1
|
Roger AL, El Haddad L, Huston ML, Kehoe S, Le D, Khan M, Scarrow E, Gonzalez T, Benkert A, Asokan A, ElMallah MK. GAA replacement improves respiratory muscle, neural, and alveolar pathology in the pompe mouse. Respir Physiol Neurobiol 2025; 335:104433. [PMID: 40288624 DOI: 10.1016/j.resp.2025.104433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/27/2025] [Accepted: 04/06/2025] [Indexed: 04/29/2025]
Abstract
Pompe disease is a devastating neuromuscular disorder caused by mutations in the gene GAA. These mutations result in a deficiency of the enzyme acid α-glucosidase (GAA), leading to lysosomal glycogen accumulation in cardiac, skeletal, and smooth muscle, motor neurons, and alveolar epithelial cells. Respiratory failure due to neuromuscular weakness, recurrent aspiration pneumonia, and tracheo-bronchomalacia are the leading causes of morbidity and mortality in PD patients. Enzyme replacement therapy (ERT) is currently the only FDA approved treatment for Pompe disease, however, gene therapy with naturally occurring and engineered adeno-associated viral vectors are also widely studied as an alternative treatment. In the present study we directly compared the benefits of existing and novel treatment modalities - ERT, AAV9-GAA, and AAVcc47-GAA, with an emphasis on correction of pathologies related to respiratory function. We find that GAA replacement in early adult mice improves respiration through 9 months of age. This improvement is attributed to glycogen clearance in the tongue, diaphragm, and lungs, which subsequently improved diaphragm neuromuscular junctions and reduced lysosomes within the alveolar epithelia.
Collapse
Affiliation(s)
- Angela L Roger
- Department of Pediatrics, School of Medicine, Duke University, USA
| | - Lea El Haddad
- Department of Pediatrics, School of Medicine, Duke University, USA
| | | | - Sean Kehoe
- Department of Pediatrics, School of Medicine, Duke University, USA
| | - Davina Le
- Department of Pediatrics, School of Medicine, Duke University, USA
| | - Mainur Khan
- Department of Pediatrics, School of Medicine, Duke University, USA
| | - Evelyn Scarrow
- Department of Pediatrics, School of Medicine, Duke University, USA
| | - Trevor Gonzalez
- Department of Surgery, School of Medicine, Duke University, USA
| | - Abigail Benkert
- Department of Surgery, School of Medicine, Duke University, USA
| | - Aravind Asokan
- Department of Surgery, School of Medicine, Duke University, USA; Department of Molecular Genetics & Microbiology, Duke University, USA; Department of Biomedical Engineering, Pratt School of Engineering, Duke University, USA
| | - Mai K ElMallah
- Department of Pediatrics, School of Medicine, Duke University, USA.
| |
Collapse
|
2
|
Yadav A, Liang R, Press K, Schmidt A, Shabani Z, Leng K, Wang C, Sekhar A, Shi J, Devlin GW, Gonzalez TJ, Asokan A, Su H. Evaluation of AAV Capsids and Delivery Approaches for Hereditary Hemorrhagic Telangiectasia Gene Therapy. Transl Stroke Res 2025; 16:914-924. [PMID: 38977637 PMCID: PMC11968179 DOI: 10.1007/s12975-024-01275-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024]
Abstract
Nosebleeds and intracranial hemorrhage from brain arteriovenous malformations (bAVMs) are among the most devastating symptoms of patients with hereditary hemorrhagic telangiectasis (HHT). All available managements have limitations. We showed that intravenous (i.v.) delivery of soluble Feline McDonough Sarcoma (FMS)-related tyrosine kinase 1 using an adeno-associated viral vector (AAV9-sFLT1) reduced bAVM severity of endoglin deficient mice. However, minor liver inflammation and growth arrest in young mice were observed. To identify AAV variants and delivery methods that can best transduce brain and nasal tissue with an optimal transduction profile, we compared 3 engineered AAV capsids (AAV.cc47, AAV.cc84, and AAV1RX) with AAV9. A single-stranded CBA promoter driven tdTomato transgene was packaged in these capsids and delivered i.v. or intranasally (i.n.) to wild-type mice. A CMV promoter driven Alk1 transgene was packaged into AAV.cc84 and delivered to PdgfbiCre;Alk1f/f mice through i.v. followed by bAVM induction. Transduced cells in organs, vessel density, abnormal vessels in the bAVMs, and liver inflammation were analyzed histologically. Liver and kidney function were measured enzymatically. Compared to other viral vectors, AAV.cc84, after i.v. delivery, transduced a high percentage of brain endothelial cells (ECs) and few hepatocytes; whereas after i.n. delivery, AAV.cc84 transduced ECs and perivascular cells in the brain, and ECs, epithelial cells, and muscles in the nose with minimum hepatocyte transduction. No changes to liver or kidney function were detected. The delivery of AAV.cc84-Alk1 through i.v. to PdgfbiCre;Alk1f/f mice reduced bAVM severity. In summary, we propose that AAV.cc84-Alk1 is a promising candidate for developing gene therapy in HHT patients.
Collapse
Affiliation(s)
- Alka Yadav
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, 2540 23Rd Street, Box 1363, San Francisco, CA, 94143, USA
| | - Rich Liang
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, 2540 23Rd Street, Box 1363, San Francisco, CA, 94143, USA
| | - Kelly Press
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, 2540 23Rd Street, Box 1363, San Francisco, CA, 94143, USA
| | - Annika Schmidt
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, 2540 23Rd Street, Box 1363, San Francisco, CA, 94143, USA
| | - Zahra Shabani
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, 2540 23Rd Street, Box 1363, San Francisco, CA, 94143, USA
| | - Kun Leng
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, 2540 23Rd Street, Box 1363, San Francisco, CA, 94143, USA
- Medical Scientist Training Program, University of California, San Francisco, CA, USA
| | - Calvin Wang
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, 2540 23Rd Street, Box 1363, San Francisco, CA, 94143, USA
| | - Abinav Sekhar
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, 2540 23Rd Street, Box 1363, San Francisco, CA, 94143, USA
| | - Joshua Shi
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, 2540 23Rd Street, Box 1363, San Francisco, CA, 94143, USA
| | - Garth W Devlin
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Trevor J Gonzalez
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Aravind Asokan
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Hua Su
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, 2540 23Rd Street, Box 1363, San Francisco, CA, 94143, USA.
| |
Collapse
|
3
|
Leib DE, Chen YH, Tecedor L, Ranum PT, Keiser MS, Lewandowski BC, Carrell EM, Arora S, Huerta-Ocampo I, Lai D, Fluta CM, Cheng C, Liu X, Davidson BL. Optimized AAV capsids for basal ganglia diseases show robust potency and distribution. Nat Commun 2025; 16:4653. [PMID: 40389462 PMCID: PMC12089535 DOI: 10.1038/s41467-025-60000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 05/08/2025] [Indexed: 05/21/2025] Open
Abstract
Huntington's disease and other disorders of the basal ganglia create challenges for biomolecule-based medicines given the poor accessibility of these deep brain structures following intracerebral or intravascular delivery. Here, we found that low dose, low volume delivery of unbiased AAV libraries into the globus pallidus allowed recovery of novel capsids capable of broad access to key deep brain and cortical structures relevant for human therapies. One such capsid, AAV-DB-3, provided transduction of up to 45% of medium spiny neurons in the adult NHP striatum, along with substantial transduction of relevant deep layer neurons in the cortex. Notably, AAV-DB-3 behaved similarly in mice as in NHPs and potently transduced human neurons derived from induced pluripotent stem cells. Thus, AAV-DB-3 provides a unique AAV for network level brain gene therapies that translates up and down the evolutionary scale for preclinical studies and eventual clinical use.
Collapse
Affiliation(s)
- D E Leib
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Latus Bio, Philadelphia, PA, USA
| | - Y H Chen
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - L Tecedor
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - P T Ranum
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Latus Bio, Philadelphia, PA, USA
| | - M S Keiser
- Department of Neurological Surgery, Neurotech Institute, The Ohio State University, Columbus, OH, USA
| | - B C Lewandowski
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - E M Carrell
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - S Arora
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - I Huerta-Ocampo
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - D Lai
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - C Cheng
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - X Liu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - B L Davidson
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 1, USA.
| |
Collapse
|
4
|
Butterfield GL, Reisman SJ, Iglesias N, Gersbach CA. Gene regulation technologies for gene and cell therapy. Mol Ther 2025; 33:2104-2122. [PMID: 40195118 DOI: 10.1016/j.ymthe.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/09/2025] Open
Abstract
Gene therapy stands at the forefront of medical innovation, offering unique potential to treat the underlying causes of genetic disorders and broadly enable regenerative medicine. However, unregulated production of therapeutic genes can lead to decreased clinical utility due to various complications. Thus, many technologies for controlled gene expression are under development, including regulated transgenes, modulation of endogenous genes to leverage native biological regulation, mapping and repurposing of transcriptional regulatory networks, and engineered systems that dynamically react to cell state changes. Transformative therapies enabled by advances in tissue-specific promoters, inducible systems, and targeted delivery have already entered clinical testing and demonstrated significantly improved specificity and efficacy. This review highlights next-generation technologies under development to expand the reach of gene therapies by enabling precise modulation of gene expression. These technologies, including epigenome editing, antisense oligonucleotides, RNA editing, transcription factor-mediated reprogramming, and synthetic genetic circuits, have the potential to provide powerful control over cellular functions. Despite these remarkable achievements, challenges remain in optimizing delivery, minimizing off-target effects, and addressing regulatory hurdles. However, the ongoing integration of biological insights with engineering innovations promises to expand the potential for gene therapy, offering hope for treating not only rare genetic disorders but also complex multifactorial diseases.
Collapse
Affiliation(s)
- Gabriel L Butterfield
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Samuel J Reisman
- Department of Cell Biology, Duke University, Durham, NC 27710, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Nahid Iglesias
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Department of Cell Biology, Duke University, Durham, NC 27710, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
5
|
Bengtsson NE, Tasfaout H, Chamberlain JS. The road toward AAV-mediated gene therapy of Duchenne muscular dystrophy. Mol Ther 2025; 33:2035-2051. [PMID: 40181545 DOI: 10.1016/j.ymthe.2025.03.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/31/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025] Open
Abstract
Forty years after the dystrophin gene was cloned, significant progress has been made in developing gene therapy approaches for Duchenne muscular dystrophy (DMD). The disorder has presented numerous challenges, including the enormous size of the gene (2.2 MB), the need to target muscles body wide, and immunogenic issues against both vectors and dystrophin. Among human genetic disorders, DMD is relatively common, and the genetics are complicated since one-third of all cases arise from a spontaneous new mutation, resulting in thousands of independent lesions throughout the locus. Many approaches have been pursued in the goal of finding an effective therapy, including exon skipping, nonsense codon suppression, upregulation of surrogate genes, gene replacement, and gene editing. Here, we focus specifically on methods using AAV vectors, as these approaches have been tested in numerous clinical trials and are able to target muscles systemically. We discuss early advances to understand the structure of dystrophin, which are crucial for the design of effective DMD gene therapies. Included is a summary of efforts to deliver micro-, mini-, and full-length dystrophins to muscles. Finally, we review current approaches to adapt gene editing to the enormous DMD gene with prospects for improved therapies using all these methods.
Collapse
Affiliation(s)
- Niclas E Bengtsson
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98109, USA; Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA 98109, USA.
| | - Hichem Tasfaout
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98109, USA; Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA 98109, USA.
| | - Jeffrey S Chamberlain
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98109, USA; Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98109, USA.
| |
Collapse
|
6
|
Puzzo F, Kay MA. The deLIVERed promises of gene therapy: Past, present, and future of liver-directed gene therapy. Mol Ther 2025; 33:1966-1987. [PMID: 40156191 DOI: 10.1016/j.ymthe.2025.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Gene therapy has revolutionized modern medicine by offering innovative treatments for genetic and acquired diseases. The liver has been and continues as a prime target for in vivo gene therapy due to its essential biological functions, vascular access to the major target cell (hepatocytes), and relatively immunotolerant environment. Adeno-associated virus (AAV) vectors have become the cornerstone of liver-directed therapies, demonstrating remarkable success in conditions such as hemophilia A and B, with US Food and Drug Administration (FDA)-approved therapies like etranacogene dezaparvovec, Beqvez, and Roctavian marking milestones in the field. Despite these advances, challenges persist, including vector immunogenicity, species-specific barriers, and high manufacturing costs. Innovative strategies, such as capsid engineering, immune modulation, and novel delivery systems, are continuing to address these issues in expanding the scope of therapeutic applications. Some of the challenges with many new therapies result in the discordance between preclinical success and translation into humans. The advent of various genome-editing tools to repair genomic mutations or insert therapeutic DNAs into precise locations in the genome further enhances the potential for a single-dose medicine that will offer durable life-long therapeutic treatments. As advancements accelerate, liver-targeted gene therapy is poised to continue to transform the treatment landscape for both genetic and acquired disorders, for which unmet challenges remain.
Collapse
Affiliation(s)
- Francesco Puzzo
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| | - Mark A Kay
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
7
|
Noriega HA, Wang Q, Yu D, Wang XS. Structural studies of Parvoviridae capsid assembly and evolution: implications for novel AAV vector design. Front Artif Intell 2025; 8:1559461. [PMID: 40242328 PMCID: PMC12000042 DOI: 10.3389/frai.2025.1559461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Adeno-associated virus (AAV) vectors have emerged as powerful tools in gene therapy, potentially treating various genetic disorders. Engineering the AAV capsids through computational methods enables the customization of these vectors to enhance their effectiveness and safety. This engineering allows for the development of gene therapies that are not only more efficient but also personalized to unique genetic profiles. When developing, it is essential to understand the structural biology and the vast techniques used to guide vector designs. This review covers the fundamental biology of the Parvoviridae capsids, focusing on modern structural study techniques, including (a) Cryo-electron microscopy and X-ray Crystallography studies and (b) Comparative analysis of capsid structures across different Parvoviridae species. Along with the structure and evolution of the Parvoviridae capsids, computational methods have provided significant insights into the design of novel AAV vector techniques, which include (a) Structure-guided design of AAV capsids with improved properties, (b) Directed Evolution of AAV capsids for specific applications, and (c) Computational prediction of AAV capsid-receptor interactions. Further discussion addressed the ongoing challenges in the AAV vector design and proposed future directions for exploring enhanced computational tools, such as artificial intelligence/machine learning and deep learning.
Collapse
Affiliation(s)
- Heather A. Noriega
- Department of Pharmaceutical Sciences, Artificial Intelligence and Drug Discovery Core Laboratory for District of Columbia Center for AIDS Research (DC CFAR), College of Pharmacy, Howard University, Washington, DC, United States
| | - Qizhao Wang
- AAVnerGene Inc., Rockville, MD, United States
| | - Daozhan Yu
- AAVnerGene Inc., Rockville, MD, United States
| | - Xiang Simon Wang
- Department of Pharmaceutical Sciences, Artificial Intelligence and Drug Discovery Core Laboratory for District of Columbia Center for AIDS Research (DC CFAR), College of Pharmacy, Howard University, Washington, DC, United States
| |
Collapse
|
8
|
Rosales A, Blondel LO, Hull J, Gao Q, Aykun N, Peek JL, Vargas A, Fergione S, Song M, Wilson MH, Barbas AS, Asokan A. Evolving adeno-associated viruses for gene transfer to the kidney via cross-species cycling of capsid libraries. Nat Biomed Eng 2025:10.1038/s41551-024-01341-0. [PMID: 39910375 DOI: 10.1038/s41551-024-01341-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/16/2024] [Indexed: 02/07/2025]
Abstract
The difficulty of delivering genes to the kidney has limited the translation of genetic medicines, particularly for the more than 10% of the global population with chronic kidney disease. Here we show that new variants of adeno-associated viruses (AAVs) displaying robust and widespread transduction in the kidneys of mice, pigs and non-human-primates can be obtained by evolving capsid libraries via cross-species cycling in different kidney models. Specifically, the new variants, AAV.k13 and AAV.k20, were enriched from the libraries following sequential intravenous cycling through mouse and pig kidneys, ex vivo cycling in human organoid cultures, and ex vivo machine perfusion in isolated kidneys from rhesus macaques. The two variants transduced murine kidneys following intravenous administration, with selective tropism for proximal tubules, and led to markedly higher transgene expression than parental AAV9 vectors in proximal tubule epithelial cells within human organoid cultures and in autotransplanted pig kidneys. Following ureteral delivery, AAV.k20 efficiently transduced kidneys in pigs and macaques. The AAV.k13 and AAV.k20 variants are promising vectors for therapeutic gene-transfer applications in kidney diseases and transplantation.
Collapse
Affiliation(s)
- Alan Rosales
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Leo O Blondel
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Joshua Hull
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Qimeng Gao
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Nihal Aykun
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Jennifer L Peek
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Alejandra Vargas
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Sophia Fergione
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Mingqing Song
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Matthew H Wilson
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Veterans Affairs, Nashville, TN, USA
| | - Andrew S Barbas
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Aravind Asokan
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA.
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
9
|
Dewars ER, Landstrom AP. The Genetic Basis of Sudden Cardiac Death: From Diagnosis to Emerging Genetic Therapies. Annu Rev Med 2025; 76:283-299. [PMID: 39499917 PMCID: PMC11929482 DOI: 10.1146/annurev-med-042423-042903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Sudden cardiac death (SCD) is an abrupt, tragic manifestation of a number of cardiovascular diseases, primarily ion channelopathies and heritable cardiomyopathies. Because these diseases are heritable, genetics play a key role in the diagnosis and management of SCD-predisposing diseases. Historically, genetics have been used to confirm a diagnosis and identify at-risk family members, but a deeper understanding of the genetic causes of SCD could pave the way for individualized therapy, early risk detection, and a transformative shift toward genetically informed therapies. This review focuses on the evolving genetic landscape of SCD-predisposing diseases, the current state of gene therapy and therapeutic development, and the promise of using predictive genetics to identify individuals at risk of SCD.
Collapse
Affiliation(s)
- Enya R Dewars
- Developmental and Stem Cell Biology Program and Cell and Molecular Biology Program, Duke University School of Medicine, Durham, North Carolina, USA
- Division of Pediatric Cardiology, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA;
| | - Andrew P Landstrom
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
- Division of Pediatric Cardiology, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA;
| |
Collapse
|
10
|
Maulana TI, Wevers NR, Kristoforus T, Chandler M, Lanz HL, Joore J, Vulto P, Villenave R, Kustermann S, Loskill P, Bircsak KM. Opportunities for Microphysiological Systems in Toxicity Testing of New Drug Modalities. Annu Rev Pharmacol Toxicol 2025; 65:47-69. [PMID: 39227343 DOI: 10.1146/annurev-pharmtox-061724-080621] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
New drug modalities offer life-saving benefits for patients through access to previously undruggable targets. Yet these modalities pose a challenge for the pharmaceutical industry, as side effects are complex, unpredictable, and often uniquely human. With animal studies having limited predictive value due to translatability challenges, the pharmaceutical industry seeks out new approach methodologies. Microphysiological systems (MPS) offer important features that enable complex toxicological processes to be modeled in vitro such as (a) an adjustable complexity of cellular components, including immune components; (b) a modifiable tissue architecture; (c) integration and monitoring of dynamic mechanisms; and (d) a multiorgan connection. Here we review MPS studies in the context of four clinical adverse events triggered by new drug modalities: peripheral neuropathy, thrombocytopenia, immune-mediated hepatotoxicity, and cytokine release syndrome. We conclude that while the use of MPS for testing new drug modality-induced toxicities is still in its infancy, we see strong potential going forward.
Collapse
Affiliation(s)
- Tengku Ibrahim Maulana
- Department for Microphysiological Systems, Institute of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | | | - Theodora Kristoforus
- Department for Microphysiological Systems, Institute of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | | | | | - Jos Joore
- MIMETAS BV, Oegstgeest, The Netherlands
| | | | - Remi Villenave
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Stefan Kustermann
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Peter Loskill
- Department for Microphysiological Systems, Institute of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | | |
Collapse
|
11
|
Wang Y, Jiang H, Li M, Xu Z, Xu H, Chen Y, Chen K, Zheng W, Lin W, Liu Z, Lin Z, Zhang M. Delivery of CRISPR/Cas9 system by AAV as vectors for gene therapy. Gene 2024; 927:148733. [PMID: 38945310 DOI: 10.1016/j.gene.2024.148733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
The adeno-associated virus (AAV) is a defective single-stranded DNA virus with the simplest structure reported to date. It constitutes a capsid protein and single-stranded DNA. With its high transduction efficiency, low immunogenicity, and tissue specificity, it is the most widely used and promising gene therapy vector. The clustered regularly interspaced short palindromic sequence (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing system is an emerging technology that utilizes cas9 nuclease to specifically recognize and cleave target genes under the guidance of small guide RNA and realizes gene editing through homologous directional repair and non-homologous recombination repair. In recent years, an increasing number of animal experiments and clinical studies have revealed the great potential of AAV as a vector to deliver the CRISPR/cas9 system for treating genetic diseases and viral infections. However, the immunogenicity, toxicity, low transmission efficiency in brain and ear tissues, packaging size limitations of AAV, and immunogenicity and off-target effects of Cas9 protein pose several clinical challenges. This research reviews the role, challenges, and countermeasures of the AAV-CRISPR/cas9 system in gene therapy.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Neonatology, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Anesthesiology, 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haibin Jiang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mopu Li
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zidi Xu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hang Xu
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuetong Chen
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kepei Chen
- Department of Neonatology, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weihong Zheng
- Department of Neonatology, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Lin
- Department of Neonatology, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiming Liu
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Zhenlang Lin
- Department of Neonatology, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Min Zhang
- Department of Neonatology, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
12
|
Xu L, Yao S, Ding YE, Xie M, Feng D, Sha P, Tan L, Bei F, Yao Y. Designing and optimizing AAV-mediated gene therapy for neurodegenerative diseases: from bench to bedside. J Transl Med 2024; 22:866. [PMID: 39334366 PMCID: PMC11429861 DOI: 10.1186/s12967-024-05661-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Recombinant adeno-associated viruses (rAAVs) have emerged as an attractive tool for gene delivery, and demonstrated tremendous promise in gene therapy and gene editing-therapeutic modalities with potential "one-and-done" treatment benefits compared to conventional drugs. Given their tropisms for the central nervous system (CNS) across various species including humans, rAAVs have been extensively investigated in both pre-clinical and clinical studies targeting neurodegenerative disease. However, major challenges remain in the application of rAAVs for CNS gene therapy, such as suboptimal vector design, low CNS transduction efficiency and specificity, and therapy-induced immunotoxicity. Therefore, continuing efforts are being made to optimize the rAAV vectors from their "core" genetic payloads to their "coat" or capsid structure. In this review, we describe current approaches for rAAV vector design tailored for transgene expression in the CNS, summarize the development of CNS-targeting AAV serotypes, and highlight recent advancements in AAV capsid engineering, aimed at generating a new generation of rAAVs with improved CNS tropism. Additionally, we discuss various administration routes for delivering rAAVs to the CNS and provide an overview of AAV-mediated gene therapies currently under investigation in clinical trials for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Liang Xu
- Clinical Research Center of Neurological Disease, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shun Yao
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Yifan Evan Ding
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mengxiao Xie
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dingqi Feng
- Center of Clinical Laboratory, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, 215123, China
| | - Pengfei Sha
- Clinical Research Center of Neurological Disease, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Lu Tan
- Clinical Research Center of Neurological Disease, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Fengfeng Bei
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Yizheng Yao
- Clinical Research Center of Neurological Disease, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China.
| |
Collapse
|
13
|
Matsuzaka Y, Yashiro R. Therapeutic Application and Structural Features of Adeno-Associated Virus Vector. Curr Issues Mol Biol 2024; 46:8464-8498. [PMID: 39194716 DOI: 10.3390/cimb46080499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024] Open
Abstract
Adeno-associated virus (AAV) is characterized by non-pathogenicity, long-term infection, and broad tropism and is actively developed as a vector virus for gene therapy products. AAV is classified into more than 100 serotypes based on differences in the amino acid sequence of the capsid protein. Endocytosis involves the uptake of viral particles by AAV and accessory receptors during AAV infection. After entry into the cell, they are transported to the nucleus through the nuclear pore complex. AAVs mainly use proteoglycans as receptors to enter cells, but the types of sugar chains in proteoglycans that have binding ability are different. Therefore, it is necessary to properly evaluate the primary structure of receptor proteins, such as amino acid sequences and post-translational modifications, including glycosylation, and the higher-order structure of proteins, such as the folding of the entire capsid structure and the three-dimensional (3D) structure of functional domains, to ensure the efficacy and safety of biopharmaceuticals. To further enhance safety, it is necessary to further improve the efficiency of gene transfer into target cells, reduce the amount of vector administered, and prevent infection of non-target cells.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8551, Japan
| | - Ryu Yashiro
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8551, Japan
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| |
Collapse
|
14
|
Zhu W, Du W, Rameshbabu AP, Armstrong AM, Silver S, Kim Y, Wei W, Shu Y, Liu X, Lewis MA, Steel KP, Chen ZY. Targeted genome editing restores auditory function in adult mice with progressive hearing loss caused by a human microRNA mutation. Sci Transl Med 2024; 16:eadn0689. [PMID: 38985856 PMCID: PMC7616320 DOI: 10.1126/scitranslmed.adn0689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
Mutations in microRNA-96 (MIR96) cause autosomal dominant deafness-50 (DFNA50), a form of delayed-onset hearing loss. Genome editing has shown efficacy in hearing recovery through intervention in neonatal mice, yet editing in the adult inner ear is necessary for clinical applications, which has not been done. Here, we developed a genome editing therapy for the MIR96 mutation 14C>A by screening different CRISPR systems and optimizing Cas9 expression and the sgRNA scaffold for efficient and specific mutation editing. AAV delivery of the KKH variant of Staphylococcus aureus Cas9 (SaCas9-KKH) and sgRNA to the cochleae of presymptomatic (3-week-old) and symptomatic (6-week-old) adult Mir9614C>A/+ mutant mice improved hearing long term, with efficacy increased by injection at a younger age. Adult inner ear delivery resulted in transient Cas9 expression without evidence of AAV genomic integration, indicating the good safety profile of our in vivo genome editing strategy. We developed a dual-AAV system, including an AAV-sgmiR96-master carrying sgRNAs against all known human MIR96 mutations. Because mouse and human MIR96 sequences share 100% homology, our approach and sgRNA selection for efficient and specific hair cell editing for long-term hearing recovery lay the foundation for the development of treatment for patients with DFNA50 caused by MIR96 mutations.
Collapse
Affiliation(s)
- Wenliang Zhu
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
- Eaton-Peabody laboratory, Massachusetts Eye and Ear, Boston, MA02114, USA
| | - Wan Du
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
- Eaton-Peabody laboratory, Massachusetts Eye and Ear, Boston, MA02114, USA
| | - Arun Prabhu Rameshbabu
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
- Eaton-Peabody laboratory, Massachusetts Eye and Ear, Boston, MA02114, USA
| | - Ariel Miura Armstrong
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
- Eaton-Peabody laboratory, Massachusetts Eye and Ear, Boston, MA02114, USA
| | - Stewart Silver
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
- Eaton-Peabody laboratory, Massachusetts Eye and Ear, Boston, MA02114, USA
| | - Yehree Kim
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
- Eaton-Peabody laboratory, Massachusetts Eye and Ear, Boston, MA02114, USA
| | - Wei Wei
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
- Eaton-Peabody laboratory, Massachusetts Eye and Ear, Boston, MA02114, USA
| | - Yilai Shu
- ENT Institute and Otorhinolaryngology Department of Eye & ENT hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai200031, China
- Institutes of Biomedical Science, Fudan University, Shanghai200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai200031, China
| | - Xuezhong Liu
- Department of Otolaryngology, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Morag A. Lewis
- Wolfson Sensory, Pain and Regeneration Centre, King’s College London, LondonWC2R 2LS, UK
| | - Karen P. Steel
- Wolfson Sensory, Pain and Regeneration Centre, King’s College London, LondonWC2R 2LS, UK
| | - Zheng-Yi Chen
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
- Eaton-Peabody laboratory, Massachusetts Eye and Ear, Boston, MA02114, USA
| |
Collapse
|
15
|
Yadav A, Liang R, Press K, Schmidt A, Shabani Z, Leng K, Wang C, Sekhar A, Shi J, Devlin GW, Gonzalez TJ, Asokan A, Su H. Evaluation of Aav Capsids and Delivery Approaches for Hereditary Hemorrhagic Telangiectasia Gene Therapy. RESEARCH SQUARE 2024:rs.3.rs-4469011. [PMID: 38947073 PMCID: PMC11213183 DOI: 10.21203/rs.3.rs-4469011/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Nosebleeds and intracranial hemorrhage from brain arteriovenous malformations (bAVMs) are among the most devastating symptoms of patients with hereditary hemorrhagic telangiectasis (HHT). All available managements have limitations. We showed that intravenous delivery of soluble FMS-related tyrosine kinase 1 using an adeno-associated viral vector (AAV9-sFLT1) reduced bAVM severity of endoglin deficient mice. However, minor liver inflammation and growth arrest in young mice were observed. To identify AAV variants and delivery methods that can best transduce brain and nasal tissue with an optimal transduction profile, we compared 3 engineered AAV capsids (AAV.cc47, AAV.cc84 and AAV1RX) with AAV9. A single-stranded CBA promoter driven tdTomato transgene was packaged in these capsids and delivered intravenously (i.v.) or intranasally (i.n.) to wild-type mice. A CMV promoter driven Alk1 transgene was packaged into AAV.cc84 and delivered to PdgfbiCre;Alk1 f/f mice through i.v. injection followed by brain AVM induction. Transduced cells in different organs, vessel density and abnormal vessels in the bAVMs, and liver inflammation were analyzed histologically. Liver and kidney function were measured enzymatically. Compared to other viral vectors, AAV.cc84, after i.v. delivery, transduced a high percentage of brain ECs and few hepatocytes; whereas after i.n. delivery, AAV.cc84 transduced ECs and perivascular cells in the brain, and ECs, epithelial cells, and skeletal muscles in the nose with minimum hepatocyte transduction. No changes to liver or kidney function were detected. Delivery of AAV.cc84-Alk1 through i.v. to PdgfbiCre;Alk1 f/f mice reduced bAVM severity. In summary, we propose that AAV.cc84-Alk1 is a promising candidate for developing gene therapy in HHT patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Kun Leng
- University of California, San Francisco
| | | | | | | | | | | | | | - Hua Su
- University of California, San Francisco
| |
Collapse
|
16
|
Gao Z. Strategies for enhanced gene delivery to the central nervous system. NANOSCALE ADVANCES 2024; 6:3009-3028. [PMID: 38868835 PMCID: PMC11166101 DOI: 10.1039/d3na01125a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/12/2024] [Indexed: 06/14/2024]
Abstract
The delivery of genes to the central nervous system (CNS) has been a persistent challenge due to various biological barriers. The blood-brain barrier (BBB), in particular, hampers the access of systemically injected drugs to parenchymal cells, allowing only a minimal percentage (<1%) to pass through. Recent scientific insights highlight the crucial role of the extracellular space (ECS) in governing drug diffusion. Taking into account advancements in vectors, techniques, and knowledge, the discussion will center on the most notable vectors utilized for gene delivery to the CNS. This review will explore the influence of the ECS - a dynamically regulated barrier-on drug diffusion. Furthermore, we will underscore the significance of employing remote-control technologies to facilitate BBB traversal and modulate the ECS. Given the rapid progress in gene editing, our discussion will also encompass the latest advances focused on delivering therapeutic editing in vivo to the CNS tissue. In the end, a brief summary on the impact of Artificial Intelligence (AI)/Machine Learning (ML), ultrasmall, soft endovascular robots, and high-resolution endovascular cameras on improving the gene delivery to the CNS will be provided.
Collapse
Affiliation(s)
- Zhenghong Gao
- Mechanical Engineering, The University of Texas at Dallas USA
| |
Collapse
|
17
|
Willimann M, Tiyaboonchai A, Adachi K, Li B, Waldburger L, Nakai H, Grompe M, Thöny B. AAV Capsid Screening for Translational Pig Research Using a Mouse Xenograft Liver Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596409. [PMID: 38853940 PMCID: PMC11160762 DOI: 10.1101/2024.05.29.596409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
In gene therapy, delivery vectors are a key component for successful gene delivery and safety, based on which adeno-associated viruses (AAVs) gained popularity in particular for the liver, but also for other organs. Traditionally, rodents have been used as animal models to develop and optimize treatments, but species and organ specific tropism of AAV desire large animal models more closely related to humans for preclinical in-depth studies. Relevant AAV variants with the potential for clinical translation in liver gene therapy were previously evolved in vivo in a xenogeneic mouse model transplanted with human hepatocytes. Here, we selected and evaluated efficient AAV capsids using chimeric mice with a >90% xenografted pig hepatocytes. The pig is a valuable preclinical model for therapy studies due to its anatomic and immunological similarities to humans. Using a DNA-barcoded recombinant AAV library containing 47 different capsids and subsequent Illumina sequencing of barcodes in the AAV vector genome DNA and transcripts in the porcine hepatocytes, we found the AAVLK03 and AAVrh20 capsid to be the most efficient delivery vectors regarding transgene expression in porcine hepatocytes. In attempting to validate these findings with primary porcine hepatocytes, we observed capsid-specific differences in cell entry and transgene expression efficiency where the AAV2, AAVAnc80, and AAVDJ capsids showed superior efficiency to AAVLK03 and AAVrh20. This work highlights intricacies of in vitro testing with primary hepatocytes and the requirements for suitable pre-clinical animal models but suggests the chimeric mouse to be a valuable model to predict AAV capsids to transduce porcine hepatocytes efficiently.
Collapse
Affiliation(s)
- Melanie Willimann
- University Children's Hospital Zurich, Division of Metabolism and Children's Research Center, Zurich, Switzerland
| | - Amita Tiyaboonchai
- Oregon Health & Science University, Stem Cell Center, Portland, Oregon, USA
| | - Kei Adachi
- Oregon Health & Science University, Department of Molecular & Medical Genetics, Portland, Oregon, USA
| | - Bin Li
- Oregon Health & Science University, Stem Cell Center, Portland, Oregon, USA
| | - Lea Waldburger
- University Children's Hospital Zurich, Division of Metabolism and Children's Research Center, Zurich, Switzerland
| | - Hiroyuki Nakai
- Oregon Health & Science University, Department of Molecular & Medical Genetics, Portland, Oregon, USA
| | - Markus Grompe
- Oregon Health & Science University, Stem Cell Center, Portland, Oregon, USA
| | - Beat Thöny
- University Children's Hospital Zurich, Division of Metabolism and Children's Research Center, Zurich, Switzerland
| |
Collapse
|
18
|
Luo S, Jiang H, Li Q, Qin Y, Yang S, Li J, Xu L, Gou Y, Zhang Y, Liu F, Ke X, Zheng Q, Sun X. An adeno-associated virus variant enabling efficient ocular-directed gene delivery across species. Nat Commun 2024; 15:3780. [PMID: 38710714 DOI: 10.1038/s41467-024-48221-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/24/2024] [Indexed: 05/08/2024] Open
Abstract
Recombinant adeno-associated viruses (rAAVs) have emerged as promising gene therapy vectors due to their proven efficacy and safety in clinical applications. In non-human primates (NHPs), rAAVs are administered via suprachoroidal injection at a higher dose. However, high doses of rAAVs tend to increase additional safety risks. Here, we present a novel AAV capsid (AAVv128), which exhibits significantly enhanced transduction efficiency for photoreceptors and retinal pigment epithelial (RPE) cells, along with a broader distribution across the layers of retinal tissues in different animal models (mice, rabbits, and NHPs) following intraocular injection. Notably, the suprachoroidal delivery of AAVv128-anti-VEGF vector completely suppresses the Grade IV lesions in a laser-induced choroidal neovascularization (CNV) NHP model for neovascular age-related macular degeneration (nAMD). Furthermore, cryo-EM analysis at 2.1 Å resolution reveals that the critical residues of AAVv128 exhibit a more robust advantage in AAV binding, the nuclear uptake and endosome escaping. Collectively, our findings highlight the potential of AAVv128 as a next generation ocular gene therapy vector, particularly using the suprachoroidal delivery route.
Collapse
Affiliation(s)
- Shuang Luo
- Chengdu Origen Biotechnology Co. Ltd, Chengdu, 610036, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- Sichuan Provincial Key Laboratory of Innovative Biomedicine, Chengdu, 610036, China
| | - Hao Jiang
- Chengdu Origen Biotechnology Co. Ltd, Chengdu, 610036, China
- Sichuan Provincial Key Laboratory of Innovative Biomedicine, Chengdu, 610036, China
| | - Qingwei Li
- Chengdu Origen Biotechnology Co. Ltd, Chengdu, 610036, China
- Sichuan Provincial Key Laboratory of Innovative Biomedicine, Chengdu, 610036, China
| | - Yingfei Qin
- Chengdu Origen Biotechnology Co. Ltd, Chengdu, 610036, China
| | - Shiping Yang
- Chengdu Origen Biotechnology Co. Ltd, Chengdu, 610036, China
| | - Jing Li
- Chengdu Origen Biotechnology Co. Ltd, Chengdu, 610036, China
| | - Lingli Xu
- Chengdu Origen Biotechnology Co. Ltd, Chengdu, 610036, China
| | - Yan Gou
- Chengdu Origen Biotechnology Co. Ltd, Chengdu, 610036, China
| | - Yafei Zhang
- Chengdu Origen Biotechnology Co. Ltd, Chengdu, 610036, China
| | - Fengjiang Liu
- Innovative Center for Pathogen Research, Guangzhou Laboratory, Guangzhou, 510005, China
| | - Xiao Ke
- Chengdu Origen Biotechnology Co. Ltd, Chengdu, 610036, China.
- Chengdu Kanghong Pharmaceuticals Group Co Ltd, Chengdu, 610036, China.
| | - Qiang Zheng
- Chengdu Origen Biotechnology Co. Ltd, Chengdu, 610036, China.
- Sichuan Provincial Key Laboratory of Innovative Biomedicine, Chengdu, 610036, China.
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
19
|
Karpurapu A, Williams HA, DeBenedittis P, Baker CE, Ren S, Thomas MC, Beard AJ, Devlin GW, Harrington J, Parker LE, Smith AK, Mainsah B, Pla MM, Asokan A, Bowles DE, Iversen E, Collins L, Karra R. Deep Learning Resolves Myovascular Dynamics in the Failing Human Heart. JACC Basic Transl Sci 2024; 9:674-686. [PMID: 38984052 PMCID: PMC11228115 DOI: 10.1016/j.jacbts.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 07/11/2024]
Abstract
The adult mammalian heart harbors minute levels of cycling cardiomyocytes (CMs). Large numbers of images are needed to accurately quantify cycling events using microscopy-based methods. CardioCount is a new deep learning-based pipeline to rigorously score nuclei in microscopic images. When applied to a repository of 368,434 human microscopic images, we found evidence of coupled growth between CMs and cardiac endothelial cells in the adult human heart. Additionally, we found that vascular rarefaction and CM hypertrophy are interrelated in end-stage heart failure. CardioCount is available for use via GitHub and via Google Colab for users with minimal machine learning experience.
Collapse
Affiliation(s)
- Anish Karpurapu
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Helen A. Williams
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Paige DeBenedittis
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Caroline E. Baker
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Simiao Ren
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina, USA
| | - Michael C. Thomas
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Anneka J. Beard
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Garth W. Devlin
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Josephine Harrington
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Lauren E. Parker
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Abigail K. Smith
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Boyla Mainsah
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina, USA
| | - Michelle Mendiola Pla
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Aravind Asokan
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Dawn E. Bowles
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Edwin Iversen
- Department of Statistical Science, Duke University, Durham, North Carolina, USA
| | - Leslie Collins
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina, USA
| | - Ravi Karra
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
- Duke Regeneration Center, Durham, North Carolina, USA
| |
Collapse
|
20
|
Gao Q, Kahan R, Gonzalez TJ, Zhang M, Alderete IS, DeLaura I, Kesseli SJ, Song M, Asokan A, Barbas AS, Hartwig MG. Gene delivery followed by ex vivo lung perfusion using an adeno-associated viral vector in a rodent lung transplant model. J Thorac Cardiovasc Surg 2024; 167:e131-e139. [PMID: 37678606 DOI: 10.1016/j.jtcvs.2023.08.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/14/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
OBJECTIVE Ex vivo lung perfusion has emerged as a platform for organ preservation, evaluation, and restoration. Gene delivery using a clinically relevant adeno-associated vector during ex vivo lung perfusion may be useful in optimizing donor allografts while the graft is maintained physiologically active. We evaluated the feasibility of adeno-associated vector-mediated gene delivery during ex vivo lung perfusion in a rat transplant model. Additionally, we assessed off-target effects and explored different routes of delivery. METHODS Rat heart-lung blocks were procured and underwent 1-hour ex vivo lung perfusion. Before ex vivo lung perfusion, 4e11 viral genome luciferase encoding adeno-associated vector 9 was administered via the left bronchus (Br group, n = 4), via the left pulmonary artery (PA group, n = 3), or directly into the circuit (Circuit group, n = 3). Donor lungs in the Control group (n = 3) underwent ex vivo lung perfusion without adeno-associated vector 9. Only the left lung was transplanted. Animals underwent bioluminescence imaging weekly before being killed at 2 weeks. Tissues were collected for luciferase activity measurement. RESULTS All recipients tolerated the transplant well. At 2 weeks post-transplant, luciferase activity in the transplanted lung was significantly higher among animals in the Br group compared with the other 3 groups (Br: 1.1 × 106 RLU/g, PA: 8.3 × 104 RLU/g, Circuit: 3.8 × 103 RLU/g, Control: 2.5 × 103 RLU/g, P = .0003). No off-target transgene expression was observed. CONCLUSIONS In this work, we demonstrate that a clinically relevant adeno-associated vector 9 vector mediates gene transduction during ex vivo lung perfusion in rat lung grafts when administered via the airway and potentially the pulmonary artery. Our preliminary results suggest a higher transduction efficiency when adeno-associated vector 9 was delivered via the airway, and delivery during ex vivo lung perfusion reduces off-target effects after graft implant.
Collapse
Affiliation(s)
- Qimeng Gao
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Riley Kahan
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Trevor J Gonzalez
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC
| | - Min Zhang
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Isaac S Alderete
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Isabel DeLaura
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Samuel J Kesseli
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Mingqing Song
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Aravind Asokan
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Andrew S Barbas
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Mathew G Hartwig
- Department of Surgery, Duke University Medical Center, Durham, NC.
| |
Collapse
|
21
|
Castro B, Steel JC, Layton CJ. AAV-mediated gene therapies for glaucoma and uveitis: are we there yet? Expert Rev Mol Med 2024; 26:e9. [PMID: 38618935 PMCID: PMC11062146 DOI: 10.1017/erm.2024.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/03/2024] [Accepted: 02/01/2024] [Indexed: 04/16/2024]
Abstract
Glaucoma and uveitis are non-vascular ocular diseases which are among the leading causes of blindness and visual loss. These conditions have distinct characteristics and mechanisms but share a multifactorial and complex nature, making their management challenging and burdensome for patients and clinicians. Furthermore, the lack of symptoms in the early stages of glaucoma and the diverse aetiology of uveitis hinder timely and accurate diagnoses, which are a cause of poor visual outcomes under both conditions. Although current treatment is effective in most cases, it is often associated with low patient adherence and adverse events, which directly impact the overall therapeutic success. Therefore, long-lasting alternatives with improved safety and efficacy are needed. Gene therapy, particularly utilising adeno-associated virus (AAV) vectors, has emerged as a promising approach to address unmet needs in these diseases. Engineered capsids with enhanced tropism and lower immunogenicity have been proposed, along with constructs designed for targeted and controlled expression. Additionally, several pathways implicated in the pathogenesis of these conditions have been targeted with single or multigene expression cassettes, gene editing and silencing approaches. This review discusses strategies employed in AAV-based gene therapies for glaucoma and non-infectious uveitis and provides an overview of current progress and future directions.
Collapse
Affiliation(s)
- Brenda Castro
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, Australia
- Faculty of Medicine, Greenslopes Clinical School, The University of Queensland, Brisbane, Australia
| | - Jason C. Steel
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, Australia
- Faculty of Medicine, Greenslopes Clinical School, The University of Queensland, Brisbane, Australia
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Australia
| | - Christopher J. Layton
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, Australia
- Faculty of Medicine, Greenslopes Clinical School, The University of Queensland, Brisbane, Australia
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Australia
| |
Collapse
|
22
|
Wang JH, Gessler DJ, Zhan W, Gallagher TL, Gao G. Adeno-associated virus as a delivery vector for gene therapy of human diseases. Signal Transduct Target Ther 2024; 9:78. [PMID: 38565561 PMCID: PMC10987683 DOI: 10.1038/s41392-024-01780-w] [Citation(s) in RCA: 180] [Impact Index Per Article: 180.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
Adeno-associated virus (AAV) has emerged as a pivotal delivery tool in clinical gene therapy owing to its minimal pathogenicity and ability to establish long-term gene expression in different tissues. Recombinant AAV (rAAV) has been engineered for enhanced specificity and developed as a tool for treating various diseases. However, as rAAV is being more widely used as a therapy, the increased demand has created challenges for the existing manufacturing methods. Seven rAAV-based gene therapy products have received regulatory approval, but there continue to be concerns about safely using high-dose viral therapies in humans, including immune responses and adverse effects such as genotoxicity, hepatotoxicity, thrombotic microangiopathy, and neurotoxicity. In this review, we explore AAV biology with an emphasis on current vector engineering strategies and manufacturing technologies. We discuss how rAAVs are being employed in ongoing clinical trials for ocular, neurological, metabolic, hematological, neuromuscular, and cardiovascular diseases as well as cancers. We outline immune responses triggered by rAAV, address associated side effects, and discuss strategies to mitigate these reactions. We hope that discussing recent advancements and current challenges in the field will be a helpful guide for researchers and clinicians navigating the ever-evolving landscape of rAAV-based gene therapy.
Collapse
Affiliation(s)
- Jiang-Hui Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, 3002, Australia
| | - Dominic J Gessler
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Neurological Surgery, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Wei Zhan
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Thomas L Gallagher
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
23
|
Lopez-Gordo E, Chamberlain K, Riyad JM, Kohlbrenner E, Weber T. Natural Adeno-Associated Virus Serotypes and Engineered Adeno-Associated Virus Capsid Variants: Tropism Differences and Mechanistic Insights. Viruses 2024; 16:442. [PMID: 38543807 PMCID: PMC10975205 DOI: 10.3390/v16030442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 05/23/2024] Open
Abstract
Today, adeno-associated virus (AAV)-based vectors are arguably the most promising in vivo gene delivery vehicles for durable therapeutic gene expression. Advances in molecular engineering, high-throughput screening platforms, and computational techniques have resulted in a toolbox of capsid variants with enhanced performance over parental serotypes. Despite their considerable promise and emerging clinical success, there are still obstacles hindering their broader use, including limited transduction capabilities, tissue/cell type-specific tropism and penetration into tissues through anatomical barriers, off-target tissue biodistribution, intracellular degradation, immune recognition, and a lack of translatability from preclinical models to clinical settings. Here, we first describe the transduction mechanisms of natural AAV serotypes and explore the current understanding of the systemic and cellular hurdles to efficient transduction. We then outline progress in developing designer AAV capsid variants, highlighting the seminal discoveries of variants which can transduce the central nervous system upon systemic administration, and, to a lesser extent, discuss the targeting of the peripheral nervous system, eye, ear, lung, liver, heart, and skeletal muscle, emphasizing their tissue and cell specificity and translational promise. In particular, we dive deeper into the molecular mechanisms behind their enhanced properties, with a focus on their engagement with host cell receptors previously inaccessible to natural AAV serotypes. Finally, we summarize the main findings of our review and discuss future directions.
Collapse
|
24
|
Zhang H, Kelly K, Lee J, Echeverria D, Cooper D, Panwala R, Amrani N, Chen Z, Gaston N, Wagh A, Newby G, Xie J, Liu DR, Gao G, Wolfe S, Khvorova A, Watts J, Sontheimer E. Self-delivering, chemically modified CRISPR RNAs for AAV co-delivery and genome editing in vivo. Nucleic Acids Res 2024; 52:977-997. [PMID: 38033325 PMCID: PMC10810193 DOI: 10.1093/nar/gkad1125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
Guide RNAs offer programmability for CRISPR-Cas9 genome editing but also add challenges for delivery. Chemical modification, which has been key to the success of oligonucleotide therapeutics, can enhance the stability, distribution, cellular uptake, and safety of nucleic acids. Previously, we engineered heavily and fully modified SpyCas9 crRNA and tracrRNA, which showed enhanced stability and retained activity when delivered to cultured cells in the form of the ribonucleoprotein complex. In this study, we report that a short, fully stabilized oligonucleotide (a 'protecting oligo'), which can be displaced by tracrRNA annealing, can significantly enhance the potency and stability of a heavily modified crRNA. Furthermore, protecting oligos allow various bioconjugates to be appended, thereby improving cellular uptake and biodistribution of crRNA in vivo. Finally, we achieved in vivo genome editing in adult mouse liver and central nervous system via co-delivery of unformulated, chemically modified crRNAs with protecting oligos and AAV vectors that express tracrRNA and either SpyCas9 or a base editor derivative. Our proof-of-concept establishment of AAV/crRNA co-delivery offers a route towards transient editing activity, target multiplexing, guide redosing, and vector inactivation.
Collapse
Affiliation(s)
- Han Zhang
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Karen Kelly
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jonathan Lee
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - David Cooper
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Rebecca Panwala
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Nadia Amrani
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Zexiang Chen
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Nicholas Gaston
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Atish Wagh
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02139, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02139, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Scot A Wolfe
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jonathan K Watts
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Erik J Sontheimer
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
25
|
Imiołek M, Fekete S, Kizekai L, Addepalli B, Lauber M. Fast and efficient size exclusion chromatography of adeno associated viral vectors with 2.5 micrometer particle low adsorption columns. J Chromatogr A 2024; 1714:464587. [PMID: 38150795 DOI: 10.1016/j.chroma.2023.464587] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
More and more transformative gene therapies (GTx) are reaching commercialization stage and many of them use Adeno Associated Viruses (AAVs) as their vector. Being larger than therapeutic antibodies, their size variant analysis poses an analytical challenge that must be addressed to speed up the development processes. Size exclusion chromatography (SEC) can provide critical information on the quality and purity of the product, but its full potential is not yet utilized by currently applied columns that are (i) packed with relatively large particles, (ii) prepared exclusively in large formats and (iii) built using metal hardware that is prone to secondary interactions. In this paper, we investigate the use of state-of-the-art sub-3 µm particles to address existing limitations. A prototype 2.5 µm column was found to deliver superior kinetic efficiency, significant reduction in run times and increased resolution of separations. No evidence for shear or sample sieving effects were found during comparisons with conventional 5 µm columns. Moreover, use of low adsorption hardware enabled the application of a wide range of mobile phase conditions and a chance to apply a more robust platform method for several AAV serotypes. The resulting method was tested for its reproducibility as well as utility for critical quality attribute assays, including multiangle light scattering based (MALS) measurements of size and molar mass. Thus, a new tool for higher resolution, higher throughput size variant analysis of AAVs has been described.
Collapse
Affiliation(s)
- Mateusz Imiołek
- Waters Corporation, 1 Rue Michel Servet, Geneva 1211, Switzerland.
| | - Szabolcs Fekete
- Waters Corporation, 1 Rue Michel Servet, Geneva 1211, Switzerland
| | - Lavelay Kizekai
- Waters Corporation, 34 Maple Street, Milford MA 01757, United States of America
| | | | - Matthew Lauber
- Waters Corporation, 34 Maple Street, Milford MA 01757, United States of America
| |
Collapse
|
26
|
Clements KN, Gonzalez TJ, Asokan A. Engineering Synthetic circRNAs for Efficient CNS Expression. Methods Mol Biol 2024; 2765:227-246. [PMID: 38381343 DOI: 10.1007/978-1-0716-3678-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Circular RNAs (circRNAs) have recently emerged as a promising modality for gene and RNA-based therapies. They are more stable than their linear counterpart and can be designed for efficient expression in different cell and tissue types. In this chapter, we developed different backsplicing circRNA cassettes that can enable efficient gene expression in various cell and tissue types. Furthermore, we packaged cassettes encoding circRNAs into adeno-associated viral (AAV) vectors that can be delivered via intracerebroventricular (ICV) injections to achieve expression in murine brain tissue. We provide detailed methods for the design of backsplicing circRNAs, circRNA detection, and generation of AAV-circRNA vectors for CNS dosing and expression in mice.
Collapse
Affiliation(s)
- Katie N Clements
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Trevor J Gonzalez
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Aravind Asokan
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA.
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
27
|
Chang H, Du A, Jiang J, Ren L, Liu N, Zhou X, Liang J, Gao G, Wang D. Non-canonical amino acid incorporation into AAV5 capsid enhances lung transduction in mice. Mol Ther Methods Clin Dev 2023; 31:101129. [PMID: 37886602 PMCID: PMC10597788 DOI: 10.1016/j.omtm.2023.101129] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023]
Abstract
Gene therapy using recombinant adeno-associated virus (rAAV) relies on safe, efficient, and precise in vivo gene delivery that is largely dependent on the AAV capsid. The proteinaceous capsid is highly amenable to engineering using a variety of approaches, and most resulting capsids carry substitutions or insertions comprised of natural amino acids. Here, we incorporated a non-canonical amino acid (ncAA), Nε-2-azideoethyloxycarbonyl-L-lysine (also known as NAEK), into the AAV5 capsid using genetic code expansion, and serendipitously found that several NAEK-AAV5 vectors transduced various cell lines more efficiently than the parental rAAV5. Furthermore, one NAEK-AAV5 vector showed lung-specific transduction enhancement following systemic or intranasal delivery in mice. Structural modeling suggests that the long side chain of NAEK may impact on the 3-fold protrusion on the capsid surface that plays a key role in tropism, thereby modulating vector transduction. Recent advances in genetic code expansion have generated synthetic proteins carrying an increasing number of ncAAs that possess diverse biological properties. Our study suggests that ncAA incorporation into the AAV capsid may confer novel vector properties, opening a new and complementary avenue to gene therapy vector discovery.
Collapse
Affiliation(s)
- Hao Chang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Ailing Du
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jun Jiang
- GeneLeap Bio, Luye Life Sciences, Woburn, MA 01801, USA
| | - Lingzhi Ren
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Nan Liu
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Xuntao Zhou
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jialing Liang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Dan Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
28
|
Kellish PC, Marsic D, Crosson SM, Choudhury S, Scalabrino ML, Strang CE, Hill J, McCullough KT, Peterson JJ, Fajardo D, Gupte S, Makal V, Kondratov O, Kondratova L, Iyer S, Witherspoon CD, Gamlin PD, Zolotukhin S, Boye SL, Boye SE. Intravitreal injection of a rationally designed AAV capsid library in non-human primate identifies variants with enhanced retinal transduction and neutralizing antibody evasion. Mol Ther 2023; 31:3441-3456. [PMID: 37814449 PMCID: PMC10727955 DOI: 10.1016/j.ymthe.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/11/2023] Open
Abstract
Adeno-associated virus (AAV) continues to be the gold standard vector for therapeutic gene delivery and has proven especially useful for treating ocular disease. Intravitreal injection (IVtI) is a promising delivery route because it increases accessibility of gene therapies to larger patient populations. However, data from clinical and non-human primate (NHP) studies utilizing currently available capsids indicate that anatomical barriers to AAV and pre-existing neutralizing antibodies can restrict gene expression to levels that are "sub-therapeutic" in a substantial proportion of patients. Here, we performed a combination of directed evolution in NHPs of an AAV2-based capsid library with simultaneous mutations across six surface-exposed variable regions and rational design to identify novel capsid variants with improved retinal transduction following IVtI. Following two rounds of screening in NHP, enriched variants were characterized in intravitreally injected mice and NHPs and shown to have increased transduction relative to AAV2. Lead capsid variant, P2-V1, demonstrated an increased ability to evade neutralizing antibodies in human vitreous samples relative to AAV2 and AAV2.7m8. Taken together, this study further contributed to our understanding of the selective pressures associated with retinal transduction via the vitreous and identified promising novel AAV capsid variants for clinical consideration.
Collapse
Affiliation(s)
- Patrick C Kellish
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Damien Marsic
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Sean M Crosson
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Shreyasi Choudhury
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Miranda L Scalabrino
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Christianne E Strang
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham AL 35294, USA
| | - Julie Hill
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham AL 35294, USA
| | - K Tyler McCullough
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - James J Peterson
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Diego Fajardo
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Siddhant Gupte
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Victoria Makal
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Oleksandr Kondratov
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Liudmyla Kondratova
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Siva Iyer
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610, USA
| | - C Douglas Witherspoon
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham AL 35294, USA
| | - Paul D Gamlin
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham AL 35294, USA
| | - Sergei Zolotukhin
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Sanford L Boye
- Powell Gene Therapy Center, Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Shannon E Boye
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
29
|
Gonzalez TJ, Mitchell-Dick A, Blondel LO, Fanous MM, Hull JA, Oh DK, Moller-Tank S, Castellanos Rivera RM, Piedrahita JA, Asokan A. Structure-guided AAV capsid evolution strategies for enhanced CNS gene delivery. Nat Protoc 2023; 18:3413-3459. [PMID: 37735235 DOI: 10.1038/s41596-023-00875-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 06/13/2023] [Indexed: 09/23/2023]
Abstract
Over the past 5 years, our laboratory has systematically developed a structure-guided library approach to evolve new adeno-associated virus (AAV) capsids with altered tissue tropism, higher transduction efficiency and the ability to evade pre-existing humoral immunity. Here, we provide a detailed protocol describing two distinct evolution strategies using structurally divergent AAV serotypes as templates, exemplified by improving CNS gene transfer efficiency in vivo. We outline four major components of our strategy: (i) structure-guided design of AAV capsid libraries, (ii) AAV library production, (iii) library cycling in single versus multiple animal models, followed by (iv) evaluation of lead AAV vector candidates in vivo. The protocol spans ~95 d, excluding gene expression analysis in vivo, and can vary depending on user experience, resources and experimental design. A distinguishing attribute of the current protocol is the focus on providing biomedical researchers with 3D structural information to guide evolution of precise 'hotspots' on AAV capsids. Furthermore, the protocol outlines two distinct methods for AAV library evolution consisting of adenovirus-enabled infectious cycling in a single species and noninfectious cycling in a cross-species manner. Notably, our workflow can be seamlessly merged with other RNA transcript-based library strategies and tailored for tissue-specific capsid selection. Overall, the procedures outlined herein can be adapted to expand the AAV vector toolkit for genetic manipulation of animal models and development of human gene therapies.
Collapse
Affiliation(s)
- Trevor J Gonzalez
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | | | - Leo O Blondel
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Marco M Fanous
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Joshua A Hull
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Daniel K Oh
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Sven Moller-Tank
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Jorge A Piedrahita
- North Carolina State University College of Veterinary Medicine, Raleigh, NC, USA
| | - Aravind Asokan
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA.
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
30
|
Madigan V, Zhang F, Dahlman JE. Drug delivery systems for CRISPR-based genome editors. Nat Rev Drug Discov 2023; 22:875-894. [PMID: 37723222 DOI: 10.1038/s41573-023-00762-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 09/20/2023]
Abstract
CRISPR-based drugs can theoretically manipulate any genetic target. In practice, however, these drugs must enter the desired cell without eliciting an unwanted immune response, so a delivery system is often required. Here, we review drug delivery systems for CRISPR-based genome editors, focusing on adeno-associated viruses and lipid nanoparticles. After describing how these systems are engineered and their subsequent characterization in preclinical animal models, we highlight data from recent clinical trials. Preclinical targeting mediated by polymers, proteins, including virus-like particles, and other vehicles that may deliver CRISPR systems in the future is also discussed.
Collapse
Affiliation(s)
- Victoria Madigan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
31
|
Leon-Astudillo C, Trivedi PD, Sun RC, Gentry MS, Fuller DD, Byrne BJ, Corti M. Current avenues of gene therapy in Pompe disease. Curr Opin Neurol 2023; 36:464-473. [PMID: 37639402 PMCID: PMC10911405 DOI: 10.1097/wco.0000000000001187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
PURPOSE OF REVIEW Pompe disease is a rare, inherited, devastating condition that causes progressive weakness, cardiomyopathy and neuromotor disease due to the accumulation of glycogen in striated and smooth muscle, as well as neurons. While enzyme replacement therapy has dramatically changed the outcome of patients with the disease, this strategy has several limitations. Gene therapy in Pompe disease constitutes an attractive approach due to the multisystem aspects of the disease and need to address the central nervous system manifestations. This review highlights the recent work in this field, including methods, progress, shortcomings, and future directions. RECENT FINDINGS Recombinant adeno-associated virus (rAAV) and lentiviral vectors (LV) are well studied platforms for gene therapy in Pompe disease. These products can be further adapted for safe and efficient administration with concomitant immunosuppression, with the modification of specific receptors or codon optimization. rAAV has been studied in multiple clinical trials demonstrating safety and tolerability. SUMMARY Gene therapy for the treatment of patients with Pompe disease is feasible and offers an opportunity to fully correct the principal pathology leading to cellular glycogen accumulation. Further work is needed to overcome the limitations related to vector production, immunologic reactions and redosing.
Collapse
Affiliation(s)
- Carmen Leon-Astudillo
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Prasad D Trivedi
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Ramon C Sun
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville FL, United States
- Lafora Epilepsy Cure Initiative, United States
| | - Matthew S Gentry
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville FL, United States
- Lafora Epilepsy Cure Initiative, United States
| | | | - Barry J Byrne
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Manuela Corti
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
32
|
Gapinske M, Winter J, Swami D, Gapinske L, Woods WS, Shirguppe S, Miskalis A, Busza A, Joulani D, Kao CJ, Kostan K, Bigot A, Bashir R, Perez-Pinera P. Targeting Duchenne muscular dystrophy by skipping DMD exon 45 with base editors. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:572-586. [PMID: 37637209 PMCID: PMC10448430 DOI: 10.1016/j.omtn.2023.07.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/25/2023] [Indexed: 08/29/2023]
Abstract
Duchenne muscular dystrophy is an X-linked monogenic disease caused by mutations in the dystrophin gene (DMD) characterized by progressive muscle weakness, leading to loss of ambulation and decreased life expectancy. Since the current standard of care for Duchenne muscular dystrophy is to merely treat symptoms, there is a dire need for treatment modalities that can correct the underlying genetic mutations. While several gene replacement therapies are being explored in clinical trials, one emerging approach that can directly correct mutations in genomic DNA is base editing. We have recently developed CRISPR-SKIP, a base editing strategy to induce permanent exon skipping by introducing C > T or A > G mutations at splice acceptors in genomic DNA, which can be used therapeutically to recover dystrophin expression when a genomic deletion leads to an out-of-frame DMD transcript. We now demonstrate that CRISPR-SKIP can be adapted to correct some forms of Duchenne muscular dystrophy by disrupting the splice acceptor in human DMD exon 45 with high efficiency, which enables open reading frame recovery and restoration of dystrophin expression. We also demonstrate that AAV-delivered split-intein base editors edit the splice acceptor of DMD exon 45 in cultured human cells and in vivo, highlighting the therapeutic potential of this strategy.
Collapse
Affiliation(s)
- Michael Gapinske
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jackson Winter
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Devyani Swami
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lauren Gapinske
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick J. Holonyak Micro and Nano Technology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Wendy S. Woods
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shraddha Shirguppe
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Angelo Miskalis
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Anna Busza
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Dana Joulani
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Collin J. Kao
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kurt Kostan
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Anne Bigot
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Rashid Bashir
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick J. Holonyak Micro and Nano Technology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, Champaign, IL 61820, USA
| | - Pablo Perez-Pinera
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, Champaign, IL 61820, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
33
|
Cigliola V, Shoffner A, Lee N, Ou J, Gonzalez TJ, Hoque J, Becker CJ, Han Y, Shen G, Faw TD, Abd-El-Barr MM, Varghese S, Asokan A, Poss KD. Spinal cord repair is modulated by the neurogenic factor Hb-egf under direction of a regeneration-associated enhancer. Nat Commun 2023; 14:4857. [PMID: 37567873 PMCID: PMC10421883 DOI: 10.1038/s41467-023-40486-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Unlike adult mammals, zebrafish regenerate spinal cord tissue and recover locomotor ability after a paralyzing injury. Here, we find that ependymal cells in zebrafish spinal cords produce the neurogenic factor Hb-egfa upon transection injury. Animals with hb-egfa mutations display defective swim capacity, axon crossing, and tissue bridging after spinal cord transection, associated with disrupted indicators of neuron production. Local recombinant human HB-EGF delivery alters ependymal cell cycling and tissue bridging, enhancing functional regeneration. Epigenetic profiling reveals a tissue regeneration enhancer element (TREE) linked to hb-egfa that directs gene expression in spinal cord injuries. Systemically delivered recombinant AAVs containing this zebrafish TREE target gene expression to crush injuries of neonatal, but not adult, murine spinal cords. Moreover, enhancer-based HB-EGF delivery by AAV administration improves axon densities after crush injury in neonatal cords. Our results identify Hb-egf as a neurogenic factor necessary for innate spinal cord regeneration and suggest strategies to improve spinal cord repair in mammals.
Collapse
Affiliation(s)
- Valentina Cigliola
- Duke Regeneration Center, Duke University, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Université Côte d'Azur, Inserm, CNRS, Institut de Biologie Valrose, Nice, France
| | - Adam Shoffner
- Duke Regeneration Center, Duke University, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Nutishia Lee
- Duke Regeneration Center, Duke University, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Jianhong Ou
- Duke Regeneration Center, Duke University, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Trevor J Gonzalez
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Jiaul Hoque
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Clayton J Becker
- Duke Regeneration Center, Duke University, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Yanchao Han
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu, China
| | - Grace Shen
- Duke Regeneration Center, Duke University, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Timothy D Faw
- Duke Regeneration Center, Duke University, Durham, NC, USA
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Institute for Brain Sciences, Duke University, Durham, NC, USA
| | | | - Shyni Varghese
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Aravind Asokan
- Duke Regeneration Center, Duke University, Durham, NC, USA
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Kenneth D Poss
- Duke Regeneration Center, Duke University, Durham, NC, USA.
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
34
|
Barzi M, Johnson CG, Chen T, Rodriguiz RM, Hemmingsen M, Gonzalez TJ, Rosales A, Beasley J, Peck CK, Ma Y, Stiles AR, Wood TC, Maeso-Diaz R, Diehl AM, Young SP, Everitt JI, Wetsel WC, Lagor WR, Bissig-Choisat B, Asokan A, El-Gharbawy A, Bissig KD. Rescue of glutaric aciduria type I in mice by liver-directed therapies. Sci Transl Med 2023; 15:eadf4086. [PMID: 37075130 PMCID: PMC10676743 DOI: 10.1126/scitranslmed.adf4086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/01/2023] [Indexed: 04/21/2023]
Abstract
Glutaric aciduria type I (GA-1) is an inborn error of metabolism with a severe neurological phenotype caused by the deficiency of glutaryl-coenzyme A dehydrogenase (GCDH), the last enzyme of lysine catabolism. Current literature suggests that toxic catabolites in the brain are produced locally and do not cross the blood-brain barrier. In a series of experiments using knockout mice of the lysine catabolic pathway and liver cell transplantation, we uncovered that toxic GA-1 catabolites in the brain originated from the liver. Moreover, the characteristic brain and lethal phenotype of the GA-1 mouse model was rescued by two different liver-directed gene therapy approaches: Using an adeno-associated virus, we replaced the defective Gcdh gene or we prevented flux through the lysine degradation pathway by CRISPR deletion of the aminoadipate-semialdehyde synthase (Aass) gene. Our findings question the current pathophysiological understanding of GA-1 and reveal a targeted therapy for this devastating disorder.
Collapse
Affiliation(s)
- Mercedes Barzi
- Y.T. and Alice Chen Center for Genetics and Genomics, Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Collin G Johnson
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tong Chen
- Y.T. and Alice Chen Center for Genetics and Genomics, Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Ramona M Rodriguiz
- Department of Psychiatry and Behavioral Sciences, Cell Biology and Neurobiology, Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC 27710, USA
| | - Madeline Hemmingsen
- Y.T. and Alice Chen Center for Genetics and Genomics, Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Trevor J Gonzalez
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Alan Rosales
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - James Beasley
- Y.T. and Alice Chen Center for Genetics and Genomics, Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Cheryl K Peck
- Biochemical Genetics Laboratory, Children's Hospital Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Yunhan Ma
- Y.T. and Alice Chen Center for Genetics and Genomics, Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Ashlee R Stiles
- Y.T. and Alice Chen Center for Genetics and Genomics, Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Timothy C Wood
- Biochemical Genetics Laboratory, Children's Hospital Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Raquel Maeso-Diaz
- Department of Medicine, Division of Gastroenterology, Duke University Medical Center, Durham, NC 27710, USA
| | - Anna Mae Diehl
- Department of Medicine, Division of Gastroenterology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sarah P Young
- Y.T. and Alice Chen Center for Genetics and Genomics, Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Jeffrey I Everitt
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - William C Wetsel
- Department of Psychiatry and Behavioral Sciences, Cell Biology and Neurobiology, Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC 27710, USA
| | - William R Lagor
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Beatrice Bissig-Choisat
- Y.T. and Alice Chen Center for Genetics and Genomics, Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Aravind Asokan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
- Department of Biomedical Engineering (BME) at the Duke University Pratt School of Engineering, Duke University Medical Center, Durham, NC 27710, USA
- Duke Cancer Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Areeg El-Gharbawy
- Y.T. and Alice Chen Center for Genetics and Genomics, Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Karl-Dimiter Bissig
- Y.T. and Alice Chen Center for Genetics and Genomics, Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Division of Gastroenterology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Biomedical Engineering (BME) at the Duke University Pratt School of Engineering, Duke University Medical Center, Durham, NC 27710, USA
- Duke Cancer Center, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
35
|
Westhaus A, Cabanes-Creus M, Dilworth KL, Zhu E, Salas Gómez D, Navarro RG, Amaya AK, Scott S, Kwiatek M, McCorkindale AL, Hayman TE, Frahm S, Perocheau DP, Tran BM, Vincan E, Wong SL, Waters SA, Riddiough GE, Perini MV, Wilson LO, Baruteau J, Diecke S, González-Aseguinolaza G, Santilli G, Thrasher AJ, Alexander IE, Lisowski L. Assessment of Pre-Clinical Liver Models Based on Their Ability to Predict the Liver-Tropism of Adeno-Associated Virus Vectors. Hum Gene Ther 2023; 34:273-288. [PMID: 36927149 PMCID: PMC10150726 DOI: 10.1089/hum.2022.188] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/19/2023] [Indexed: 03/18/2023] Open
Abstract
The liver is a prime target for in vivo gene therapies using recombinant adeno-associated viral vectors. Multiple clinical trials have been undertaken for this target in the past 15 years; however, we are still to see market approval of the first liver-targeted adeno-associated virus (AAV)-based gene therapy. Inefficient expression of the therapeutic transgene, vector-induced liver toxicity and capsid, and/or transgene-mediated immune responses reported at high vector doses are the main challenges to date. One of the contributing factors to the insufficient clinical outcomes, despite highly encouraging preclinical data, is the lack of robust, biologically and clinically predictive preclinical models. To this end, this study reports findings of a functional evaluation of 6 AAV vectors in 12 preclinical models of the human liver, with the aim to uncover which combination of models is the most relevant for the identification of AAV capsid variant for safe and efficient transgene delivery to primary human hepatocytes. The results, generated by studies in models ranging from immortalized cells, iPSC-derived and primary hepatocytes, and primary human hepatic organoids to in vivo models, increased our understanding of the strengths and weaknesses of each system. This should allow the development of novel gene therapies targeting the human liver.
Collapse
Affiliation(s)
- Adrian Westhaus
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Marti Cabanes-Creus
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Kimberley L. Dilworth
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Erhua Zhu
- Gene Therapy Research Unit, Children's Medical Research Institute and Sydney Children's Hospitals Network, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - David Salas Gómez
- Gene Therapy and Regulation of Gene Expression Department, IdiSNA, Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, CIMA, Pamplona, Spain
| | - Renina G. Navarro
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Anais K. Amaya
- Gene Therapy Research Unit, Children's Medical Research Institute and Sydney Children's Hospitals Network, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Suzanne Scott
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
- Gene Therapy Research Unit, Children's Medical Research Institute and Sydney Children's Hospitals Network, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, Sydney, Australia
| | - Magdalena Kwiatek
- Military Institute of Hygiene and Epidemiology, The Biological Threats Identification and Countermeasure Centre, Puławy, Poland
| | | | | | - Silke Frahm
- Stem Cell Technology Platform, Max Delbrück Centrum for Molecular Medicine, Berlin, Germany
| | - Dany P. Perocheau
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
- National Institute of Health Research Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| | - Bang Manh Tran
- Department of Infectious Diseases, Melbourne Medical School, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Elizabeth Vincan
- Department of Infectious Diseases, Melbourne Medical School, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Curtin Medical School, Curtin University, Perth, Australia
| | - Sharon L. Wong
- Molecular and Integrative Cystic Fibrosis (miCF) Research Centre, University of New South Wales and Sydney Children's Hospital, Sydney, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Shafagh A. Waters
- Molecular and Integrative Cystic Fibrosis (miCF) Research Centre, University of New South Wales and Sydney Children's Hospital, Sydney, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
- Department of Respiratory Medicine, Sydney Children's Hospital, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Georgina E. Riddiough
- Department of Infectious Diseases, Melbourne Medical School, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Surgery, Austin Health Precinct, The University of Melbourne, Austin Health, Heidelberg, Australia
| | - Marcos V. Perini
- Department of Surgery, Austin Health Precinct, The University of Melbourne, Austin Health, Heidelberg, Australia
| | - Laurence O.W. Wilson
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, Sydney, Australia
- Applied BioSciences, Faculty of Science and Engineering, Macquarie University, Sydney, Australia
| | - Julien Baruteau
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
- National Institute of Health Research Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| | - Sebastian Diecke
- Stem Cell Technology Platform, Max Delbrück Centrum for Molecular Medicine, Berlin, Germany
| | - Gloria González-Aseguinolaza
- Gene Therapy and Regulation of Gene Expression Department, IdiSNA, Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, CIMA, Pamplona, Spain
| | - Giorgia Santilli
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Adrian J. Thrasher
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Ian E. Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute and Sydney Children's Hospitals Network, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
- Vector and Genome Engineering Facility, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warszawa, Poland
| |
Collapse
|
36
|
Zhang H, Kelly K, Lee J, Echeverria D, Cooper D, Panwala R, Chen Z, Gaston N, Newby GA, Xie J, Liu DR, Gao G, Wolfe SA, Khvorova A, Watts JK, Sontheimer EJ. Self-delivering CRISPR RNAs for AAV Co-delivery and Genome Editing in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533459. [PMID: 36993169 PMCID: PMC10055305 DOI: 10.1101/2023.03.20.533459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Guide RNAs offer programmability for CRISPR-Cas9 genome editing but also add challenges for delivery. Chemical modification, which has been key to the success of oligonucleotide therapeutics, can enhance the stability, distribution, cellular uptake, and safety of nucleic acids. Previously, we engineered heavily and fully modified SpyCas9 crRNA and tracrRNA, which showed enhanced stability and retained activity when delivered to cultured cells in the form of the ribonucleoprotein complex. In this study, we report that a short, fully stabilized oligonucleotide (a "protecting oligo"), which can be displaced by tracrRNA annealing, can significantly enhance the potency and stability of a heavily modified crRNA. Furthermore, protecting oligos allow various bioconjugates to be appended, thereby improving cellular uptake and biodistribution of crRNA in vivo. Finally, we achieved in vivo genome editing in adult mouse liver and central nervous system via co-delivery of unformulated, chemically modified crRNAs with protecting oligos and AAV vectors that express tracrRNA and either SpyCas9 or a base editor derivative. Our proof-of-concept establishment of AAV/crRNA co-delivery offers a route towards transient editing activity, target multiplexing, guide redosing, and vector inactivation.
Collapse
Affiliation(s)
- Han Zhang
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Karen Kelly
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Jonathan Lee
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - David Cooper
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Rebecca Panwala
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Zexiang Chen
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Nicholas Gaston
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Gregory A. Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, 02139, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, 02139, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - David R. Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, 02139, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, 02139, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Scot A. Wolfe
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Jonathan K. Watts
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Erik J. Sontheimer
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| |
Collapse
|
37
|
Ranum PT, Tecedor L, Keiser MS, Chen YH, Leib DE, Liu X, Davidson BL. Cochlear transduction via cerebrospinal fluid delivery of AAV in non-human primates. Mol Ther 2023; 31:609-612. [PMID: 36610400 PMCID: PMC10014218 DOI: 10.1016/j.ymthe.2022.12.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 01/07/2023] Open
Affiliation(s)
- Paul T Ranum
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Postdoctoral Training Program in Genomic Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Luis Tecedor
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Megan S Keiser
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yong Hong Chen
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - David E Leib
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Xueyuan Liu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Beverly L Davidson
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
38
|
Ghauri MS, Ou L. AAV Engineering for Improving Tropism to the Central Nervous System. BIOLOGY 2023; 12:186. [PMID: 36829465 PMCID: PMC9953251 DOI: 10.3390/biology12020186] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
Adeno-associated virus (AAV) is a non-pathogenic virus that mainly infects primates with the help of adenoviruses. AAV is being widely used as a delivery vector for in vivo gene therapy, as evidenced by five currently approved drugs and more than 255 clinical trials across the world. Due to its relatively low immunogenicity and toxicity, sustained efficacy, and broad tropism, AAV holds great promise for treating many indications, including central nervous system (CNS), ocular, muscular, and liver diseases. However, low delivery efficiency, especially for the CNS due to the blood-brain barrier (BBB), remains a significant challenge for more clinical application of AAV gene therapy. Thus, there is an urgent need for utilizing AAV engineering to discover next-generation capsids with improved properties, e.g., enhanced BBB penetrance, lower immunogenicity, and higher packaging efficiency. AAV engineering methods, including directed evolution, rational design, and in silico design, have been developed, resulting in the discovery of novel capsids (e.g., PhP.B, B10, PAL1A/B/C). In this review, we discuss key studies that identified engineered CNS capsids and/or established methodological improvements. Further, we also discussed important issues that need to be addressed, including cross-species translatability, cell specificity, and modular engineering to improve multiple properties simultaneously.
Collapse
Affiliation(s)
- Muhammad S. Ghauri
- School of Medicine, California University of Science and Medicine, Colton, CA 92324, USA
| | - Li Ou
- Genemagic Biosciences, Media, PA 19086, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454, USA
| |
Collapse
|