: 10.3389/fonc.2023.1191660] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023] Open
Abstract
Background Cancer-associated fibroblasts (CAFs) play a pivotal role in cancer progression and are known to mediate endocrine and chemotherapy resistance through paracrine signaling. Additionally, they directly influence the expression and growth dependence of ER in Luminal breast cancer (LBC). This study aims to investigate stromal CAF-related factors and develop a CAF-related classifier to predict the prognosis and therapeutic outcomes in LBC. Methods The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were utilized to obtain mRNA expression and clinical information from 694 and 101 LBC samples, respectively. CAF infiltrations were determined by estimating the proportion of immune and cancer cells (EPIC) method, while stromal scores were calculated using the Estimation of STromal and Immune cells in MAlignant Tumors using Expression data (ESTIMATE) algorithm. Weighted gene co-expression network analysis (WGCNA) was used to identify stromal CAF-related genes. A CAF risk signature was developed through univariate and least absolute shrinkage and selection operator method (LASSO) Cox regression model. The Spearman test was used to evaluate the correlation between CAF risk score, CAF markers, and CAF infiltrations estimated through EPIC, xCell, microenvironment cell populations-counter (MCP-counter), and Tumor Immune Dysfunction and Exclusion (TIDE) algorithms. The TIDE algorithm was further utilized to assess the response to immunotherapy. Additionally, Gene set enrichment analysis (GSEA) was applied to elucidate the molecular mechanisms underlying the findings. Results We constructed a 5-gene prognostic model consisting of RIN2, THBS1, IL1R1, RAB31, and COL11A1 for CAF. Using the median CAF risk score as the cutoff, we classified LBC patients into high- and low-CAF-risk groups and found that those in the high-risk group had a significantly worse prognosis. Spearman correlation analyses demonstrated a strong positive correlation between the CAF risk score and stromal and CAF infiltrations, with the five model genes showing positive correlations with CAF markers. In addition, the TIDE analysis revealed that high-CAF-risk patients were less likely to respond to immunotherapy. Gene set enrichment analysis (GSEA) identified significant enrichment of ECM receptor interaction, regulation of actin cytoskeleton, epithelial-mesenchymal transition (EMT), and TGF-β signaling pathway gene sets in the high-CAF-risk group patients. Conclusion The five-gene prognostic CAF signature presented in this study was not only reliable for predicting prognosis in LBC patients, but it was also effective in estimating clinical immunotherapy response. These findings have significant clinical implications, as the signature may guide tailored anti-CAF therapy in combination with immunotherapy for LBC patients.
Collapse
Affiliation(s)
- An Xu
- Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiang-Nan Xu
- Department of Thyroid and Breast Surgery, Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, China
| | - Zhou Luo
- Department of Thyroid and Breast Surgery, Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, China
| | - Xiao Huang
- Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Rong-Quan Gong
- Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - De-Yuan Fu
- Department of Thyroid and Breast Surgery, Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, China
- *Correspondence: De-Yuan Fu,
| |
Collapse
|
38
|
Cho KJ, Cho YE, Kim J. Locoregional Lymphatic Delivery Systems Using Nanoparticles and Hydrogels for Anticancer Immunotherapy. Pharmaceutics 2022; 14:2752. [PMID: 36559246 PMCID: PMC9788085 DOI: 10.3390/pharmaceutics14122752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/22/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
The lymphatic system has gained significant interest as a target tissue to control cancer progress, which highlights its central role in adaptive immune response. Numerous mechanistic studies have revealed the benefits of nano-sized materials in the transport of various cargos to lymph nodes, overcoming barriers associated with lymphatic physiology. The potential of sustained drug delivery systems in improving the therapeutic index of various immune modulating agents is also being actively discussed. Herein, we aim to discuss design rationales and principles of locoregional lymphatic drug delivery systems for invigorating adaptive immune response for efficient antitumor immunotherapy and provide examples of various advanced nanoparticle- and hydrogel-based formulations.
Collapse
Affiliation(s)
- Kyeong Jin Cho
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Young-Eun Cho
- Department of Food and Nutrition, Andong National University, Andong 36729, Republic of Korea
| | - Jihoon Kim
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| |
Collapse
|
39
|
Ambrosio MR, Mosca G, Migliaccio T, Liguoro D, Nele G, Schonauer F, D’Andrea F, Liotti F, Prevete N, Melillo RM, Reale C, Ambrosino C, Miele C, Beguinot F, D’Esposito V, Formisano P. Glucose Enhances Pro-Tumorigenic Functions of Mammary Adipose-Derived Mesenchymal Stromal/Stem Cells on Breast Cancer Cell Lines. Cancers (Basel) 2022; 14:5421. [PMID: 36358839 PMCID: PMC9655059 DOI: 10.3390/cancers14215421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 10/13/2023] Open
Abstract
Adiposity and diabetes affect breast cancer (BC) progression. We addressed whether glucose may affect the interaction between mammary adipose tissue-derived mesenchymal stromal/stem cells (MAT-MSCs) and BC cells. Two-dimensional co-cultures and spheroids were established in 25 mM or 5.5 mM glucose (High Glucose-HG or Low Glucose-LG) by using MAT-MSCs and MCF7 or MDA-MB231 BC cells. Gene expression was measured by qPCR, while protein levels were measured by cytofluorimetry and ELISA. CD44high/CD24low BC stem-like sub-population was quantified by cytofluorimetry. An in vivo zebrafish model was assessed by injecting spheroid-derived labeled cells. MAT-MSCs co-cultured with BC cells showed an inflammatory/senescent phenotype with increased abundance of IL-6, IL-8, VEGF and p16INK4a, accompanied by altered levels of CDKN2A and LMNB1. BC cells reduced multipotency and increased fibrotic features modulating OCT4, SOX2, NANOG, αSMA and FAP in MAT-MSCs. Of note, these co-culture-mediated changes in MAT-MSCs were partially reverted in LG. Only in HG, MAT-MSCs increased CD44high/CD24low MCF7 sub-population and promoted their ability to form mammospheres. Injection in zebrafish embryos of HG spheroid-derived MCF7 and MAT-MSCs was followed by a significant cellular migration and caudal dissemination. Thus, MAT-MSCs enhance the aggressiveness of BC cells in a HG environment.
Collapse
Affiliation(s)
- Maria Rosaria Ambrosio
- URT “Genomic of Diabetes”, Institute for Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (IEOS-CNR), Via Pansini 5, 80131 Naples, Italy
| | - Giusy Mosca
- Department of Translational Medicine, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
| | - Teresa Migliaccio
- Department of Translational Medicine, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
| | - Domenico Liguoro
- URT “Genomic of Diabetes”, Institute for Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (IEOS-CNR), Via Pansini 5, 80131 Naples, Italy
| | - Gisella Nele
- Department of Public Health, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
| | - Fabrizio Schonauer
- Department of Public Health, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
| | - Francesco D’Andrea
- Department of Public Health, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
| | - Federica Liotti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
| | - Nella Prevete
- URT “Genomic of Diabetes”, Institute for Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (IEOS-CNR), Via Pansini 5, 80131 Naples, Italy
- Department of Translational Medicine, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
| | - Rosa Marina Melillo
- URT “Genomic of Diabetes”, Institute for Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (IEOS-CNR), Via Pansini 5, 80131 Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
| | - Carla Reale
- Institute of Genetic Research “G. Salvatore” Biogem, Via Camporeale, 83031 Ariano Irpino, Italy
| | - Concetta Ambrosino
- URT “Genomic of Diabetes”, Institute for Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (IEOS-CNR), Via Pansini 5, 80131 Naples, Italy
- Institute of Genetic Research “G. Salvatore” Biogem, Via Camporeale, 83031 Ariano Irpino, Italy
- Department of Science and Technology, University of Sannio, Via De Sanctis, 82100 Benevento, Italy
| | - Claudia Miele
- URT “Genomic of Diabetes”, Institute for Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (IEOS-CNR), Via Pansini 5, 80131 Naples, Italy
| | - Francesco Beguinot
- URT “Genomic of Diabetes”, Institute for Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (IEOS-CNR), Via Pansini 5, 80131 Naples, Italy
- Department of Translational Medicine, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
| | - Vittoria D’Esposito
- URT “Genomic of Diabetes”, Institute for Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (IEOS-CNR), Via Pansini 5, 80131 Naples, Italy
| | - Pietro Formisano
- URT “Genomic of Diabetes”, Institute for Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (IEOS-CNR), Via Pansini 5, 80131 Naples, Italy
- Department of Translational Medicine, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|