1
|
Multian V, Wu F, van der Marel D, Ubrig N, Teyssier J. Brightened Optical Transition Hinting to Strong Spin-Lattice Coupling in a Layered Antiferromagnet. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408343. [PMID: 39950958 PMCID: PMC11967845 DOI: 10.1002/advs.202408343] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/13/2025] [Indexed: 04/05/2025]
Abstract
Two-dimensional (2D) van der Waals magnets show strong interconnection between their electrical, magnetic, and structural properties. Here, the emergence of a luminescent transition is revealed upon crossing the Néel transition temperature of CrPS4, a layered antiferromagnetic semiconductor. This luminescent transition occurs above the lowest absorption level. The optical transitions are attributed to excited states of the t2g orbitals of the Cr3+ ions, which are influenced by the distortion of the octahedral crystal field. Specifically, the vicinity of the Néel temperature, the distortion switches from an anti-polar to a polar arrangement, thereby not only promoting an additional luminescent pathway but also significantly strengthening the static dipole moment detected by a marked enhancement in the intensity of the second harmonic generation. These results strongly encourage further investigation into the multiferroic properties and potential coupling mechanisms in CrPS4.
Collapse
Affiliation(s)
- Volodymyr Multian
- Department of Quantum Matter PhysicsUniversity of Geneva24 Quai Ernest AnsermetGenevaCH‐1211Switzerland
- Department of Applied PhysicsUniversity of Geneva24 Quai Ernest AnsermetGenevaCH‐1211Switzerland
- Advanced Materials Nonlinear Optical Diagnostics labInstitute of Physics, NAS of Ukraine46 Nauky pr.Kyiv03028Ukraine
| | - Fan Wu
- Department of Quantum Matter PhysicsUniversity of Geneva24 Quai Ernest AnsermetGenevaCH‐1211Switzerland
- Department of Applied PhysicsUniversity of Geneva24 Quai Ernest AnsermetGenevaCH‐1211Switzerland
| | - Dirk van der Marel
- Department of Quantum Matter PhysicsUniversity of Geneva24 Quai Ernest AnsermetGenevaCH‐1211Switzerland
| | - Nicolas Ubrig
- Department of Quantum Matter PhysicsUniversity of Geneva24 Quai Ernest AnsermetGenevaCH‐1211Switzerland
| | - Jérémie Teyssier
- Department of Quantum Matter PhysicsUniversity of Geneva24 Quai Ernest AnsermetGenevaCH‐1211Switzerland
| |
Collapse
|
2
|
Da Browski M, Haldar S, Khan S, Keatley PS, Sagkovits D, Xue Z, Freeman C, Verzhbitskiy I, Griepe T, Atxitia U, Eda G, Kurebayashi H, Santos EJG, Hicken RJ. Ultrafast thermo-optical control of spins in a 2D van der Waals semiconductor. Nat Commun 2025; 16:2797. [PMID: 40118879 PMCID: PMC11928556 DOI: 10.1038/s41467-025-58065-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/11/2025] [Indexed: 03/24/2025] Open
Abstract
Laser pulses provide one of the fastest means of manipulating electron spins in magnetic compounds and pave the way to ultrafast operation within magnetic recording, quantum computation and spintronics. However, effective management of the heat deposited during optical excitation is an open challenge. Layered two-dimensional (2D) van der Waals (vdW) materials possess unique thermal properties due to the highly anisotropic nature of their chemical bonding. Here we show how to control the rate of heat flow, and hence the magnetization dynamics, induced by an ultrafast laser pulse within the 2D ferromagnet Cr2Ge2Te6. Using time-resolved beam-scanning magneto-optical Kerr effect microscopy and microscopic spin modelling calculations, we show that by reducing the thickness of the magnetic layers, an enhancement of the heat dissipation rate into the adjacent substrate leads to a substantial reduction in the timescale for magnetization recovery from several nanoseconds down to a few hundred picoseconds. Finally, we demonstrate how the low thermal conductivity across vdW layers may be used to obtain magnetic domain memory behaviour, even after exposure to intense laser pulses. Our findings reveal the distinctive role of vdW magnets in the ultrafast control of heat conduction, spin dynamics and non-volatile memory.
Collapse
Grants
- EP/W006006/1, EP/V048538/1, EP/R008809/1, EP/V054112/1 RCUK | Engineering and Physical Sciences Research Council (EPSRC)
- EP/T006749/1 RCUK | Engineering and Physical Sciences Research Council (EPSRC)
- EP/W006006/1, EP/V048538/1, EP/R008809/1, EP/V054112/1 RCUK | Engineering and Physical Sciences Research Council (EPSRC)
- EP/T006749/1 RCUK | Engineering and Physical Sciences Research Council (EPSRC)
- EP/P020267/1, EP/T021578/1, EP/X035891/1 RCUK | Engineering and Physical Sciences Research Council (EPSRC)
- EP/W006006/1, EP/V048538/1, EP/R008809/1, EP/V054112/1 RCUK | Engineering and Physical Sciences Research Council (EPSRC)
- PIPF-2022/TEC-25377.
- Grant No. PID2021-122980OB-C55 and Grant No. RYC-2020-030605-I funded by MCIN/AEI/10.13039/501100011033.
- AcRF Tier 3 (MOE2018-T3-1-005).
Collapse
Affiliation(s)
- Maciej Da Browski
- Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, United Kingdom.
| | - Sumit Haldar
- Institute for Condensed Matter Physics and Complex Systems, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD, United Kingdom
| | - Safe Khan
- London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London, WCH1 0AH, UK
| | - Paul S Keatley
- Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, United Kingdom
| | - Dimitros Sagkovits
- London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London, WCH1 0AH, UK
| | - Zekun Xue
- London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London, WCH1 0AH, UK
| | - Charlie Freeman
- London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London, WCH1 0AH, UK
| | - Ivan Verzhbitskiy
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore
| | - Theodor Griepe
- Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049, Madrid, Spain
| | - Unai Atxitia
- Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049, Madrid, Spain
| | - Goki Eda
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore
- Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, Singapore, 117546, Singapore
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Hidekazu Kurebayashi
- London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London, WCH1 0AH, UK
- Department of Electronic & Electrical Engineering, UCL, London, WC1E 7JE, United Kingdom
- WPI Advanced Institute for Materials Research, Tohoku University, 2-1-1, Katahira, Sendai, 980-8577, Japan
| | - Elton J G Santos
- Institute for Condensed Matter Physics and Complex Systems, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD, United Kingdom.
- Higgs Centre for Theoretical Physics, University of Edinburgh, Edinburgh, UK.
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Basque Country, Spain.
| | - Robert J Hicken
- Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, United Kingdom
| |
Collapse
|
3
|
Hadke S, Kang MA, Sangwan VK, Hersam MC. Two-Dimensional Materials for Brain-Inspired Computing Hardware. Chem Rev 2025; 125:835-932. [PMID: 39745782 DOI: 10.1021/acs.chemrev.4c00631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Recent breakthroughs in brain-inspired computing promise to address a wide range of problems from security to healthcare. However, the current strategy of implementing artificial intelligence algorithms using conventional silicon hardware is leading to unsustainable energy consumption. Neuromorphic hardware based on electronic devices mimicking biological systems is emerging as a low-energy alternative, although further progress requires materials that can mimic biological function while maintaining scalability and speed. As a result of their diverse unique properties, atomically thin two-dimensional (2D) materials are promising building blocks for next-generation electronics including nonvolatile memory, in-memory and neuromorphic computing, and flexible edge-computing systems. Furthermore, 2D materials achieve biorealistic synaptic and neuronal responses that extend beyond conventional logic and memory systems. Here, we provide a comprehensive review of the growth, fabrication, and integration of 2D materials and van der Waals heterojunctions for neuromorphic electronic and optoelectronic devices, circuits, and systems. For each case, the relationship between physical properties and device responses is emphasized followed by a critical comparison of technologies for different applications. We conclude with a forward-looking perspective on the key remaining challenges and opportunities for neuromorphic applications that leverage the fundamental properties of 2D materials and heterojunctions.
Collapse
Affiliation(s)
- Shreyash Hadke
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Min-A Kang
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Vinod K Sangwan
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
4
|
Zhang Z, Sun R, Wang Z. Recent Advances in Two-Dimensional Ferromagnetic Materials-Based van der Waals Heterostructures. ACS NANO 2025; 19:187-228. [PMID: 39760296 DOI: 10.1021/acsnano.4c14733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Two-dimensional (2D) ferromagnetic materials are subjects of intense research owing to their intriguing physicochemical properties, which hold great potential for fundamental research and spintronic applications. Specifically, 2D van der Waals (vdW) ferromagnetic materials retain both structural integrity and chemical stability even at the monolayer level. Moreover, due to their atomic thickness, these materials can be easily manipulated by stacking them with other 2D vdW ferroic and nonferroic materials, enabling precise control over their physical properties and expanding their functional applications. Consequently, 2D vdW ferromagnetic materials-based heterostructures offer a platform to tailor magnetic properties and explore advanced spintronic devices. This review aims to provide an overview of recent developments in emerging 2D vdW ferromagnetic materials-based heterostructures and devices. The fabrication approaches for 2D ferromagnetic vdW heterostructures are primarily summarized, followed by a review of two categories of heterostructures: ferromagnetic/ferroic and ferromagnetic/nonferroic vdW heterostructures. Subsequently, the progress made in modulating magnetic properties and emergence of various phenomena in these heterostructures is highlighted. Furthermore, the applications of such heterostructures in spintronic devices are discussed along with their future perspectives and potential directions in this exciting field.
Collapse
Affiliation(s)
- Zhiheng Zhang
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Rong Sun
- International Iberian Nanotechnology Laboratory (INL), Braga 4715-330, Portugal
| | - Zhongchang Wang
- School of Chemistry, Beihang University, Beijing 100191, China
- Faculty of Materials and Energy, Southwest University, Chongqing 400715, China
| |
Collapse
|
5
|
Chen J, Cheng Z, Chen J, Li M, Jia X, Ran Y, Zhang Y, Li Y, Yu T, Dai L. Spin-Enhanced Self-Powered Light Helicity Detecting Based on Vertical WSe 2-CrI 3 p-n Heterojunction. ACS NANO 2024. [PMID: 39267593 DOI: 10.1021/acsnano.4c08185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Two-dimensional (2D) magnetic semiconductors offer an intriguing platform for investigating magneto-optoelectronic properties and hold immense potential in developing prospective devices when they are combined with valley electronic materials like 2D transition-metal dichalcogenides. Herein, we report various magneto-optoelectronic response features of the vertical hBN-FLG-CrI3-WSe2-FLG-hBN van der Waals heterostructure. Through a sensible layout and exquisite manipulation, an hBN-FLG-CrI3-FLG-hBN heterostructure was also fabricated on identical CrI3 and FLGs for better comparison. Our results show that the WSe2-CrI3 heterostructure, acting as a p-n heterojunction, has advantageous capability in light detection, especially in self-powered light helicity detecting. In the WSe2-CrI3 heterojunction, the absolute value of photocurrent IPH exhibits obvious asymmetry with respect to the bias V, with the IPH of reversely biased WSe2-CrI3 p-n heterojunction being larger. When the CrI3 is fully spin-polarized under a 3 T magnetic field, the reversely biased WSe2-CrI3 heterojunction exhibits advantageous capability in light helicity detecting. Both the short-circuit currents ISC and IPH show one-cycle fluctuation behaviors when the quarter-wave plate rotates 180°, and the corresponding photoresponsivity helicities can be as high as 18.0% and 20.1%, respectively. We attribute the spin-enhanced photovoltaic effect in the WSe2-CrI3 heterojunction and its contribution to circularly polarized light detection to the coordination function of the spin-filter CrI3, the valley electronic monolayer WSe2, and the spin-dependent charge transfer between them. Our work helps us understand the interplay between the magnetic and optoelectronic properties of WSe2-CrI3 heterojunctions and promotes the developing progress of prospective 2D spin optoelectronic devices.
Collapse
Affiliation(s)
- Jiamin Chen
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Zhixuan Cheng
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Jiahao Chen
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Minglai Li
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Xionghui Jia
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Yuqia Ran
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Yi Zhang
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Yanping Li
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Tongjun Yu
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Beijing 100871, China
| | - Lun Dai
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Beijing 100871, China
| |
Collapse
|
6
|
Braun J, Powell AK, Unterreiner AN. Gaining Insights into the Interplay between Optical and Magnetic Properties in Photoexcited Coordination Compounds. Chemistry 2024; 30:e202400977. [PMID: 38693865 DOI: 10.1002/chem.202400977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 05/03/2024]
Abstract
We describe early and recent advances in the fascinating field of combined magnetic and optical properties of inorganic coordination compounds and in particular of 3d-4f single molecule magnets. We cover various applied techniques which allow for the correlation of results obtained in the frequency and time domain in order to highlight the specific properties of these compounds and the future challenges towards multidimensional spectroscopic tools. An important point is to understand the details of the interplay of magnetic and optical properties through performing time-resolved studies in the presence of external fields especially magnetic ones. This will enable further exploration of this fundamental interactions i. e. the two components of electromagnetic radiation influencing optical properties.
Collapse
Affiliation(s)
- Jonas Braun
- Institute of Inorganic Chemistry (AOC), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
- Institute for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
| | - Annie K Powell
- Institute of Inorganic Chemistry (AOC), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
- Institute for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
| | - Andreas-Neil Unterreiner
- Institute of Physical Chemistry (IPC), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
| |
Collapse
|
7
|
Liu C, Li Z, Chen Z, Hu J, Duan H, Wang C, Feng S, Liu R, Zhang G, Cao J, Niu Y, Li Q, Li P, Yan W. Realizing Room-Temperature Ferromagnetism in Molecular-Intercalated Antiferromagnet VOCl. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405284. [PMID: 38925592 DOI: 10.1002/adma.202405284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/20/2024] [Indexed: 06/28/2024]
Abstract
2D van der Waals (vdW) magnets are gaining attention in fundamental physics and advanced spintronics, due to their unique dimension-dependent magnetism and potential for ultra-compact integration. However, achieving intrinsic ferromagnetism with high Curie temperature (TC) remains a technical challenge, including preparation and stability issues. Herein, an applicable electrochemical intercalation strategy to decouple interlayer interaction and guide charge doping in antiferromagnet VOCl, thereby inducing robust room-temperature ferromagnetism, is developed. The expanded vdW gap isolates the neighboring layers and shrinks the distance between the V-V bond, favoring the generation of ferromagnetic (FM) coupling with perpendicular magnetic anisotropy. Element-specific X-ray magnetic circular dichroism (XMCD) directly proves the source of the ferromagnetism. Detailed experimental results and density functional theory (DFT) calculations indicate that the charge doping enhances the FM interaction by promoting the orbital hybridization between t2 g and eg. This work sheds new light on a promising way to achieve room-temperature ferromagnetism in antiferromagnets, thus addressing the critical materials demand for designing spintronic devices.
Collapse
Affiliation(s)
- Chaocheng Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Zhi Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Zheng Chen
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230031, China
| | - Jiyu Hu
- School of Physics and Materials Engineering, Hefei Normal University, Hefei, 230601, China
| | - Hengli Duan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Chao Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Sihua Feng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Ruiqi Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Guobin Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Jiefeng Cao
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Yuran Niu
- MAX IV Laboratory, Lund University, Lund, 22100, Sweden
| | - Qian Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Pai Li
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
8
|
Pal SK, Rusch LA. Tailoring focal plane component intensities of polarization singular fields in a tight focusing system. Sci Rep 2024; 14:13565. [PMID: 38866872 PMCID: PMC11169354 DOI: 10.1038/s41598-024-64392-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024] Open
Abstract
The scientific community studies tight focusing of radially and azimuthally-polarized vector beams as it is a versatile solution for many applications. We offer a new method to produce tight focusing that ensures a more uniform intensity profile in multiple dimensions, providing a more versatile and stable solution. We manipulate the polarization of the radially and azimuthally polarized vector beams to find an optimal operating point. We examine in detail optical fields whose polarization states lie on the equator of the relevant Poincaré spheres namely, the fundamental Poincaré sphere, the hybrid order Poincaré sphere (HyOPS), and the higher order Poincaré sphere. We find via simulation that the fields falling on these equators have focal plane intensity distributions characterized by a single rotation parameter α determining the individual state of polarization. The strengths of the component field distributions vary with α and can be tuned to achieve equal strengths of longitudinal (z) and transverse (x and y) components at the focal plane. Without control of this parameter (e.g., using α = 0 in radially and α = π in azimuthally-polarized vector beams) intensity in x and y components are at 20% of the z component. In our solution with α = π / 2 , all components are at 80% of the maximum possible intensity of z. In examining the impact of α on a tightly focused beam, we also found that a helicity inversion of HyOPS beams causes a rotation of 180 degree in the axial intensity distribution.
Collapse
Affiliation(s)
- Sushanta Kumar Pal
- Department of Electrical and Computer Engineering, Centre for Optics, Photonics, and Lasers (COPL), Université Laval, Québec, QC, G1V 0A6, Canada.
| | - Leslie A Rusch
- Department of Electrical and Computer Engineering, Centre for Optics, Photonics, and Lasers (COPL), Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
9
|
Li S, Wang R, Frauenheim T, He J. Optical-Helicity-Dependent Orbital and Spin Dynamics in Two-Dimensional Ferromagnets. J Phys Chem Lett 2024; 15:5939-5946. [PMID: 38810216 PMCID: PMC11163468 DOI: 10.1021/acs.jpclett.4c01152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 05/31/2024]
Abstract
Disentangling orbital (OAM) and spin (SAM) angular momenta in the ultrafast spin dynamics of two-dimensional (2D) ferromagnets on subfemtoseconds is a challenge in the field of ultrafast magnetism. Herein, we employed a non-collinear spin version of real-time time-dependent density functional theory to investigate the orbital and spin dynamics of the 2D ferromagnets Fe3GeTe2 (FGT) induced by circularly polarized light. Our results show that the demagnetization of the Fe sublattice in FGT is accompanied by helicity-dependent precession of the OAM and SAM excited by circularly polarized lasers. We further identify that precession of the OAM and SAM in FGT is faster than demagnetization within a few femtoseconds. Remarkably, circularly polarized lasers can significantly induce a periodic transverse linear response of the OAM and SAM on very ultrafast time scales of ∼600 attoseconds. Our finding suggests a powerful new route for attosecond regimes of the angular momentum manipulation to coherently control helicity-dependent orbital and spin dynamics in 2D ferromagnets.
Collapse
Affiliation(s)
- Shuo Li
- Institute
for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ran Wang
- Institute
for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Thomas Frauenheim
- Institute
for Advanced Study, Chengdu University, Chengdu 610106, China
- School
of Science, Constructor University, Bremen 28759, Germany
| | - Junjie He
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague 12843, Czech Republic
| |
Collapse
|
10
|
Zalewski T, Maziewski A, Kimel AV, Stupakiewicz A. Ultrafast all-optical toggle writing of magnetic bits without relying on heat. Nat Commun 2024; 15:4451. [PMID: 38789410 PMCID: PMC11126708 DOI: 10.1038/s41467-024-48438-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Ultrafast excitation of matter can violate Curie's principle that the symmetry of the cause must be found in the symmetry of the effect. For instance, heating alone cannot result in a deterministic reversal of magnetization. However, if the heating is ultrafast, it facilitates toggle switching of magnetization between stable bit-states without any magnetic field. Here we show that the regime of ultrafast toggle switching can be also realized via a mechanism without relying on heat. Ultrafast laser excitation of iron-garnet with linearly polarized light modifies magnetic anisotropy and thus causes toggling magnetization between two stable bit states. This new regime of 'cold' toggle switching can be observed in ferrimagnets without a compensation point and over an exceptionally broad temperature range. The control of magnetic anisotropy required for the toggle switching exhibits reduced dissipation compared to laser-induced-heating mechanism, however the dissipation and the switching-time are shown to be competing parameters.
Collapse
Affiliation(s)
- T Zalewski
- Faculty of Physics, University of Bialystok, Bialystok, Poland
| | - A Maziewski
- Faculty of Physics, University of Bialystok, Bialystok, Poland
| | - A V Kimel
- Radboud University, Institute for Molecules and Materials, Nijmegen, The Netherlands
| | - A Stupakiewicz
- Faculty of Physics, University of Bialystok, Bialystok, Poland.
| |
Collapse
|
11
|
Dutta S, Husain S, Kumar P, Gupta NK, Chaudhary S, Svedlindh P, Barman A. Manipulating ultrafast magnetization dynamics of ferromagnets using the odd-even layer dependence of two-dimensional transition metal di-chalcogenides. NANOSCALE 2024; 16:4105-4113. [PMID: 38349614 DOI: 10.1039/d3nr06197c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Two-dimensional transition metal dichalcogenides (TMDs) have drawn immense interest due to their strong spin-orbit coupling and unique layer number dependence in response to spin-valley coupling. This leads to the possibility of controlling the spin degree of freedom of the ferromagnet (FM) in thin film heterostructures and may prove to be of interest for next-generation spin-based devices. Here, we experimentally demonstrate the odd-even layer dependence of WS2 nanolayers by measurements of the ultrafast magnetization dynamics in WS2/Co3FeB thin film heterostructures by using time-resolved Kerr magnetometry. The fluence (photon energy per unit area) dependent magnetic damping (α) reveals the existence of broken symmetry and the dominance of inter- and intraband scattering for odd and even layers of WS2, respectively. The higher demagnetization time, τm, in 3 and 5 layers of WS2 is indicative of the interaction between spin-orbit and spin-valley coupling due to the broken symmetry. The lower τm in even layers as compared to the bare FM layer suggests the presence of a spin transport. By correlating τm and α, we pinpointed the dominant mechanisms of ultrafast demagnetization. The mechanism changes from spin transport to spin-flip scattering for even layers of WS2 with increasing fluence. A fundamental understanding of the two-dimensional material and its odd-even layer dependence at ultrashort timescales provides valuable information for designing next-generation spin-based devices.
Collapse
Affiliation(s)
- Soma Dutta
- Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Block JD, Sector-III, Salt Lake, Kolkata 700 106, India.
| | - Sajid Husain
- Department of Materials Science and Engineering, Uppsala University, Box 35, SE-751 03 Uppsala, Sweden.
| | - Prabhat Kumar
- Department of Thin Films and Nanostructures, Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10/112, 162 00 Prague, Czech Republic
| | - Nanhe Kumar Gupta
- Thin Film Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sujeet Chaudhary
- Thin Film Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Peter Svedlindh
- Department of Materials Science and Engineering, Uppsala University, Box 35, SE-751 03 Uppsala, Sweden.
| | - Anjan Barman
- Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Block JD, Sector-III, Salt Lake, Kolkata 700 106, India.
| |
Collapse
|
12
|
Moon A, Li Y, McKeever C, Casas BW, Bravo M, Zheng W, Macy J, Petford-Long AK, McCandless GT, Chan JY, Phatak C, Santos EJG, Balicas L. Writing and Detecting Topological Charges in Exfoliated Fe 5-xGeTe 2. ACS NANO 2024; 18:4216-4228. [PMID: 38262067 DOI: 10.1021/acsnano.3c09234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Fe5-xGeTe2 is a promising two-dimensional (2D) van der Waals (vdW) magnet for practical applications, given its magnetic properties. These include Curie temperatures above room temperature, and topological spin textures─TST (both merons and skyrmions), responsible for a pronounced anomalous Hall effect (AHE) and its topological counterpart (THE), which can be harvested for spintronics. Here, we show that both the AHE and THE can be amplified considerably by just adjusting the thickness of exfoliated Fe5-xGeTe2, with THE becoming observable even in zero magnetic field due to a field-induced unbalance in topological charges. Using a complementary suite of techniques, including electronic transport, Lorentz transmission electron microscopy, and micromagnetic simulations, we reveal the emergence of substantial coercive fields upon exfoliation, which are absent in the bulk, implying thickness-dependent magnetic interactions that affect the TST. We detected a "magic" thickness t ≈ 30 nm where the formation of TST is maximized, inducing large magnitudes for the topological charge density (∼6.45 × 1020 cm-2), and the concomitant anomalous (ρxyA,max ≃22.6 μΩ cm) and topological (ρxyu,T 1≃5 μΩ cm) Hall resistivities at T ≈ 120 K. These values for ρxyA,max and ρxyu,T are higher than those found in magnetic topological insulators and, so far, the largest reported for 2D magnets. The hitherto unobserved THE under zero magnetic field could provide a platform for the writing and electrical detection of TST aiming at energy-efficient devices based on vdW ferromagnets.
Collapse
Affiliation(s)
- Alex Moon
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Dr., Tallahassee, Florida 32310, United States
- Department of Physics, Florida State University, 77 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Yue Li
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Conor McKeever
- Institute for Condensed Matter and Complex Systems, School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3FD, U.K
| | - Brian W Casas
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Dr., Tallahassee, Florida 32310, United States
| | - Moises Bravo
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Wenkai Zheng
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Dr., Tallahassee, Florida 32310, United States
- Department of Physics, Florida State University, 77 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Juan Macy
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Dr., Tallahassee, Florida 32310, United States
- Department of Physics, Florida State University, 77 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Amanda K Petford-Long
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Gregory T McCandless
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Julia Y Chan
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Charudatta Phatak
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Elton J G Santos
- Institute for Condensed Matter and Complex Systems, School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3FD, U.K
- Higgs Centre for Theoretical Physics, The University of Edinburgh, Edinburgh EH9 3FD, U.K
| | - Luis Balicas
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Dr., Tallahassee, Florida 32310, United States
- Department of Physics, Florida State University, 77 Chieftan Way, Tallahassee, Florida 32306, United States
| |
Collapse
|
13
|
Ortiz Jimenez V, Pham YTH, Zhou D, Liu M, Nugera FA, Kalappattil V, Eggers T, Hoang K, Duong DL, Terrones M, Rodriguez Gutiérrez H, Phan M. Transition Metal Dichalcogenides: Making Atomic-Level Magnetism Tunable with Light at Room Temperature. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304792. [PMID: 38072638 PMCID: PMC10870067 DOI: 10.1002/advs.202304792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/04/2023] [Indexed: 02/17/2024]
Abstract
The capacity to manipulate magnetization in 2D dilute magnetic semiconductors (2D-DMSs) using light, specifically in magnetically doped transition metal dichalcogenide (TMD) monolayers (M-doped TX2 , where M = V, Fe, and Cr; T = W, Mo; X = S, Se, and Te), may lead to innovative applications in spintronics, spin-caloritronics, valleytronics, and quantum computation. This Perspective paper explores the mediation of magnetization by light under ambient conditions in 2D-TMD DMSs and heterostructures. By combining magneto-LC resonance (MLCR) experiments with density functional theory (DFT) calculations, we show that the magnetization can be enhanced using light in V-doped TMD monolayers (e.g., V-WS2 , V-WSe2 ). This phenomenon is attributed to excess holes in the conduction and valence bands, and carriers trapped in magnetic doping states, mediating the magnetization of the semiconducting layer. In 2D-TMD heterostructures (VSe2 /WS2 , VSe2 /MoS2 ), the significance of proximity, charge-transfer, and confinement effects in amplifying light-mediated magnetism is demonstrated. We attributed this to photon absorption at the TMD layer that generates electron-hole pairs mediating the magnetization of the heterostructure. These findings will encourage further research in the field of 2D magnetism and establish a novel design of 2D-TMDs and heterostructures with optically tunable magnetic functionalities, paving the way for next-generation magneto-optic nanodevices.
Collapse
Affiliation(s)
- Valery Ortiz Jimenez
- Department of PhysicsUniversity of South FloridaTampaFL33620USA
- Nanoscale Device Characterization DivisionNational Institute of Standards and TechnologyGaithersburgMD20899USA
| | | | - Da Zhou
- Department of PhysicsThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Mingzu Liu
- Department of PhysicsThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | | | | | - Tatiana Eggers
- Department of PhysicsUniversity of South FloridaTampaFL33620USA
| | - Khang Hoang
- Center for Computationally Assisted Science and Technology and Department of PhysicsNorth Dakota State UniversityFargoND58108USA
| | - Dinh Loc Duong
- Department of PhysicsMontana State UniversityBozemanMT59717USA
| | - Mauricio Terrones
- Department of PhysicsThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | | | - Manh‐Huong Phan
- Department of PhysicsUniversity of South FloridaTampaFL33620USA
| |
Collapse
|
14
|
Koo Y, Moon T, Kang M, Joo H, Lee C, Lee H, Kravtsov V, Park KD. Dynamical control of nanoscale light-matter interactions in low-dimensional quantum materials. LIGHT, SCIENCE & APPLICATIONS 2024; 13:30. [PMID: 38272869 PMCID: PMC10810844 DOI: 10.1038/s41377-024-01380-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/26/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024]
Abstract
Tip-enhanced nano-spectroscopy and -imaging have significantly advanced our understanding of low-dimensional quantum materials and their interactions with light, providing a rich insight into the underlying physics at their natural length scale. Recently, various functionalities of the plasmonic tip expand the capabilities of the nanoscopy, enabling dynamic manipulation of light-matter interactions at the nanoscale. In this review, we focus on a new paradigm of the nanoscopy, shifting from the conventional role of imaging and spectroscopy to the dynamical control approach of the tip-induced light-matter interactions. We present three different approaches of tip-induced control of light-matter interactions, such as cavity-gap control, pressure control, and near-field polarization control. Specifically, we discuss the nanoscale modifications of radiative emissions for various emitters from weak to strong coupling regime, achieved by the precise engineering of the cavity-gap. Furthermore, we introduce recent works on light-matter interactions controlled by tip-pressure and near-field polarization, especially tunability of the bandgap, crystal structure, photoluminescence quantum yield, exciton density, and energy transfer in a wide range of quantum materials. We envision that this comprehensive review not only contributes to a deeper understanding of the physics of nanoscale light-matter interactions but also offers a valuable resource to nanophotonics, plasmonics, and materials science for future technological advancements.
Collapse
Affiliation(s)
- Yeonjeong Koo
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Taeyoung Moon
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Mingu Kang
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Huitae Joo
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Changjoo Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hyeongwoo Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Vasily Kravtsov
- School of Physics and Engineering, ITMO University, Saint Petersburg, 197101, Russia
| | - Kyoung-Duck Park
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
15
|
Zhang Y, Zhao K, Zheng S, Wang J, Zhang J, Feng Q, Wang Z, Gao J, Hou Y, Meng W, Lu Y, Lu Q. Glovebox-assisted magnetic force microscope for studying air-sensitive samples in a cryogen-free magnet. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:013701. [PMID: 38197772 DOI: 10.1063/5.0186587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024]
Abstract
Most known two-dimensional magnets exhibit a high sensitivity to air, making direct characterization of their domain textures technically challenging. Herein, we report on the construction and performance of a glovebox-assisted magnetic force microscope (MFM) operating in a cryogen-free magnet, realizing imaging of the intrinsic magnetic structure of water and oxygen-sensitive materials. It features a compact tubular probe for a 50 mm-diameter variable temperature insert installed in a 12 T cryogen-free magnet. A detachable sealing chamber can be electrically connected to the tail of the probe, and its pump port can be opened and closed by a vacuum manipulator located on the top of the probe. This sealing chamber enables sample loading and positioning in the glove box and MFM transfer to the magnet maintained in an inert gas atmosphere (in this case, argon and helium gas). The performance of the MFM is demonstrated by directly imaging the surface (using no buffer layer, such as h-BN) of very air-sensitive van der Waals magnetic material chromium triiodide (CrI3) samples at low temperatures as low as 5 K and high magnetic fields up to 11.9 T. The system's adaptability permits replacing the MFM unit with a scanning tunneling microscope unit, enabling high-resolution atomic imaging of air-sensitive surface samples.
Collapse
Affiliation(s)
- Yuchen Zhang
- University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Kesen Zhao
- University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- The High Magnetic Field Laboratory of Anhui Province, Hefei, Anhui 230031, People's Republic of China
| | - Shaofeng Zheng
- University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Jihao Wang
- Anhui Key Laboratory of Low-energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
- The High Magnetic Field Laboratory of Anhui Province, Hefei, Anhui 230031, People's Republic of China
| | - Jing Zhang
- Anhui Key Laboratory of Low-energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
- The High Magnetic Field Laboratory of Anhui Province, Hefei, Anhui 230031, People's Republic of China
| | - Qiyuan Feng
- Anhui Key Laboratory of Low-energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
- The High Magnetic Field Laboratory of Anhui Province, Hefei, Anhui 230031, People's Republic of China
| | - Ze Wang
- The High Magnetic Field Laboratory of Anhui Province, Hefei, Anhui 230031, People's Republic of China
| | - Jianhua Gao
- Anhui Key Laboratory of Low-energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
- The High Magnetic Field Laboratory of Anhui Province, Hefei, Anhui 230031, People's Republic of China
| | - Yubin Hou
- Anhui Key Laboratory of Low-energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
- The High Magnetic Field Laboratory of Anhui Province, Hefei, Anhui 230031, People's Republic of China
| | - Wenjie Meng
- Anhui Key Laboratory of Low-energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
- The High Magnetic Field Laboratory of Anhui Province, Hefei, Anhui 230031, People's Republic of China
| | - Yalin Lu
- University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Qingyou Lu
- University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Anhui Key Laboratory of Low-energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
- The High Magnetic Field Laboratory of Anhui Province, Hefei, Anhui 230031, People's Republic of China
- Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
16
|
Bartram FM, Li M, Liu L, Xu Z, Wang Y, Che M, Li H, Wu Y, Xu Y, Zhang J, Yang S, Yang L. Real-time observation of magnetization and magnon dynamics in a two-dimensional topological antiferromagnet MnBi 2Te 4. Sci Bull (Beijing) 2023; 68:2734-2742. [PMID: 37863774 DOI: 10.1016/j.scib.2023.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/22/2023] [Accepted: 09/30/2023] [Indexed: 10/22/2023]
Abstract
Atomically thin van der Waals magnetic materials have not only provided a fertile playground to explore basic physics in the two-dimensional (2D) limit but also created vast opportunities for novel ultrafast functional devices. Here we systematically investigate ultrafast magnetization dynamics and spin wave dynamics in few-layer topological antiferromagnetic MnBi2Te4 crystals as a function of layer number, temperature, and magnetic field. We find laser-induced (de)magnetization processes can be used to accurately track the distinct magnetic states in different magnetic field regimes, including showing clear odd-even layer number effects. In addition, strongly field-dependent AFM magnon modes with tens of gigahertz frequencies are optically generated and directly observed in the time domain. Remarkably, we find that magnetization and magnon dynamics can be observed in not only the time-resolved magneto-optical Kerr effect but also the time resolved reflectivity, indicating strong correlation between the magnetic state and electronic structure. These measurements present the first comprehensive overview of ultrafast spin dynamics in this novel 2D antiferromagnet, paving the way for potential applications in 2D antiferromagnetic spintronics and magnonics as well as further studies of ultrafast control of both magnetization and topological quantum states.
Collapse
Affiliation(s)
- F Michael Bartram
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China; Department of Physics, University of Toronto, Toronto M5S 1A7, Canada
| | - Meng Li
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Liangyang Liu
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Zhiming Xu
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Yongchao Wang
- Beijing Innovation Center for Future Chips, Tsinghua University, Beijing 100084, China
| | - Mengqian Che
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Hao Li
- Tsinghua-Foxconn Nanotechnology Research Center, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Yang Wu
- Tsinghua-Foxconn Nanotechnology Research Center, Department of Physics, Tsinghua University, Beijing 100084, China; College of Math and Physics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yong Xu
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China; Frontier Science Center for Quantum Information, Beijing 100084, China; Collaborative Innovation Center of Quantum Matter, Beijing 100084, China; RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| | - Jinsong Zhang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China; Frontier Science Center for Quantum Information, Beijing 100084, China; Hefei National Laboratory, Hefei 230088, China
| | - Shuo Yang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China; Frontier Science Center for Quantum Information, Beijing 100084, China; Collaborative Innovation Center of Quantum Matter, Beijing 100084, China; Hefei National Laboratory, Hefei 230088, China
| | - Luyi Yang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China; Department of Physics, University of Toronto, Toronto M5S 1A7, Canada; Frontier Science Center for Quantum Information, Beijing 100084, China; Collaborative Innovation Center of Quantum Matter, Beijing 100084, China.
| |
Collapse
|
17
|
Lubert-Perquel D, Acharya S, Johnson JC. Optically Addressing Exciton Spin and Pseudospin in Nanomaterials for Spintronics Applications. ACS APPLIED OPTICAL MATERIALS 2023; 1:1742-1760. [PMID: 38037653 PMCID: PMC10683369 DOI: 10.1021/acsaom.3c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023]
Abstract
Oriented exciton spins that can be generated and manipulated optically are of interest for a range of applications, including spintronics, quantum information science, and neuromorphic computing architectures. Although materials that host such excitons often lack practical coherence times for use on their own, strategic transduction of the magnetic information across interfaces can combine fast modulation with longer-term storage and readout. Several nanostructure systems have been put forward due to their interesting magneto-optical properties and their possible manipulation using circularly polarized light. These material systems are presented here, namely two-dimensional (2D) systems due to the unique spin-valley coupling properties and quantum dots for their exciton fine structure. 2D magnets are also discussed for their anisotropic spin behavior and extensive 2D magnetic states that are not yet fully understood but could pave the way for emergent techniques of magnetic control. This review also details the experimental and theoretical tools to measure and understand these systems along with a discussion on the progress of optical manipulation of spins and magnetic order transitions.
Collapse
Affiliation(s)
- Daphné Lubert-Perquel
- Materials, Chemical, and
Computational Science Directorate, National
Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Swagata Acharya
- Materials, Chemical, and
Computational Science Directorate, National
Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Justin C. Johnson
- Materials, Chemical, and
Computational Science Directorate, National
Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| |
Collapse
|
18
|
Bozin ES, Abeykoon M, Conradson S, Baldinozzi G, Sutar P, Mihailovic D. Crystallization of polarons through charge and spin ordering transitions in 1T-TaS 2. Nat Commun 2023; 14:7055. [PMID: 37923707 PMCID: PMC10624925 DOI: 10.1038/s41467-023-42631-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/16/2023] [Indexed: 11/06/2023] Open
Abstract
The interaction of electrons with the lattice in metals can lead to reduction of their kinetic energy to the point where they may form heavy, dressed quasiparticles-polarons. Unfortunately, polaronic lattice distortions are difficult to distinguish from more conventional charge- and spin-ordering phenomena at low temperatures. Here we present a study of local symmetry breaking of the lattice structure on the picosecond timescale in the prototype layered dichalcogenide Mott insulator 1T-TaS2 using X-ray pair-distribution function measurements. We clearly identify symmetry-breaking polaronic lattice distortions at temperatures well above the ordered phases, and record the evolution of broken symmetry states from 915 K to 15 K. The data imply that charge ordering is driven by polaron crystallization into a Wigner crystal-like state, rather than Fermi surface nesting or conventional electron-phonon coupling. At intermediate temperatures the local lattice distortions are found to be consistent with a quantum spin liquid state.
Collapse
Affiliation(s)
- E S Bozin
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA.
| | - M Abeykoon
- Photon Sciences Division, Brookhaven National Laboratory, Upton, NY, USA
| | - S Conradson
- Dept. of Complex Matter, Jozef Stefan Institute, Ljubljana, Slovenia
| | - G Baldinozzi
- Centralesupélec, CNRS, SPMS, Université Paris-Saclay, bât Eiffel, Gif-sur-Yvette, Île-de-France, France
| | - P Sutar
- Dept. of Complex Matter, Jozef Stefan Institute, Ljubljana, Slovenia
| | - D Mihailovic
- Dept. of Complex Matter, Jozef Stefan Institute, Ljubljana, Slovenia.
| |
Collapse
|
19
|
Zur Y, Noah A, Boix-Constant C, Mañas-Valero S, Fridman N, Rama-Eiroa R, Huber ME, Santos EJG, Coronado E, Anahory Y. Magnetic Imaging and Domain Nucleation in CrSBr Down to the 2D Limit. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2307195. [PMID: 37702506 DOI: 10.1002/adma.202307195] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/31/2023] [Indexed: 09/14/2023]
Abstract
Recent advancements in 2D materials have revealed the potential of van der Waals magnets, and specifically of their magnetic anisotropy that allows applications down to the 2D limit. Among these materials, CrSBr has emerged as a promising candidate, because its intriguing magnetic and electronic properties have appeal for both fundamental and applied research in spintronics or magnonics. In this work, nano-SQUID-on-tip (SOT) microscopy is used to obtain direct magnetic imaging of CrSBr flakes with thicknesses ranging from monolayer (N = 1) to few-layer (N = 5). The ferromagnetic order is preserved down to the monolayer, while the antiferromagnetic coupling of the layers starts from the bilayer case. For odd layers, at zero applied magnetic field, the stray field resulting from the uncompensated layer is directly imaged. The progressive spin reorientation along the out-of-plane direction (hard axis) is also measured with a finite applied magnetic field, allowing evaluation of the anisotropy constant, which remains stable down to the monolayer and is close to the bulk value. Finally, by selecting the applied magnetic field protocol, the formation of Néel magnetic domain walls is observed down to the single-layer limit.
Collapse
Affiliation(s)
- Yishay Zur
- The Racah Institute of Physics, The Hebrew University, Jerusalem, 9190401, Israel
- Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Avia Noah
- The Racah Institute of Physics, The Hebrew University, Jerusalem, 9190401, Israel
- Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Carla Boix-Constant
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, Paterna, 46980, Spain
| | - Samuel Mañas-Valero
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, Paterna, 46980, Spain
| | - Nofar Fridman
- The Racah Institute of Physics, The Hebrew University, Jerusalem, 9190401, Israel
- Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Ricardo Rama-Eiroa
- Donostia International Physics Center (DIPC), Basque Country, Donostia-San Sebastián, 20018, Spain
- Institute for Condensed Matter Physics and Complex Systems, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH93FD, UK
| | - Martin E Huber
- Departments of Physics and Electrical Engineering, University of Colorado Denver, Denver, CO, 80217, USA
| | - Elton J G Santos
- Donostia International Physics Center (DIPC), Basque Country, Donostia-San Sebastián, 20018, Spain
- Institute for Condensed Matter Physics and Complex Systems, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH93FD, UK
- Higgs Centre for Theoretical Physics, University of Edinburgh, Edinburgh, EH93FD, UK
| | - Eugenio Coronado
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, Paterna, 46980, Spain
| | - Yonathan Anahory
- The Racah Institute of Physics, The Hebrew University, Jerusalem, 9190401, Israel
- Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
20
|
Laser-induced topological spin switching in a 2D van der Waals magnet. Nat Commun 2023; 14:1378. [PMID: 36914683 PMCID: PMC10011585 DOI: 10.1038/s41467-023-37082-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Two-dimensional (2D) van der Waals (vdW) magnets represent one of the most promising horizons for energy-efficient spintronic applications because their broad range of electronic, magnetic and topological properties. However, little is known about the interplay between light and spin properties in vdW layers. Here we show that ultrafast laser excitation can not only generate different type of spin textures in CrGeTe3 vdW magnets but also induce a reversible transformation between them in a topological toggle switch mechanism. Our atomistic spin dynamics simulations and wide-field Kerr microscopy measurements show that different textures can be generated via high-intense laser pulses within the picosecond regime. The phase transformation between the different topological spin textures is obtained as additional laser pulses are applied to the system where the polarisation and final state of the spins can be controlled by external magnetic fields. Our results indicate laser-driven spin textures on 2D magnets as a pathway towards reconfigurable topological architectures at the atomistic level.
Collapse
|
21
|
Jenkins S, Rózsa L, Atxitia U, Evans RFL, Novoselov KS, Santos EJG. Breaking through the Mermin-Wagner limit in 2D van der Waals magnets. Nat Commun 2022; 13:6917. [PMCID: PMC9663506 DOI: 10.1038/s41467-022-34389-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
AbstractThe Mermin-Wagner theorem states that long-range magnetic order does not exist in one- (1D) or two-dimensional (2D) isotropic magnets with short-ranged interactions. Here we show that in finite-size 2D van der Waals magnets typically found in lab setups (within millimetres), short-range interactions can be large enough to allow the stabilisation of magnetic order at finite temperatures without any magnetic anisotropy. We demonstrate that magnetic ordering can be created in 2D flakes independent of the lattice symmetry due to the intrinsic nature of the spin exchange interactions and finite-size effects. Surprisingly we find that the crossover temperature, where the intrinsic magnetisation changes from superparamagnetic to a completely disordered paramagnetic regime, is weakly dependent on the system length, requiring giant sizes (e.g., of the order of the observable universe ~ 1026 m) to observe the vanishing of the magnetic order as expected from the Mermin-Wagner theorem. Our findings indicate exchange interactions as the main ingredient for 2D magnetism.
Collapse
|